高分子物理知识点
(完整版)高分子物理重要知识点
高分子物理重要知识点第一章高分子链的结构1.1高分子结构的特点和内容高分子与低分子的区别在于前者相对分子质量很高,通常将相对分子质量高于约1万的称为高分子,相对分子质量低于约1000的称为低分子。
相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。
一般高聚物的相对分子质量为104~106,相对分子质量大于这个范围的又称为超高相对分子质量聚合物。
英文中“高分子”或“高分子化合物”主要有两个词,即polymers和Macromolecules。
前者又可译作聚合物或高聚物;后者又可译作大分子。
这两个词虽然常混用,但仍有一定区别,前者通常是指有一定重复单元的合成产物,一般不包括天然高分子,而后者指相对分子质量很大的一类化合物,它包括天然和合成高分子,也包括无一定重复单元的复杂大分子。
与低分子相比,高分子化合物的主要结构特点是:(1)相对分子质量大,由很大数目的结构单元组成,相对分子质量往往存在着分布;(2)主链有一定的内旋自由度使分子链弯曲而具有柔顺性;(3)高分子结构不均一,分子间相互作用力大;(4)晶态有序性较差,但非晶态却具有一定的有序性。
(5)要使高聚物加工成为有用的材料,需加入填料、各种助剂、色料等。
高分子的结构是非常复杂的,整个高分子结构是由不同层次所组成的,可分为以下三个主要结构层次(见表1-1):表1-1高分子的结构层次及其研究内容由于高分子结构的如上特点,使高分子具有如下基本性质:比重小,比强度高,弹性,可塑性,耐磨性,绝缘性,耐腐蚀性,抗射线。
此外,高分子不能气化,常难溶,粘度大等特性也与结构特点密切相关。
1.2高分子链的近程结构高分子链的化学结构可分为四类:(1)碳链高分子,主链全是碳以共价键相连:不易水解(2)杂链高分子,主链除了碳还有氧、氮、硫等杂原子:由缩聚或开环得到,因主链由极性而易水解、醇解或酸解(3)元素有机高分子,主链上全没有碳:具有无机物的热稳定性及有机物的弹性和塑性(4)梯形和螺旋形高分子:具有高热稳定性由单体通过聚合反应连接而成的链状分子,称为高分子链。
高分子物理知识点总结及习题
聚合物的结构(计算题:均方末端距与结晶度)1.简述聚合物的层次结构。
答:聚合物的结构包括高分子的链结构和聚合物的凝聚态结构,高分子的链结构包括近程结构(一级结构)和远程结构(二级结构)。
一级结构包括化学组成、结构单元链接方式、构型、支化与交联。
二级结构包括高分子链大小(相对分子质量、均方末端距、均方半径)和分子链形态(构象、柔顺性)。
三级结构属于凝聚态结构,包括晶态结构、非晶态结构、取向态结构、液晶态结构和织态结构。
构型:是指分子中由化学键所固定的原子在空间的几何排列。
(要改变构型,必须经过化学键的断裂和重组。
)高分子链的构型有旋光异构和几何异构两种类型。
旋光异构是由于主链中的不对称碳原子形成的,有全同、间同和无规三种不同的异构体(其中,高聚物中全同立构和间同立构的总的百分数称为等规度。
)。
全同(或等规)立构:取代基全部处于主链平面的一侧或者说高分子全部由一种旋光异构单元键接而成间同立构:取代基相间地分布于主链平面的两侧或者说两种旋光异构单元交替键接无规立构:取代基在平面两侧作不规则分布或者说两种旋光异构单元完全无规键接几何异构是由于主链中存在双键而形成的,有顺式和反式两种异构体。
构象:原子或原子基团围绕单键内旋转而产生的空间分布。
链段:把若干个键组成的一段链作为一个独立运动的单元链节(又称为重复单元):聚合物中组成和结构相同的最小单位高分子可以分为线性、支化和交联三种类型。
其中支化高分子的性质与线性高分子相似,可以溶解,加热可以熔化。
但由于支化破坏了高分子链的规整性,其结晶能力大大降低,因此支化高分子的结晶度、密度、熔点、硬度和拉伸强度等,都较相应的线性高分子的低。
交联高分子是指高分子链之间通过化学键形成的三维空间网络结构,交联高分子不能溶解,只能溶胀,加热也不能熔融。
高分子链的构象就是由单键内旋转而形成的分子在空间的不同形态。
单键的内旋转是导致高分子链呈卷曲构象的根本原因,内旋转越自由,卷曲的趋势就越大。
专题讲座之一:分子量调节剂、封端剂
封端剂 在缩聚反应中所加入的单官能团分子量调节剂 可以使缩聚物的两个端基变为同一官能团,从 而使聚合反应终止,因此又被称为封端剂。封 端剂除了作为分子量调节剂使用以外,有时还 具有使端基钝化,增加聚合物热稳定性的作用, 例如在聚碳酸酯生产中加入的苯酚一方面调整 了聚合物的分子量,另一方面使活泼端羟基和 酰氯基变为相对稳定的酯基,使聚合物的热稳 定性大大提高,这也是高分子物理课程中的一 个重要知识点。苯酚相对于聚碳酸酯来说既是 分子量调节剂又是封端剂,它是在反应过程中 随着单体一起加入的。有的聚合物的封端剂只 具有封端作用,并不能作为分子量调节剂使用, 如聚甲醛的羟端基可以用乙酸酐进行酯化反应 封端,提高聚甲醛的耐热性。
与分子量调节剂相关的几个概念
分子量稳定剂和粘度稳定剂 在缩聚反应中,分子量稳定剂的概念相对比较 少见,笔者认为应该统一称为分子量调节剂更 为合适,而粘度稳定剂的称谓则更为少见,尤
其是在没有讲授高分子物理时,粘度稳定剂的 称谓如果不给学生进行必要的解释是难于理解 的,实际上在高分子物理中影响粘度的因素中, 分子量是最重要的一个因素,从定性概念上来 说,分子量越大,聚合物熔体的粘度越大。因 此调节分子量就等于调节粘度,也就是粘度稳 定剂和分子量稳定剂是相同的概念。
