高中初等函数图像性质总结
六大基本初等函数图像及其性质
六大基本初等函数图像及其性质、常值函数(也称常数函数) y =C (其中 C 为常数);、幂函数 y x, x 是自变量, 是常数;1)当α为正整数时,函数的定义域为区间为x ( , ),他们的图形都经过原点,并当α >1 时在原点处与 x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于 y 轴对称;2)当α为负整数时。
函数的定义域为除去 x=0 的所有实数;函数的图形均经过原点和(1 ,1 ); 4)如果 m>n 图形于 x 轴相切,如果 m<n,图形于 y 轴相切,且 m 为偶数时,还跟 y 轴对称;m ,n 均为 奇数时,跟原点对称;5)当α为负有理数时, n 为偶数时, 函数的定义域为大于零的一切实数; n 为奇数时, 定义域为去除 x=03)当α为正有理数 时, n 为偶数时函数的定义域为n 0, +∞),n 为奇数时函数的定义域为 ∞,+∞性质函数定义域(0,1)R(0,1)值域(0, + ∞)奇偶性 非奇非偶公共点过点(0,1),即 x 0 时, y 1单调性在( , )是增函数在( , )是减函数1) 2) 3) 当x0时, y 1, 所以 它的图 形通过(0,1)3. (选,补充)指数函数值的大小比较a. 底数互为倒数的两个指数函数x x1 f (x) a x, f(x) a的函数图像关于 y 轴对称。
a N*(1) ma n a mn a (2) m a n a mn a以外的一切实数三、指数函数 y a x( x 是自变量 , a 是常数且 a 0,a 1 ) ,定义域是 R ; [ 无界函数 ]1. 指数函数的图象 :y2. 指数函数的性质 ;x当a不论 1时 函 数 为 单 调 增 , 当 0 a 1时 函 数 为单 调 减 ; x 为何值 , y 总是正 的, 图形在 x 轴x1. 对数的概念: 如果 a(a >0,a ≠1)的 b 次幂等于 N ,就是 a bN ,那么数 b 叫做以 a 为底 N 的对作log a N b , 其中 a 叫做对数的底数, N 叫做真数,式子 log a N 叫做对数式对数函数 y log a x 与指数函数 y a x互为反函数,所以 y log a x 的图象与 y a x的图象关于直线 y x 对称。
高中数学-基本初等函数图像及性质小结
些事奇函数,那些是偶函数
周期性:
0.指数函数八
定义域:.,■‘I
有界性:
单调性:
若a>1函数单调增加;若0<a<1函数单调减少
奇偶性:
周期性:
、、亠
注意:
图形过(0,1)点暨aA0=1
直线y=0为函数图形的水平渐近线今后」"用的多 这个函数的图形,性质要记清楚
O.对数函数"司唯口几3>0卫圧1)
1、定义域::• r值域:'」‘)
有界性:
单调性:a>1时,函数单调增加;0<a<1时,函数单调减少
奇偶性:
周期性:
主要性质:与指数函数互为反函数,图形过(1,0)点,
直线x=0为函数图形的铅直渐近线
“丄「—- -e=2.7182……,无理数 经常用到以e为底的对数
基本初等函数
1•函数的五个要素:自变量,因变量,定义域,值域,对应法则
2.函数的四种特性:有界限,单调性,奇偶性,周期性复习的时候一定要从这
四个方面去研究函数。
3.每个函数的图像很重要
定义域:随a的不同而不同,但无论a取什么值,xAa在「’内总有定义 值域:随a的不同而不同 有界性:
单调性:若a>0,函数在;…内单调增加; 若a<0,函数在人-内单调减少。
九种基本初等函数图像及性质
九种基本初等函数图像及性质基本初等函数包括一次函数、平方函数、立方函数、根号函数、指数函数、对数函数、正弦函数、余弦函数和正切函数等9种函数。
下面简单介绍它们的图像及性质。
一次函数的图像是一条直线,表达函数的形式为:y=ax+b(a≠0),其中a表示斜率,b表示函数的截距,函数的性质是其增减性由斜率a决定。
