集成运算放大器的简单介绍PPT课件
合集下载
集成运算放大器的简单介绍PPT课件
RF 常用做测量分析方法1:
R如u–+如F则i1果则u+–:R取i:21uR1R=uoRo2R12R=RRu=F1+R–R3i2(R22u3/+i,/2=uRiR13u3=u+–i放=1uo)RoR大1F/电(/1R路F由RR由uuF1虚)虚R短断2uuR可Ri可i3112得RR得33:uRuuR:Roi1321uuuiRR2RiF1F1uRui11 )
–Uo(sat)
线性区: uo = Auo(u+– u–)
非线性区:
u+> u– 时, uo = +Uo(sat) u+< u– 时, uo = – Uo(sat)
第7页/共54页
3. 理想运放工作在线性区的特点
u– u+
i– i+
– +
∞ +
因为 uo = Auo(u+– u– ) uo 所以(1) 差模输入电压约等于 0
(1
RF R1
)
R3 R2 R3
ui 2
RF R1
ui1
第21页/共54页
16.2.4 积分运算电路
if =? if
i1 R1 + ui – R2
+uC– CF
– +
+
+
uO
–
由虚短及虚断性质可得
i1 = if
i1
ui R1
iF
CF
duC dt
当电容CF的初始电压 为 uC(t0) 时,则有
ui R1
第2页/共54页
信号传 输方向
实际运放开环
反相
+UCC 电压放大倍数
R如u–+如F则i1果则u+–:R取i:21uR1R=uoRo2R12R=RRu=F1+R–R3i2(R22u3/+i,/2=uRiR13u3=u+–i放=1uo)RoR大1F/电(/1R路F由RR由uuF1虚)虚R短断2uuR可Ri可i3112得RR得33:uRuuR:Roi1321uuuiRR2RiF1F1uRui11 )
–Uo(sat)
线性区: uo = Auo(u+– u–)
非线性区:
u+> u– 时, uo = +Uo(sat) u+< u– 时, uo = – Uo(sat)
第7页/共54页
3. 理想运放工作在线性区的特点
u– u+
i– i+
– +
∞ +
因为 uo = Auo(u+– u– ) uo 所以(1) 差模输入电压约等于 0
(1
RF R1
)
R3 R2 R3
ui 2
RF R1
ui1
第21页/共54页
16.2.4 积分运算电路
if =? if
i1 R1 + ui – R2
+uC– CF
– +
+
+
uO
–
由虚短及虚断性质可得
i1 = if
i1
ui R1
iF
CF
duC dt
当电容CF的初始电压 为 uC(t0) 时,则有
ui R1
第2页/共54页
信号传 输方向
实际运放开环
反相
+UCC 电压放大倍数
第4章集成运算放大器ppt课件46页PPT
第四章 集成运算放大器
电路结构
模拟输入信号
模拟开关 控制信号
电压跟随器
采样存储 电容
用于数据采集、模数转换、数字电路、计算机控制等。
第四章 集成运算放大器
工作原理
采样脉冲 输出电压 输入电压
① 采样状态: uG为高电平, 场效应管导通,uI对 存储电容C充电, uO= uC = uI 。 ② 保持状态: uG为低电平,场效应管截止,输出 电压保持前面采样的值不变。
u uI3uI4uO R R3 R4 RF
第四章 集成运算放大器
由于 u–≈ u+= 0,且调节R5,使R+=R-
可得 如果
uORF(u R I11u RI22u RI33u RI44)
R 1 R 2 R 3 R 4 R F R
可以实现普通的加减运算
u O (u I 1u I) 2 (u I3 u I) 4
电压增益的模为
Au
1 RF R1
1 ( ω )2 ωH
Au0 1 ( ω )2
ωH
当ω 当ω
0时, Au Au0 1
ωH时,
Au
1 2
Au0
RF
R1 电路使频率小于H
的信号通过 ,抑制大于
当ω 时, Au 0
H的信号,称为有源低
通滤波器。
第四章 集成运算放大器
