一元一次方程的应用——和差倍分问题专题练习(解析版)

合集下载

列一元一次方程解应用题(三)和差倍分问题讲义知识点经典例题练习

列一元一次方程解应用题(三)和差倍分问题讲义知识点经典例题练习

列方程解应用题(三)【知识要点梳理】和差倍分问题:【典型例题探究】例1.(2008海南中考)根据北京奥运票务网站公布的女子双人3米跳板跳水决赛的门票价格(如表1),小明预定了B等级、C等级门票共7张,他发现这7张门票的费用恰好可以预订3张A等级门票.问小明预定了B等级、C等级门票各多少张?表1:例2.有一只船,载重800吨,容积是795m3,现在装运铁和棉花两种物质,铁每吨体积是0.3m3,棉花每吨体积4m3,钢铁和棉花各装多少吨才能充分利用船舱的载重量和容积?例3.一个三角形三条边长的比是2:4:5,最长的一条边比最短的一条边长6厘米,求这个三角形的周长.例4.(2010北京)2009年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米?例5. 某校组织初一师生春游,如果单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可少租1辆,且余15个座位.(1)求参加春游的人数.(2)已知租用45座的客车日租金为每辆车250元,60座的客车日租金为每辆300元,问租用哪种客车更合算?例6. 某地抗洪救灾中,在甲处有146名战士,在乙处有78名战士,现从别处调来160名战士支援救灾,要使甲处的人数是乙处人数的3倍,则应调往甲、乙两处各多少名战士?例7. 为鼓励节约用水,某地按以下规定收取每月水费,如果每月每户用水不超过20吨,那么每吨水费按1.2元收费,如果每月每户用水超过20吨,那么超过部分按每吨2元收费,若某用户五月份的水费平均每吨1.5元,问该用户应交水费多少元?【基础达标演练】1.(2007绵阳中考)学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙票,共计用了112元,已知每张甲票比每张乙票贵2元,则甲乙票的票价分别是多少?2.(2009湖北恩施)手牵着手,心连着心.2008年5月12日发生在四川汶川的特大地震灾害,牵动着全中国人民的心.某校团支部发出为灾区捐款的倡议后,全校师生奉献爱心,踊跃捐款,已知全校师生共捐款 4万5千元,其中学生捐款数比老师捐款数的2倍少9千元,该校老师和学生各捐款多少元?3.(2009北京)北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日至2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1 696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?4. 某套书分上、中、下三册,印上册用了全部印刷时间的40%,印中册用了全部印刷时间的36%,印下册用了24天.印完全套书共用了多少天?5. 甲、乙、丙、丁四位同学共集邮370枚.如果给甲补充10枚,给乙减少20枚,给丙的张数扩大到原来的2倍,给丁的张数缩小到原来的21,四个人的邮票数正好相等,那么甲原来有多少枚?6.初一年级甲、乙两个班共有100人,其中参加数学活动小组的有42人,已知甲班学生有31参加数学活动小组,乙班学生有21参加数学活动小组,求各班学生的人数.7. 牧羊人赶着一群羊寻找一个草长得茂盛的地方,一个过路人牵着一只肥羊从后面跟了上来,他对牧羊人说:“你赶的这群羊大概有100只吧!”牧羊人答道:“如果这群羊增加一倍,再加上原来这群的一半,又加上原来这群羊一半的一半,连你这只羊也算进去,才刚好凑满100只.”问牧羊人的这群羊共有多少只?8. 用库存化肥给麦田追肥,如果每亩施肥6千克,库存缺少200千克,如果每亩施肥5千克,库存还剩下300千克,问:有多少亩麦田?库存化肥有多少千克?9. 针对居民用水浪费现象,某市制定居民用水标准规定三口之家楼房,每月标准用水量,超标部分加价收费,假设不超标部分每立方米水费1.3元,超标部分每立方米水费2.9元,某住楼房的三口之家某月用水12立方米,交水费22元,请你通过列方程求出该市三口之家楼房的标准用水量为多少立方米?10.2009年4月深圳出租车(红的一类车)白天的收费标准调整为为:起步价12.5元(即行驶距离不超过3千米都需付12.5元),行驶超过3千米以后,每增加1千米加收2.4元(不足1千米时按1千米计算).张明和王晨乘坐这种出租车去博物馆参观,下车时他们交付了24.5元车费,那么他们搭乘出租车最多走了多少千米(不计等候时间)?【能力提升训练】1.光明中学初中一年级一、二、三班,向希望学校共捐书385本,一班与二班捐书的本数之比为4:3,一班与三班捐书的本数之比为6:7,那么二班捐书多少本?2. 将一批梧桐树苗栽在马路的两旁,若每隔3米栽一棵,则剩下6棵树苗;若每隔2.5米栽一棵,则还缺154棵树苗.求这条马路的长及这批树苗的棵数.3. 黄帝故里的门票价格规定如下表:都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少元钱?(2)两班各有多少名学生?4.(2009湖南省株洲市)初中毕业了,孔明同学准备利用暑假卖报纸赚取140~200元钱,买一份礼物送给父母.已知:在暑假期间,如果卖出的报纸不超过1000份,则每卖出一份报纸可得0.1元;如果卖出的报纸超过1000份,则超过部分....每份可得0.2元.(1)请说明:孔明同学要达到目的,卖出报纸的份数必须超过1000份.(2)孔明同学要通过卖报纸赚取140~200元,请计算他卖出报纸的份数在哪个范围内.* 5.(甘肃中考)某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总票数的32,若提前购票,则给予不同程度的优惠.在五月份内,团体票每张12元,共售出团体票数的53;零售票每张16元,共售出零售票数一半,如果在六月份内,团体票每张16元出售,共计划在六月份内售出全部剩余票,那么零售票应按每张多少元定价才能使这两个月的票款收入持平?。

一元一次方程解应用题分类全

一元一次方程解应用题分类全

(一)和差倍分问题1、已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数。

2、某厂今年的产值是去年产值的3倍少25万,今年和去年产值总和是75万,求今年该厂的产值。

3、两筐鸭梨共重154千克,其中第一筐比第二筐的2倍少14千克,求两筐鸭梨各有多少千克?4、初一(1)班举办了一次集邮展览。

展出的邮票比平均每人3张多24张,比平均每人4张少26张。

这个班级有多少学生?一共展出了多少邮票?5、初一(4)班课外乒乓球小组买了两副乒乓球板,如果每人付9元,那么多了5元,如果每人付8元,那么还缺2元,请你根据以上情境提出问题,并列方程求解.6、某校住校生分配宿舍,如果每间住5人,则有2人无处住;如果每间住6人,则可以多住8人。

问该校有多少住校生?有多少间宿舍?7、学校准备拿出2000元资金给22名“希望杯”竞赛获奖学生买奖品,一等奖每人200元奖品,二等奖每人50元奖品,求得到一等奖和二等奖的学生分别是多少人?8、有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,•这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?(二)调配问题1、甲、乙两个工程队分别有80人和60人,为了支援乙队,需要从甲队调出一部分人进乙队,使乙队的人数比甲队人数的2倍多5人,问从甲队调出的人数应是多少?2、甲乙两运输队,甲队32人,乙队28人,若从乙队调走一些人到甲队,那么甲队人数恰好是乙队人数的2倍,问:从乙队调走了多少人到甲队?3、甲处劳动的有29人,在乙处劳动的有17人,现在赶工期,总公司另调20人去支援,使在甲处的人数为在乙处人数的2倍,应分别调往甲处、乙处各多少人?4、甲、乙两书架各有若干本书,如果从乙架拿100本放到甲架上,那么甲架上的书比乙架上所剩的书多5倍,如果从甲架上拿100本书放到乙架上,两架所有书相等。

问原来每架上各有多少书?(三)配套问题1、现有白铁皮28张,每张白铁皮可做甲件5个或乙件6个,若3个甲件及2个乙件配套,问如何下料正好使机件配套2、某车间22名工人参加生产一种螺母和螺丝。

一元一次方程的应用——和差倍分问题专题练习(解析版)

一元一次方程的应用——和差倍分问题专题练习(解析版)

一元一次方程的应用——和差倍分问题专题练习一、选择题1、在一次美化校园活动中,先安排32人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树人数的2倍,问支援拔草和支援植树的分别有多少人?若设支援拔草的有x人,则下列方程中正确的是().A. 32+x=2×18B. 32+x=2(38-x)C. 52-x=2(18+x)D. 52-x=2×18答案:B解答:设支援拔草的有x人,则支援植树的有(20-x)人,由题意得:32+x=2(18+20-x)32+x=2(38-x).故符合题意的为B选项.2、某物流中心的A仓库有货物180吨,B仓库有货物120吨,现在需把B仓库一部分货物运到A仓库,使B仓库货物占A仓库货物总量的30%.设把B仓库的货物运送x吨到A仓库,则可列方程().A. 120-x=30%×180B. 120-x=30%(180+x)C. 120+x=30%×180D. 180-x=30%(120+x)答案:B解答:设把B仓库的货物运送x吨到A仓库,根据题意得,120-x=30%(180+x).选B.3、某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是().A. 2×1000(26-x)=800xB. 1000(13-x)=800xC. 1000(26-x)=2×800xD. 1000(26-x)=800x答案:C解答:∵安排x名工人生产螺钉,∴安排(26-x)名工人生产螺母,则每天生产螺钉800x个,每天生产螺母1000(26-x)个,根据“螺母个数=2×螺钉个数”可列方程为1000(26-x)=2×800x.选C.4、已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为().A. 2cmB. 3cmC. 4cmD. 5cm答案:B解答:设大小处于中间的边长是xcm,则最大的边是(x+1)cm,最小的边长是(x-1)cm.则(x+1)+x+(x-1)=12,解得:x=4,则最短的边长是:4-1=3cm.选B.5、甲、乙、丙三种商品单价的比是6:5:4,已知甲商品比丙商品的单价多12元,则三种商品的单价之和为().A. 75元B. 90元C. 95元D. 100元答案:B解答:设甲、乙、丙三种商品的单价分别为6x,5x,4x,则6x-4x=12,解得x=6,∴三种商品的单价之和为6×6+5×6+4×6=90.6、父亲现在32岁,儿子现在5岁,x年前,父亲的年龄是儿子年龄的10倍,则x应满足的方程是().A. 32-x=5xB. 32-x=10(5-x)C. 32-x=5×10D. 32+x=5×10答案:B解答:x年前,父亲年龄是:32-x,儿子年龄是5-x,父亲的年龄=10×儿子的年龄,列式为:32-x=10(5-x).7、我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x人,依题意列方程得().A. 3x+3(100-x )=100 B.3x-3(100-x )=100C. 3x +1003x -=100D. 3x -1003x -=100 答案:C解答:设大和尚有x 人,则小和尚有(100-x )人;根据大和尚1人分3个,小和尚3人分1个,正好分完100个馒头,∴3x +1003x-=100,故答案为C. 8、长沙是中国男足的福地,3月23日中国队1:0胜韩国队,赢得12强赛的首场胜利!已知在足球比赛中,胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负了5场,共得23分,那么这个队胜了( ).A. 5场B. 6场C. 7场D. 8场答案:C解答:设共胜了x 场,则平了(14-5-x )场, 由题意得:3x +(14-5-x )=23, 解得:x =7,即这个队胜了7场. 选C.9、我国明代著名数学家程大位的《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设竿长为x 尺,根据题意列一元一次方程,正确的是( ). A. 12 x +5=x -5 B.12 x -5=x +5C. 12(x -5)=x +5D. 12(x +5)=x -5答案:D解答:绳索长为x +5或2(x -5),∴有x +5=2(x -5)即12(x +5)=x -5. 二、填空题10、传统文化与创意营销的结合使已有近600年历史的故宫博物院重新焕发出生机,一些文创产品让顾客爱不释手.某购物网站上销售故宫文创笔记本和珐琅书签,若文创笔记本的销量比珐琅书签销量的2倍少700件,二者销量之和为5900件,用x 表示珐琅书签的销量,则可列出一元一次方程______. 答案:(2x -700)+x =5900解答:∵文创笔记本的销量比珐琅书签销量的2倍少700件,∴文创笔记本的销量为(2x-700)件,∵二者销量之和为5900件,∴可列方程为:(2x-700)+x=5900.故答案为:(2x-700)+x=5900.11、一个两位数,个位数字比十位数字大4,且个位数字与十位数字的和为10,则这个两位数为______.答案:37解答:设个位数是a,十位数是b,则有①②410a ba b-=⎧⎨+=⎩①②,①+②得:2a=14,解得:a=7,将a=7代入①得:7-b=4解得:b=3,∴这个数是37.12、我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题:一百慢头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?如果译成白话文,其意思是有100个和尚分100个馒头,正好分完,如果大和尚一人分3个,小和尚3人分一个.试间大小和尚各有几人?设大和尚x人,小和尚y人,可列方程组为______.答案:1 31003100 xyx y⎧+=⎪⎨⎪+=⎩解答:131003100xyx y⎧+=⎪⎨⎪+=⎩.13、父亲和女儿的年龄之和是54,当父亲的年龄是女儿现在年龄的3倍时,女儿的年龄正好是父亲现在年龄的17,则女儿现在的年龄是______.答案:12解答:父亲与女儿年龄差恒定不变.设女现x 岁,则父(54-x )岁,父女年龄差为(54-2x )岁, 列3x -547x=54-2x ,解得x =12. 14、清人徐子云《算法大成》中有一首名为“寺内僧多少”的诗: 巍巍古寺在山林,不知寺中几多僧. 三百六十四只碗,众僧刚好都用尽. 三人共食一碗饭,四人共吃一碗羹. 请问先生明算者,算来寺内几多僧.诗的大意是:在巍巍的大山和茂密的森林之中,有一座千年古寺,寺中有364只碗,要是3个和尚共吃一碗饭,4个和尚共喝一碗粥,这些碗刚好用完,问寺内有多少和尚?设有和尚x 人,由题意可列方程为______. 答案:3x +4x=364 解答:∵有和尚x 人, ∴需要3x 只碗装饭,4x只碗装粥, 根据寺中有364只碗,即可得出关于x 的一元一次方程为3x +4x=364. 三解答题15、某校购买了A ,B 两种教具共138件,共花了5400元,其中A 教具每件30元,B 教具每件50元,两种教具各买了多少件? 答案:A 教具买了75件,B 教具买了63件.解答:设A 教具买了x 件,则B 教具买了(138-x )件,依题意有: 30x +50(138-x )=5400 解得x =75,则B 教具买了:138-75=63件,答:A 教具买了75件,B 教具买了63件.16、为发展校园足球运动,某校决定购买一批足球运动装备,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,求每套队服和每个足球的价格是多少. 答案:队服150元,足球100元.解答:设每个足球的价格是x 元,则每套队服是(x +50)元,根据题意得2(x +50)=3x , 解得x =100, x +50=150.答:每套队服150元,每个足球100元. 17、列方程解应用题:改革开放40年来,我国铁路发生了巨大变化,现在的铁路运营里程比1978年的铁路运营里程多了75000公里,其中高铁更是迅猛发展,其运营里程约占现在铁路运营里程的20%,只差600公里就达到了1978年的铁路运营里程的一半.问1978年的铁路运营里程是多少公里.答案:52000公里.解答:设1978年铁路运营里程为x 公里, 由题意,得12x -600=20%(x +75000), 解得x =52000.∴1978年铁路运营里程为52000公里.18、机械厂加工车间有90名工人,平均每人每天加工大齿轮16个或小齿轮28个,已知大齿轮和小齿轮要按1:2配成一套,问需安排多少名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套?(用一元一次方程解答) 答案:42.解答:设安排x 人加工大齿轮,则(90-x )人加工小齿轮, 才能使每天加工的代销齿轮刚好配套,由题可得:()162890x x -=12,解得:x =42,∴需安排42名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.19、第十六届亚运会于2010年11月27日在中国广州举行,我国体育健儿发扬奋勇拼搏,敢于争先的奥运精神,在这次亚运会上共获得416枚奖牌,其中金牌数是铜牌数的2倍多3枚,而铜牌数比银牌数少21枚,请问:中国体育健儿共获得金牌、银牌、铜牌各多少枚? 答案:共获得金牌199枚,银牌119枚,铜牌98枚.解答:设获得铜牌x 枚,则金牌(2x +3)枚,银牌(x +21)枚,则2x+3+x+21+x=416,4x=392,x=98.∴2x+3=199,x+21=119.答:共获得金牌199枚,银牌119枚,铜牌98枚.20、列方程解应用题.某餐厅有4条腿的椅子和3条腿的凳子共40个,如果椅子腿数和凳子腿数加起来共有145条,那么有几个椅子和几个凳子.答案:25个椅子,15个凳子.解答:设有x个椅子.根据题意列方程,得4x+3(40-x)=145.解方程,得:x=25.∴40-x=15.答:有25个椅子,15个凳子.21、某快递员准备送出一批美术用纸共25500包,其中包括素描纸、手工彩色卡纸和水粉纸三种美术用纸,它们的数量比为1:2:14,该快递员准备送出的这三种美术用纸各多包?答案:素描纸为1500包,手工彩色卡纸为3000包,水粉纸为21000包.解答:设素描纸包数为x,则手工彩色卡纸为2x,水粉纸为14x,∵美术用纸共25500包,∴x+2x+14x=25500,17x=25500,x=1500(包).∴2x=3000(包),14x=21000(包),答:素描纸为1500包,手工彩色卡纸为3000包,水粉纸为21000包.22、制作一张桌子要用1个桌面和4条腿,1立方米木材可制作20个桌面或者制作400条桌腿,现有24立方米木材,应分别计划用多少立方米木材制作桌面和桌腿?答案:计划用20立方米木材制作桌面,4立方米木材制作桌腿.解答:计划用x立方米木材制作桌面.则用(24-x)立方米木材制作桌腿.由题意,得20x×4=(24-x)×400.整理,得6x =120, 解,得x =20. 24-20=4.答:计划用20立方米木材制作桌面,4立方米木材制作桌腿.23、某工厂现有15m 3木料,准备制作各种尺寸的圆桌和方桌,如果用部分木料制作桌面,其余木料制作桌腿.1、已知一张圆桌由一个桌面和一条桌腿组成,如果1m 3木料可制作40个桌面,或制作20条桌腿.要使制作出的桌面、桌腿恰好配套,直接写出制作桌面的木料为多少m 3.2、已知一张方桌由一个桌面和四条桌腿组成.根据所给条件,解答下列问题.(1)如果1m 3木料可制作50个桌面,或制作300条桌腿,应怎样计划用料才能使做好的桌面和桌腿恰好配套.(2)如果3m 3木料可制作20个桌面,或制作320条桌腿,应怎样计划用料才能制作尽可能多的桌子.答案:1、制作桌面的木料为5m 3.2、(1)用9m 3木料制作桌面,用6m 3木料制作桌腿恰好配套.(2)用12m 3木料制作桌面,用3m 3木料制作桌腿能制作尽可能多的桌子. 解答:1、设用xm 3木料制作桌面,则用(15-x )立方米木料制作桌腿恰好配套, 由题意得40x =20(15-x ),解得:x =5. 答:制作桌面的木料为5m 3.2、(1)设用xm 3木料制作桌面,则用(15-x )立方米木料制作桌腿恰好配套, 由题意得4×50x =300(15-x ), 解得:x =9,∴制作桌腿的木料为:15-9=6(m 3).答:用9m 3木料制作桌面,用6m 3木料制作桌腿恰好配套.(2)设用ym 3木料制作桌面,则用(15-y )m 3木料制作桌腿能制作尽可能多的桌子, 由题意得4×20×3y=320×153y ,解得y =12, ∴15-12=3m 3.答:用12m 3木料制作桌面,用3m 3木料制作桌腿能制作尽可能多的桌子.。