专题讲座之一: 封端剂、分子量调节剂、粘度 稳定剂
涉及到的高分子多聚合
物需要封端,就要用到封端剂,有时封端 剂还可以起到调节分子量的作用
与分子量调节剂有关的几个概念
分子量调节剂、链转移剂、粘度
稳定剂以及封端剂等概念在高分 子合成和加工时经常遇到,他们 有时是统一的,有时又是完全不 同的。
与加聚反应中分子量调节剂明确的概念和定义 不同,缩聚反应中分子量调节剂的定义和概念
高分子物理重要知识点
高分子物理重要知识点(1人评价)|95人阅读|8次下载|举报文档高分子物理重要知识点(1人评价)|96人阅读|8次下载|举报文档1 高分子物理重要知识点第一章高分子链的结构 1.1高分子结构的特点和内容高分子与低分子的区别在于前者相对分子质量很高,通常将相对分子质量高于约1万的称为高分子,相对分子质量低于约1000的称为低分子。
相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。
一般高聚物的相对分子质量为104~106,相对分子质量大于这个范围的又称为超高相对分子质量聚合物。
英文中“高分子”或“高分子化合物”主要有两个词,即polymers和Macromolecules。
前者又可译作聚合物或高聚物;后者又可译作大分子。
这两个词虽然常混用,但仍有一定区别,前者通常是指有一定重复单元的合成产物,一般不包括天然高分子,而后者指相对分子质量很大的一类化合物,它包括天然和合成高分子,也包括无一定重复单元的复杂大分子。
与低分子相比,高分子化合物的主要结构特点是:(1)相对分子质量大,由很大数目的结构单元组成,相对分子质量往往存在着分布;(2)主链有一定的内旋自由度使分子链弯曲而具有柔顺性;(3)高分子结构不均一,分子间相互作用力大;(4)晶态有序性较差,但非晶态却具有一定的有序性。
(5)要使高聚物加工成为有用的材料,需加入填料、各种助剂、色料等。
高分子的结构是非常复杂的,整个高分子结构是由不同层次所组成的,可分为以下三个主要结构层次(见表1-1):表1-1高分子的结构层次及其研究内容名称内容备注链结构一级结构(近程结构)结构单元的化学组成键接方式构型(旋光异构,几何异构)几何形状(线形,支化,网状等)共聚物的结构指单个大分子与基本结构单元有关的结构二级结构(远程结构)构象(高分子链的形状)相对分子质量及其分布指由若干重复单元组成的链段的排列形状三级结构(聚集态结构、聚态结构、超分子结构)晶态非晶态取向态液晶态织态指在单个大分子二级结构的基础上,许多这样的大分子聚集在一起而成的聚合物材料的结构由于高分子结构的如上特点,使高分子具有如下基本性质:比重小,比强度高,弹性,可塑性,耐磨性,绝缘性,耐腐蚀性,抗射线。
高分子物理知识点
构象:具有一定组成和构型的高分子链通过单键的内旋转而形成的分子中的原子在空间的排列柔性:高分子链中单键内旋的能力;高分子链改变构象的能力;高分子链中链段的运动能力;高分子链自由状态下的卷曲程度。
链段:两个可旋转单键之间的一段链,称为链段影响柔性因素:1支链长,柔性降低;交联度增加,柔顺性减低。
2一般分子链越长,构象数越多,链的柔顺性越好。
3分子间作用力越大,聚合物分子链所表现出的柔顺性越小。
分子链的规整性好,结晶,从而分子链表现不出柔性。
控制球晶大小的方法:1控制形成速度;2采用共聚方法,破坏链的均一性和规整性,生成较小的球晶;3外加成核剂,可获得小甚至微小的球晶。
聚合物的结晶形态:1单晶:稀溶液,慢降温,螺旋生长2球晶:浓溶液或熔体冷却3树枝状晶:溶液中析出,低温或浓度大,分子量大时析出;4纤维状晶:存在流动场,分子量伸展,并沿流动方向平行排列;5串晶:溶液低温,边结晶边搅拌;6柱晶:熔体在应力作用下冷却结晶;7伸直链晶:高压下融融结晶,或熔体结晶加压热处理。
结晶的必要条件:1内因:化学结构及几何结构的规整性;2外因:一定的温度、时间。
结晶速度的影响因素:1温度——最大结晶温度:低温有利于晶核形成和稳定,高温有利于晶体生长;2压力、溶剂、杂质:压力、应力加速结晶,小分子溶剂诱导结晶;3分子量:M小结晶速度块,M大结晶速度慢;熔融热焓?H m:与分子间作用力强弱有关。
作用力强,?H m 高熔融熵?S m:与分子间链柔顺性有关。
分子链越刚,?S m小聚合物的熔点和熔限和结晶形成的温度T c有一定的关系:结晶温度Tc低(< Tm ),分子链活动能力低,结晶所得晶体不完善,从而熔限宽,熔点低;结晶温度Tc高(~ Tm ),分子链活动力强,结晶所得晶体更加完善,从而熔限窄,熔点高。
取向:在外力作用下,分子链沿外力方向平行排列。
聚合物的取向现象包括分子链、链段的取向以及结晶聚合物的晶片等沿特定方向的择优排列。
高分子物理知识点总结
链结构
1.结构单元的化学组成 2.结构单元的键接方式 3.结构单元的立体构造和空 间排列 4.支化与交联 5.结构单元的键接序列
• 高分子各结构层次之间既有区别又有联系 • 高分子结构是包括各个层次的综合概念,高分子的性能也是各个层次结构对性能贡献的综合表现 • 高分子结构层次繁多、复杂,给其性能调节和改善带来机会 • 合成:一次结构 • 加工:二、三次结构 • 配混:高次结构
到其分子引力范围之外所需要的能量。
克服分子间的 相互作用 ∆E= ∆Hv-RT ∆Hv--摩尔蒸发热 RT--转化为气体所做的膨胀功
高聚物结晶热力学
结晶聚合物的熔融与熔点
