正多边形和圆课件

合集下载

《正多边形和圆》-完整版课件

《正多边形和圆》-完整版课件

所以AD=2OD=10.
△ACD中,根据勾股定理,得
A C A D 2 C D 21 0 0 2 5 53 .
即 A D 、 A C 的 长 分 别 为 1 0 和 53 .
再见!
· 中心角 半径R O 边心距r
活动3
例 有一个亭子,它的地基半径为4m的正六边形,求地基
的周长和面所以它的中心角等于
360 6
60,
△OBC是等边三角形,从而正六边形的边长等于它的半径.
因此,亭子地基的周长 l =4×6=24(m). 在Rt△OPC中,OC=4, PC= BC 4 2,
22 利用勾股定理,可得边心距
r 42 22 2 3.
亭子地基的面积
A
S 1 lr 1 24 2 3 41.6(m2 ). 22
F
E
O D
rR
BP
C
练习如图,正六边形ABCDEF的边长为5,
求对角线AD、AC的长.
解:连接BE,交AD于点O.
由正六边形性质知:△DOE为等边
O
三角形,△ACD为直角三角形.
证明:∵⌒AB=B⌒C=C⌒D=D⌒E=E⌒A ∴A⌒B=BC⌒=CD=⌒DE=EA
∵BCE=CDA=3AB ∴∠1=∠2
A
1
B2
同理∠2=∠3=∠4=∠5
3
又∵顶点A、B、C、D、E都在⊙O上, C
∴五边形ABCDE是⊙O的内接五边形.
5E
4
D
我们把一个正多边形的外接圆的圆心叫做这个正多边 形的中心. 外接圆的半径叫做正多边形的半径. 正多边形每一边所对的圆心角叫做正多边形的中心角. 中心到正多边形的距离叫做正多边形的边心距.
活动1

正多边形和圆PPT课件

正多边形和圆PPT课件

一共吃了多少只虫子?
易错辨析(选题源于《典中点》)
4.填表。
加数 加数

23 36 40 50
63 86
59 30 20 27
79 57
辨析:求和用加法,求加数用和减另一个加数。
小试牛刀(源于《典中点》) 1.想一想,填一填。
32+40= 72 先算:30 +40 = 70 再算:2 + =70 72
感悟新知
知2-练
1 (西宁)一元钱硬币的直径约为24 mm,则用它能
完全覆盖住的正六边形的边长最大不能超过( A )
A.12 mm
B.12 3 mm
C.6 mm
D.6 3 mm
感悟新知
知识点 3 正多边形的作图
正多边形和圆有什么关系? 你能借助圆画一个正多边形吗?
知3-讲
感悟新知
已知⊙O 的半径为 2 cm,画圆的内接正三角形. 知3-讲
作OP⊥BC,垂足为P.
在Rt△OPC中,OC=4 m,
PC=
BC 2
4 2
=2(m),利用勾股定理,
可得边心距r= 42 22 2 3(m).
亭子地基的面积S= 1 lr 1 24 2 3 41.6(m2 ). 22
感悟新知
知2-讲
正n边形的一个内角的度数是多少?中心角呢? 正多边形的中心角与外角的大小有什么关系?
第二十四章 圆
24.3 正多边形和圆
24.3 正多边形和圆
学习目标
1 课时讲解 2 课时流程
正多边形的有关概念 正多边形的有关计算 正多边形的作图
逐点 导讲练
课堂 小结
作业 提升
课时导入
观察下列图形他们有什么特点?
感悟新知