一元一次方程应用和差倍分问题

一元一次方程应用和差倍分问题

和、差、倍、分问题例1、某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?例2、旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?练习:1.小丽在水果店花18元,买了苹果和橘子共6千克,已知苹果每千克3.2元,橘子每千克2.6元,小丽买了苹果和橘子各多少千克?2、甲、乙、丙三种货物共有167吨,甲种货物比乙种货物的2倍少5吨,丙种货物比甲种货物的1 5多3吨,求甲、乙、丙三种货物各多少吨?3.某班女生人数比男生的23还少2人,如果女生增加3人,男生减少3人,那么女生人数等于男生人数的79,那问男、女生各多少人?4、有水桶两只,甲桶的容量是400升,乙桶的容量是150升,如果从甲桶放出的水是乙桶放出的2倍,那么甲桶剩的水是乙桶所剩的4倍。

问每桶放出了多少升水?5、用化肥若干千克给一块麦田施肥,每亩用6千克,还差17千克;每亩用5千克,还多3千克,这块麦田有多少亩?6、毕业生在礼堂入座,1条长凳坐3人,有25人坐不下;1条长凳坐4人,正好空出4条长凳,则共有多少名毕业生?长凳有多少条?7、将一批货物装入一批箱子中,如果每箱装10件,还剩下6件;如果每箱装13件,那么有一只箱子只装1件,这批货物和箱子各有多少?8.将一箱本子分给若干个同学,若每人分5本,则还剩12本;若每人分8本,则还差6本。

求着一箱本子的数量与同学的人数?9.海尔集团如果平均每天生产20台冰箱,在规定天数内比订货任务少生产100台;如果平均每天生产23台,在同样天数内科超过订货任务20台。

问这批冰箱的订货任务是多少台?规定多少天完成?10.有一堆面值为1元、2元、5元、10元的钞票,共计58张,200元。

其中面值1元的20张,面值10元的7张,剩下的均为2元和5元的,你能否用所学的方程算出2元和5元的钞票各有多少张?11.已知5台I型机器一天的产品装满8箱后还剩4个,7台II型机器一天的产品装满11箱后还剩一个,每台I型机器比II型机器一天多生产1个产品,求每箱有多少个产品?12、初一(四)班发作业本,若每人发4本,则还余12本,若每人5本则还少18本,则全班共有______ 人,一共有__________本作业本。

一元一次方程的应用(和差倍分问题)汇总

一元一次方程的应用(和差倍分问题)汇总

一元一次方程的应用(和、差、倍、分问题1、已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数。

2、甲数比乙数大10,甲数的5倍与乙数的8倍的和是115,求甲、乙两数。

3、某厂今年的产值是去年产值的3倍少25万,今年和去年产值总和是75万,求今年该厂的产值。

4、三个连续偶数的和是360,求这三个偶数。

5、在甲处劳动的有31人,在乙处劳动的有20人,现调来18人支援,要使甲处劳动的人是乙处劳动的人数的2倍,应往甲、乙两处各调去多少人?6、姐姐四年前的年龄是妹妹年龄的2倍,今年的年龄是妹妹年龄的1.5倍,问姐姐今年的年龄?7、3月12日是植树节,初三年级170名学生去参加义务植树活动。

如果男生平均一天能挖树坑3个,女生平均一天能种树7棵,正好使每个树坑种上一棵树,问该年级的男女各有多少人?8、服装厂有工人156人,其中女工人数是男工人数的3倍,求有男工、女工各多少人?9、两筐鸭梨共重154千克,其中第一筐比第二筐的2倍少14千克,求两筐鸭梨各有多少千克?10、有两筐苹果共重78千克,如果从甲筐中取出14千克放入乙筐,则此时两筐重量相同,求两筐原来各有多少千克?11、有甲乙两个蓄水池,甲池中的水3000立方米,乙池中有水1200立方米,现从甲池中往乙池引水,流速为每分钟50立方米,多少分钟后乙池内的蓄水量是甲池水量的2倍?12、饲养小组共养鸡鸭1720只,卖出鸡的一半,再买进260只鸭子后,这时,鸡鸭的只数相同等。

求原来各养鸡、鸭多少只?13、两个数相除商6余5,被除数与商的和是225,求被除数和除数14、少先队四年级一、二、三中队共植树200棵,其中二中队植树的棵数比一中队植树棵数的2倍还多5棵,三中队植树的棵数比一、二中队植树的和多4棵,求三个中队各植树多少棵?15、甲乙两个仓库共有化肥56吨,如果甲库运出7吨化肥,乙库再运进9吨化肥,这样两个仓库存放的化肥数量相同。

求两仓库原来各有多少吨化肥?。

2023-2024年人教版七年级上册数学第三章一元一次方程应用题(和差倍分问题)训练(含解析)

2023-2024年人教版七年级上册数学第三章一元一次方程应用题(和差倍分问题)训练(含解析)

2023-2024年人教版七年级上册数学第三章一元一次方程应用题(和差倍分问题)训练参考答案:1.励东中学植树279棵,则海石中学植树555棵【分析】本题考查了一元一次方程的应用,设励东中学植树棵,则海石中学植树棵,根据等量关系列出方程,并方程即可求解,理清题意,根据等量关系列出方程是解题的关键.【详解】解:设励东中学植树棵,则海石中学植树棵,依题意得:,解得:,(棵),答:励东中学植树279棵,则海石中学植树555棵.2.,【分析】设其中一段长为,这另一段长为,根据整个木棍总长列方程求解即可.本题考查了一元一次方程的应用,正确设未知数,找出等量关系是解本题的关键.【详解】解:设其中一段长为,这另一段长为,解得,,答:两段长分别为,.3.甲、乙、丙三种草药分别需要克,克,克【分析】设这三种草药分别需要,,,然后根据题意列出一元一次方程,进而求解即可.【详解】设这三种草药分别需要,,,根据题意可得,解得∴,,∴甲、乙、丙三种草药分别需要克,克,克.【点睛】本题主要考查了从实际问题中抽象出一元一次方程,正确理解题意找到等量关系是解题的关键.x ()23x -x ()23x -23834x x +-=279x =834279555-=36cm 64cmcm x ()28cm x -100cm cm x ()28cmx -28100x x +-=36x =∴2864x -=36cm 64cm 2403608402x 3x 7x 2x 3x 7x 2371440x x x ++=120x =2240x =3360x =7840x =240360840可得出结论.【详解】解:设店中共有x 间房,根据题意得:,解得:.答:店中共有8间房.【点睛】本题考查了一元一次方程的应用以及数学常识,找准等量关系,正确列出一元一次方程是解题的关键.10.40名【分析】设该班有名学生,根据口罩的总数不变,列出方程,进行求解即可.【详解】解:设该班有名学生,由题意,得:,解得:;答:该班有40名学生.【点睛】本题考查一元一次方程的应用.找准等量关系,正确的列出方程,是解题的关键.11.购买A 种跳绳的单价为10元,购买B 种跳绳的单价15元【分析】设购买A 种跳绳的单价为x 元,则购买B 种跳绳的单价元,然后根据一共花费1000元,列出方程求解即可.【详解】解:设购买A 种跳绳的单价为x 元,则购买B 种跳绳的单价元,依题意得:,解得:,∴,答:购买A 种跳绳的单价为10元,购买B 种跳绳的单价15元.【点睛】本题主要考查了一元一次方程的实际应用,正确理解题意找到等量关系列出方程是解题的关键.12.(1)每套队服和每个足球的价格各是180元和120元(2)当购买足球的个数为50个时,在两家商场购买一样合算.当购买的足球少于50个时,则到甲商场购买合算.当购买的足球多于50个时,则到乙商场购买合算.779(1)x x +=-8x =x x 330550x x +=-40x =()25x -()25x -()4025401000x x -+=10x =2515x -=【分析】(1)根据“总费用×补贴百分数”进行计算即可;(2)设电视的单价为x 元,则空调的单价为(2x +600)元,找到等量关系列出一元一次方程解之即可.【详解】(1)解:6000×13%=780(元)答:该粉丝可以到线上客服处返780元.(2)设电视的单价为x 元,则空调的单价为(2x +600)元,根据题意得x +(2x +600)=6000解得x =1800∴6000-1800=4200(元)答:空调的单价为4200元,电视的单价为1800元.【点睛】本题考查一元一次方程的应用及有理数乘法的应用,解题关键是找到等量关系正确列出方程.19.(1)钢笔的单价为25元,毛笔的单价为29元(2)见解析【分析】(1)设钢笔的单价为x 元,则毛笔的单价为元,根据等量关系:买30支钢笔的钱+买45支毛笔的钱=2055,列出方程并解方程即可;(2)设钢笔购买y 支,毛笔购买支,根据等量关系:买y 支钢笔的钱+买(105−y )支毛笔的钱=2859,列出方程并解方程,根据y 的值为小数即可知算错了账.【详解】(1)设钢笔的单价为x 元,则毛笔的单价为元由题意有:解得:x =25毛笔的单价为:x +4=25+4=29元答:钢笔的单价为25元,毛笔的单价为29元.(2)设钢笔购买y 支,毛笔购买支由题意有:解得:y =46.5()4x +()105y -()4x +()304542055x x ++=()105y -()25291052859y y +-=∵y 取正整数,y 不能取46.5所以陈老师不能用2859元购买两种笔105支.【点睛】本题考查了一元一次方程的应用,正确理解题意、找到等量关系并列出方程是关键和难点.20.197个【分析】设小红跳了x 个大绳,根据你的单摇个数是你的大绳的4倍多5个,得到跳的单摇的数量,根据题意,列出方程进行求解即可.【详解】解:设小红跳了x 个大绳,则小红跳了个单摇,由题意,得:,解得.所以.答:小红跳了197个单摇.【点睛】本题考查一元一次方程的应用.找准等量关系,正确的列出方程,是解题的关键.()45x +()4524623x x ++=+-48x =45197x +=。