平方函数的图像为一条凹凸不平的抛物线,表达函数的形式为:y=ax2+bx+c,其中a、b、c为实数,a≠0,此函数的性质是其单调性由a的正负决定,是增函数当a>0时,是减函数当a<0时。
立方函数的图像是一条弯曲的曲线,表达函数的形式为:y=ax3+bx2+cx+d,其中a、b、c、d为实数,a≠0,函数的性质是其单调性由a的正负决定,是增函数当a>0时,是减函数当a<0时。
根号函数的图像是一条弯曲的曲线,表达函数的形式为:y=a√x+b,其中a、b为实数,a>0,此函数的性质是常数变动,函数的解析式在a变动时它的单调性也由正负变化。
指数函数的图像是一条右倾的曲线,表达函数的形式为:y=axb,其中a、b为实数,a>0、b≠0,函数的性质是其单调性由a、b的正负决定,是增函数当a>0且b>0时,是减函数当a>0且b<0时。
对数函数的图像是一个右倾的曲线,表达函数的形式为:y=alogx + b,其中a、b为实数,a>0,此函数的性质是变数变动,函数的解析式在x变动时它的单调性也由正负变化。
正弦函数的图像是一个周期性的曲线,表达函数的形式为:y=Asin(ωx+φ),其中A、ω、φ为实数,A>0,此函数的性质是其单调性由A的正负决定,是增函数当A>0时,是减函数当A<0时。
余弦函数的图像同正弦函数,表达函数的形式为:y=Acos(ωx+φ),其中A、ω、φ为实数,A>0,此函数的性质同正弦函数一样。
正切函数的图像为一个弯曲的曲线,表达函数的形式为:y=tanx,其中x代表,函数的性质是函数的单调性变化于π/2,函数的解析式在x变动到π。
高数总结:基本初等函数图像及其性质
⾼数总结:基本初等函数图像及其性质基本初等函数图像及其性质⼀、常值函数(也称常数函数)y =C(其中C 为常数);α1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数n4)如果m>n 图形于x 轴相切,如果m5)当α为负有理数时,n 为偶数时,函数的定义域为⼤于零的⼀切实数;n 为奇数时,定义域为去除x=0以外的⼀切实数。
三、指数函数xa y =(x 是⾃变量,a 是常数且0>a ,1≠a ),定义域是R ;[⽆界函数]1.指数函数的图象:2.1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上⽅; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。
1(3.(选,补充)指数函数值的⼤⼩⽐较*N ∈a ;a.底数互为倒数的两个指数函数x a x f =)(,xa x f ?=1)(的函数图像关于y 轴对称。
b.1.当1>a 时,a 值越⼤,xa y =的图像越靠近y 轴;b.2.当10<的图像越远离y 轴。
4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) n m n m a a a +=?m n m aa a -=÷(3)()()mn nm n m aa a ==(4) ()nnnba ab =b.根式的性质; (1)()a a nn= ; (2)当n 为奇数时,a a nn =当n 为偶数时,<-≥==)0(0)(a a a a a a nnc.分数指数幂;(1))1,,,0(*>∈>=n Z n m a a a n m n m(2))1,,,0(11*>∈>==-n Z n m a a amnm nm yxf x xxx g ?=1)(四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [⽆界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式⼦N a log 叫做对数式。
一篇文章掌握高中函数图像,不看别后悔!