结晶聚合物与小分子晶体熔融的相同点:都是热力学平衡一 级相转变过程---自由能对温度和压力的一阶导数(体积 和熵)发生了不连续变化 对许多高聚物精心测量,每 变化一个温度eg:升1℃,维 持恒温,直到体积不再变化 (24hr) 后再测比容,结果过 Tm T 程十分接近跃变过程,在终 点处出现明确的转折——是 只有程度的差别而无本质的差别 热力学的一级相转变
晶核的成长是高分子链扩散到晶核或晶体表面进行生长 , 可 以在原有表面进行扩张生长, 也可以在原有表面形成新核而 生长。 结晶速度应包含成核速度、晶粒的生长速度和由它们两者所 决定的全程结晶速度。
成核速度:偏光显微镜直接观察单位时间内形成晶核的数目
晶粒的生长速度:偏光显微镜法直接测定球晶的线增长速度
淬火通常使熔点低和熔限宽,退火处理则相反
高聚物的结晶动力学
结晶高聚物的结晶范围在Tg与Tm 之间 ;当结晶高聚物从熔 融状态逐渐冷却,或经淬火处理的结晶高聚物升温至玻璃化 温度以上,就可以逐渐结晶而形成晶态高聚物。 聚合物结晶过程分为晶核的形成和晶核的成长两个阶段
《高分子流变学》复习资料
第二章 流变学的基本概念
1、单位张量和对称张量:
单位张量
对称张量(������������������������������������ = ������������������������������������ )
2、无穷小位移梯度张量
������������11 σ = �������������21 ������������31
������������������������������������ ⎤ ������������������������ ⎥ ������������������������������������ ⎥ ������������������������ ⎥ ⎥ ������������������������������������ ⎥ ������������������������ ⎦
0 0 1 0� 0 1
������������12 ������������22 ∙
������������13 ������������23 �。 ∙
3、应变张量 ������������������������������������ ������������ = ������������������������������������ = ������������������������������������� ������������������������������������
������������12 ������������22 ������������32
1 ������������ = �0 0
������������13 ������������11 ������������23 � = � ∙ ������������33 ∙
高分子物理知识点
高分子物理知识点高分子物理是研究聚合物分子在物理场中的行为和性质的学科。
聚合物是由一些单体分子通过化学键结合而成的巨大分子,其分子量多数达到百万或以上。
高分子物理的研究范围主要包括聚合物的物理结构、热力学性质、电学性质、机械性质、输运性质、光学性质等方面。
一、聚合物的物理结构聚合物的物理结构是指聚合物高分子链的构象状态。
聚合物高分子链的构象状态受到其化学结构、聚合反应的条件、处理温度等多种因素的影响。
根据高分子链形态的不同,可将聚合物的物理结构分为直线型、支化型和交联型。
1. 直线型聚合物物理结构直线型聚合物是高分子链结构较为简单、规则的聚合物。
它通常由一根直线型链构成,其中的结构单元重复出现,链端没有分支或交联结构。
高分子的线密度、分子量和分子结构对其物理性质有很大的影响。
2. 支化型聚合物物理结构支化型聚合物指非直线型、分子链有分支结构的聚合物。
分支结构对于聚合物的物理性质有很大的影响,由于支化结构的存在,使得聚合物高分子链的平均距离更大,聚合物的分子间距离变大,导致其性能发生变化。
支化型聚合物化学结构和分支类型的不同,会对聚合物的物理性质产生巨大的影响。
3. 交联型聚合物物理结构交联型聚合物是由互相交联的高分子链构成的聚合物。
它们通常具有三维结构,分子间有交联点连接。
交联型聚合物的物理性质比支化型聚合物更为复杂。
不同交联密度、交联桥、交联方式等会对其物理性质产生很大的影响。
二、热力学性质聚合物的热力学性质主要包括相变、热力学函数、相平衡、玻璃化转变等方面。
1. 相变相变是指物质从一个物理状态到另一个物理状态的变化。
聚合物相变通常指聚合物高分子间和高分子和外界环境间的相变。
聚合物的相变通常与聚合物的物理结构、温度和压强等相关。
2. 热力学函数热力学函数是描述物质宏观性质的基本物理量,它包括熵、焓、自由能等,具体热力学函数的选择取决于所研究的问题和体系。
3. 相平衡聚合物在不同温度和压强下处于不同的相态平衡中,可以通过研究相平衡来揭示聚合物的热力学性质。
高分子和复合材料知识点
1、名词解释:单体、单体是可与同种或他种分子通过共价键连接生成聚合物的小分子。
聚合度、大分子链上的结构单元的数目n结构单元、构成大分子链的基本结构单元称为结构单元或重复单元。
链段、链段是指高分子链上划分出来的可以任意取向的最小单元。
构象、由单键的内旋转而引起的分子在空间上表现的不同形态。
构象是由分子内部热运动而产生的,是一种物理结构。
塑料、塑料是以聚合物为主要成分,在一定条件(温度、压力等)下可塑成一定形状并且在常温下保持其形状不变的材料,习惯上也包括塑料的半成品。
橡胶、橡胶是有机高分子弹性化合物。