第四章 集成运算放大器
集成运放能组成各种运算放大器,当输入 电压变化时,输出电压将按一定的数学规律变 化,反映输入电压的某种运算结果。这时,集 成运放工作在线性区,利用外接反馈网络实现 各种数学运算。
第四章 集成运算放大器
一、反相比例运算放大器
电路组成 平衡电阻 R2 = R1 // RF
第4章-掌握集成运算放大器ppt课件(全)全篇
2 B
B1 B2
☆ 输入偏置电流IB是衡量差动管输入电流绝对值大小的标志
4.1.3 集成运放大器的主要参数
1. 输入误差特性
➢ 输入失调电流IOS
定义:零输入时,两输入偏置电流IB1、IB2之差称为输入失调电流, 即IOS =|IB1IB2|。
IOS反映了输入级差动管输入电流的对称性,一般希望IOS越小越好。 普通运放的IOS约为1nA0.1A。
✓UIO = 0、IIO = 0、 UIO = IIO = 0;
✓输入偏置电流 IIB = 0; ✓- 3 dB 带宽 fH = ∞ ,等等
4.1.4 集成运放的理想化模型
2. 理想运放的工作特性
理想运放的电压传输特性如图10-5所示。它分为线性区和非线
性区。
➢线性区
当理想运放工作于线性区时,VO=Ad(VPVN), 而Ad,因此VP VN) =0、VP=VN,又由输入电阻 Rid可知,流进运放同相输入端和反相输入端的
uO
+UOP
P
理想特 性
电流IP、IN为IP = IN =0;可见,当理想运放工作于线 性区时,同相输入端与反相输入端的电位相等,流 进同相输入端和反相输入端的电流为0。 IP = IN =0就 是VP和VN两个电位点短路,但是由于没有电流, 所以称为虚短路,简称虚短;而IP = IN =0表示流过 电流IP 、 IN的电路断开了,但是实际上没有断开, 所以称为虚断路,简称虚断。
4.1.3 集成运放大器的主要参数
2. 开环差模特性参数
➢-3dB带宽
定义:输入正弦小信号时, Aod是频率的函数,随着频率的增 加而下降。当下降3dB时所对应的信号频率称为-3dB带宽。一般运 放的-3dB带宽为几Hz几kHz,宽带运放可达到几MHz。
第06章集成运算放大器ppt
图6-10 输入保护电路
(2)输出保护
图 6-11 所示为输出端保护电路,限流电 阻 R 与稳压管 VZ构成限幅电路,它一方面将 负载与集成运放输出端隔离开来,限制了运 放的输出电流,另一方面也限制了输出电压 的幅值。当然,任何保护措施都是有限度的, 若将输出端直接接电源,则稳压管会损坏, 使电路的输出电阻大大提高,影响了电路的 性能。
图6-11 输出保护电路
(3)电源端保护
为防止电源极性接反,可利用二极管的
单向导电性,在电源端串接二极管来实现保
护,如图 6-12 所示。由图可见,若电源极性
接错,则二极管VD1、VD2不能导通,使电源
被断开。
图6-12 电源端保护源自二、 电路符号及基本连接2脚 —反向输入端, 3脚 —同向输入端, 4脚— 负电源端, 5 、 1间接调零电位器 6脚—输出端, 7脚 —正电源端,8脚—空脚(NC)。 使用时,先调零: 将V- 、 V+端同时接地(即令Ui=0),调RP ,使U0 =0, 使U0 =0后, RP不再变动, 这样,使用时,电路抑制共模信号的能力最强。 VNC
第六章
集成运算放大器
§6.1 集成运算放大器
§6.1.1 集成运算放大器的基本组成
集成运算放大器实质上是一个具有高 电压放大倍数的多级直接耦合放大电路。 从 20 世纪 60 年代发展至今已经历了四代产 品,类型和品种相当丰富,但在结构上基 本一致,其内部通常包含四个基本组成部 分:输入级、中间级、输出级以及偏置电 路,如图6-7所示。
R1
Rf R1
ui u i ii ui uo ui R2 Rf Auf 1 Rf R2
ui ui R2 ii if
uo
第11章集成运算放大器精品PPT课件
结论:反相输入端为 “虚地”。
注意 当反相输入端接地
R1
时, 因为存在负反馈信号, 同