函数图像是必考点,对于研究函数的单调性、奇偶性以及最值(值域)、零点有举足轻重的作用,但是很多同学看到眼花缭乱的函数解析式,就已经晕头转向了。
今天给大家整理了高中函数相关资料,希望能帮助高中生数学得高分!下面是基本初等函数的图像以及函数变换的规律,希望大家能学明白!一、基本初等函数的图像1.一次函数性质:一次函数图像是直线,当k>0时,函数单调递增;当k<0时,函数单调递减。
2.二次函数性质:二次函数图像是抛物线,a决定函数图像的开口方向,判别式b^2-4ac决定了函数图像与x轴的交点,对称轴两边函数的单调性不同。
3.反比例函数性质:反比例函数图像是双曲线,当k>0时,图像经过一、三象限;当k<0时,图像经过二、四象限。
要注意表述函数单调性时,不能说在定义域上单调,而应该说在(-∞,0),(0,∞)上单调。
4.指数函数当0<a<b<1<c<d时,指数函数的图像如下图:不同底的指数函数图像在同一个坐标系中时,一般可以做直线x=1,与各函数的交点,根据交点纵坐标的大小,即可比较底数的大小。
5.对数函数当底数不同时,对数函数的图像是这样变换的:6.幂函数y=x^a性质:先看第一象限,即x>0时,当a>1时,函数越增越快;当0<a<1时,函数越增越慢;当a<0时,函数单调递减;然后当x<0时,根据函数的定义域与奇偶性判断函数图像即可。
7.对勾函数对于函数y=x+k/x,当k>0时,才是对勾函数,可以利用均值定理找到函数的最值。
二、函数图像的变换注意:对于函数图像的变换,有的时候,看到解析式,可能会有两种以上的变换,尤其是针对x轴上的,那么此时,一定要根据上面的规则,判断好顺序,否则顺序错了,可能就没办法经过变换得到了!例如:画出函数y=ln|2-x|的图像通过研究这个函数解析式,我们知道此函数是由基本初等函数y=lnx 通过变换而来,那么这个函数经过了几步变换呢?变换的顺序又是如何?通过解析式x上附加的东西,我们会发现,会有对称变换,x前面加了负号,还有翻折变换,x上面还有绝对值,还有平移变换,前面加了一个2,既然有3种变换,那么顺序如何呢?牢记住一点:针对x 轴上的变换,那就一定要看x这个符号有啥变化。
高三函数图像知识点总结
一、基本初等函数的图像1. 一次函数搜索性质:一次函数图像是直线,当k>0时,函数单调递增;当k<0时,函数单调递减2. 二次函数搜索性质:二次函数图像是抛物线,a决定函数图像的开口方向,判别式b^2-4ac决定了函数图像与x轴的交点,对称轴两边函数的单调性不同。
3.反比例函数搜索性质:反比例函数图像是双曲线,当k>0时,图像经过一、三象限;当k<0时,图像经过二、四象限。
要注意表述函数单调性时,不能说在定义域上单调,而应该说在(-∞,0),(0,∞)上单调。
4.指数函数搜索当0<a<b<1<c<d时,指数函数的图像如下图不同底的指数函数图像在同一个坐标系中时,一般可以做直线x=1,与各函数的交点,根据交点纵坐标的大小,即可比较底数的大小。
5.对数函数搜索当底数不同时,对数函数的图像是这样变换的一、函数的定义二、函数的基本性质三、基本初等函数指数函数(一)指数四、函数的应用方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。
即:方程有实数根,函数的图象与坐标轴有交点,函数有零点.3、函数零点的求法:(1)(代数法)求方程的实数根;(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:(1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.(2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.6.幂函数y=x a 搜索性质:先看第一象限,即x>0时,当a>1时,函数越增越快;当0<a<1时,函数越增越慢;当a<0时,函数单调递减;然后当x<0时,根据函数的定义域与奇偶性判断函数图像即可。
高中函数图像及其平移与变换
基本初等函数的图像1.一次函数性质: 一次函数图像是直线,当k>0时,函数单调递增;当k<0时,函数单调递减 2.二次函数性质:二次函数图像是抛物线,a决定函数图像的开口方向,判别式b^2-4ac决定了函数图像与x轴的交点,对称轴两边函数的单调性不同。
3.反比例函数性质:反比例函数图像是双曲线,当k>0时,图像经过一、三象限;当k<0时,图像经过二、四象限。
要注意表述函数单调性时,不能说在定义域上单调,而应该说在(-∞,0),(0,∞)上单调。
4.指数函数当0<a<b<1<c<d时,指数函数的图像如下图不同底的指数函数图像在同一个坐标系中时,一般可以做直线x=1,与各函数的交点,根据交点纵坐标的大小,即可比较底数的大小。
5.对数函数当底数不同时,对数函数的图像是这样变换的6.对勾函数对于函数y=x+k/x,当k>0时,才是对勾函数,可以利用均值定理找到函数的最值。