在很宽的温度(-50~150℃)范围内具有优异的弹性,所以又称为弹性体。
硫化剂、在一定条件下能使橡胶产生交联的物质,也叫交联剂。
胶粘剂、胶粘剂又称为粘合剂、粘接剂,简称为胶。
是一种能把各种材料紧密地结合在一起的物质。
2、写出下列聚合物的结构式:聚丙烯、(C3H6)n pp聚氯乙烯、:[-CH2 -CHCl- ]n o pvc聚苯乙烯、-FCH—CH2-]-n ps尼龙-66、pa66聚甲醛、pom聚对苯二甲酸乙二醇酯、天然橡胶、丁苯橡胶3、聚合物的结构。
(1 )大分子链的近程结构,(2 )大分子链的远程结构,(3 )聚合物聚集状态结构。
4、试述非晶态聚合物的力学三态。
玻璃态高弹态黏流态5、试述聚合物的性能特点?(1)强度:大分子链的主价力、分子间的力、大分子的柔韧性、聚合度、结晶度、取向情况、添加填料等。
高弹性:处于高弹态的聚合物表现出高弹性能。
粘弹性:聚合物的粘弹性是指聚合物既有粘性又有弹性的性质。
电阻率:聚合物是电阻率非常高的绝缘体。
介电常数:聚合物的介电常数一般1〜10之间。
介电强度:聚合物处于高电压下,每单位厚度能承受到被击穿时的电压称为介电强度。
静电现象:聚合物的高电阻率容易积累大量静电荷。
形成较高的静电压,造成灰尘及其他污物吸附、产生静电放电与电击现象。
(2)耐热性:高聚物的软化,高聚物的热裂解热导率:聚合物的热导率范围较窄,一般在0.22W/(m-K)左右,比金属材料低得多。
高分子物理知识点
高分子物理知识点1.高分子结构:高分子是由重复单元组成的长链分子。
高分子的结构包括主链结构、支链结构、交联结构等。
主链的物理结构对高分子材料的性能有重要影响。
2.高分子分子量:高分子的分子量对其性能有重要影响。
分子量越大,高分子材料的力学性能和热稳定性往往越好。
常用的衡量高分子分子量的指标有相对分子质量、平均相对分子质量和聚合度等。
3.高分子链的构象:高分子链的构象指高分子链在空间中的排列方式。
构象对高分子材料的物理性质和加工性能等有重要影响。
高分子链的构象可以是线形的、螺旋形的、交替形的等。
4.高分子的玻璃转变温度:玻璃转变温度是高分子从玻璃态转变为橡胶态的临界温度。
高分子的物理性质在玻璃转变温度附近发生剧烈变化。
玻璃转变温度对高分子材料的应用范围和使用条件有重要影响。
5.高分子的熔融温度:熔融温度是高分子从固态转变为液态的临界温度。
高分子的熔融温度对其加工工艺和热稳定性有重要影响。
6.高分子的热膨胀系数:热膨胀系数是衡量高分子材料在温度变化下体积变化的指标。
高分子的热膨胀系数对其尺寸稳定性和热应力分析有重要影响。
7.高分子的力学性能:高分子材料具有较低的弹性模量和较高的塑性变形能力。
其力学性能包括拉伸强度、弹性模量、断裂韧性等。
8.高分子的热性能:高分子材料的热稳定性、热导率和热膨胀系数等热性能对高分子材料的加工和应用有重要影响。
9.高分子的光学性能:高分子材料的透明度、折射率、发光性质等光学性能对于光学器件和光学材料的应用具有重要意义。
10.高分子的电学性能:高分子材料具有较低的电导率和较高的介电常数。
高分子的电学性能对于电介质材料和电子器件的应用有重要影响。
以上仅是高分子物理学的一些知识点,该领域的研究内容非常广泛和复杂。
高分子材料是现代工程和科学领域中的重要材料,了解高分子物理学的知识,对于高分子材料的设计、合成、应用和性能改善都具有重要意义。
高分子物理知识点
1 / 8构象:具有一定组成和构型的高分子链通过单键的内旋转而形成的分子中的原子在空间的排列 柔性: 高分子链中单键内旋的能力; 高分子链改变构象的能力; 高分子链中链段的运动能力; 高分子链自由状态下的卷曲程度。
链段:两个可旋转单键之间的一段链,称为链段 影响柔性因素: 1支链长,柔性降低;交联度增加,柔顺性减低。
2一般分子链越长,构象数越多,链的柔顺性越好。
3分子间作用力越大,聚合物分子链所表现出的柔顺性越小。
分子链的规整性好,结晶,从而分子链表现不出柔性。
控制球晶大小的方法: 1控制形成速度; 2采用共聚方法,破坏链的均一性和规整性,生成较小的球晶; 3外加成核剂,可获得小甚至微小的球晶。
聚合物的结晶形态: 1单晶:稀溶液,慢降温,螺旋生长 2球晶:浓溶液或熔体冷却3树枝状晶:溶液中析出,低温或浓度大,分子量大时析出;4纤维状晶:存在流动场,分子量伸展,并沿流动方向平行排列;5串晶:溶液低温,边结晶边搅拌;6柱晶:熔体在应力作用下冷却结晶;7伸直链晶:高压下融融结晶,或熔体结晶加压热处理。
结晶的必要条件:1内因: 化学结构及几何结构的规整性;2外因:一定的温度、时间。
结晶速度的影响因素:1温度——最大结晶温度:低温有利于晶核形成和稳定,高温有利于晶体生长;2压力、溶剂、杂质:压力、应力加速结晶,小分子溶剂诱导结晶; 3分子量:M 小结晶速度块,M 大结晶速度慢;熔融热焓∆H m :与分子间作用力强弱有关。
作用力强,∆H m 高熔融熵∆S m :与分子间链柔顺性有关。
分子链越刚,∆S m 小聚合物的熔点和熔限和结晶形成的温度T c 有一定的关系:结晶温度Tc 低(< Tm ),分子链活动能力低,结晶所得晶体不完善,从而熔限宽,熔点低;结晶温度Tc 高(~ Tm ),分子链活动力强,结晶所得晶体更加完善,从而熔限窄,熔点高。
取向:在外力作用下,分子链沿外力方向平行排列。
聚合物的取向现象包括分子链、链段的取向以及结晶聚合物的晶片等沿特定方向的择优排列。
高分子物理知识点
分子运动是联系结构与性能的桥梁:聚合物物分子运动的规律,研究聚合物在不同条件下的力学状态和相应的热转变。