相输入端 不是“虚地”!ui
R2
RF 第11章 11.1
uo
RF
uo
第11章 11.1
运放工作在线性工作状态的必要条件: 运放必须加上深度负反馈,如RF。
3.理想运放非线性工作的分析依据
“虚断路”原则
ii
ii
=
ui rid
(2) “虚短路”原则
ui = u+ – u-= —Au–ouo
–
ui
+ uo
+
对于理想运放 Auo ui 0
u– u+ 相当于两输入端之间(虚)短路
(3) “虚地”的概念
当同相输入端接地时,
ui
R1
由“虚断路”原则 ii = 0 , 有 u+= 0
R2
由“虚短路”原则 u_ u+ = 0
第11章 目录
第11章 集成运算放大器
11.1 运算放大器的简单介绍
11.3 运算放大器在信号运算方面的应用
11.4 运算放大器在信号处理方面的应用
11. 1 运算放大器的简单介绍
集成运放概述
第11章 111
集成运放是具有高开环电压放大倍数,并带有深度负反馈的 的直接耦合放大器。
1. 电路符号
反相 输入端
= 1 + RRF1 R2R+3R3 ui2
R3
uo = u'o + u"o = 1+ RRF1RR2+3R3ui2- RRF1 ui1
第11章 11.3
u o''
集成运算放大器的基础知识图解课件
选择合适的集成运算放大器
01
02
03
04
根据应用需求选择合适的类型 和规格。
考虑集成运算放大器的性能参 数,如带宽增益积、精度、噪
声等。
考虑集成运算放大器的功耗和 散热性能。
考虑集成运算放大器的封装形 式和引脚排列,以便于电路设
计和连接。
05 集成运算放大器的常见应 用电路
反相比例运算电路
总结词
02 集成运算放大器的基本结 构与工作原理
差分输入级
差分输入级是集成运算放大器 的核心部分,负责将差分输入 信号转换为单端输出信号。
它通常由两个对称的晶体管组 成,能够有效地抑制温漂和减 小噪声干扰。
差分输入级的作用是提高放大 器的输入电阻和共模抑制比, 从而提高信号的信噪比。
电压放大级
电压放大级是集成运算放大器中 用于放大输入信号的级,通常由
微分电路
总结词
微分电路是一种将输入信号进行微分运算的 电路,通常用于测量变化快速的物理量。
详细描述
在微分电路中,输入信号通过电阻R1和电 容C加到集成运算放大器的反相输入端,输 出信号通过反馈电阻RF反馈到反相输入端 。由于电容C的充电和放电过程,输出信号 与输入信号的时间导数成正比,从而实现微 分运算。微分电路常用于测量流量、振动等 变化快速的物理量。
06 集成运算放大器的使用注 意事项与故障排除
使用注意事项
避免电源电压过高或过低
集成运算放大器的正常工作电压范围 有限,过高或过低的电压可能导致器 件损坏。
输入信号幅度控制
输入信号幅度过大可能导致集成运算 放大器过载,影响性能甚至损坏器件 。
避免直流偏置
直流偏置可能导致集成运算放大器性 能下降,甚至无法正常工作。
集成运算放大器PPT课件
2021/5/8
21
2. 串联负反馈和并联负反馈 根据反 馈信号在输入端与输入信号比较形式的不 同而定义。
①串联反馈:反馈信号与输入信号串 联,即反馈信号与输入信号以电压作比较。
②并联反馈:反馈信号与输入信号并联, 即反馈信号与输入信号以电流作比较。
2021/5/8
10
F007(5G24)外引线图
+15V
反相
VCC
输入端 2 7 A o
6
3
IN
OUT
同相
41 5
IN
VEE
俯视图
2021/5/8
输入端
-15V
接线图
1
输出端
11
7.1.2 集成运放的主要参数
• 输入失调电压 UIO; • 输入失调电流 IIO; • 输入偏置电流 IIB; • 开环差模电压放大倍数 Auo; • 最大差模输入电压 Uidmax; • 最大共模输入电压 Uicmax; • 最大输出电流Iomax; • 最大输出电压 Uomax; • 差模输入电阻 rid 和输出电阻ro。
2021/5/8
8
7.1.1 集成运放的组成
输入级