7. 幂函数性质:先看第一象限,即 x>0 时,当 a>1 时,函数越增越快;当0<a<1 时,函数越增越慢;当 a<0 时,函数单调递减;然后当x<0 时,根据函数的定义域与奇偶性判断函数图像即可。
8. 正弦函数、余弦函数、正切函数函数图像的变换 1 平移变换(1)水平平移: 函数 y = f(x + a)的图像可以把函数 y =f(x)的图像沿x轴方向向左(a>0)或向右(a<0)平移|a|个单位即可得到; (2)竖直平移: 函数 y = f(x) + a 的图像可以把函数 y =f(x)的图像沿x轴方向向上(a>0)或向下(a<0)平移|a|个单位即可得到。
2 对称变换(1)函数 y = f(-x) 的图像可以将函数 y = f(x)的图像关于y轴对称即可得到; (2)函数 y = - f(x) 的图像可以将函数 y =f(x)的图像关于x轴对称即可得到;(3)函数 y = - f(-x) 的图像可以将函数 y =f(x)的图像关于原点对称即可得到;3 翻折变换(1)函数 y =| f(x)| 的图像可以将函数 y =f(x)的图像的x轴下方部分沿x轴翻折到x轴上方,去掉x轴下方部分,并保留 y =f(x)的x轴上方部分即可得到;(2)函数 y = f(|x|) 的图像可以将函数 y =f(x)的图像的右边沿y轴翻折到y轴左边替代原y轴左边部分并保留 y =f(x)在y轴右边部分即可得到。
(完整版)六大基本初等函数图像与性质
六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C(其中C 为常数);α1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。
三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。
1(3.(选,补充)指数函数值的大小比较*N ∈a ;a.底数互为倒数的两个指数函数x a x f =)(,xa x f ⎪⎭⎫ ⎝⎛=1)(的函数图像关于y 轴对称。
b.1.当1>a 时,a 值越大,xa y =的图像越靠近y 轴;b.2.当10<<a 时,a 值越大,x a y =的图像越远离y 轴。
4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) n m n m a a a +=⋅(2)nm n m aa a -=÷(3)()()mn nm n m aa a ==(4) ()nnnba ab =b.根式的性质; (1)()a a nn= ; (2)当n 为奇数时,a a nn =当n 为偶数时,⎩⎨⎧<-≥==)0(0)(a a a a a a nnc.分数指数幂;(1))1,,,0(*>∈>=n Z n m a a a n m nm(2))1,,,0(11*>∈>==-n Z n m a a aanmnm nm yxf x xxx g ⎪⎫⎛=1)(四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [无界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式。
六大基本初等函数图像及性质
六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)0≠C0=C平行于x 轴的直线y 轴本身 定义域R定义域R二、幂函数 αx y = ,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数x y =2x y =3x y =21xy =1-=x y定义域 R R R [0,+∞) {x|x ≠0} 值域 R [0,+∞) R [0,+∞) {y|y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增[0,+∞) 增 增 增(0,+∞) 减 (-∞,0] 减(-∞,0) 减公共点(1,1)xyOxy =2x y =3x y =1-=xy 21xy =O=y xCy =Oxyy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。
三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;性质函数x a y =)1(>ax a y =)10(<<a定义域 R 值域(0,+∞) 奇偶性 非奇非偶公共点过点(0,1),即0=x 时,1=y单调性在),(∞+∞-是增函数 在),(∞+∞-是减函数 1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。
高中初等函数图像性质总结