高分子的结构层次微观结构特征要在材料的宏观性质上表现出来,则必须通过材料内部分子的运动。
为了研究高聚物的宏观性质(力学、电子、光子等方面性能),只了解高聚物的结构还不行,还必须弄清高聚物分子运动的规律,才能将微观结构与宏观结构性能相结合,才能了解高聚物结构与性能的内在联系。
不同物质,结构不同,在相同外界条件下,分子运动不同,从而表现出的性能不同。
相同物质,在不同外界条件下,分子运动不同,从而表现出的性能也不同。
(1)分子运动的多样性分子运动单元的多重性①链段的运动——主链中碳-碳单键的内旋转,使得高分子链有可能在整个分子不动,即分子链质量中心不变的情况下,一部分链段相对于另一部分链段而运动。
由于分子内旋转是导致分子链柔顺性的根本原因,而高分子链的内旋转又受其分子结构的制约,因而分子链的柔顺性与其分子结构密切相关。
高分子链能够通过内旋转作用改变其构象的性能称为高分子链的柔顺性。
高分子链能形成的构象数越多,柔顺性越大。
②链节的运动——比链段还小的运动单元③侧基的运动——侧基运动是多种多样的,如转动,内旋转,端基的运动等④高分子的整体运动——高分子作为整体呈现质量中心的移动⑤晶区内的运动——晶型转变,晶区缺陷的运动,晶区中的局部松弛模式等多种运动方式小尺寸运动单元(链段尺寸以下)大尺寸运动单元(链段尺寸以上)分子运动的时间依赖性——聚合物从一种平衡态通过分子运动到另一种新的平衡态总是需要时间的。
松弛过程:τ/0t ex x -∆=∆△x0——橡皮在外力作用下的长度增量 △x ——除去外力后t 时间橡皮长度的增量 t ——观察时间 τ——松弛时间,形变量恢复到原长度的1/e 时所需的时间.取决于材料固有性质和温度、外力大小,不是单一值。
低分子10-8~10-10s, 可以看着是无松弛的瞬时过程。
高分子, 10-1~10+4 s 或更大, 可明显观察到松弛过程。
高分子物理知识点
⾼分⼦物理知识点第1章⾼分⼦的链结构1.写出聚氯丁⼆烯的各种可能构型。
2.构象与构型有何区别?聚丙烯分⼦链中碳—碳单键是可以旋转的,通过单键的内旋转是否可以使全同⽴构聚丙烯变为间同⽴构聚丙烯?为什么?答:(1)区别:构象是由于单键的内旋转⽽产⽣的分⼦中原⼦在空间位置上的变化,⽽构型则是分⼦中由化学键所固定的原⼦在空间的排列;构象的改变不需打破化学键,⽽构型的改变必须断裂化学键。
(2)不能,碳-碳单键的旋转只能改变构象,却没有断裂化学键,所以不能改变构型,⽽全同⽴构聚丙烯与间同⽴构聚丙烯是不同的构型。
3.为什么等规⽴构聚丙⼄烯分⼦链在晶体中呈31螺旋构象,⽽间规⽴构聚氯⼄烯分⼦链在晶体中呈平⾯锯齿构象?答(1)由于等归⽴构聚苯⼄烯的两个苯环距离⽐其范德华半径总和⼩,产⽣排斥作⽤,使平⾯锯齿形(…ttt…)构象极不稳定,必须通过C-C键的旋转,形成31螺旋构象,才能满⾜晶体分⼦链构象能最低原则。
(2)由于间规聚氯⼄烯的氯取代基分得较开,相互间距离⽐范德华半径⼤,所以平⾯锯齿形构象是能量最低的构象。
4.哪些参数可以表征⾼分⼦链的柔顺性?如何表征?答:(1)空间位阻参数(或称刚性因⼦),值愈⼤,柔顺性愈差;(2)特征⽐Cn,Cn值越⼩,链的柔顺性越好;(3)连段长度b,b值愈⼩,链愈柔顺。
5.聚⼄烯分⼦链上没有侧基,内旋转位能不⼤,柔顺性好。
该聚合物为什么室温下为塑料⽽不是橡胶?答:这是由于聚⼄烯分⼦对称性好,容易结晶,从⽽失去弹性,因⽽在室温下为塑料⽽不是橡胶。
6.从结构出发,简述下列各组聚合物的性能差异:(1)聚丙烯睛与碳纤维;(2)⽆规⽴构聚丙烯与等规⽴构聚丙烯;(3)顺式聚1,4-异戊⼆烯(天然橡胶)与反式聚1,4-异戊⼆烯(杜仲橡胶)。
(4)⾼密度聚⼄烯、低密度聚⼄烯与交联聚⼄烯。
7.⽐较下列四组⾼分⼦链的柔顺性并简要加以解释。
第2章聚合物的凝聚态结构1.名词解释凝聚态,内聚能密度,晶系,结晶度,取向,⾼分⼦合⾦的相容性。
高分子物理考试复习总结
高分子物理考试复习总结高分子具有柔顺性的本质是什么?简要说明影响高分子链柔顺性的因素主要有哪些?答:高分子链具有柔顺性的原因在于它含有许多可以内旋转的? 键,根具热力学熵增原理,自然界中一切过程都自发地朝熵增增大的方向发展。
高分子链在无外力的作用下总是自发地取卷曲的形态,这就是高分子链柔性的实质。
影响因素主要有:主链的结构;2.取代基; 3.氢键; 4.交联。
6.以结构的观点讨论下列聚合物的结晶能力:聚乙烯、尼龙66、聚异丁烯答:高分子的结构不同造成结晶能力的不同,影响结晶能力的因素有:链的对称性越高结晶能力越强;链的规整性越好结晶能力越大;链的柔顺性越好结晶能力越好;交联、分子间力是影响高聚物的结晶能力;氢键有利于结晶结构的稳定。
聚乙烯对称性最好,最易结晶;尼龙66,对称性不如聚乙烯,但仍属对称结构,还由于分子间可以形成氢键,使结晶结构的稳定,可以结晶,聚异丁烯由于结构不对称,不易结晶。
2. 解释为什么尼龙6在室温下可溶解在某些溶剂中,而线性的聚乙烯在室温下却不能?答.尼龙和聚乙烯都是结晶性的聚合物,其溶解首先要使晶区熔融才能溶解。
而尼龙是极性的聚合物,如果置于极性溶剂之中,和极性的溶剂作用会放出热量从而使晶区熔融,继而溶解。
聚乙烯是非极性的聚合物,要使其晶区熔融只能升温至其熔点附近,然后溶于适当的溶剂中才能溶解。
所以聚乙烯在常温下不能溶解在溶剂之中。
4.影响高分子链柔性的因素有那些?如何影响?答案要点:分子结构的影响:(1)主链结构主链全为单键或含孤立双键时,分子链柔顺性较大,而含有芳杂环结构时,由于无法内旋转,柔顺性差。