一元一次方程的应用题——和差、和倍、差倍

一元一次方程的应用题——和差、和倍、差倍

一元一次方程的应用题—和差倍问题和差问题1、两袋大米共重150千克,第二袋比第一袋多10千克,两袋大米各重多少千克?2、聪聪期末考试时语文和数学的平均分是98分,数学比语文多2分,问聪聪的语文和数学各得了多少分?3、今年小玲6岁,她父亲34岁,当两人年龄和是58岁时,两人年龄各多少岁?4、小张和小王共储蓄2000元,如果小张借给小王200元,两人储蓄的钱恰好相等,问两人各储蓄多少元?5、甲、乙两个笼子里共有小鸡20只,甲笼里新放4只,乙笼里取出1只,这时乙笼还比甲笼多1只,求甲、乙两笼原来各有鸡多少只?差倍问题、1、苹果是梨的3倍,苹果比梨多18个,苹果和梨各多少个2、两个数的差是279,去掉被减数个位上的0,被减数和减数相等,被减数和减数各是多少?3、三个班开展读书活动,二班比一班多读20本书,三班读的比二班的2倍多3本,比一班多读56本,三个班一共读了多少本?4、甲乙两人存款一样多,甲取出85元,乙存入15元后,乙是甲的3倍,两人原有存款各多少元?倍数出现变化的(属于鸡兔同笼问题的假设法)5、小张原有书的本数是小李的6倍,如果两人各再买2支,那么小张是小李的4倍,两人原来各有多少本书?6、小明妈妈用270元买了件外衣、一条裤子、一双鞋,已知外衣比裤子多95元,裤子比鞋子多20元,三件物品的价钱各是多少?7、甲桶油是乙桶油的5倍,如果从甲倒25千克油给乙,甲比乙还重10千克,原来两桶各多少8千克油?8、聪聪用10元钱买了3支圆珠笔和7本练习本,剩下的钱若买一支圆珠笔就少1角4分;若买一本练习本还多8角,问一支圆珠笔的售价是多少元?9、甲、乙两位学生原计划每天自学的时间相同,若甲每天增加自学时间半小时,乙每天减少自学时间半小时,则乙自学6天的时间仅相等于甲自学一天的时间。

问:甲、乙原订每天自学的时间是多少分钟?10、一大块金帝牌巧克力可以分成若干大小一样的正方形小块。

小明和小强各有一大块金帝巧克力,他们同时开始吃第一小块巧克力。

2019中考数学专题练习-一元一次方程的实际应用-和差倍分问题(含解析)

2019中考数学专题练习-一元一次方程的实际应用-和差倍分问题(含解析)

2019中考数学专题练习-一元一次方程的实际应用-和差倍分问题(含解析)一、单选题1.已知有大、小两种纸杯与甲、乙两桶果汁,其中小纸杯与大纸杯的容量比为2:3,甲桶果汁与乙桶果汁的体积比为4:5,若甲桶内的果汁刚好装满小纸杯120个,则乙桶内的果汁最多可装满大纸杯()A. 64个B. 100个C. 144个D. 225个2.为确保信息安全,信息需要加密传输,发送方由明文⇒密文(加密),接收方由密文⇒明文(解密).已知加密规则为:明文a,b,c对应的密文a+1,2b+4,3c+9.例如明文1,2,3对应的密文2,8,18.如果接收方收到密文7,18,15,则解密得到的明文为().A. 4,5,6B. 6,7,2C. 2,6,7D. 7,2,63.五水共治检查组从A市到B市有一天的路程,计划上午比下午多走100千米到C市吃午饭.由于堵车,中午才赶到一个小镇,只行驶了原计划的三分之一,过了小镇,汽车赶了400千米才停下来休息.司机说:“再走从C市到这里路程的二分之一就到达目的地了”.则A市到B市的路程为()A. 600千米B. 700千米C. 800千米D. 1200千米4.某地原有沙漠108公顷,绿洲54公顷,为改善生态环境,防止沙化现象,当地政府实施了沙漠变绿洲”工程,要把部分沙漠改造为绿洲,使绿洲面积占沙漠面积的80%.设把x公顷沙漠改造为绿洲,则可列方程为()A. 54+x=80%×108B. 54+x=80%(108-x)C. 54-x=80%(108+x)D. 108-x=80%(54+x)5.某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为()A. 880元B. 800元C. 720元D. 1080元6.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是()A. 25台B. 50台C. 75台D. 100台7.甲仓库与乙仓库共存粮450 吨、现从甲仓库运出存粮的60%.从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30 吨.若设甲仓库原来存粮x吨,则有()A. (1﹣60%)x﹣(1﹣40%)(450﹣x)=30 B. 60%x﹣40%•(450﹣x)=30C. (1﹣40%)(450﹣x)﹣(1﹣60%)x=30D. 40%•(450﹣x)﹣60%•x=308.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程()A. 54﹣x=20%×108B. 54﹣x=20%(108+x)C. 54+x=20%×162D. 108﹣x=20%(54+x)9.哥哥有存款300元,弟弟有存款120元,若从下月起哥哥每月存款100元,要想在5个月后两人的存款数相等,那么弟弟每月应存款()A. 100元B. 160元C. 136元D. 125元10.为了参加社区“畅响G20”文艺演出,某校组建了46人的合唱队和30人的舞蹈队,现根据演出需要,从舞蹈队中抽调了部分同学参加合唱队,使合唱队的人数恰好是舞蹈队人数的3倍,设从舞蹈队中抽调了x人参加合唱队,可得正确的方程是()A. 3(46﹣x)=30+xB. 46+x=3(30﹣x)C. 46﹣3x=30+xD. 46﹣x=3(30﹣x)11.(3)班的50名同学进行物理、化学两种实验测试,经最后统计知:物理实验做对的有40人,化学实验做对的有31人,两种实验都做错的有4人,则这两种实验都做对的有()A. 17人B. 21人C. 25人D. 37人12.小明准备为希望工程捐款,他现在有20元,打算以后每月存10元,若设x月后他能捐出100元,则列出的方程为()A. 10x+20=100B. 10x-20=100C. 20x-10=100D. 20x+10=10013.把一根长为120cm的木棍锯成两段,若使其中一段的长比另一段的2倍少3cm,则锯出的木棍的长不可能为()A. 80cmB. 41cmC. 79cmD. 41cm或79cm14.小明同学存入300元的活期储蓄,存满3个月时取出,共得本息和301.35元(不计利息税),则此活期储蓄得月利率是()A. 1.6‰B. 1.5‰C. 1.8‰D. 1.7‰15.小明将前年春节所得的压岁钱买了一个某银行的两年期的理财产品,该理财产品的年回报率为4.5%,银行告知小明今年春节他将得到利息288元,则小明前年春节的压岁钱为()A. 6400元B. 3200元C. 2560元D. 1600元二、填空题16.某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列方程为 ________17.两个角的大小之比是7:3,他们的差是72°,则这两个角的关系是________﹙选填:相等或互余或互补﹚18.在甲处劳动的有27人,在乙处劳动的有19人,现在另调20人去支援,使在甲处总人数为在乙处总人数的2倍,则应调到甲处 ________人.19.某公司承担了制作600个道路交通指引标志的任务,在实际操作时比原计划平均每天多制作了10个,因此提前了5天完成任务,如果设原计划x天完成,那么根据题意,可以列出的方程是:________.20.比a的3倍大5的数是9,列出方程是________ .21.一个数的3倍比它的2倍多10,若设这个数为x,可得到方程________.22.为支持亚太地区国家基础设施建设,由中国倡议设立“亚投行”,亚投行意向创始成员国现确定为57个国家,其中亚洲国家是欧洲国家的2倍少2个,其余大洲的国家共5个,设其中欧洲国家有x个,则可以列出方程________ .三、解答题23.根据下列条件,列出方程;(1)x的3倍减5,等于x的2倍加1;(2)x的30%加2的和的一半,等于x的20%减5.24.根据下列条件列出方程,然后解出来:(1)某数减去5的差的4倍是12;(2)某数的一半与3的和等于﹣1.四、综合题25.为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4800元.已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?(2)若单独租用一台车,租用哪台车合算?答案解析部分一、单选题1.已知有大、小两种纸杯与甲、乙两桶果汁,其中小纸杯与大纸杯的容量比为2:3,甲桶果汁与乙桶果汁的体积比为4:5,若甲桶内的果汁刚好装满小纸杯120个,则乙桶内的果汁最多可装满大纸杯()A. 64个B. 100个C. 144个D. 225个【答案】B【考点】一元一次方程的实际应用-和差倍分问题【解析】【分析】根据等量关系“甲桶内果汁装满小纸杯的个数×2=乙桶内果汁装满大纸杯的个数×3”,“甲桶内果汁装满大纸杯的个数:乙桶内果汁装满大纸杯的个数=4:5,可解出此题。

中考复习——方程(组)的应用——和差倍分问题(解析版)

中考复习——方程(组)的应用——和差倍分问题(解析版)

中考复习——方程(组)的应用——和差倍分问题一、选择题1、为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A 、B 两类玩具,其中A 类玩具的进价比B 类玩具的进价每个多3元,经调查:用900元购进A 类玩具的数量与用750元购进B 类玩具的数量相同.设A 类玩具的进价为m 元/个,根据题意可列分式方程为( ).A. 900m =7503m +B. 9003m +=750mC. 900m =7503m -D. 9003m -=750m 答案:C解答:设A 类玩具的进价为m 元/个,则B 类玩具的进价为(m -3)元/个, 由题意得,900m =7503m -. 2、岳阳市某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x 元,则下列所列方程正确的是( ).A. 200x =3503x -B. 200x =3503x +C. 2003x +=350xD. 2003x -=350x答案:B 解答:设每个笔记本的价格为x 元,则每个笔袋的价格为(x +3)元,根据题意得:200x =3503x +. 3、我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”.设鸡有x 只,兔有y 只,则根据题意,下列方程组中正确的是( ).A. 352494x y x y +=⎧⎨+=⎩B. 354294x y x y +=⎧⎨+=⎩C. 235494x y x y +=⎧⎨+=⎩D. 435294x y x y +=⎧⎨+=⎩ 答案:A解答:设鸡有x 只,兔有y 只,由题意得:352494x y x y +=⎧⎨+=⎩.4、《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是().A.8374y xy x-=⎧⎨-=⎩B.8374y xx y-=⎧⎨-=⎩C.8374x yy x-=⎧⎨-=⎩D.8374x yx y-=⎧⎨-=⎩答案:C解答:设合伙人数为x人,物价为y钱,根据题意,可列方程组:8374 x yy x-=⎧⎨-=⎩,选C.5、今年我省荔枝喜获丰收,有甲、乙两块面积相同的荔枝园,分别收获8600 kg和9800 kg,甲荔枝园比乙荔枝园平均每亩少60 kg,问甲荔枝园平均每亩收获荔枝多少kg.设甲荔枝园平均每亩收获荔枝x kg,根据题意,可得方程().A. 8600x=980060x+B.8600x=980060x-C.860060x-=9800xD.860060x+=9800x答案:A解答:设甲荔枝园平均每亩收获荔枝x kg,根据题意,可得方程:8600x=980060x+.6、我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺.则符合题意的方程是().A. 12x=(x-5)-5 B.12x=(x+5)+5C. 2x=(x-5)-5D. 2x=(x+5)+5答案:A解答:设索为x尺,杆子为(x-5)尺,根据题意得:12x=(x-5)-5.7、闽北某村原有林地120公顷,旱地60公顷,为适应产业结构调整,需把一部分旱地改造为林地,改造后,旱地面积占林地面积的20%,设把x公顷旱地改造为林地,则可列方程为().A. 60-x=20%(120+x)B. 60+x=20%×120C. 180-x=20%(60+x)D. 60-x=20%×120答案:A解答:设把x公顷旱地改为林地,根据题意可得方程:60-x=20%(120+x).8、《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是().A. x+2x+4x=34685B. x+2x+3x=34685C. x+2x+2x=34685D. x+12x+14x=34685答案:A解答:第一天读x个字,则第二天读2x个字,第三天读4x个字,共34685个字,所以x+2x+4x=34685,选A.9、朵朵幼儿园的阿姨给小朋友分苹果,如果每人3个还少3个,如果每人2个又多2个,请问共有多少个小朋友?()A. 4个B. 5个C. 10个D. 12个答案:B解答:设有x个小朋友,由题意得,3x-3=2x+2,解得:x=5.10、程大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?设大和尚有x人,依题意列方程得( ).A. 3x +3(100-x )=100B.3x -3(100-x )=100 C. 3x +1003x -=100 D. 3x -1003x -=100 答案:C解答:设大和尚有x 人,则小和尚有(100-x )人,根据题意得:3x +1003x -=100. 二、填空题11、某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人.请列出满足题意的方程组______.答案:3421x y x y +=⎧⎨=+⎩ 解答:设到井冈山的人数为x 人,到瑞金的人数为y 人,故答案为:3421x y x y +=⎧⎨=+⎩.12、小明上周三在超市恰好用10元钱买了几袋牛奶,周日再去买时,恰遇超市搞优惠酬宾活动,同样的牛奶,每袋比周三便宜0.5元,结果小明只比上次多用了2元钱,却比上次多买了2袋牛奶.若设他上周三买了x 袋牛奶,则根据题意列得方程为______. 答案:(x +2)(10x-0.5)=12 解答:设他上周三买了x 袋牛奶,则根据题意列得方程为:(x +2)(10x-0.5)=12. 13、某班有52名学生,其中男生人数是女生人数的2倍少17人,则女生有______名. 答案:23解答:设男生人数为x 人,女生人数为y 人.由此可得方程组52217x y x y +=⎧⎨=-⎩,解得:2923x y =⎧⎨=⎩. 所以,男生有29人,女生有23人.故答案为:23.14、某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x个物件,根据题意列出的方程是______.答案:608x+=45x解答:小李每小时分拣x个物件,则小王每小时分拣(x+8)个物件.根据题意得:608x+=45x.15、有两块面积相同的小麦试验田,分别收获小麦9000 kg和15000 kg.已知第一块试验田每公顷的产量比第二块少3000 kg,若设第一块试验田每公顷的产量为x kg,根据题意,可得方程______.答案:9000x=150003000x+解答:第一块试验田的面积为:9000x,第二块试验田的面积为:150003000x+.方程应该为:9000x=150003000x+.16、在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增.共灯三百八十一,请问顶层几盏灯?”(倍加增指从塔的顶层到底层).请你算出塔的顶层有______盏灯.答案:3解答:假设顶层的红灯有x盏,由题意得:x+2x+4x+8x+16x+32x+64x=381,127x=381,x=3.答:塔的顶层是3盏灯.17、公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为______.答案:133 8解答:设“它”的值为x,由题意可得x+17x=19,解得x=1338.则“它”的值为1338.三、解答题18、在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?答案:七年级收到的征文有38篇.解答:设七年级收到的征文有x篇,则八年级收到的征文有(118-x)篇,依题意得:(x+2)×2=118-x,解得:x=38.答:七年级收到的征文有38篇.19、有若干只鸡和兔关在一个笼子里,从上面数,有30个头;从下面数,有84条腿,问笼中各有几只鸡和兔?答案:笼子里鸡有18只,兔有12只.解答:设这个笼中的鸡有x只,兔有y只,根据题意得302484x yx y+=⎧⎨+=⎩.,解得1812xy=⎧⎨=⎩..答:笼子里鸡有18只,兔有12只.20、我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?请解答.答案:1个大桶可以盛酒1324斛,1个小桶可以盛酒724斛.解答:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,则5352 x yx y+=⎧⎨+=⎩,解得:1324724xy⎧=⎪⎪⎨⎪=⎪⎩,答:1个大桶可以盛酒1324斛,1个小桶可以盛酒724斛.21、列方程解应用题《九章算术》中有“盈不足术”的问题,原文如下:“今有共買羊,人出五,不足四十五.人出七,不足三.问人数、羊價各幾何.”题意是:若干人共同出资买羊,每人出5元,则差45元.每人出7元,则差3元.求人数和羊价各是多少.答案:买羊人数为21人,羊价为150元.解答:设买羊为x人,则羊价为(5x+45)元钱,5x+45=7x+3,x=21(人),5×21+45=150(元),∴买羊人数为21人,羊价为150元.22、北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日到2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?答案:轨道交通日均客运量为353万人次,地面公交日均客运量为1343万人次.解答:设轨道交通日均客运量为x万人次,则地面公交日均客运量为(4x-69)万人次.依题意,得x+(4x-69)=1696.解得x=353.4x-69=4×353-69=1343(万人次).答:轨道交通日均客运量为353万人次,地面公交日均客运量为1343万人次.23、“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?答案:省级自然保护区有22个,市县级自然保护区有17个.解答:设市县级自然保护区有x个,则省级自然保护区有(x+5)个,根据题意得:10+x+5+x=49,解得:x=17,∴x+5=22.答:省级自然保护区有22个,市县级自然保护区有17个.24、文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)答案:(1)甲种图书售价每本28元,乙种图书售价每本20元.(2)甲种图书进货533本,乙种图书进货667本时利润最大.解答:(1)设乙种图书售价每本x元,则甲种图书售价为每本1.4x元由题意得:140016801.4x x-=10解得:x=20经检验,x=20是原方程的解∴甲种图书售价为每本1.4×20=28元答:甲种图书售价每本28元,乙种图书售价每本20元.(2)设甲种图书进货a本,总利润W元,则W=(28-20-3)a+(20-14-2)(1200-a)=a+4800,∵20a+14×(1200-a)≤20000,解得a≤16003,∵W随a的增大而增大,∴当a最大时W最大,∴当a=533本时,W最大,此时,乙种图书进货本数为1200-533=667(本),答:甲种图书进货533本,乙种图书进货667本时利润最大.25、某商场购进甲、乙两种商品,乙商品的单价是甲商品单价的2倍,购买240元甲商品的数量比购买300元乙商品的数量多15件,求两种商品单价各为多少元?答案:甲、乙两种商品的单价分别为6元、12元.解答:设甲商品的单价为x元,乙商品的单价为2x元,根据题意,得:2403002x x-=15,解这个方程,得:x=6.经检验,x=6是所列方程的根.∴2x=2×6=12(元).答:甲、乙两种商品的单价分别为6元、12元.。