高中初等(chūděng)函数图像性质总结高中(gāozhōng)初等函数图像性质总结高中函数(hánshù)图像性质总结一、指数函数(zhǐ shù hán shù)ya某(a0且a1)1、指数函数(zhǐ shù hán shù)的图象和性质某ya01图象定义域值域性质定点R(0,+∞)过定点〔0,1〕,即某=0时,y=1〔1〕a>1,当某>0时,y>1;当某1。
单调性在R上是减函数在R上是增函数对称性ya和ya某某关于y轴对称2、第一象限:底数越大,图像越高a>>>二、yloga某α>0且α≠11、对数函数的图象和性质yloga某01图象定义域值域(0,+∞)R〔1〕过定点〔1,0〕,即某=1时,y=0〔2〕在R上是减函数〔2〕在R上是增函数〔3〕同正异负,即01,某>1时,loga某>0;01或a>1,01时,a越大,图像越靠近某轴;当0四、一元二次函数y=a某2+b某+c(a≠0):1、图像和性质(-∞,+∞)4ac-b2(-∞,]4a在某∈(-∞,-]上2a单调递增在某∈[-图象解析式f(某)=a某2+b某+c(a>0)f(某)=a某2+b某+c(a 扩展阅读:高中初等函数图像性质总结高中函数图像性质总结一、指数函数ya某(a0且a1)1、指数函数的图象和性质ya某01图象定义域值域性质定点R(0,+∞)过定点〔0,1〕,即某=0时,y=1〔1〕a>1,当某>0时,y>1;当某1。
单调性在R上是减函数在R上是增函数对称性ya某和ya某关于y轴对称2、第一象限:底数越大,图像越高二、yloga某1、对数函数的图象和性质yloga某图象01定义域值域(0,+∞)R〔1〕过定点〔1,0〕,即某=1时,y=0〔2〕在R上是减函数〔2〕在R上是增函数〔3〕同正异负,即01,某>1时,loga某>0;01或a>1,01时,a越大,图像越靠近某轴;当0四、一元二次函数解析式f(某)=a某2+b某+c(a>0)f(某)=a某2+b某+c(a顶点对称性2、一元二次函数表达式形式:b4ac-b2(-,)2a4a图象关于直线某=-成轴对称图形2ab顶点式:f(某)=a(某-h)2+k,定点坐标〔h,k〕分解式:f(某)=a(某-某1)(某-某2),一元二次方程的两根为某1,某2一般式:f(某)=a某2+b某+c,(a≠0).1.一次函数(包括正比例函数)最简单最常见的函数,在平面直角坐标系上的图象为直线。
六大基本初等函数图像及性质
WORD 格式整理版六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C (其中 C 为常数);常数函数( y C )C 0yy Cy 0xO平行于 x 轴的直线定义域 R二、幂函数 y x ,x是自变量,是常数;y 11. 幂函数的图像:y x2y x2y x1O2.幂函数的性质;性质y x y x2y x3函数定义域R R R值域R[0,+ ∞ )R奇偶性奇偶奇单调性增[0,+ ∞) 增增(-∞ ,0]减公共点( 1,1)C 0yOy轴本身定义域 Ry xy x3x1y x2[0,+ ∞ )[0,+ ∞ )非奇非偶增xy x 1{x|x ≠ 0}{y|y ≠ 0}奇(0,+∞) 减(-∞ ,0) 减WORD 格式整理版1)当 α 为正整数时,函数的定义域为区间为x ( ,),他们的图形都经过原点,并当α >1 时在原点处与 x 轴相切。
且 α为奇数时,图形关于原点对称;α 为偶数时图形关于 y 轴对称;2)当 α 为负整数时。
函数的定义域为除去 x=0 的所有实数;3)当 α 为正有理数m时, n 为偶数时函数的定义域为(0, +∞), n 为奇数时函数的定义域为( -n∞ ,+∞),函数的图形均经过原点和( 1 ,1);4)如果 m>n 图形于 x 轴相切,如果m<n,图形于 y 轴相切,且 m 为偶数时,还跟y 轴对称; m , n均为奇数时,跟原点对称;5)当 α 为负有理数时, n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除 x=0 以外的一切实数。
三、指数函数 ya x ( x 是自变量 , a 是常数且 a0 , a 1) ,定义域是 R ;[ 无界函数 ]1. 指数函数的图象 :ya xyyya x(a 1)(0 a1)(0,1)y 1(0,1)y 1OxOx2. 指数函数的性质 ;性质y a x(a 1)y a x(0 a 1)函数定义域 R值域(0,+∞)奇偶性非奇非偶公共点过点 (0,1),即 x0 时, y 1单调性 在( ,)是增函数在(, )是减函数1 ) 当 a 1时 函 数 为 单 调 增 , 当 0 a 1时函数为单调减;2 ) 不 论 x 为 何 值 , y 总 是 正 的 , 图 形 在 x 轴 上 方 ;3 ) 当 x0 时 , y1,所以它的图形通过(0,1) 点。
六大基本初等函数图像及其性质