(2)取代基极性取代基使柔顺性变差,非极性取代基体积大,位阻大,柔顺性变差。
(3)支化、交联若支链很长,阻碍链的内旋转时,柔顺性变差。
对于交联结构,交联程度不大时,对柔顺性影响不大,当交联程度达到一定程度时,大大影响链的柔顺性。
(4)分子链的长短一般分子链越长,构象数目越多,柔顺性越好。
高中物理《分子动理论内能》
⾼中物理《分⼦动理论内能》选修3-3《热学》第⼀单元《分⼦动理论内能》【基础知识梳理】知识点⼀、分⼦动理论⼀.物体是由⼤量分⼦组成的1、分⼦的⼤⼩(1).直径数量级:m.(2).油膜法测分⼦直径:d=,V是油滴的体积,S是⽔⾯上形成的的⾯积.(3).分⼦质量的数量级为kg.2.微观量的估算(1).微观量:分⼦体积V0、分⼦直径d、分⼦质量m0。
(2).宏观量:物体的体积V、摩尔体积V m、物体的质量m、摩尔质量M、物体的密度ρ。
(3).关系①分⼦的质量:m0=MN A=ρV mN A。
②分⼦的体积:V0=V mN A=MρN A。
③物体所含的分⼦数:N=VV m·N A=mρV m·N A或N=mM·N A=ρVM·N A。
(4).分⼦的两种模型①球体模型直径d=36Vπ。
(常⽤于固体和液体)②⽴⽅体模型边长d=3V0。
(常⽤于⽓体)对于⽓体分⼦,d=3V0的值并⾮⽓体分⼦的⼤⼩,⽽是两个相邻的⽓体分⼦之间的平均距离。
【例1】空调在制冷过程中,室内空⽓中的⽔蒸⽓接触蒸发器(铜管)液化成⽔,经排⽔管排⾛,空⽓中⽔分越来越少,⼈会感觉⼲燥。
某空调⼯作⼀段时间后,排出液化⽔的体积V=1.0×103 cm3。
已知⽔的密度ρ=1.0×103kg/m3、摩尔质量M=1.8×10-2kg/mol,阿伏加德罗常数N A =6.0×1023 mol-1。
试求:(结果均保留⼀位有效数字)(1)该液化⽔中含有⽔分⼦的总数N;(2)⼀个⽔分⼦的直径d。
⼆.分⼦的热运动1、扩散现象:由于分⼦的⽆规则运动⽽产⽣的物质迁移现象。
温度越,扩散越快。
2、布朗运动:在显微镜下看到的悬浮在液体中的的永不停息地⽆规则运动。
其特点是:①永不停息、运动。
②颗粒越⼩,运动越。
③温度越⾼,运动越。
提⽰:①运动轨迹不确定,只能⽤不同时刻的位置连线确定微粒做⽆规则运动。
(完整版)高分子物理重要知识点
(完整版)⾼分⼦物理重要知识点⾼分⼦物理重要知识点第⼀章⾼分⼦链的结构1.1⾼分⼦结构的特点和内容⾼分⼦与低分⼦的区别在于前者相对分⼦质量很⾼,通常将相对分⼦质量⾼于约1万的称为⾼分⼦,相对分⼦质量低于约1000的称为低分⼦。
相对分⼦质量介于⾼分⼦和低分⼦之间的称为低聚物(⼜名齐聚物)。
⼀般⾼聚物的相对分⼦质量为104~106,相对分⼦质量⼤于这个范围的⼜称为超⾼相对分⼦质量聚合物。
英⽂中“⾼分⼦”或“⾼分⼦化合物”主要有两个词,即polymers和Macromolecules。
前者⼜可译作聚合物或⾼聚物;后者⼜可译作⼤分⼦。
这两个词虽然常混⽤,但仍有⼀定区别,前者通常是指有⼀定重复单元的合成产物,⼀般不包括天然⾼分⼦,⽽后者指相对分⼦质量很⼤的⼀类化合物,它包括天然和合成⾼分⼦,也包括⽆⼀定重复单元的复杂⼤分⼦。
与低分⼦相⽐,⾼分⼦化合物的主要结构特点是:(1)相对分⼦质量⼤,由很⼤数⽬的结构单元组成,相对分⼦质量往往存在着分布;(2)主链有⼀定的内旋⾃由度使分⼦链弯曲⽽具有柔顺性;(3)⾼分⼦结构不均⼀,分⼦间相互作⽤⼒⼤;(4)晶态有序性较差,但⾮晶态却具有⼀定的有序性。
(5)要使⾼聚物加⼯成为有⽤的材料,需加⼊填料、各种助剂、⾊料等。
⾼分⼦的结构是⾮常复杂的,整个⾼分⼦结构是由不同层次所组成的,可分为以下三个主要结构层次(见表1-1):表1-1⾼分⼦的结构层次及其研究内容由于⾼分⼦结构的如上特点,使⾼分⼦具有如下基本性质:⽐重⼩,⽐强度⾼,弹性,可塑性,耐磨性,绝缘性,耐腐蚀性,抗射线。
此外,⾼分⼦不能⽓化,常难溶,粘度⼤等特性也与结构特点密切相关。
1.2⾼分⼦链的近程结构⾼分⼦链的化学结构可分为四类:(1)碳链⾼分⼦,主链全是碳以共价键相连:不易⽔解(2)杂链⾼分⼦,主链除了碳还有氧、氮、硫等杂原⼦:由缩聚或开环得到,因主链由极性⽽易⽔解、醇解或酸解(3)元素有机⾼分⼦,主链上全没有碳:具有⽆机物的热稳定性及有机物的弹性和塑性(4)梯形和螺旋形⾼分⼦:具有⾼热稳定性由单体通过聚合反应连接⽽成的链状分⼦,称为⾼分⼦链。
高分子化学与物理基础知识点
高分子化学与物理基础知识点
1. 高分子的定义和分类
高分子是由许多重复单元通过共价键连接而成的大分子。
根据来源,高分子可分为天然高分子和合成高分子;根据性能和用途,高分子可分为塑料、橡胶、纤维、涂料、胶粘剂等。
2. 高分子的结构
高分子的结构包括一级结构(近程结构)和二级结构(远程结构)。
一级结构指的是高分子链中原子的化学组成和排列方式,如头尾结构、顺反异构等;二级结构指的是高分子链的形态,如伸直链、螺旋链、折叠链等。
3. 高分子的合成
高分子的合成方法包括加聚反应、缩聚反应、开环聚合等。
其中,加聚反应是通过单体分子间的加成反应形成高分子的方法;缩聚反应是通过单体分子间的缩合反应形成高分子的方法。
4. 高分子的物理性能
高分子的物理性能包括力学性能、热性能、电性能、光学性能等。
其中,力学性能是高分子材料最重要的性能之一,包括拉伸强度、弯曲强度、冲击强度等。
5. 高分子的溶液性质
高分子在溶液中的性质包括溶解过程、溶剂选择、分子量测定等。