一元一次方程应用题和差倍分授课全

一元一次方程应用题和差倍分授课全

列方程得: 50000-x=42500

二.列方程解应用题
例1:某面粉仓库存放的面粉运出15% 后,还剩余42500千克。仓库原来有多 少面粉?
仓库总面粉
运走15%
剩下的
思考:在本题中有怎样的一个相等关系?
仓库总量=运走的+剩下的
仓库总面粉
运走15% 剩下的
仓库总量=运走的+剩下的

X = 15%X + 42500
2)设七年级共有X名同学参加这次公益活动,填写下表:
作环保的同学 (名)
植树种草的同学 参加公益活动
(名)
的同学(名)
15%X/X-170
170
X
3)列出方程: 15%X+170=X或15%X=X-170
运用方程解决实际问题的一般过程是什么?
1、审题:分析题意,找出题中的数量及
其关系;审
2、设元:直接或间接的设出未知数是列方
和、差、倍、分问题
一、列方程: 1、x与4的和是30,求x。列方程得: x+4=30 。 2、比x大4的数是30,求x。列方程得: x+4=30 。 3、x的2倍是6,求x。列方程得: 2x=6 。
4、x的85%是850,求x。列方程得: 85%x=850 。
5、仓库原有面粉50000千克,因抗洪抢险紧急调 出x千克后剩余面粉42500千克,求共调出面粉多 少千克?
3.某统计数据显示,在我国的664座城市中, 按水资源情况可分为三类:暂不缺水城市、一 般缺水城市和严重缺水城市,其中,暂不缺水 城市数比严重缺水城市数的4倍少50座,一般 缺水城市数是严重缺水城市数的2倍,求严重 缺水城市有多少座?
解:设严重缺水城市有x座, 列方程为:4x-50+2x+x=664, 解得:x=102, 答:严重缺水城市有102座

一元一次方程应用题例题讲解及练习

一元一次方程应用题例题讲解及练习

一元一次方程应用题例题讲解及练习一、和差倍分问题例题1、例1.某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?例题2.甲、乙、丙三个粮仓共存粮80吨,已知甲、乙两仓存粮数之比是1:2,乙、丙两仓存粮数之比是1:2.5,求甲、乙、丙三个粮仓各存粮多少吨?例题3、某文艺团体组织了一场义演为“希望工程”募捐,共售出1000张门票,已知成人票每张8元,学生票每张5元,共得票款6950元,成人票和学生票各几张?练习4.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.练习1.(2006·益阳市)八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:李小波:阿姨,您好!售货员:同学,你好,想买点什么?李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?练习2.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?二、工程问题例题1、一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?例题2、某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务?例题3、一件工作,甲单独做20小时完成,乙单独做12小时完成,丙单独做15小时完成,若先由甲、丙合做5小时,然后由甲、乙合做,问还需几天完成?练习1.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成?2.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。

和差倍分应用题精选全文完整版

和差倍分应用题精选全文完整版

可编辑修改精选全文完整版
一元一次方程应用题————和差倍分问题
1.某校七年级1班共有学生48人,其中女生人数比男生人数的多3人,这个班有男生多少人?
2.某乡镇农民今年人均收入比去年提高20%,今年人均收入比去年的1.5倍少1200元,这个乡镇农民去年人均收入是多少元?
3.把一根长100cm的木棍钜成两段,使其中一段的长比另一段的2倍少5cm,求分成的两段木棍各有多少cm?
4.据某统计数据显示,在我国的664座城市中,按水资源情况分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座?
5.洗衣机厂今年计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量比为1:2:14,这三种洗衣机计划各生产多少台?。

备考2024年中考数学二轮复习-一元一次方程的实际应用-和差倍分问题-综合题专训及答案

备考2024年中考数学二轮复习-一元一次方程的实际应用-和差倍分问题-综合题专训及答案

备考2024年中考数学二轮复习-一元一次方程的实际应用-和差倍分问题-综合题专训及答案一元一次方程的实际应用-和差倍分问题综合题专训1、(2019南关.中考模拟) 某地区由于龙卷风出现毁坏性灾害,一自愿者协会紧急筹集资金,计划购买甲、乙两种救灾物品送往该地区.已知甲种物品每件的价格比乙种物品每件的价格高 元,用 元购买甲种物品的件数与用 元购买乙种物品的件数相同.(1) 求甲、乙两种救灾物品每件的价格.(2) 经调查,该地区所需乙种物品的件数是甲种物品件数的 倍,自愿者协会按此比例购买 件物品,需筹集资金多少元?2、(2018武进.中考模拟) 为庆祝“六一儿童节”,某幼儿园计划购买A 、B 两种玩具若干件,已知1件A 种玩具的进价比1件B 种玩具的进价贵2元,6件A 种玩具的进价与7件B 种玩具的进价和为350元.(1) 每件A 种、B 种玩具的进价分别是多少元?(2) 若该幼儿园计划购买这两种玩具共240件,且总费用不超过6600元,那么B 种玩具最少可以买多少件?3、(2017昆山.中考模拟) 随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加.(1) 该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个,求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率;(2) 若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位),因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t .①若该养老中心建成后可提供养老床位200个,求t 的值;②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?4、(2019浙江.中考模拟) 某校教职工为庆祝“建国70周年”开展学习强国知识竞赛,本次知识竞赛分为甲、乙、丙三组进行,下面两幅统计图反映了教师参加学习强国知识竞赛的报名情况,请你根据图中的信息回答下列问题:(1) 该校教师报名参加本次学习强国知识竞赛的总人数为人,并补全频数分布直方图;(2) 该校教师报名参加丙组的人数所占圆心角度数是;(3) 根据实际情况,需从甲组抽调部分教师到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名教师到丙组?5、(2019鹿城.中考模拟) 小王准备给家中长为3米的正方形ABCD 电视墙铺设大理石,按图中所示的方案分成9块区域分别铺设甲,乙,丙三种大理石(正方形EFGH 是由四块全等的直角三角形围成),(1) 已知甲大理石的单价为150元/m 2,乙大理石的单价为200元/m 2,丙大理石的单价为300元/m 2,整个电视墙大理石总价为1700元.①当铺设甲,乙大理石区域面积相等时,求铺设丙大理石区域的面积.②设铺设甲,乙大理石区域面积分别为xm 2,ym 2,当丙的面积不低于1m 2时,求出y 关于x 的函数关系式,并写出y 的最大值.(2)若要求AE:AF=1:2,EQ:FQ=1:3,甲,乙大理石单价之和为300元/m2,丙大理石的单价不低于300元/m2,铺设三种大理石总价为1620元,求甲的单价取值范围.6、(2013嘉兴.中考真卷) 某镇水库的可用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?7、(2011福州.中考真卷)(1)如图,AB⊥BD于点B,ED⊥BD于点D,AE交BD于点C,且BC=DC.求证:AB=ED.(2)植树节期间,两所学校共植树834棵,其中海石中学植树的数量比励东中学的2倍少3棵,两校各植树多少棵?8、(2016江西.中考真卷) 如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.9、(2018宜昌.中考真卷) 某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算.第一年有40家工厂用乙方案治理,共使Q值降低了12.经过三年治理,境内长江水质明显改善.(1)求n的值;(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加个相同的数值a.在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q值与当年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.10、(2017祁阳.中考模拟) 随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加.(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个,求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位),因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t.①若该养老中心建成后可提供养老床位200个,求t的值;②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?11、(2018深圳.中考模拟) 天虹超市购进甲、乙两种水果,已知 1 千克甲种水果的进价比 1 千克乙种水果的进价多 4 元,购进 2千克甲种水果与 3 千克乙种水果共需 28 元.(1)求甲种水果的进价为每千克多少元?(2)经市场调查发现,甲种水果每天销售量 y(千克)与售价 m(元/千克)之间满足如图所示的函数关系,求 y与 m 之间的函数关系;(3)在(2)的条件下,为减少库存,每天甲种水果的销售量不能低于 16 千克,当甲种水果的售价定为多少元时,才能使每天销售甲种水果的利润最大?最大利润是多少?12、(2019定安.中考模拟) 根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高,,放入一个大球水面升高;(2)如果要使水面上升到50 ,应放入大球、小球各多少个?13、(2020常德.中考模拟) 为鼓励学生参与体育锻炼,学校计划拿出不超过1600元的资金再购买一批篮球和排球.已知篮球和排球的单价比为,单价和为80元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的篮球的数量多于25个,有哪几种购买方案?14、(2021城中.中考模拟) 众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:目的地A地(元/辆)B地(元/辆)车型大货车9001000小货车500700现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求与的函数解析式,并直接写出的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.15、(2020宜城.中考模拟) 新冠肺炎疫情期间,部分小区出现防疫物资紧缺,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种防疫物品共2000件送往各小区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同(1)求甲、乙两种防疫物品每件的价格各是多少元?(2)经调查,各小区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?一元一次方程的实际应用-和差倍分问题综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。

十六种用一元一次方程解决实际问题专题(含解析)

十六种用一元一次方程解决实际问题专题(含解析)