六大基本初等函数图像及其性质、常值函数(也称常数函数)y二C (其中C为常数);二、幕函数,是自变量,是常数;1. 幕函数的图像:2. 幕函数的性质;奇偶性奇偶奇非奇非偶奇[0,+ X)增增增(0,+ X )减单调性增(-X ,0]减(-X ,0)减公共点(1,1)1)当a为正整数时,函数的定义域为区间为,他们的图形都经过原点,并当a >1时在原点处与X轴相切。
且a为奇数时,图形关于原点对称;a为偶数时图形关于y轴对称;2)当a为负整数时。
函数的定义域为除去X=0的所有实数;3)当a为正有理数时,n为偶数时函数的定义域为(0, + X), n为奇数时函数的定义域为(-X,+ X),函数的图形均经过原点和(1 ,1 );4)如果m>n图形于x轴相切,如果m<n,图形于y轴相切,且m为偶数时, 还跟y轴对称;m n均为奇数时,跟原点对称;5)当a为负有理数时,n为偶数时,函数的定义域为大于零的一切实数;n为奇数时,定义域为去除x=0以外的一切实数。
三、指数函数(是自变量,是常数且,),定义域是R ;[无界函数]1. 指数函数的图象:2.指数函数的性质;性质函数xy = a (a > 1)xY = a (0 c a c 1)定义域 R 值域(0, + %) 奇偶性 非奇非偶公共点过点(0, 1),即 x = 0时,y = 1单调性在(-, +立)是增函数在(-°0 ,)是减函数1) 当时函数为单调增,当时函数为单调减; 2) 不论为何值,总是正的,图形在轴上方; 3) 当时,,所以它的图形通过(0,1)点。
3. (选,补充)指数函数值的大小比较; a. 底数互为倒数的两个指数函数的函数图像关于y 轴对称b. 1.当时,a 值越大,i yf(x) =2h(x) =3xO(0,1)六大基本初等函数图像及其性质的图像越靠近y 轴;四、对数函数(是常数且),定义域[无界]b.2.当时,a 值越大,的图像越远离y 轴。
六大基本初等函数图像及其性质
六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);二、幂函数 αy =1.幂函数的图像:3y2.幂函数的性质;1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。
三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。
3.(选,补充)指数函数值的大小比较*N ∈a ;a.底数互为倒数的两个指数函数yxx a x f =)(,xa x f ⎪⎭⎫ ⎝⎛=1)(的函数图像关于y 轴对称。
b.1.当1>a 时,a 值越大,x a y =的图像越靠近y 轴;b.2.当10<<a 时,a 值越大,xay =的图像越远离y 轴。
4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) nm n m a a a +=⋅ (2) n m n m a a a -=÷(3)()()mn nmnm aaa ==(4)()n n n b a ab =b.根式的性质;f xxxx g ⎪⎫ ⎛=1)(四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [无界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式。
基本初等函数图像及性质
基本初等函数图像及性质六大基本初等函数图像及其性质一、常数函数(也称常值函数)y=C(其中C为常数);常数函数(y=C)是平行于x轴的直线,定义域为R,值域为{C},非奇非偶,单调性为不变,公共点为(0,C)。
二、幂函数y=x^α,x是自变量,α是常数;1.幂函数的图像:当α为正整数时,函数的图像都经过原点,并且在原点处与x轴相切。
当α为奇数时,图像关于原点对称;当α为偶数时,图像关于y轴对称。
2.幂函数的性质:函数。
定义域。
值域。
奇偶性。
单调性。
公共点y=x^2.R。
[0,+∞)。
偶。
增。
(0,0)y=x。
R。
R。
非奇非偶。
增。
(0,0)y=x^3.R。
R。
奇。
增。
(0,0)y=x^-1.{x|x≠0}。
{y|y≠0}。
奇。
(-∞,0)减。
(-1,0)∪(0,1)三、指数函数y=a^x(a>1且a≠1),定义域为R,为无界函数。
1.指数函数的图像:当a>1时,图像是单调增的曲线,经过点(0,1);当0<a<1时,图像是单调减的曲线,也经过点(0,1)。
2.指数函数的性质:函数。
定义域。
值域。
奇偶性。
单调性。
公共点y=a^x(a>1)。
R。
(0,+∞)。
非奇非偶。
增。
(0,1)y=a^x(0<a<1)。
R。
(0,1)。
非奇非偶。
减。
(0,1)本文介绍了指数函数和对数函数的基本概念和性质。
首先,介绍了指数函数的图像和比较大小的方法。