高分子的溶解过程一般分为溶胀和溶解两个阶段;溶剂选择要考虑高分子的极性、分子量、溶液的黏度等因素。
以上是高分子化学与物理的一些基础知识点,希望对你有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
构象:具有一定组成和构型的高分子链通过单键的内旋转而形成的分子中的原子在空间的排列 柔性:高分子链中单键内旋的能力; 高分子链改变构象的能力; 高分子链中链段的运动能力; 高分子链自由状态下的卷曲程度。
链段:两个可旋转单键之间的一段链,称为链段 影响柔性因素:1支链长,柔性降低;交联度增加,柔顺性减低。
2一般分子链越长,构象数越多,链的柔顺性越好。
3分子间作用力越大,聚合物分子链所表现出的柔顺性越小。
分子链的规整性好,结晶,从而分子链表现不出柔性。
控制球晶大小的方法: 1控制形成速度;2采用共聚方法,破坏链的均一性和规整性,生成较小的球晶; 3外加成核剂,可获得小甚至微小的球晶。
聚合物的结晶形态:1单晶:稀溶液,慢降温,螺旋生长2球晶:浓溶液或熔体冷却3树枝状晶:溶液中析出,低温或浓度大,分子量大时析出; 4纤维状晶:存在流动场,分子量伸展,并沿流动方向平行排列; 5串晶:溶液低温,边结晶边搅拌; 6柱晶:熔体在应力作用下冷却结晶;7伸直链晶:高压下融融结晶,或熔体结晶加压热处理。
结晶的必要条件:1内因: 化学结构及几何结构的规整性; 2外因:一定的温度、时间。
结晶速度的影响因素:1温度——最大结晶温度:低温有利于晶核形成和稳定,高温有利于晶体生长;2压力、溶剂、杂质:压力、应力加速结晶,小分子溶剂诱导结晶; 3分子量:M 小结晶速度块,M 大结晶速度慢;熔融热焓∆H m :与分子间作用力强弱有关。
作用力强,∆H m 高 熔融熵∆S m :与分子间链柔顺性有关。
分子链越刚,∆S m 小 聚合物的熔点和熔限和结晶形成的温度T c 有一定的关系:结晶温度Tc 低(< Tm ),分子链活动能力低,结晶所得晶体不完善,从而熔限宽,熔点低;结晶温度Tc 高(~ Tm ),分子链活动力强,结晶所得晶体更加完善,从而熔限窄,熔点高。
取向:在外力作用下,分子链沿外力方向平行排列。
聚合物的取向现象包括分子链、链段的取向以及结晶聚合物的晶片等沿特定方向的择优排列。
取向机理:1高弹态:单键的内旋转。
外力作用下,链段取向;外力解除,链段解取向 2粘流态:高分子各链段的协同运动。
外力作用下,分子链取向;外力解除,分子链解取向3结晶高聚物:非晶区取向,可以解取向;晶粒取向,不易解取向取向度: 高分子合金又称多组分聚合物,在该体系中存在两种或两种以上不同的聚合物,θθθ22sin 231)1cos 3(21-=-=f不论组分是否以化学键相连接高分子合金制备方法:1物理共混:机械共混、溶液浇铸、乳液浇铸2化学共混:溶液接枝、溶胀聚合、嵌段共聚液晶:一些物质的结晶结构受热熔融或被溶剂溶解后,表观上虽然变成了具有流动性的液体物质,但结构上仍然保持着晶体结构特有的一维或二维有序排列,形成一种兼有部分晶体和液体性质的过渡状态,这种中间状态称为液晶态。
其所处状态的物质称为液晶。
液晶的特点:同时具有流动性和光学各向异性。
按液晶形成条件分类:1溶致液晶:在某一温度下,因加入溶剂而呈现液晶态的物质;2热致液晶:通过加热而形成液晶态的物质;3感应液晶:外场(力,电,磁,光等)作用下进入液晶态的物质;4流致液晶:通过施加流动场而形成液晶态的物质。
分子结构对液晶行为的影响:1主链型液晶高分子:链的柔顺性是影响液晶行为的主要因素。
完全刚性的高分子,熔点很高,通常不出现热致型液晶,而可以在适当溶剂中形成溶致液晶。
在主链液晶基元之间引入柔性链段,增加了链的柔性,使聚合物的Tm 降低,可能呈现热致型液晶行为。
2侧链型液晶高分子:柔性间隔段的引入,可以降低高分子主链对液晶基元排列与取向的限制,有利于液晶的形成与稳定;主链柔性影响液晶的稳定性。
通常,主链柔性增加,液晶的转变温度降低。
3液晶基元:液晶基元的长度增加,通常使液晶相温度加宽,稳定性提高。
聚合物溶解过程:1非晶态聚合物的溶胀和溶解:(i) 溶剂分子渗入聚合物内部,即溶剂分子和高分子的某些链段混合,使高分子体积膨胀-溶胀;(ii) 高分子被分散在溶剂中,整个高分子和溶剂混合-溶解。
2结晶聚合物的溶解:(i) 结晶聚合物的先熔融,其过程需要吸热;(ii) 熔融聚合物的溶解。
3交联聚合物的溶胀平衡:交联聚合物在溶剂中可以发生溶胀,但是由于交联键的存在,溶胀到一定程度后,就不再继续胀大,此时达到溶胀平衡,不能再进行溶解溶剂选择:1“相似相溶”原则;2“溶度参数相近”原则;3“高分子-溶剂相互作用参数χ1小于1/2”原则。
海德堡方程:高分子溶液三点假设:1假设溶液中分子的排列像晶体一样,也是一种晶格的排列,每个溶剂分子占有一个格子,每个高分子占有x个相连的格子。
x为高分子与溶剂分子的体积比,也就是说,可以把高分子链作为由x个链段组成的,每个链段的体积与溶剂分子的体积相同。
2高分子链是柔性的,所有构象具有相同的能量。
3溶液中高分子链段是均匀分布的,即每一链段占有任一格子的几率相等。
θ状态:是高分子链段间的相互作用与高分子链段与溶剂间的相互作用抵消。
稀溶液理论:1溶液中“链段”分布不均匀,以“链段云”的形式分散在溶剂中,“链段云”近似成球体。
2“链段云”内以质心为中心,“链段”分布符合高斯分布。
3“链段云”互相接近要引起自由能变化,“链段云”有排斥体积。
亚浓溶液:溶液中高分子线团互相穿插交叠,整个溶液中的链段分布趋于均一。