中间级
输出级
偏置电路
偏置电路的作用是为上述各级电路提供 稳定和合适的偏置电流,决定各级的静 态工作点,一般由各种恒流源电路构成。
2021/5/8
9
集成运放在电路中的图形符号
表示放大器
电压放大倍数
反相输入端
u- u+
Au0
-+ +
同相输入端
输出端
uo
• 输出信号满足 uoAuo(uu) ;
• “接地”与“虚地”。
2021/5/8
集成运算放大器精品PPT课件
图3.7 恒流源式差动放大电路的简化表示法
3.2 集成运算放大器
一、 集成运算放大器的基本组成和符号
集成运算放大器是一个具有高电压放大倍数的多级直 接耦合放大电路。
1.基本组成
图3.8 集成运放的基本组成部分
2.电路符号
图3.9 集成运算放大器的电路符号
二、集成运算放大器的主要性能指标
1.开环差模电压放大倍数Aud 2.输入失调电压UIO 3.输入偏置电流IIB 4.输入失调电流IIO 5.输入失调电压温漂ΔUIO/ΔT和输入失调电流温漂
图3.3 基本差动放大电路的交流通路
①差模信号和差模输入
若ui1、ui2大小相同、极性相反,即ui1= -ui2,称为差模
信号,记为uid。 其中uid=ui1-ui2
输入信号是差模信号的输入方式称差模输入。
差模输出uod=Au (ui1-ui2)=Au uid
表明差分放大电路可放大差模信号
②共模信号和共模输入
二、差动电路
1.电路结构与特点 特点: (1)由两个完全对称的共射 电路组合而成。同时要求参数 对称。 (2)电路采用正负双电源供 电。
图3.1 典型基本差动放大电路
2.工作分析
(1)静态分析
当ui1=ui2=0时,电路如图3.2所示。 ∵ IE1=IE2 ∴ UEE=UBE+2IE1Re
∴ IE1=(UEE-UBE)/2Re≈IC1
双端输入,双端输出; 单端输入,双端输出; 双端输入,单端输出; 单端输入,单端输出。
(2)性能特点比较
5、恒流源式差动放大电路 恒流源的内阻较大,可
以得到较好的共模抑制效 果,同时利用恒流源的恒 流特性给三极管提供更稳 定的静态偏置电流。如图 3.6所示。
3.2 集成运算放大器
一、 集成运算放大器的基本组成和符号
集成运算放大器是一个具有高电压放大倍数的多级直 接耦合放大电路。
1.基本组成
图3.8 集成运放的基本组成部分
2.电路符号
图3.9 集成运算放大器的电路符号
二、集成运算放大器的主要性能指标
1.开环差模电压放大倍数Aud 2.输入失调电压UIO 3.输入偏置电流IIB 4.输入失调电流IIO 5.输入失调电压温漂ΔUIO/ΔT和输入失调电流温漂
图3.3 基本差动放大电路的交流通路
①差模信号和差模输入
若ui1、ui2大小相同、极性相反,即ui1= -ui2,称为差模
信号,记为uid。 其中uid=ui1-ui2
输入信号是差模信号的输入方式称差模输入。
差模输出uod=Au (ui1-ui2)=Au uid
表明差分放大电路可放大差模信号
②共模信号和共模输入
二、差动电路
1.电路结构与特点 特点: (1)由两个完全对称的共射 电路组合而成。同时要求参数 对称。 (2)电路采用正负双电源供 电。
图3.1 典型基本差动放大电路
2.工作分析
(1)静态分析
当ui1=ui2=0时,电路如图3.2所示。 ∵ IE1=IE2 ∴ UEE=UBE+2IE1Re
∴ IE1=(UEE-UBE)/2Re≈IC1
双端输入,双端输出; 单端输入,双端输出; 双端输入,单端输出; 单端输入,单端输出。
(2)性能特点比较
5、恒流源式差动放大电路 恒流源的内阻较大,可
以得到较好的共模抑制效 果,同时利用恒流源的恒 流特性给三极管提供更稳 定的静态偏置电流。如图 3.6所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运算放大器工作在线性区时,通常要引入 深度负反馈。所以,它的输出电压和输入电压的关 系基本决定于反馈电路和输入电路的结构和参数, 而与运算放大器本身的参数关系不大。改变输入电 路和反馈电路的结构形式,就可以实现不同的运算。