十六种用一元一次方程解决实际问题专题类型一:和差倍分问题1.某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.(用含t的代数式表示.)2.某同学在A、B两家超市发现他看中的随身听的单价相同,书包的单价也相同,随身听与书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打8折销售,超市B全场购物每满100元返购物券30元(不足100元不返券,购物券全场通用),但他只带了400元钱.若两家都可以选择,在哪一家购买更省钱?类型二:行程问题(相遇、追及、相对速度等)(1)直线型路线3.A,B两地相距480千米,甲乙两车分别从A,B两地出发,相向而行,2小时30分相遇.已知甲车速度是每小时80千米,乙车速度每小时多少千米?4.A、B两地相距400米,甲、乙两人分别从A、B两地同时同向出发,甲在乙后面,已知甲每分钟跑250米,乙每分钟跑200米,经过多长时间甲能追上乙?5.列方程解应用题:甲、乙两站相距448km,一列慢车从甲站出发开往乙站,速度为60km/h;一列快车从乙站出发开往甲站,速度为100km/h(1)两车同时出发,出发后多少时间两车相遇?(2)慢车先出发32min,快车开出后多少时间两车相距48km?(2)环型跑道6.小红和小明绕周长为1200米的湖晨练,小红的速度为85米/分,小明比她快10米/分.(1)如果两人同时同向同一地点开跑,多少分钟两人会相遇?(2)如果两人同时相向同地开跑,多少分钟两人会相遇?(3)如果小红在小明前面200米两人同时反向开跑,多少分钟两人会相遇?(3)相对速度7.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16s,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?8.小明和小红沿着与铁轨平行的方向相向而行,两人行走的速度均为每小时7.2千米,恰有一列火车从他们身旁驶过.火车与小明相向而行,从小明身旁驶过用了10秒;火车与小红同向而行,从小红身旁驶过用了12秒.求火车车身的长度.类型三:航行问题(航空、陆地、水上等)9.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时40分,逆风飞行需要3小时,两城市间的距离为.10.某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船4小时,已知船在静水中的速度为7.5km/h,水流速度为2.5km/h,若A,C两地相距10km,求A,B两地的距离.类型四:工(作)程问题(工作总量为单位“1”,工作总量=工作效率×工作时间)11.由于洪水渗漏造成堤坝内积水,用三部抽水机抽水,单独用一部抽水机抽尽,第一部需用24小时,第二部需用30小时,第三部需用40小时.现在第一部、第二部共同抽8小时后,第三部也加入,问从开始到结束,一共用了多少小时才把水抽掉?12.要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时完成了任务.已知甲每小时比乙多加工2个零件,问甲、乙二人每小时各加工多少个零件?类型五:销售盈亏问题13.某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是()A.不赚不亏B.赚8元C.亏8元D.赚15元14.一家商场因换季决定将某种服装打折销售,每件服装如果按标价的5折出售将亏20元,而按标价的8折出售就可赚40元.问:(1)每件服装的标价是多少元?(2)每件服装的成本是多少元?15.某超市经销A、B两种商品,A种商品每件进价20元,售价30元;B种商品每件进价35元,售价48元.(1)该超市准备用800元去购进A、B两种商品若干件,怎样购进才能使超市经销这两种商品所获利润最大?(其中B种商品不少于7件)(2)在“五•一”期间,该商场对A、B两种商品进行如下优惠促销活动:打折前一次购物总金额优惠措施不超过300元不优惠超过300元且不超过400元售价打八折超过400元售价打七折促销活动期间小颖去该超市购买A种商品,小华去该超市购买B种商品,分别付款210元与268.8元.促销活动期间小明决定一次去购买小颖和小华购买的同样多的商品,他需付款多少元?类型六:调配问题(内部、外部等)16.某班学生分两组参加植树活动,甲组有17人,乙组有25人,后来由于需要,又从甲组抽调部分学生去乙组,结果乙组人数是甲组的2倍,问从甲组抽调了多少学生去乙组?17.学校组织植树活动,已知在甲处植树的有14人,在乙处植树的有6人,现调70人去支援.(1)若要使在甲处植树的人数与在乙处植树的人数相等,应调往甲处人.(2)若要使在甲处植树的人数是在乙处植树人数的2倍,问应调往甲、乙两处各多少人?(3)通过适当的调配支援人数,使在甲处植树的人数恰好是在乙处植树人数的n倍(n 是大于1的正整数,不包括1.)则符合条件的n的值共有个.类型七:余缺问题18.学校安排学生住宿,若每室住8人,则有12人无法安排;若每室住9人,可空出2个房间.这个学校的住宿生有多少人?宿舍有多少房间?类型八:数字问题19.已知a是两位数,b是一位数,把a接写在b的后面,就成为一个三位数.这个三位数可表示成()A.10b+a B.ba C.100b+a D.b+10a20.一个两位数的十位数字和个位数字之和是7,如果这个两位数加上45,则恰好成为个位数字与十位数字对调之后组成的两位数,求这个两位数.类型九:日历问题21.在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.72类型十:年龄问题22.今年母女两人的年龄和为60岁,10年前母亲的年龄是女儿的7倍,则今年女儿的年龄是多少岁?类型十一:银行利率问题23.某人按定期2年向银行储蓄1500元,假设年利率为3%(不计复利)到期支取时,扣除利息所得税(税率为20%),此人实得利息为.24.一年定期存款的年利率为1.98%,到期取款时须扣除利息的20%作为利息税上缴国库.假若小颖存一笔一年定期储蓄,到期扣除利息税后实得利息158.4元,那么她存入的人民币是元.类型十二:比赛积分问题25.某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制.某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?类型十三:部分量之各等于总量26.一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的,水中部分是淤泥中部分的2倍多1米,露出水面的竹竿长1米.设竹竿的长度为x米,则可列出方程()A.B.C.D.类型十四:等积变形问题27.如图,在水平桌面上有甲、乙两个内部呈圆柱形的容器,内部底面积分别为80cm2、100cm2,且甲容器装满水,乙容器是空的.若将甲中的水全部倒入乙中,则乙中的水位高度比原先甲的水位高度低了8cm,求甲的容积为何()A.1280cm3 B.2560cm3 C.3200cm3 D.4000cm3类型十五:分段计费问题(水、电、煤、气、出租车和工资等)28.为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水的收费价格见价目表:价目表每月用水量单价不超出6立方米的部分2元/米3超出6立方米不超出10立方米的部分4元/米3超出10立方米的部分8元/米3 注:水费按月结算.若某户居民1月份用水8立方米,则应交水费:2×6+4×(8﹣6)=20(元).(1)若该户居民2月份用水12.5立方米,则应交水费元;(2)若该户居民3,4月份共用水15立方米(4月份用水量多于3月份),共交水费44元,则该户居民3,4月份各用水多少立方米?类型十六:方案设计问题(设备购买、房屋销售、汽车运输等)29.A、B两仓库分别有水泥20吨和30吨,C、D两工地分别需要水泥15吨和35吨.已知从A、B仓库到C、D工地的运价如下表:到C工地到D工地A仓库每吨15元每吨12元B仓库每吨10元每吨9元(1)若从A仓库运到C工地的水泥为x吨,则用含x的代数式表示从A仓库运到D工地的水泥为吨,从B仓库将水泥运到D工地的运输费用为元;(2)求把全部水泥从A、B两仓库运到C、D两工地的总运输费(用含x的代数式表示并化简);(3)如果从A仓库运到C工地的水泥为15吨时,那么总运输费为多少元?。

一元一次方程应用一-和差倍分全篇

一元一次方程应用一-和差倍分全篇

某校三年共购买计算机140台, 去年购买数量是前年的2倍,今年 购买数量又是去年的2倍,前年这 个学校购买了多少台计算机?
甲、乙、丙三队合修一条公 路,计划出280人,如果甲队人 数是乙队的一半,丙队人数是乙 队的2倍,问三队各有多少人?
1、 数学组原来女生占1/3,后来又加入了4名女生,
现在女生人数占全组人数的一半,求这组原来有多 少人?
解得: x =25 则: 3 x -25=50 答:今年的产值为50万元。
• 两筐鸭梨共重154千克,其中第一筐比第二 筐的2倍少14千克,求两筐鸭梨各有多少千 克?
解:设第二筐有x千克,则第一筐有(2x-14)千克。
x+(2x-14)=154
解得: x =50 则: 2x-14=86
答:第一筐有86千克 ,第二筐有50千克。
一元一次方程的实际应用
----和倍差分问题
(1) 2x 1 10x 1 2x 1 1
3
6
4
(2) 4x 1.5 5x 0.8 1.2 x
0.5
0.2
0.1
• 1、已知甲数是乙数的3倍多12,甲乙 两数的和是60,求乙数
• 2、甲数比乙数大10,甲数的5倍与乙 数的8倍的和是115,求甲、乙两数。
• 例:某厂今年的产值是去年的3倍少25 万,今年和去年产值总和是75万,求 今年的产值多少万?
怎样设未知数?
如果设今年产值为x万,则去年产值为( )万
如果设去年产值为x万,则今年产值为( )万
例、某厂今年的产值是去年的3倍少25万,今年和ቤተ መጻሕፍቲ ባይዱ 年产值总和是75万,求今年的产值。
解:设去年的产值为x 万, 则今年的产值为(3 x-25)万。 x+(3x-25)=75

七年级数学上一元一次方程应用题第一课时:和差倍分问题精选全文完整版

七年级数学上一元一次方程应用题第一课时:和差倍分问题精选全文完整版

可编辑修改精选全文完整版例2:甲种铅笔每只0.3元,乙种铅笔每只0.6元,用9元钱买了两种铅笔共20只,两种铅笔各买了多少支?练习:用买10个大水杯的钱,可以买15个小水杯,大水杯比小水杯的单价多5元,两种水杯的单价各是多少元?例3:把一根长100cm的木棍锯成两段,要使其中一段长比另一段长的2倍少5cm,应该在木棍的哪个位置锯开?练习:一个梯形的下底比上底多2cm,高是5cm,面积是402cm,求上底二、数字问题例1.用式子表示下列两位数或三位数:(1)一个两位数,个位数字是a,十位数字是b:____________(2)一个两位数,个位数字是a,十位数字比个位数字小1:__________(3)一个两位数,个位数字是a,比十位数字小1:__________(4)一个两位数,十位数字是a,个位数字比十位数字的2倍多3;(5)一个三位数,十位数字是a,比百位数字大1,比个位数字少1.练习:(1)一个两位数,个位上的数字比十位上的数字大 2 个位与十位上的数字之和是10,求这个两位数.(2)一个两位数个位上的数是1,十位上的数是,把1与x对调,新的两位数比原两位数小18,求十位上的数。

例2:有一列数,按一定规律排列成1,-3,9,-27,81,-243……,其中某三个相邻数的和是-1701这三个数各是多少?例3:一张普通的月历中,相邻三行里同一列的三个日期数之和能否为30?如果能,这三个数分别是多少?三、数学作业1、某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元,前年的产值是多少?2、买两种布料共138m,花了540元,其中蓝布料每米3元,黑布料每米5元,两种布料各买了多少m?3、用一根长60m的绳子围出一个长方形,是他的长是宽的1.5倍,长和宽各是多少?4、一个两位数的个位上的数的3倍加1是十位上的数,个位上的数与十位上的数的和是9,这个两位数是多少5.一个两位数,个位上的数字与十位上的数字之和是7, 若把个位与十位数字对调,则所得的两位数比原两位数大27,求这个两位数.6.有一列数,按一定规律排列成1,-2,4,-8,16,-32…,其中某三个相邻数的和是-96,这三个数各是多少?7.下图是本月的日历,用如图所示的“十字架”去框其中的五个数,若这五个数的和是60,你知道框住的是哪五个数吗?在图中画出来,并用方程的知识进行说明.1 2 3 4 5 67 8 9 10 11 12 1314 15 16 17 18 19 2021 22 23 24 25 26 2728 29 30。