当底数互为倒数时,两个指数函数的图像关于y轴对称。
当底数大于1时,指数函数的值随着底数的增大而增大;当底数小于1时,指数函数的值随着底数的增大而减小。
其次,介绍了指数的运算法则,包括整数指数幂的运算性质和分数指数幂的运算性质。
其中,整数指数幂的运算性质包括指数相加、相减和相乘的规律;分数指数幂的运算性质包括分数指数幂的乘方和除法的规律。
接着,介绍了对数函数的概念和性质。
对数函数是指底数为常数且大于1的指数函数的反函数。
常用对数是以10为底的对数,自然对数是以无理数e为底的对数。
六大基本初等函数图像与性质
WORD 格式整理版六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C (其中 C 为常数);常数函数( y C )C 0yy Cy 0xO平行于 x 轴的直线定义域 R二、幂函数 y x ,x是自变量,是常数;y 11. 幂函数的图像:y x2y x2y x1O2.幂函数的性质;性质y x y x2y x3函数定义域R R R值域R[0,+ ∞ )R奇偶性奇偶奇单调性增[0,+ ∞) 增增(-∞ ,0]减公共点( 1,1)C 0yOy轴本身定义域 Ry xy x3x1y x2[0,+ ∞ )[0,+ ∞ )非奇非偶增xy x 1{x|x ≠ 0}{y|y ≠ 0}奇(0,+∞) 减(-∞ ,0) 减WORD 格式整理版1)当 α 为正整数时,函数的定义域为区间为x ( ,),他们的图形都经过原点,并当α >1 时在原点处与 x 轴相切。
且 α为奇数时,图形关于原点对称;α 为偶数时图形关于 y 轴对称;2)当 α 为负整数时。
函数的定义域为除去 x=0 的所有实数;3)当 α 为正有理数m时, n 为偶数时函数的定义域为(0, +∞), n 为奇数时函数的定义域为( -n∞ ,+∞),函数的图形均经过原点和( 1 ,1);4)如果 m>n 图形于 x 轴相切,如果m<n,图形于 y 轴相切,且 m 为偶数时,还跟y 轴对称; m , n均为奇数时,跟原点对称;5)当 α 为负有理数时, n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除 x=0 以外的一切实数。
三、指数函数 ya x ( x 是自变量 , a 是常数且 a0 , a 1) ,定义域是 R ;[ 无界函数 ]1. 指数函数的图象 :ya xyyya x(a 1)(0 a1)(0,1)y 1(0,1)y 1OxOx2. 指数函数的性质 ;性质y a x(a 1)y a x(0 a 1)函数定义域 R值域(0,+∞)奇偶性非奇非偶公共点过点 (0,1),即 x0 时, y 1单调性 在( ,)是增函数在(, )是减函数1 ) 当 a 1时 函 数 为 单 调 增 , 当 0 a 1时函数为单调减;2 ) 不 论 x 为 何 值 , y 总 是 正 的 , 图 形 在 x 轴 上 方 ;3 ) 当 x0 时 , y1,所以它的图形通过(0,1) 点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在R上是减函数
在R上是增函数
对称性
和 关于y轴对称
2、第一象限:底数越大,图像越高
二、
1、对数函数的图象和性质
0 <a< 1
a> 1
图
象
定义域
(0 , +∞)
值域
R
性
质
(1)过定点(1,0),即x= 1时,y= 0
(2)在R上是减函数
(2)在R上是增函数
(3)同正异负,
即0 <a< 1 , 0 <x< 1或a> 1 ,x> 1时,logax> 0;
高中函数图像性质总结
一、指数函数
1、指数函数的图象和性质
0 <a< 1
a> 1
图象
性
质
定义域
R
值域
(0 , +∞)
定点
过定点(0,1),即x= 0时,y= 1
(1)a> 1,当x> 0时,y> 1;当x< 0时,0 <y< 1。
(2)0 <a< 1,当x> 0时,0 <y< 1;当x< 0时,y> 1。
②、③不能表达没有斜率的直线(平行于x轴的直线);
④参数较多,计算过于烦琐;
⑤不能表达平行于坐标轴的直线和过圆点的直线。
倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜角。设一直线的倾斜角为a,则该直线的斜率k=tg(a)。
2.二次函数:
题目中常见的函数,在平面直角坐标系上的图象是一条对称轴与y轴平行的抛物线。
恒过定点(1,0)。联系解析式,若a>1则函数在定义域上单调增;若0<a<1则函数在定义域上单调减。
定义域:(0,正无穷)
值域:R
奇偶性:无
周期性:无
解析式:y=log(a)x
a>0
性质:与对数函数y=a^x互为反函数。
7.三角函数
⑴正弦函数:y=sinx
图象为正弦曲线(一种波浪线,是所有曲线的基础)
⑷Δ=b^2-4ac,