16.2.1 比例运 1.反相比算例运算
(1) 电路组成 if RF
i1 R1 i–
16.1 集成运算放大器的简单介绍
集成运算放大器是一种具有很高放大倍数的多 级直接耦合放大电路。是发展最早、应用最广泛的 一种模拟集成电路。
集成电路 是把整个电路的各个元件以及相互之 间的联接同时制造在一块半导体芯片上, 组成一个不 可分的整体。
集成电路特点:体积小、重量轻、功耗低、可 靠性高、价格低。
后面对运算放大器的分析都是按其理想化条件进行的。
16.1.4 理想运算放大器及其分析依据
2. 电压传输特性
(ui) +Uo(sat) uo
uo= f
理想特性
线性区
u–
u+– u– u+
–+
uo
+
O
实际特性
饱和区
理想运算放大器图形符号
–Uo(sat)
线性区:
uo = Auo(u+– u–)
非线性区:
(5) 电压并联负反馈,输入、输出电阻
ri = R1。共模输入电压低。
2. 同相比例运算 (1) 电路组成
RF
R1 u– – +
+
+ ui
R2 u+ +
uo –
–
因要求静态时u+、u对
地电阻相同,
所以平衡电阻R2=R1//RF
(2) 电压放大倍数
因虚断,所以u+ =
uiu
R1 R1 RF
uo
因虚短,所以 u– = ui ,
反相输入端不“虚地”
uo
(1
RF R1
)ui
Auf
uo ui
1
RF R1
结论:
(1) Auf 为正值,即 uo与 ui 极性相同。因 为 ui 加 在同相输入(2端) 。Auf只与外部电阻 R1、RF 有关,与运放
本身 参数无关。(3) Auf ≥ 1 ,不能小于 1 。
T9 T12
T1
+ T3
T2
–
T4
同相输入 C
R5
中间级
T13
R7 T18
R8
输出级
+UCC
T14
输 T10
T16 T17
T11 T19
R10
T20
R1
R3 R2 R4
R12
R11
集成运放 741的电路原理图
-UEE
16.1.3 主要参
数 1. 最大输出电压 UOPP
对地电阻相同,
所以平衡电阻 R2 = R1 //
结论:
(1) Auf为负值,即 uo与 ui 极性相反。 因为 ui 加在反相输入端。
(2) Auf 只与外部电阻 R1、RF 有关,与
运放本身参数无关。
低,
(3) | Auf | 可大于 1,也可等于 1 或小于 (4) 因u–= u+= 0 , 所以反相输入端“虚地
(4) u– = u+ ≠ 0, 反相输入端不存在“虚地”
(5) 电压串联负反馈,输入电阻高、输出 电阻低,共模输入电压可能较高。
当 R1= 且 RF = 0 时u,o = ui , Auf = 1,
按集成度 小、中、大和超大规模 集成电路分类 按导电类型 双、单极性和两种兼容
按功能 数字和模拟
16.1.1 集成运算放大器的特 1. 元器点件参数的一致性和对称性好;
2. 电阻的阻值受到限制,大电阻常用三极 管恒流 源代替,电位器需外接;
3. 电容的容量受到限制,电感不能集成, 故大电 容、电感 和变压器均需外接;
能使输出和输入保持不失真关系的最大输出电压
。 2. 开环差模电压增益 Auo
运放没有接反馈电路时的差模电压放大倍数。
Auo愈高,所构成的运算电路越稳定,运算精度也越高
。 3. 输入失调电压
UIO
愈小愈好
4. 输入失调电流
,IIIIBO运放运的65放..共所模共 输能抑模 入承制输偏受性入置的能电电共下压流模降范输,围入甚电U至IC压M造最成大器值件。损超坏出。此值
+ ui
– +
+
+
uo
–
R2 i+
–
以后如不加说明,输
入、输出的另一端均为地
(2) 电压放大倍数
因虚断,i+= i– = 0 ,
所以 i1
ii1f
ui
u R1
if
u uo RF
因虚短, 所以u–=u+= 0,
称反相输入端“虚
地”— 反相输入的重要
特点