专题3.8一元一次方程的应用(4)和差倍分问题-2020-2021学年七年级数学上册(解析版)人教版

专题3.8一元一次方程的应用(4)和差倍分问题-2020-2021学年七年级数学上册(解析版)人教版

2020-2021学年七年级数学上册尖子生同步培优题典【人教版】专题3.8一元一次方程的应用(4)和差倍分问题姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•三台县期末)绵阳市中学生足球联赛共8轮(即每队需要比赛8场),胜一场得3分,平一场得一分,负一场不得分,在2019足球联赛中,三台县中学生足球代表队踢平的场数是负场数的2倍,共得17分,三台足球队胜了()场.A.4B.5C.2D.不确定【分析】设三台县中学生足球代表队负了x场,则平了2x场,胜了(8﹣x﹣2x)场,根据总得分=3×胜场数+1×平场数,即可得出关于x的一元一次方程,解之即可得出结论.【解析】设三台县中学生足球代表队负了x场,则平了2x场,胜了(8﹣x﹣2x)场,依题意,得:3(8﹣x﹣2x)+2x=17,解得:x=1,∴8﹣x﹣2x=5.故选:B.2.(2019秋•新泰市期末)足球比赛的得分规则:胜一场得3分,平一场得1分,输一场不得分.在2019赛季山东鲁能足球队共比赛30场,输了9场,积分为51分,最终名列第五.则本赛季山东鲁能足球队胜了()A.14场B.15场C.16场D.17场【分析】首先设本赛季山东鲁能足球队胜了x场,因为输了9场,因此平了(21﹣x)场,根据题意可得等量关系:胜场得分+平场得分=51分,根据的等量关系列出方程.【解析】设本赛季山东鲁能足球队胜了x场,由题意得:3x+(30﹣9﹣x)×1+9×0=51,解得:x=15.故选:B.3.(2020•随州)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”.设鸡有x 只,兔有y 只,则根据题意,下列方程组中正确的是( ) A .{x +y =352x +4y =94B .{x +y =354x +2y =94C .{2x +y =35x +4y =94D .{x +4y =352x +y =94【分析】根据“鸡的数量+兔的数量=35,鸡的脚的数量+兔子的脚的数量=94”可列方程组. 【解析】设鸡有x 只,兔有y 只, 根据题意,可列方程组为{x +y =352x +4y =94,故选:A .4.(2019•滨江区一模)某校开展丰富多彩的社团活动,每位同学可报名参加1~2个社团,现有25位同学报名参加了书法社或摄影社,已知参加摄影社的人数比参加书法社的人数多5人,两个社团都参加的同学有12人.设参加书法社的同学有x 人,则( ) A .x +(x ﹣5)=25 B .x +(x +5)+12=25C .x +(x +5)﹣12=25D .x +(x +5)﹣24=25【分析】设参加书法社的同学有x 人,则参加摄影社的同学有(x +5)人,由参加社团活动的总人数=参加书法社的人数+参加摄影社的人数﹣重合部分的人数,即可得出关于x 的一元一次方程,此题得解. 【解析】设参加书法社的同学有x 人,则参加摄影社的同学有(x +5)人, 依题意,得:x +(x +5)﹣12=25. 故选:C .5.(2019秋•临洮县期末)将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x 颗,则可得方程为( ) A .x−82=x+123B .2x +8=3x ﹣12C .x−83=x+122D .x+82=x−123【分析】设有糖果x 颗,根据该幼儿园小朋友的人数不变,即可得出关于x 的一元一次方程,此题得解. 【解析】设有糖果x 颗, 根据题意得:x−82=x+123.故选:A .6.(2019秋•长清区期末)甲车队有汽车100辆,乙车队有汽车68辆,根据情况需要甲车队的汽车是乙车队的汽车的两倍,则需要从乙队调x 辆汽车到甲队,由此可列方程为( ) A .100﹣x =2(68+x )B .2(100﹣x )=68+xC .100+x =2(68﹣x )D .2(100+x )=68﹣x【分析】由题意得到题中存在的等量关系为:2(乙队原来的车辆﹣调出的车辆)=甲队原来的车辆+调入的车辆,根据此等式列方程即可. 【解析】设需要从乙队调x 辆汽车到甲队, 由题意得100+x =2(68﹣x ), 故选:C .7.(2018秋•苏州期末)某中学组织初一部分学生参加社会实践活动,需要租用若干辆客车.若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则只有1人不能上车.设租了x 辆客车,则可列方程为( ) A .40x +10=43x +1 B .40x ﹣10=43x ﹣1C .40x +10=43(x ﹣1)D .40x +10=43x ﹣1【分析】根据人数不变,结合总人数=每辆车乘坐人数×车的辆数+剩余人数即可得出方程,此题得解. 【解析】设租了x 辆客车,则可列方程为40x +10=43x +1, 故选:A .8.(2020•永康市模拟)明代程大位的《算法统宗》记载这样一首打油诗:《李白沽酒》无事街上走,提壶去买酒.遇店加一倍,见花喝一斗. 三遇花和店,喝光壶中酒.就问此壶中,原有多少酒?李白出门遇到花和店各三次,且花、店交替遇到,则此打油诗答案为( ) A .34斗B .78斗C .98斗D .118斗【分析】设原有x 斗酒,由“遇店加一倍,见花喝一斗,三遇花和店,喝光壶中酒”列出方程可求解. 【解析】设原有x 斗酒,由题意可得:2[2(2x ﹣1)﹣1]﹣1=0, 解得:x =78, 答:原有78斗酒,故选:B .9.(2019秋•青龙县期末)公元前4世纪的印度巴克沙利手稿中记载着一题:甲、乙、丙、丁四人各持金,乙为甲的二倍,丙为乙的三倍,丁为丙的四倍,并知四人持金的总数为132卢比,则乙的持金数为( )A .4卢比B .8卢比C .12卢比D .16卢比【分析】设乙的持金数为x 卢比,则甲的持金数为12x 卢比,丙的持金数为3x 卢比,丁的持金数为12x 卢比,由题意得出方程,解方程即可得出结果. 【解析】设乙的持金数为x 卢比,则甲的持金数为12x 卢比,丙的持金数为3x 卢比,丁的持金数为12x 卢比,由题意得:12x +x +3x +12x =132,解得:x =8,∴乙的持金数为8卢比, 故选:B .10.(2018秋•鸡东县期末)有m 辆客车及n 个人.若每辆客车乘40人,则还有10人不能上车.若每辆客车乘43人,则还有1人不能上车.下列所列方程:①40m +10=43m ﹣1,②n−1040=n−143,③40m +10=43m +1,④n+1040=n+143.其中正确的是( )A .①③B .②④C .③④D .②③【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【解析】根据总人数不变列方程,应是40m +10=43m +1,①错误,③正确; 根据客车数不变列方程,应该为n−1040=n−143,②正确,④错误;所以正确的是②③. 故选:D .二.填空题(共8小题)11.(2019秋•河东区期末)兰山某初中学校七年级举行“数学知识应用能力竞技”活动,测试卷由20道题组成,答对一题得5分,不答或答错一题扣1分,某考生的成绩为76分,则他答对了 16 道题. 【分析】设该考生答对了x 道题,则答错或不答(20﹣x )道题,根据总分=5×答对题目数﹣1×答错或不答题目数,即可得出关于x 的一元一次方程,解之即可得出结论. 【解析】设该考生答对了x 道题,则答错或不答(20﹣x )道题, 依题意,得:5x ﹣(20﹣x )=76, 解得:x =16.故答案为:16.12.(2011秋•西山区期末)甲仓库的货物是乙仓库货物的2倍,从甲仓库调5吨到乙仓库,这时甲仓库剩余的货物恰好比乙仓库的一半多1吨,设乙仓库原有x吨,则可列方程为2x﹣5=12(x+5)+1.【分析】首先设乙仓库原有x吨,则甲仓库的货物有2x吨,从甲仓库调5吨到乙仓库后甲仓库有(2x﹣5)吨,乙仓库有(x+5)吨,根据关键语句“甲仓库剩余的货物恰好比乙仓库的一半多1吨,”可得方程2x﹣5=12(x+5)+1.【解析】设乙仓库原有x吨,则甲仓库的货物有2x吨,由题意得:2x﹣5=12(x+5)+1,故答案为:2x﹣5=12(x+5)+1.13.(2019秋•北仑区期末)某校组织七年级学生参加研学活动,如果单独租用45座车若干辆,则刚好坐满;如果单独租用60座客车,则可少租2辆,并且剩余15座.该校参加研学活动的有405人.【分析】设该校参加研学活动的有x人,根据单独租用60座客车比单独租用45座客车少租2辆且剩余15座,即可得出关于x的一元一次方程,解之即可得出结论.【解析】设该校参加研学活动的有x人,依题意,得:x45=x+1560+2,解得:x=405.故答案为:405.14.(2019秋•奈曼旗期末)足球比赛计分规则是:胜一场得3分,平一场得1分,负一场得0分.今年武汉黄鹤楼队经过26轮激战,以42分获“中超”联赛第五名,其中负6场,那么胜场数为11.【分析】要求胜场数,就要先设出未知数,然后根据题中的等量关系列方程求解.此题等量关系:胜场所得分数+平场所得分数=总分.【解析】设胜场数为x场,则平场数为(26﹣6﹣x)场,依题意得:3x+(26﹣6﹣x)=42解得:x=11那么胜场数为11场.故答案为:11.15.(2019•牡丹区三模)《孙子算经》是中国古代重要的数学著作,共三卷.卷上叙述了算筹记数的纵横相间制度和筹算乘除法,卷中举例说明筹算分数算法和筹算开平方法,卷下对后世的影响最深,其中卷下记载这样一道经典的问题:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”意思是:“鸡和兔关在一个笼子里,从上面看,有35个头;从下面看,有94条脚.问笼中各有多少只鸡和多少只兔?”,设有鸡x 只,兔子y 只,可列方程组为 {x +y =352x +4y =94.【分析】设有鸡x 只,兔子y 只,根据鸡、兔的共有35个头且有94条脚,即可得出关于x 、y 的二元一次方程组,此题得解.【解析】设有鸡x 只,兔子y 只, 根据题意得:{x +y =352x +4y =94.故答案为:{x +y =352x +4y =94.16.(2020春•九龙坡区期末)一个农场的工人们要把两片草地的草锄掉,大的一片草地的锄草量是小的一片的两倍,上午半天工人们都在大的一片上锄草,中午后工人们对半分开,一半人留在大的草地上,刚好下午半天就把草锄完了;另一半人到小的草地上去锄草,下午半天锄草后还剩一小块,第二天由一个工人去锄,恰好用了一天时间将草锄完成.如果每一个工人每天锄草量相同,那么这个农场有 8 个工人.【分析】设这个农场有x 个工人,每个工人一天的锄草量为1,根据大的一片草地的锄草量是小的一片的两倍,即可得出关于x 的一元一次方程,解之即可得出结论. 【解析】设这个农场有x 个工人,每个工人一天的锄草量为1, 依题意,得:12x +12×12x =2(12×12x +1),解得:x =8. 故答案为:8.17.(2020•衡阳)某班有52名学生,其中男生人数是女生人数的2倍少17人,则女生有 23 名. 【分析】设女生有x 名,根据某班有52名学生,其中男生人数是女生人数的2倍少17人,可以列出相应的方程,解方程即可求解.【解析】设女生有x 名,则男生人数有(2x ﹣17)名,依题意有 2x ﹣17+x =52, 解得x =23. 故女生有23名. 故答案为:23.18.(2020•历下区校级模拟)一套满分150分的数学试题中,基础题、中档题、难题的比例为7:2:1,小明如果做对了所有基础题,他至少能够得105分.【分析】设基础题、中档题、难题分别有7x,2x,x分,根据题意列出方程求出x的值即可求出答案.【解析】设基础题、中档题、难题分别有7x,2x,x分,∴7x+2x+x=150,∴x=15,∴小明至少能够得到7x=105分,故答案为:105三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•丰台区期末)为了促进全民健身运动的开展,某市组织了一次足球比赛.如表记录了比赛过程中部分代表队的积分情况.代表队场次(场)胜(场)平(场)负(场)积分(场)A651016B660018C632111D631210(1)本次比赛中,胜一场积3分;(2)参加此次比赛的F代表队完成10场比赛后,只输了一场,积分是23分.请你求出F代表队胜出的场数.【分析】(1)根据B队的比赛场数和积分可以得到胜一场的积分;(2)根据表格中的数据可以计算出胜一场、平一场和负一场的积分,从而可以列出相应的方程,解答本题.【解析】(1)本次比赛中,胜一场积:18÷6=3(分),故答案为:3;(2)设F代表队胜出x场,则平了(10﹣x﹣1)场,输了1场,由(1)知,胜一场积分为3分,则平一场积分为:16﹣3×5=1(分),则负一场积分为:11﹣3×3+1×2=0(分),3x +1×(10﹣x ﹣1)+1×0=23, 解得,x =7,答:F 代表队胜出7场.20.(2019秋•莆田期末)某校七年级学生乘车去参加社会实践话动,若每辆客车乘50人,还有12人不能上车;若每辆客车乘55人,则最后一辆空了8个座位,求该校租了多少辆客车?七年级学生多少人? 根据题意,小明、小红分别列出了尚不完整的方程如下: 小明:50x □( )=55x □( );小红:y□()50=y□()55【其中“□”表示运算符号,“( )”表示数字】(1)小明所列方程中x 表示的意义是: 该校租的客车数量 ;小红所列方程中y 表示的意义是: 该校有y 名学生去参加社会实践话动 ;(2)请你把小明或小红所列方程补充完整,并相应解答. 【分析】(1)小明所列方程中的等量关系:总的人数不变. 小红所列方程中的等量关系:客车数量不变. (2)利用相应的等量关系列出方程并解答.【解析】(1)根据总人数列方程,应是50x +12=55x ﹣8,其中x 表示该校租的客车数量. 根据客车数列方程,应该为:y−1250=y+855,其中y 表示该校有y 名学生去参加社会实践话动.故答案是:该校租的客车数量.该校有y 名学生去参加社会实践话动; (2)小明:50x +12=55x ﹣8 解方程得:x =4. 小红:y−1250=y+855,解方程得:y =212答:该校租了4辆客车,七年级学生212人.21.(2019秋•九龙坡区期末)某校组织七年级学生参加社会实践活动,如果单独租用45座客车若干辆,则刚好坐满;如果单独租用60座客车,则可少租1辆,并且剩余15个座位. (1)该校参加社会实践活动有多少人?(2)已知45座客车的日租金为每辆1000元,60座客车的日租金为每辆1200元,该校租用哪种车更合算?【分析】(1)设该校参加社会实践活动有x 人,根据租用客车的数量关系建立方程求出其解即可;(2)分别计算出租用两种客车的数量,就可以求出租用费用,再比较大小就可以求出结论.【解析】(1)设该校参加社会实践活动有x人,根据题意,得x 45−x+1560=1,解得:x=225.答:该校参加社会实践活动有225人;(2):由题意,得需45座客车:225÷45=5(辆),需60座客车:225÷60=3.75≈4(辆),租用45座客车需:5×1000=5000(元),租用60座客车需:4×1200=4800(元),∵5000>4800,∴该校租用60座客车更合算.22.(2019秋•龙岗区校级期末)列方程解应用题:现有校舍面积20000平方米,为改善办学条件,计划拆除部分旧校舍,建造新校舍,使新造校舍的面积是拆除旧校舍面积的3倍还多1000平方米.这样,计划完成后的校舍总面积可比现有校舍面积增加20%.(1)改造多少平方米旧校舍;(2)已知拆除旧校舍每平方米费用80元,建造新校舍每平方米需费用700元,问完成该计划需多少费用.【分析】(1)设需要拆除的旧校舍的面积是x平方米,则新造校舍的面积是(3x+1000)平方米,根据计划完成后的校舍总面积可比现有校舍面积增加20%,即可得出关于x的一元一次方程,解之即可得出结论;(2)利用完成计划需要的费用=拆除旧校舍的费用+新建校舍的费用,即可求出结论.【解析】(1)设需要拆除的旧校舍的面积是x平方米,则新造校舍的面积是(3x+1000)平方米,依题意,得:20000﹣x+3x+1000=20000(1+20%),解得:x=1500.答:改造1500平方米旧校舍.(2)80×1500+700×(1500×3+1000)=3970000(元).答:完成该计划需3970000元.23.(2019秋•沙坪坝区校级期末)列一元一次方程解应用题:元旦晚会是南开中学“辞旧岁,迎新年”的传统活动.晚会当天,小明组织班上的同学出去买气球来布置教室.已知买气球的男生有23人,女生有16人,且每个女生平均买的气球数比每个男生平均买的气球数多1个.回到学校后他们发现,男生买的气球总数比女生气球总数的34还少1个,请问每个女生平均买几个气球?【分析】设每个女生平均买x 个气球,则每个男生平均买(x ﹣1)个气球,由“男生买的气球总数比女生气球总数的34还少1个”,列出方程可求解.【解析】设每个女生平均买x 个气球,则每个男生平均买(x ﹣1)个气球, 由题意可得:34×16×x ﹣1=23×(x ﹣1)解得:x =2,答:每个女生平均买2个气球.24.(2019秋•越秀区期末)某电视台组织知识竞赛,共设30道选择题,各题分值相同,每题必答.下表记录了3个参赛者的得分情况.参赛者 答对题数 答错题数得分 A 28 2 108 B 26 4 96 C24684(1)每答对1题得多少分?(2)参赛者D 得54分,他答对了几道题?【分析】(1)设答对一道题得x 分,答错一道题得y 分,根据参赛者A ,B 答对题目数及得分情况,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设参赛者D 答对了m 道题,则答错(30﹣m )道题,根据参赛者D 得54分,即可得出关于m 的一元一次方程,解之即可得出结论.【解析】(1)设答对一道题得x 分,答错一道题得y 分, 依题意,得:{28x +2y =10826x +4y =96,解得:{x =4y =−2.答:每答对1题得4分.(2)设参赛者D答对了m道题,则答错(30﹣m)道题,依题意,得:4m﹣2(30﹣m)=54,解得:m=19.答:参赛者D答对了19道题.。

人教版七年级上册 第3章 一元一次方程实际应用-和差倍分问题(含答案)

人教版七年级上册 第3章 一元一次方程实际应用-和差倍分问题(含答案)