正多边形和圆.ppt经典实用

正多边形和圆.ppt经典实用
•24.3正多边形和圆.ppt
【例题】【例2】有一个亭子,它的地基是半径为4m的正六
边形,求地基的周长和面积(精确到0.1m2).
【解析】如图,正六边形ABCDEF的中心角为60°,△OBC 是等边三角形,从而正六边形的边长等于它的半径.
因此,亭子地基的周长 l =4×6=24(m).
在Rt△OPC中,OC=4,PC=2.利用勾股定理, F
QR=RS=ST=TP=2PA, ∵五边形PQRST的各边都与⊙O相切, ∴五边形PQRST是⊙O的外切正五边形.
•24.3正多边形和圆.ppt
【定理】
把圆分成n(n≥3)等份: 依次连接各分点所得的多边形是这个圆的内接正n边 形;经过各分点作圆的切线,以相邻切线的交点为 顶点的多边形是这个圆的外切正n边形. 一个正多边形是否一定有外接圆和内切圆?
•24.3正多边形和圆.ppt
5.正多边形都是轴对称图形,如果边数是偶数那么 它还是中心对称图形. 6.正n边形的中心角和它的每个外角都等于360°/n, 每个内角都等于(n-2)·180°/n . 7.边数相同的正多边形相似,周长比、边长比、半 径比、边心距比、对应对角线比都等于相似比,面 积比等于相似比的平方.
6.正n边形的一个外角度数与它的__中__心__角的度数相等.
7.将一个正五边形绕它的中心旋转,至少要旋转 72 度, 才能与原来的图形位置重合.
•24.3正多边形和圆.ppt
五、课堂小结
通过本课时的学习,需要我们掌握: 1.正多边形和圆的有关概念:正多边形的中心,正多 边形的半径, 正多边形的中心角,正多边形的边心 距. 2.正多边形的半径、正多边形的中心角、边长,正多 边形的边心距之间的等量关系.
(2)连接OA,OB,OC,则 ∠OAB=∠OBA=∠OBC=∠OCB. ∵TP,PQ,QR分别是以A,B,C 为切点的⊙O的切线, ∴∠OAP=∠OBP=∠OBQ=∠OCQ. ∴∠PAB=∠PBA=∠QBC=∠QCB.

正多边形和圆ppt课件

正多边形和圆ppt课件

2.(5分·推理直观、运算能力)如图,已知正五边形ABCDE内接于☉O,连结BD,
则∠CDB的度数是( C )
A.72°
B.54°
C.36°
D.30°
19
3.(5分·推理能力、运算能力)如图,正八边形ABCDEFGH内接于☉O,对角线AE
22.5°
为☉O的直径,连结HE,则∠AEH的度数为__________.
则∠BAE-∠COD=( D )
A.60°
B.54°
C.48°
D.36°
8
9
【举一反三】
(2024·济南模拟)如图,正六边形ABCDEF内接于☉O,若DE=2,则阴影部分的


面积为______.
10
重点2 正多边形的性质、判定及画法(运算能力、推理能力、应用意识)
【典例2】(教材再开发·P66例变式)如图1,正五边形ABCDE内接于☉O,阅读以下
12
【自主解答】(1)∵五边形ABCDE是正五边形,
(−)×°
∴∠ABC=
=108°,

即∠ABC=108°;
13
(2)△AMN是正三角形,
理由:连结ON,NF,如图,
由题意可得,FN=ON=OF,
∴△FON是等边三角形,
∴∠NFA=60°,
∴∠NMA=60°,
同理可得:∠ANM=60°,






∴=====,
∴∠BAF=∠ABC=∠BCD=∠CDE=∠DEF=∠EFA,
∴六边形ABCDEF是正六边形.
素养 当堂测评
18
1.(5分·运算能力)一个圆的内接正多边形中,一条边所对的圆心角为72°,则该

人教版数学九年级上册第二十四章《24.3 正多边形和圆》课件(共19张PPT)

人教版数学九年级上册第二十四章《24.3  正多边形和圆》课件(共19张PPT)

对于一些特殊的正多边形,还可以用圆规和直尺来作图. 再如,用直尺和圆规作两条互相垂直的直径,就可以把圆四等分,从而作 出正方形.
用尺规等分圆: 用尺规作图的方法等分圆周,然后依次连接圆上各分点得到正多边形,这 种方法有局限性,不是任意正多边形都能用此法作图,这种方法从理论上 讲是一种准确方法.
2.如图,正五边形ABCDE的对角线AC和BE相交于点M. 求证:(1) AC//ED;(2) ME=AE.
如图,正五边形ABCDE的对角线AC和BE相交于点M. 求证:(1) AC//ED;(2) ME=AE.
归纳新知
正多边形 的画法
用量角器等分圆 用尺规等分圆
此方法可将圆任意n等分,所以用 该方法可作出任意正多边形,但边 数很大时,容易产生较大的误差.
度量法③:
用圆规在⊙O 上顺次截取6条长度等于半径(2 cm)的弦,连接其中的 AB, BC,CA 即可.
B
O
A
C
对于一些特殊的正多边形,还可以用圆规和直尺来作图. 例如,我们也可以这样来作正六边形.由于正六边形的边长等于半径,所以 在半径为R的圆上依次截取等于R的弦,就可以把圆六等分,顺次连接各分 点即可得到半径为R的正六边形.
课堂练习
1.画一个半径为2 cm的正五边形,再作出这个正五边形的各条对角线,画 出一个五角星.
2.面积相等的正三角形与正六边形的边长之比为
.
中考实题
1.已知⊙O如图所示. (1) 求作⊙O的内接正方形(要求尺规作图,保留作图痕迹,不写作法); (2) 若⊙O的半径为4,求它的内接正方形的边长.
此方法是一种比较准确的等分圆的方 法,但有局限性,不能将圆任意等分.
再见
合作探究
已知⊙O 的半径为 2 cm,画圆的内接正三角形. 度量法①: 用量角器或 30°角的三角板度量,使∠BAO=∠CAO=30°.