()。因要求静态时u+、 u–
偏置电路: 确定合适的静态工作点
信号传 输方向
实际运放开环
反相
+UCC 电压放大倍数
输入端
u–
Auo
–
uo
+
u+
+
输出端
同相 输入端
–UEE (a)
+UCC 输出
87 6 5 F007
12 3 4
U- U+ -UCC (b)
集成运算放大器的管脚和符号 (a) 符号; (b)引脚
输入级 偏置电路
同相输入 T8
–Uo(sat)
即 u+= u– ,称“虚
(2) “虚断”
Auo越大,运放的
线性范围越小,必 须加负反馈才能使 其工作于线性区。
16.2 运算放大器在信号运算方面的运用
集成运算放大器与外部电阻、电容、半导 体器件等构成闭环电路后,能对各种模拟信号进行 比例、加法、减法、微分、积分、对数、反对数、 乘法和除法等运算。
16.1.4 理想运算放大器及其分析依据
在分析运算放大器的电路时,一般将它看成是理
想的运算放大器。理想化的主要条件:
1. 开环电压放大倍 数2. 开环输入电阻
Auo
rid
3. 开环输出电阻 4. 共模抑制比
ro 0
KCMRR
由于实际运算放大器的技术指标接近理想化条
件,
用理想运算放大器分析电路可使问题大大简化, 为此,
4. 二极管多用三极管的发射结代替。
各类型号集成芯片
16.1.2 电路的简单说明
输入级 中间级
输出级
偏置 电路
运算放大器方框图
输入级:输入电阻高,能减小零点漂移和抑制干 扰信号,都采用差分放大器 。
中间级:要求电压放大倍数高。常采用带恒流源 的共发射极放大电路构成。
输出级:与负载相接,要求输出电阻低,带负载 能力强,一般由互补对称电路或射极输出器构成。
u+> u– 时, uo = +Uo(sat) u+< u– 时, uo = – Uo(sat)
3. 理想运放工作在线性区的特点
u– u+
i– – i+
+
∞ +
因为 uo = Auo(u+– u– )
uo 所以(1) 差模输入电压约等于 0
电压传输特性
uo +Uo(sat)
短”
线性区
O
u+– u–
16.2.1 比例运 1.反相比算例运算
(1) 电路组成 if RF
i1 R1 i–
16.1 集成运算放大器的简单介绍
集成运算放大器是一种具有很高放大倍数的多 级直接耦合放大电路。是发展最早、应用最广泛的 一种模拟集成电路。
集成电路 是把整个电路的各个元件以及相互之 间的联接同时制造在一块半导体芯片上, 组成一个不 可分的整体。
集成电路特点:体积小、重量轻、功耗低、可 靠性高、价格低。
后面对运算放大器的分析都是按其理想化条件进行的。
16.1.4 理想运算放大器及其分析依据
2. 电压传输特性
(ui) +Uo(sat) uo
uo= f
理想特性
线性区
u–
u+– u– u+
–+
uo
+
O
实际特性
饱和区
理想运算放大器图形符号
–Uo(sat)
线性区:
uo = Auo(u+– u–)
非线性区:
(5) 电压并联负反馈,输入、输出电阻
ri = R1。共模输入电压低。
2. 同相比例运算 (1) 电路组成
RF
R1 u– – +
+
+ ui
R2 u+ +
uo –
–
因要求静态时u+、u对
地电阻相同,
所以平衡电阻R2=R1//RF
(2) 电压放大倍数
因虚断,所以u+ =
uiu
R1 R1 RF
uo
因虚短,所以 u– = ui ,
反相输入端不“虚地”
uo
(1
RF R1
)ui
Auf
uo ui
1
RF R1
结论:
(1) Auf 为正值,即 uo与 ui 极性相同。因 为 ui 加 在同相输入(2端) 。Auf只与外部电阻 R1、RF 有关,与运放
本身 参数无关。(3) Auf ≥ 1 ,不能小于 1 。
T9 T12
T1
+ T3
T2
–
T4
同相输入 C
R5
中间级
T13
R7 T18
R8
输出级
+UCC
T14
输 T10
T16 T17
T11 T19
R10
T20
R1
R3 R2 R4
R12
R11