人教版七年级上册一元一次方程实际应用-和差倍分问题(含答案)1.甲、乙、丙三辆卡车所运货物的质量之比为,已知甲车比乙车少运货物吨,则三辆卡车共运货物()A.吨B.吨C.吨D.吨2.某班学生共40人,外出参加植树活动,根据任务不同,要分成甲、乙、丙三个小组且使甲、乙、丙三个小组人数之比为1︰2︰5,则甲小组有()A.5人B.10人C.20人D.25人3.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330C.(1﹣10%)2x=330 D.(1+10%)x=3304.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,设这个班有学生x人,下列方程正确的是()A.3x+20=4x﹣25 B.3x﹣25=4x+20C.4x﹣3x=25﹣20 D.3x﹣20=4x+255.数学竞赛共有10道题,每答对一道题得5分,不答或答错一道题倒扣3分,要得到34分,必须答对的题数是()A.8 B.7 C.6 D.96.今有浓度分别为3%、8%、11%的甲、乙、丙三种盐水50 千克、70 千克、60 千克,现要用甲、乙、丙这三种盐水配制浓度为7%的盐水100 千克,则丙种盐水最多可用_________千克.7.幼儿园阿姨给x个小朋友分糖果,如果每人分4颗则少13颗;如果每人分3颗则多15颗,根据题意可列方程为______.8.经调查,某校学生上学所用的交通方式中,选择“自行车”、“公交车”、“其它”的比例为7:3:2,若该校学生有3200人,则选择“公交车”的学生人数是_____人.9.一队卡车运一批货物,若每辆卡车装7吨货物,则剩余10吨货物装不完;若每辆卡车装8吨货物,则最后一辆卡车只装3吨货物就装完了这批货物,那么这批货物共有______ 吨.10.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为_______________.11.桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15cm,各装10cm高的水,下表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没有溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少cm?底面积(cm2)甲杯60乙杯80丙杯10012.某人把360cm长的铁丝分成两段,每段分别做成一个正方形,已知两个正方形的边长之比是4︰5,则这两个正方形的边长分别是__________.13.某校七年级共有587名学生分别到北京博物馆和中国科技馆参观,其中到北京博物馆的人数比到中国科技馆人数的2倍还多56人,设到中国科技馆的人数为x人,可列方程为_____.14.甲、乙两个图形的面积之和是2cm.150cm,面积之比为7:3,则较大图形的面积是____215.浙江农村地区向来有打年糕的习俗,糯米做成年糕的过程中重量会增加20%.如果原有糯米a斤,做成年糕后重量为______斤.16.如图为一块在电脑屏幕上出现的色块图,由个颜色不同的正方形拼成的长方形,如果中间最小的正方形边长为,则所拼成的长方形的面积是________.17.将49毫升蜂蜜全部放入下面两个盛有水的杯子中,杯子分别有160和400毫升水,要使两杯水的甜度相同,这两个杯中应分别放入多少毫升蜂蜜?18.某车间共有28名工人生产螺栓和螺母,每人平均每天生产螺栓12个或螺母18个,问:如何安排工人才能使每天生产的螺栓和螺母按1:2配套?19.某校开展植树活动,七(1)班有27人,七(2)班有19人,现另调26人去支援,使七(1)班人数与七(2)班人数相等,问应调往七(1)班、七(2)班各多少人?20.列方程解应用题:2018年元月初,我国中东部地区普降大雪,某武警部队战士在两个地方进行救援工作,甲处有130名武警部队战士,乙处有70名武警部队战士,现在又调来200名武警部队战士支援,要使甲处的人数比乙处人数的2倍多10人,应往甲、乙两处各调来多少名武警部队战士?21.某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总数的23,若提前购票,则给予不同程序的优惠:若在五月份内,团体票每张12元,共售出团体票数的35;零售票每张16元,共售出零售票数的一半;如果在六月份内,团体票按每张16元出售,并计划在六月份售出全部余票,设六月份零售票按每张x元定价,总票数为a张.(1)五月份的票价总收入为_____元;六月份的总收入为______元;(2)当x为多少时,才能使这两个月的票款收入持平?22.某车间有60个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件24个或乙种零件12个.已知每2个甲种零件和3个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?23.某中学七年级学生参加一次公益活动,其中10%的同学去做保护环境的宣传,55%的同学去植树,剩下的70名同学去清扫公园内的垃圾,七年级共有多少名同学参加这次公益活动?24.某车间共有75名工人生产A、B两种工件,已知一名工人每天可生产A种工件15件或B种工件20件,但要安装一台机械时,同时需A种工件1件,B种工件2件,才能配套.问车间如何分配工人生产,才能保证一天连续安装机械时,两种工件恰好配套?25.有48支队520名运动员参加篮球、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只能参加一项比赛.问:篮球、排球队各有多少支?26.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成. 工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?参考答案1.C【解析】【分析】本题可以设甲,乙,丙三辆卡车所运货物的质量分别为:6x,7x,4.5x,根据乙车运货量-甲车运货量=12吨,可以列出方程7x-6x=12,解得即可.【详解】解:设甲,乙,丙三辆卡车所运货物的质量分别为:6x吨,7x吨,4.5x吨,根据题意得:7x-6x=12,解得:x=12.所以三辆卡车共运货物=6x+7x+4.5x=17.5x=17.5×12=210.故选:C.【点睛】此题考查了一元一次方程的应用,解题的关键是:根据题意设甲,乙,丙三辆卡车所运货物的质量分别为:6x吨,7x吨,4.5x吨,找到等量关系,然后列出方程.2.A【解析】根据三个小组人数的比例,设甲小组的人数为x,则乙小组的人数为2x,丙小组的人数为5x.因为三个小组的人数相加应该等于班级总人数,故可以列出如下方程:x+2x+5x=40合并同类项,得8x=40,系数化为1,得x=5,即甲小组有5人.故本题应选A. 3.D 【解析】解:设上个月卖出x 双,根据题意得:(1+10%)x =330.故选D . 4.A 【解析】试题分析:设这个班有学生x 人,等量关系为图书的数量是定值,据此列方程. 解:设这个班有学生x 人, 由题意得,3x+20=4x ﹣25. 故选A .考点:由实际问题抽象出一元一次方程. 5.A . 【解析】试题分析:设答对的题数为x 道,则不答或答错的有(10﹣x )道,故:5x ﹣3(10﹣x )=34,解得:x=8.故选A .考点:1.一元一次方程的应用;2.应用题. 6.50 【解析】 【分析】可设乙、丙三种盐水各用了x ,y 千克,则甲用了(100)x y --千克,盐的浓度=盐的质量与盐水总质量之比,根据题意可得3%(100)8%11%7%100x y x y--++=,化简即可确定y 的最大值.【详解】解:设乙、丙三种盐水各用了x ,y 千克,则甲用了(100)x y --千克,根据题意可得3%(100)8%11%7%100x y x y --++=,化简得85400y x +=,即5508y x =-+,所以y 的最大值为50,丙种盐水最多可用50千克. 故答案为:50 【点睛】本题考查了二元一次方程的应用,正确理解题意列出方程是解题的关键. 7.4x ﹣13=3x+15 【解析】 【分析】根据分配方法不同,但糖果总数相同,可列出方程. 【详解】根据两种分配方法糖果总数相等,得 4x ﹣13=3x+15故答案为:4x ﹣13=3x+15 【点睛】分析题意,抓住总数相等,列出方程. 8.800 【解析】 【分析】设选择“公交车”的学生人数是3x ,则自行车的有7x ,其他的有2x ,根据该校学生有3200人,列出方程,求出x的值,即可得出答案.【详解】设选择“公交车”的学生人数是3x,根据题意得:7x+3x+2x=3200,解得:x=8003,则选择“公交车”的学生人数是8003×3=800人;故答案为:800【点睛】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.9.115【解析】试题分析:可以设共有x辆卡车,货物的总量是不变的,根据相等关系列出方程,从而得出货物的总量.解:设共有x辆卡车,根据题意得:7x+10=8(x﹣1)+3解得:x=15则货物共有7×15+10=115(吨).故答案为:115考点:一元一次不等式的应用.10.2x+56=589-x【解析】试题解析:设到雷锋纪念馆的人数为x人,则到毛泽东纪念馆的人数为(589-x)人,由题意得,2x+56=589-x.考点:由实际问题抽象出一元一次方程.11.7.2【解析】【分析】设后来甲、乙、丙三杯内水的高度为3x、4x、5xcm,分别计算出倒水前后三个杯子中水的总体积,依据水的总体积不变列方程求解即可.【详解】解:设后来甲、乙、丙三杯内水的高度为3x、4x、5xcm,根据题意得:60×10+80×10+100×10=60×3x+80×4x+100×5x,解得:x=2.4,答:甲杯内水的高度变为3×2.4=7.2cm.故答案是:7.2.【点睛】本题考查了一元一次方程的应用,理解倒水前后三个水杯中水的总体积不变是解题关键.12.40cm;50cm.【解析】因为两个正方形的边长之比是4:5,所以可以设边长较短的正方形的边长为4x,则另一个正方形的边长应为5x. 由题意可知,这两个正方形的周长之和为360cm. 通过正方形边长与周长的关系获得这两个正方形的边长与周长之和的关系从而列出方程并求解.设边长较短的正方形的边长为4x,则由两个正方形的边长之比是4:5可知,边长较长的正方形的边长应为5x.()()4445360x x +=整理,得 36360x =, 解之,得 10x =.因此,边长较短的正方形的边长为441040x =⨯=(cm),边长较长的正方形的边长为551050x =⨯=(cm). 故本题应依次填写:40cm ,50cm. 点睛:利用比例关系设未知数是一种重要的解题方法. 这种方法有别与直接设某一个量为未知数x 的方法. 利用某两个相关量之间的比例关系,将这两个量设为关于未知数x 的单项式形式 (单项式的系数为比例关系中的相应数值). 这种方法不仅可以简化对比例关系的分析,还可以在一定程度上减少由比例关系所带来的分数运算. 13.x+2x+56=587.【解析】试题分析:由到中国科技馆的人数为x 人可得到北京博物馆的人数为2x+56,再根据七年级共有589名学生列出方程即可解:设到中国科技馆的人数为x 人,依题意可列方程为: x+2x+56=589,故答案为:x+2x+56=589.考点:由实际问题抽象出一元一次方程. 14.105 【解析】设较大图形的面积为x 2cm ,则较小图形的面积为(150-x)2 cm , 由题意得:x :(150-x)=7:3,cm即较大图形的面积是105215.1.2a(或120%a)【解析】【分析】根据增加20%,列出代数式即可.【详解】解:∵糯米做成年糕的过程中重量会增加20%,∴a增加20%后为(1+20%)a=1.2a(或120%a).【点睛】本题考查了代数式的表示,属于简单题,将数学语言转换成符号语言是解题关键.16.【解析】试题分析:若设第二小的正方形的边长为x.则有两种不同的方法可以表示出长方形的长:根据正方形的边长相等,可得:第一种表示方法为x+x+(x+1);第二种表示方法为(x+2)+(x+3);即可列出方程.解:设第二小的正方形的边长为x,则有:x+x+(x+1)=(x+2)+(x+3),解得:x=4,所以长方形的长为13,宽为11,面积=13×11=143.故答案是:143.考点:一元一次方程的应用.17.这两杯分别放入14ml 、35ml 蜂蜜 【解析】 【分析】可以设出未知数,列出比例式,解答即可.设放入第一杯xml ,第二杯()49x ml -蜂蜜,根据题意,可列比例式():16049:400x x =-,求解即可. 【详解】解:设放入第一杯xml ,第二杯()49x ml -蜂蜜():16049:400x x =-14x =491435ml -=答:这两杯分别放入14ml 、35ml 蜂蜜. 【点睛】此题考查了比与比例的意义,以及对比例的实际应用能力. 18.螺栓12人,螺母16人【解析】试题分析:设安排x 人生产螺栓,则有(28-x )人生产螺母,根据每天生产的螺栓和螺母按1:2配套列出方程求解即可.试题解析:设安排x 人生产螺栓,则有(28-x )人生产螺母, 根据题意得:18(28-x )=12x·2, 解得:x=12, 28-12=16(人).答:应安排12人生产螺栓,16人生产螺母才行. 19.应调往七(1)班9人,调往七(2)班17人.【解析】试题分析:设应调往七(1)班x人,则应调往七(2)班(26-x)人,根据等量关系“七(1)班原有的人数+调往七(1)班的人数=七(2)班原有的人数+调往七(2)班的人数”,列出方程,解方程即可.试题解析:设应调往七(1)班x人,则应调往七(2)班(26-x)人.根据题意,得27+x=19+26-x.解得x=9.26-x=17.答:应调往七(1)班9人,调往七(2)班17人.点睛:本题主要考查了一元一次方程的应用,根据两个班人数之间的关系列出方程是解题关键.20.应往甲处调去140名,往乙处调去60名武警部队战士【解析】【分析】设应往甲处调来x名武警部队战士, 则向乙处调来(200-x) 个武警部队战士, 根据调派后甲处的人数比乙处人数的2倍多10人, 即可得出关于ェ的一元一次方程, 解之即可得出结论.【详解】设应往甲处调去x名武警部队战士,则向乙处调去(200-x)名武警部队战士.根据题意,得130+x=2(70+200-x)+10,解得x=140,∴200-x=60.答:应往甲处调去140名,往乙处调去60名武警部队战士.【点睛】本题主要考查一元一次方程的应用,根据已知条件列出方程式解题的关键.21.(1)11215a ,641156a ax +;(2)19.2. 【解析】 【分析】(1)根据五月份的票价总收入=五月份团体票的收入+五月份零售票的收入即可求解;根据六月份的票价总收入=六月份团体票的收入+六月份零售票的收入即可求解;(2)本题的等量关系为:五月份票款数=六月份票款数,据此列方程求解即可. 【详解】(1)五月份的票价总收入为:23a ×35×12+13a ×12×16=11215a ;六月份的票价总收入为:23a ×25×16+13a ×12×x =641156a ax +;(2)由题意得,11215a =641156a ax +, ∵a >0,∴11215=641156x +, 解得x =19.2.∴六月份零售票应按每张19.2元定价. 【点睛】本题考查了一元一次方程的应用,有多个未知数的问题要抓住所求问题设为主元,问题中所涉及的其他未知量设为参量.在解方程中必然能消去参量,求出主元x 的值.同学们掌握了这个方法,就不必再惧怕有多个未知量的问题了.22.应分配15人生产甲种零件,45人生产乙种零件,才能使每天生产的这两种零件刚好配套.