Δ>0,图象与x轴交于两点:
([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);
Δ=0,图象与x轴交于一点:
(-b/2a,0);
Δ<0,图象与x轴无交点;
②y=a(x-h)^2+t[配方式]
此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);
f(x)=ax2+bx+c(a>0)
f(x)=ax2+bx+c(a<0)
图象
定义域
(-∞,+∞)
(-∞,+∞)
值域
[ ,+∞)
(-∞, ]
四、一元二次函数 :
1、图像和性质
单调性
在x∈(-∞,- ]上单调递减
在x∈[- ,+∞)上单调递增
在x∈(-∞,- ]上单调递增
在x∈[- ,+∞)上单调递减
奇偶性
③y-y1=k(x-x1)[点斜式]
(k为直线斜率,(x1,y1)为该直线所过的一个点)
④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]
((x1,y1)与(x2,y2)为直线上的两点)
⑤x/a-y/b=0[截距式]
(a、b分别为直线在x、y轴上的截距)
解析式表达局限性:
①所需条件较多(3个);
3.反比例函数
在平面直角坐标系上的图象为双曲线。
定义域:(负无穷,0)∪(0,正无穷)
值域:(负无穷,0)∪(0,正无穷)
奇偶性:奇函数
周期性:无
解析式:y=1/x
4.幂函数
y=x^a
①y=x^3
定义域:R
值域:R
奇偶性:奇函数
周期性:无
图象类似于将一个过圆点的二次函数的第四区间部分关于x轴作轴象)
②y=x^(1/2)
定义域:[0,正无穷)
值域:[0,正无穷)
奇偶性:无(即非奇非偶)
周期性:无
图象类似于将一个过圆点的二次函数以原点为旋转中心,顺时针旋转
90°,再去掉y轴下方部分得到的图象(类比,这个方法不能得到三次
函数图象)
5.指数函数
在平面直角坐标系上的图象(太难描述了,说一下性质吧……)
1.一次函数(包括正比例函数)
最简单最常见的函数,在平面直角坐标系上的图象为直线。
定义域(下面没有说明的话,都是在无特殊要求情况下的定义域):R
值域:R
奇偶性:无
周期性:无
平面直角坐标系解析式(下简称解析式):
①ax+by+c=0[一般式]
②y=kx+b[斜截式]
(k为直线斜率,b为直线纵截距,正比例函数b=0)
恒过点(0,1)。联系解析式,若a>1则函数在定义域上单调增;若0<a<1则函数在定义域上单调减。
定义域:R
值域:(0,正无穷)
奇偶性:无
周期性:无
解析式:y=a^x
a>0
性质:与对数函数y=log(a)x互为反函数。
*对数表达:log(a)x表示以a为底的x的对数。
6.对数函数
在定义域上的图象与对应的指数函数(该对数函数的反函数)的图象关于直线y=x轴对称。
当b=0时为偶函数,b≠0时为非奇非偶函数
顶点
(- , )
对称性
图象关于直线x=- 成轴对称图形
2、一元二次函数表达式形式:
顶点式:f(x)=a(x-h)2+k,定点坐标(h,k)
分解式:f(x)=a(x-x1)(x-x2),一元二次方程的两根为x1,x2
一般式:f(x)=ax2+bx+c,(a≠0).
当α<0时过定点(1,1)
2、α>0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数
3、α<0时,幂函数的图象在区间(0,+∞)上是减函数.
4、任何两个幂函数最多有三个公共点
5、图像性质:
在第一象限幂函数图像表现为:
α>0时,α越大,图像越陡;
α<0时,α越大,图像越靠近y轴远离x轴。
解析式
定义域:R
值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)
奇偶性:偶函数
周期性:无
解析式:
①y=ax^2+bx+c[一般式]
⑴a≠0
⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;
⑶极值点:(-b/2a,(4ac-b^2)/4a);
0 <a< 1 ,x> 1或a> 1 , 0 <x< 1时,logax< 0。
2、当a>1时,a越大,图像越靠近x轴;
当0<a<1时,a越大,图像越远离x轴。
三、幂函数性质
1、所有的幂函数图象都过点(1,1)。除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限.;
注:当α>0时过定点(0,0)和(1,1);
定义域:R
值域:[-1,1]
奇偶性:奇函数
周期性:最小正周期为2π
对称轴:直线x=kπ/2 (k∈Z)
中心对称点:与x轴的交点:(kπ,0)(k∈Z)
⑵余弦函数:y=cosx
图象为正弦曲线,由正弦函数的图象向左平移π/2个单位(最小平移量)所得。