临界交叠浓度c*(接触浓度):溶液浓度从稀向浓逐渐增大,孤立的高分子线团逐渐靠近,靠近到开始成为线团密堆积时的浓度。
相关长度ξ(克赛):亚浓溶液中高分子链间形成的网眼的平均尺寸。
串珠模型:将分子链看作是由一串尺寸为ξ的珠子组成。
增塑剂的选择:1互溶性——一般要求增塑剂是高聚物的良溶剂。
2有效性——由于增塑剂的加入,一方面提高了产品的弹性、耐寒性和抗冲击性,另一方面却降低了它的硬度、耐热性和抗张强度。
3耐久性——为了使产品的性能在长期使用下保持不变,就要求增塑剂稳定MMVH22121][δδϕϕ-=∆地保存在制品中。
内增塑:在高分子链上引入其它取代基或短的链段,使结晶破坏,分子链变柔,易于活动,这种方法称为内增塑。
增容方法:原位增容;加入第三组分分子量分布宽度:实验中各个分子量与平均分子量之间差值的平方平均值,可简明地描述聚合物试样分子量的多分散性。
聚合物分子量测定方法:1化学方法:端基分析法2热力学方法:沸点升高,冰点降低,蒸汽压下降,渗透压法;3光学方法:光散射法;4动力学方法:黏度法,超速离心沉淀,扩散法;5其他方法:凝胶渗透色谱法。
分子运动单元:侧基、支链、链节、链段、整个分子链等。
分子运动的时间依赖性:在一定的温度和外力作用下,高聚物分子从一种平衡态过渡到另一种平衡态需要一定的时间。
分子运动的温度依赖性:温度升高时:1、运动单元活化:热运动能量增加,克服位垒,开始运动,运动速度增加;2、聚合物体积膨胀,自由空间增大。
三态两区:1玻璃态:分子链几乎无运动,聚合物类似玻璃,通常为脆性的,模量为104~1011Pa。
2玻璃化转变:整个大分子链还无法运动,但链段开始发生运动,模量下降3~4个数量级,聚合物行为与皮革类似。
3高弹态:链段运动激化,但分子链间无滑移。
受力后能产生可以回复的大形变,称之为高弹态,为聚合物特有的力学状态。
模量进一步降低,聚合物表现出橡胶行为。
4粘流转变: 分子链重心开始出现相对位移。
模量再次急速下降。
聚合物既呈现橡胶弹性,又呈现流动性。
对应的转变温度T f称为粘流温度。
5粘流态:大分子链受外力作用时发生位移,且无法回复。
行为与小分子液体类似。
玻璃化转变:指高聚物的玻璃态与高弹态间的转变。
某些液体在温度迅速下降时被固化成为玻璃态而不发生结晶作用。
高聚物分子运动的研究方法:热分析法、热膨胀法、差热分析法DTA和差示扫描量热法DSC;动态力学方法、扭摆法和扭辫法、振簧法、粘弹谱仪;NMR 核磁共振松弛法;介电松弛法。
自由体积理论:Tg以下时,高聚物体积随温度升高而发生的膨胀是由于固有体积的膨胀。
自由体积对所有聚合物材料来说,都是相等的,占总体积的2.5% 自由体积影响因素:1柔性:柔性升高,玻璃化转变温度降低;2取代基:极性取代基,极性越大,内旋转受阻程度及分子间相互作用越大,Tg也随之升高;非极性的取代基对Tg 的影响主要表现为空间位阻效应,侧基体积越大,位阻越明显,Tg 升高;由于对称性使极性部分相互抵消,柔性增加,Tg 下降。
3构型:全同〈间同;顺式〈反式4分子量:分子量低的聚合物有更多的链末端,链末端比链中间部分有较大的自由体积。
M<Mc, Tg随M增加而升高;M>Mc, Tg与M无关5链间相互作用大,柔性降低,Tg 下降。
6压力:从分子运动角度看,增加压力相当于降低温度使分子运动困难,或者从自由体积理论来看,增加压力就容易排除自由体积,只有继续提高温度,链段才能运动,所以Tg 提高。
7实验速度:降低温度快,测定Tg高。
改变Tg的手段:增塑、共混、共聚、改变分子量、交联、结晶高聚物流变:当高聚物熔体和溶液(简称流体)在受外力作用时,既表现粘性流动,又表现出弹性形变,因此称为高聚物流体的流变性或流变行为。
聚合物熔体流动特点:1粘度大,流动性差:链段位移;2不符合牛顿流动规律:剪切变稀;3熔体流动时伴随高弹形变:强迫高弹形变。
流动指数n:亦称非牛顿指数,表示该种流体与牛顿流体的偏差程度剪切应力与剪切速率的关系表观粘度和剪切速率的关系假塑性流体:粘度随剪切速率或剪切应力的增加而下降的流体。
表观粘度和剪切速率的关系:1第一牛顿区:低剪切速率时,缠结与解缠结速率处于一个动态平衡,表观粘度保持恒定,定为η0,称零切粘度,类似牛顿流体。
2幂律区:剪切速率升高到一定值,解缠结速度快,再缠结速度慢,流体表观粘度随剪切速率增加而减小,即剪切稀化,呈假塑性行为。
3第二牛顿区:剪切速率很高时,缠结遭破坏,再缠结困难,缠结点几乎不存在,表观粘度再次维持恒定,定为η∞,称牛顿极限粘度,又类似牛顿流体行为。
聚合物的熔融指数:指在一定的温度下和规定负荷下,10min内从规定直径和长度的标准毛细管内流出的聚合物熔体的质量。
影响黏流温度的因素:1分子结构:柔顺性越好,链段越短,孔穴越小,活化能越低,容易流动,粘流温度越低。
2分子量:分子量越大,迁移运动越困难,粘流温度越高。
合成聚合物时适当降低分子量利于加工成型。
3粘流温度与外力作用大小和作用时间:粘流温度越高,采用较大外力;适当延长外力作用时间。
测定聚合物剪切粘度的方法:毛细管流变仪、旋转粘度计、落球粘度计、工业粘度计影响聚合物熔体剪切粘度的因素:1温度升高,黏度降低;2剪切速率和剪切应力、压力:刚性链——温敏;柔性链——切敏3剪切粘度的分子量依赖性:分子量增大,黏度增加;4粘度的分子量分布的依赖性:分子量分布宽,黏度变化明显;5分子链支化的影响:短支化,黏度减小;长支化,黏度增加;流体流动中弹性的表现:可回复的切形变;韦森堡效应(法向效应或爬竿效应);巴拉斯效应(挤出胀大);不稳定流动。