【解析】试题分析:设应分配x人生产甲种零件,则(60-x)人生产乙种零件,才能使每天生产的这两种种零件刚好配套,根据每人每天平均能生产甲种零件24个或乙种零件12个,可列方程求解.试题解析:设分配x人生产甲种零件,则共生产甲零件24x个和乙零件12(60-x),依题意得方程:24x=12(60-x),解得x=15,60-15=45(人).答:应分配15人生产甲种零件,45人生产乙种零件,才能使每天生产的这两种零件刚好配套.考点:一元一次方程的应用.23.七年级共有200名同学参加这次公益活动.【解析】试题分析:由于本题要求的是参加这次公益活动的七年级学生总人数,所以可以设七年级共有x名同学参加这次公益活动. 进一步分析题意可以看出,这些学生进行了三项活动:宣传,植树以及清扫垃圾. 根据题意,进行宣传活动的学生人数可以用x表示为10%x,进行植树活动的学生人数可以表示为55%x,从而清扫垃圾的学生人数可以表示为x-10%x-55%x. 由于题目中已经给出了清扫垃圾的学生人数,故可以根据清扫垃圾的学生人数列出方程并求解.试题解析:设七年级共有x名同学参加这次公益活动.由题意,得x-10%x-55%x=70合并同类项,得0.35x=70,系数化为1,得x=200.答:七年级共有200名同学参加这次公益活动.点睛:在利用方程解决实际问题的题目中,列方程的基本根据是题目中的等量关系. 因此,在题目的条件中寻找合适的等量关系就成为解决问题的关键. 本题中应用的等量关系本质上是“总量=各部分量的和”. 在等量关系明确之后,利用未知数x对等量关系中的各个量进行表示则是正确列出方程的重要步骤.24.30名工人生产A种工件,45名工人生产B种工件【解析】试题分析:首先设分配x名工人生产A种工件,然后根据A种工件数量的2倍等于B种工件的数量列出方程进行求解,得出答案.试题解析:设分配x名工人生产A种工件,根据题意,得:2×15x=20(75-x)解得:x=30 ∴75-x=75-30=45答:分配30名工人生产A种工件,45名工人生产B种工件.考点:一元一次方程的应用25.篮球队有28支,排球队有20支.【解析】试题分析:设篮球队有x支,排球队有y支,根据共有48支队,520名运动员建立方程组求出其解即可.解:设篮球队有x支,排球队有y支,由题意,得,解得:.答:篮球队有28支,排球队有20支.考点:二元一次方程组的应用.26.每天能组装48套GH型电子产品;【解析】试题分析:(1)设有x名工人加工G型装置,则有(80-x)名工人加工H型装置,利用每台GH型产品由4个G型装置和3个H型装置配套组成得出等式求出答案;试题解析:(1)设有x名工人加工G型装置,则有(80-x)名工人加工H型装置,根据题意,,解得x=32,则80-32=48(套),答:每天能组装48套GH型电子产品;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程的应用——和差倍分问题专题练习一、选择题1、在一次美化校园活动中,先安排32人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树人数的2倍,问支援拔草和支援植树的分别有多少人?若设支援拔草的有x人,则下列方程中正确的是().A. 32+x=2×18B. 32+x=2(38-x)C. 52-x=2(18+x)D. 52-x=2×18答案:B解答:设支援拔草的有x人,则支援植树的有(20-x)人,由题意得:32+x=2(18+20-x)32+x=2(38-x).故符合题意的为B选项.2、某物流中心的A仓库有货物180吨,B仓库有货物120吨,现在需把B仓库一部分货物运到A仓库,使B仓库货物占A仓库货物总量的30%.设把B仓库的货物运送x吨到A仓库,则可列方程().A. 120-x=30%×180B. 120-x=30%(180+x)C. 120+x=30%×180D. 180-x=30%(120+x)答案:B解答:设把B仓库的货物运送x吨到A仓库,根据题意得,120-x=30%(180+x).选B.3、某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是().A. 2×1000(26-x)=800xB. 1000(13-x)=800xC. 1000(26-x)=2×800xD. 1000(26-x)=800x答案:C解答:∵安排x名工人生产螺钉,∴安排(26-x)名工人生产螺母,则每天生产螺钉800x个,每天生产螺母1000(26-x)个,根据“螺母个数=2×螺钉个数”可列方程为1000(26-x)=2×800x.选C.4、已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为().A. 2cmB. 3cmC. 4cmD. 5cm答案:B解答:设大小处于中间的边长是xcm,则最大的边是(x+1)cm,最小的边长是(x-1)cm.则(x+1)+x+(x-1)=12,解得:x=4,则最短的边长是:4-1=3cm.选B.5、甲、乙、丙三种商品单价的比是6:5:4,已知甲商品比丙商品的单价多12元,则三种商品的单价之和为().A. 75元B. 90元C. 95元D. 100元答案:B解答:设甲、乙、丙三种商品的单价分别为6x,5x,4x,则6x-4x=12,解得x=6,∴三种商品的单价之和为6×6+5×6+4×6=90.6、父亲现在32岁,儿子现在5岁,x年前,父亲的年龄是儿子年龄的10倍,则x应满足的方程是().A. 32-x=5xB. 32-x=10(5-x)C. 32-x=5×10D. 32+x=5×10答案:B解答:x年前,父亲年龄是:32-x,儿子年龄是5-x,父亲的年龄=10×儿子的年龄,列式为:32-x=10(5-x).7、我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x人,依题意列方程得().A. 3x+3(100-x )=100 B.3x-3(100-x )=100C. 3x +1003x -=100D. 3x -1003x -=100 答案:C解答:设大和尚有x 人,则小和尚有(100-x )人;根据大和尚1人分3个,小和尚3人分1个,正好分完100个馒头,∴3x +1003x-=100,故答案为C. 8、长沙是中国男足的福地,3月23日中国队1:0胜韩国队,赢得12强赛的首场胜利!已知在足球比赛中,胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负了5场,共得23分,那么这个队胜了( ).A. 5场B. 6场C. 7场D. 8场答案:C解答:设共胜了x 场,则平了(14-5-x )场, 由题意得:3x +(14-5-x )=23, 解得:x =7,即这个队胜了7场. 选C.9、我国明代著名数学家程大位的《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设竿长为x 尺,根据题意列一元一次方程,正确的是( ). A. 12 x +5=x -5 B.12 x -5=x +5C. 12(x -5)=x +5D. 12(x +5)=x -5答案:D解答:绳索长为x +5或2(x -5),∴有x +5=2(x -5)即12(x +5)=x -5. 二、填空题10、传统文化与创意营销的结合使已有近600年历史的故宫博物院重新焕发出生机,一些文创产品让顾客爱不释手.某购物网站上销售故宫文创笔记本和珐琅书签,若文创笔记本的销量比珐琅书签销量的2倍少700件,二者销量之和为5900件,用x 表示珐琅书签的销量,则可列出一元一次方程______. 答案:(2x -700)+x =5900解答:∵文创笔记本的销量比珐琅书签销量的2倍少700件,∴文创笔记本的销量为(2x-700)件,∵二者销量之和为5900件,∴可列方程为:(2x-700)+x=5900.故答案为:(2x-700)+x=5900.11、一个两位数,个位数字比十位数字大4,且个位数字与十位数字的和为10,则这个两位数为______.答案:37解答:设个位数是a,十位数是b,则有①②410a ba b-=⎧⎨+=⎩①②,①+②得:2a=14,解得:a=7,将a=7代入①得:7-b=4解得:b=3,∴这个数是37.12、我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题:一百慢头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?如果译成白话文,其意思是有100个和尚分100个馒头,正好分完,如果大和尚一人分3个,小和尚3人分一个.试间大小和尚各有几人?设大和尚x人,小和尚y人,可列方程组为______.答案:1 31003100 xyx y⎧+=⎪⎨⎪+=⎩解答:131003100xyx y⎧+=⎪⎨⎪+=⎩.13、父亲和女儿的年龄之和是54,当父亲的年龄是女儿现在年龄的3倍时,女儿的年龄正好是父亲现在年龄的17,则女儿现在的年龄是______.答案:12解答:父亲与女儿年龄差恒定不变.设女现x 岁,则父(54-x )岁,父女年龄差为(54-2x )岁, 列3x -547x=54-2x ,解得x =12. 14、清人徐子云《算法大成》中有一首名为“寺内僧多少”的诗: 巍巍古寺在山林,不知寺中几多僧. 三百六十四只碗,众僧刚好都用尽. 三人共食一碗饭,四人共吃一碗羹. 请问先生明算者,算来寺内几多僧.诗的大意是:在巍巍的大山和茂密的森林之中,有一座千年古寺,寺中有364只碗,要是3个和尚共吃一碗饭,4个和尚共喝一碗粥,这些碗刚好用完,问寺内有多少和尚?设有和尚x 人,由题意可列方程为______. 答案:3x +4x=364 解答:∵有和尚x 人, ∴需要3x 只碗装饭,4x只碗装粥, 根据寺中有364只碗,即可得出关于x 的一元一次方程为3x +4x=364. 三解答题15、某校购买了A ,B 两种教具共138件,共花了5400元,其中A 教具每件30元,B 教具每件50元,两种教具各买了多少件? 答案:A 教具买了75件,B 教具买了63件.解答:设A 教具买了x 件,则B 教具买了(138-x )件,依题意有: 30x +50(138-x )=5400 解得x =75,则B 教具买了:138-75=63件,答:A 教具买了75件,B 教具买了63件.16、为发展校园足球运动,某校决定购买一批足球运动装备,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,求每套队服和每个足球的价格是多少. 答案:队服150元,足球100元.解答:设每个足球的价格是x 元,则每套队服是(x +50)元,根据题意得2(x +50)=3x , 解得x =100, x +50=150.答:每套队服150元,每个足球100元. 17、列方程解应用题:改革开放40年来,我国铁路发生了巨大变化,现在的铁路运营里程比1978年的铁路运营里程多了75000公里,其中高铁更是迅猛发展,其运营里程约占现在铁路运营里程的20%,只差600公里就达到了1978年的铁路运营里程的一半.问1978年的铁路运营里程是多少公里.答案:52000公里.解答:设1978年铁路运营里程为x 公里, 由题意,得12x -600=20%(x +75000), 解得x =52000.∴1978年铁路运营里程为52000公里.18、机械厂加工车间有90名工人,平均每人每天加工大齿轮16个或小齿轮28个,已知大齿轮和小齿轮要按1:2配成一套,问需安排多少名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套?(用一元一次方程解答) 答案:42.解答:设安排x 人加工大齿轮,则(90-x )人加工小齿轮, 才能使每天加工的代销齿轮刚好配套,由题可得:()162890x x -=12,解得:x =42,∴需安排42名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.19、第十六届亚运会于2010年11月27日在中国广州举行,我国体育健儿发扬奋勇拼搏,敢于争先的奥运精神,在这次亚运会上共获得416枚奖牌,其中金牌数是铜牌数的2倍多3枚,而铜牌数比银牌数少21枚,请问:中国体育健儿共获得金牌、银牌、铜牌各多少枚? 答案:共获得金牌199枚,银牌119枚,铜牌98枚.解答:设获得铜牌x 枚,则金牌(2x +3)枚,银牌(x +21)枚,则2x+3+x+21+x=416,4x=392,x=98.∴2x+3=199,x+21=119.答:共获得金牌199枚,银牌119枚,铜牌98枚.20、列方程解应用题.某餐厅有4条腿的椅子和3条腿的凳子共40个,如果椅子腿数和凳子腿数加起来共有145条,那么有几个椅子和几个凳子.答案:25个椅子,15个凳子.解答:设有x个椅子.根据题意列方程,得4x+3(40-x)=145.解方程,得:x=25.∴40-x=15.答:有25个椅子,15个凳子.21、某快递员准备送出一批美术用纸共25500包,其中包括素描纸、手工彩色卡纸和水粉纸三种美术用纸,它们的数量比为1:2:14,该快递员准备送出的这三种美术用纸各多包?答案:素描纸为1500包,手工彩色卡纸为3000包,水粉纸为21000包.解答:设素描纸包数为x,则手工彩色卡纸为2x,水粉纸为14x,∵美术用纸共25500包,∴x+2x+14x=25500,17x=25500,x=1500(包).∴2x=3000(包),14x=21000(包),答:素描纸为1500包,手工彩色卡纸为3000包,水粉纸为21000包.22、制作一张桌子要用1个桌面和4条腿,1立方米木材可制作20个桌面或者制作400条桌腿,现有24立方米木材,应分别计划用多少立方米木材制作桌面和桌腿?答案:计划用20立方米木材制作桌面,4立方米木材制作桌腿.解答:计划用x立方米木材制作桌面.则用(24-x)立方米木材制作桌腿.由题意,得20x×4=(24-x)×400.整理,得6x =120, 解,得x =20. 24-20=4.答:计划用20立方米木材制作桌面,4立方米木材制作桌腿.23、某工厂现有15m 3木料,准备制作各种尺寸的圆桌和方桌,如果用部分木料制作桌面,其余木料制作桌腿.1、已知一张圆桌由一个桌面和一条桌腿组成,如果1m 3木料可制作40个桌面,或制作20条桌腿.要使制作出的桌面、桌腿恰好配套,直接写出制作桌面的木料为多少m 3.2、已知一张方桌由一个桌面和四条桌腿组成.根据所给条件,解答下列问题.(1)如果1m 3木料可制作50个桌面,或制作300条桌腿,应怎样计划用料才能使做好的桌面和桌腿恰好配套.(2)如果3m 3木料可制作20个桌面,或制作320条桌腿,应怎样计划用料才能制作尽可能多的桌子.答案:1、制作桌面的木料为5m 3.2、(1)用9m 3木料制作桌面,用6m 3木料制作桌腿恰好配套.(2)用12m 3木料制作桌面,用3m 3木料制作桌腿能制作尽可能多的桌子. 解答:1、设用xm 3木料制作桌面,则用(15-x )立方米木料制作桌腿恰好配套, 由题意得40x =20(15-x ),解得:x =5. 答:制作桌面的木料为5m 3.2、(1)设用xm 3木料制作桌面,则用(15-x )立方米木料制作桌腿恰好配套, 由题意得4×50x =300(15-x ), 解得:x =9,∴制作桌腿的木料为:15-9=6(m 3).答:用9m 3木料制作桌面,用6m 3木料制作桌腿恰好配套.(2)设用ym 3木料制作桌面,则用(15-y )m 3木料制作桌腿能制作尽可能多的桌子, 由题意得4×20×3y=320×153y ,解得y =12, ∴15-12=3m 3.答:用12m 3木料制作桌面,用3m 3木料制作桌腿能制作尽可能多的桌子.。

相关文档
最新文档