集成运放 741的电路原理图
-UEE
16.1.3 主要参
数 1. 最大输出电压 UOPP
对地电阻相同,
所以平衡电阻 R2 = R1 //
结论:
(1) Auf为负值,即 uo与 ui 极性相反。 因为 ui 加在反相输入端。
(2) Auf 只与外部电阻 R1、RF 有关,与
运放本身参数无关。
低,
(3) | Auf | 可大于 1,也可等于 1 或小于 (4) 因u–= u+= 0 , 所以反相输入端“虚地
(4) u– = u+ ≠ 0, 反相输入端不存在“虚地”
(5) 电压串联负反馈,输入电阻高、输出 电阻低,共模输入电压可能较高。
当 R1= 且 RF = 0 时u,o = ui , Auf = 1,
按集成度 小、中、大和超大规模 集成电路分类 按导电类型 双、单极性和两种兼容
按功能 数字和模拟
16.1.1 集成运算放大器的特 1. 元器点件参数的一致性和对称性好;
2. 电阻的阻值受到限制,大电阻常用三极 管恒流 源代替,电位器需外接;
3. 电容的容量受到限制,电感不能集成, 故大电 容、电感 和变压器均需外接;
能使输出和输入保持不失真关系的最大输出电压
。 2. 开环差模电压增益 Auo
运放没有接反馈电路时的差模电压放大倍数。
Auo愈高,所构成的运算电路越稳定,运算精度也越高
。 3. 输入失调电压
UIO
愈小愈好
4. 输入失调电流
,IIIIBO运放运的65放..共所模共 输能抑模 入承制输偏受性入置的能电电共下压流模降范输,围入甚电U至IC压M造最成大器值件。损超坏出。此值
+ ui
– +
+
+
uo
–
R2 i+
–
以后如不加说明,输
入、输出的另一端均为地
(2) 电压放大倍数
因虚断,i+= i– = 0 ,
所以 i1
ii1f
ui
u R1
if
u uo RF
因虚短, 所以u–=u+= 0,
称反相输入端“虚
地”— 反相输入的重要
特点
()。因要求静态时u+、 u–
偏置电路: 确定合适的静态工作点
信号传 输方向
实际运放开环
反相
+UCC 电压放大倍数
输入端
u–
Auo
–
uo
+
u+
+
输出端
同相 输入端
–UEE (a)
+UCC 输出
87 6 5 F007
12 3 4
U- U+ -UCC (b)
集成运算放大器的管脚和符号 (a) 符号; (b)引脚
输入级 偏置电路
同相输入 T8
–Uo(sat)
即 u+= u– ,称“虚
(2) “虚断”
Auo越大,运放的
线性范围越小,必 须加负反馈才能使 其工作于线性区。
16.2 运算放大器在信号运算方面的运用
集成运算放大器与外部电阻、电容、半导 体器件等构成闭环电路后,能对各种模拟信号进行 比例、加法、减法、微分、积分、对数、反对数、 乘法和除法等运算。
16.1.4 理想运算放大器及其分析依据
在分析运算放大器的电路时,一般将它看成是理
想的运算放大器。理想化的主要条件:
1. 开环电压放大倍 数2. 开环输入电阻
Auo
rid
3. 开环输出电阻 4. 共模抑制比
ro 0
KCMRR
由于实际运算放大器的技术指标接近理想化条
件,
用理想运算放大器分析电路可使问题大大简化, 为此,
4. 二极管多用三极管的发射结代替。
各类型号集成芯片
16.1.2 电路的简单说明
输入级 中间级
输出级
偏置 电路
运算放大器方框图
输入级:输入电阻高,能减小零点漂移和抑制干 扰信号,都采用差分放大器 。
中间级:要求电压放大倍数高。常采用带恒流源 的共发射极放大电路构成。
输出级:与负载相接,要求输出电阻低,带负载 能力强,一般由互补对称电路或射极输出器构成。
u+> u– 时, uo = +Uo(sat) u+< u– 时, uo = – Uo(sat)
3. 理想运放工作在线性区的特点
u– u+
i– – i+
+
∞ +
因为 uo = Auo(u+– u– )
uo 所以(1) 差模输入电压约等于 0
电压传输特性
uo +Uo(sat)
短”
线性区
O
u+– u–