正多边形和圆-ppt课件

正多边形和圆-ppt课件

“各边相等,各内角相等”是正多边形的两
个基本特征,当边数n>3时,二者必须同时具备,
缺一不可,否则多边形就不是正多边形.
感悟新知
3. 正多边形的有关概念
知1-讲
(1)正多边形的中心: 一个正多边形的外接圆的圆心叫作正
多边形的中心 .
(2)正多边形的半径: 正多边形的外接圆的半径叫作正多边形
的半径 .
心,OA 为半径作⊙ O,直径 FC ∥ AB, AO, BO
的延长线交⊙ O 于点 D, E.
求证:六边形 ABCDEF 为圆内接
正六边形 .
感悟新知
知1-练
思路导引:
感悟新知
知1-练
证明: ∵三角形 AOB 是正三角形,
∴∠ AOB= ∠ OAB= ∠ OBA=60°, OB=OA.
∴点 B 在⊙ O 上 .
(1)作半径为 0.9 cm 的⊙ O;
(2)用量角器画∠ AOB = ∠ BOC=120°,其中 A, B,C
均为圆上的点;
(3)连接 AB, BC, CA,则△ ABC 为
所求作的正三角形 ,如图 24. 3-4所示.
感悟新知
作法二
(1)作半径为 0.9 cm 的⊙ O;
知3-练
(2)作⊙ O 的任一直径 AB;




︵ ︵
∴BDE-CDE=CDA-CDE,即BC=AE.∴BC=AE.
同理可证其余各边都相等,
∴五边形 ABCDE 是正五边形.
感悟新知
知识点 2 正多边形的有关计算
1. 正 n 边形的每个内角都等于
(-)· °
.

2. 正 n 边形的每个中心角都等于

24.3.正多边形和圆课件PPT(共22张)

24.3.正多边形和圆课件PPT(共22张)
24.3 正多边形(zhèngduōbiānxíng) 和圆
点击页面即可演示
第1页,共22页。
观察下列图形它们有什么(shén 特 me) 点?
第2页,共22页。
三条边相等,
四条边相等,四
正三 三个角相等 角形 (60°).
正方形 个角相等 (90°).
一、正多边形的定义
各边相等,各角也相等的多边形叫做(jiàozuò)正多边 形.
边形ABCDE的 内切圆的半径(bànjìng). D
7.∠AOB叫做正五边形
ABCDE的 中心角,
它的度数是 72°.
E
C
.O
AF
B
第12页,共22页。
8.图中正(zhōnɡ zhènɡ)六边形ABCDEF的中心角∠是AOB
它的度数是 60°
9.你发现正六边形
ABCDEF的半径
与边长具有什么
数量关系?
第5页,共22页。
A
D
B
C
弧相等
弦相等 (多边形的边相等 ) (xiāngděng)
(xiāngděng)
圆周角相等(多边形的角相等)
—多边形是正多边形
第6页,共22页。
A
E B
H D
G
C
弧相等
F
全等三角形
边相等
(xiāngděng)
角相等
多边形是正多边形
第7页,共22页。
定理:
把圆分成n(n≥3)等份: ⑴依次连接各分点所得(suǒ dé)的多边形是这个圆 的
相等
E F
D
.O
C
A
B
第13页,共22页。
判断题
①各边都相等的多边形是正多边形.( ) ×

25.8正多边形和圆 课件

25.8正多边形和圆   课件

P B
A
T E O S
Q
C R D
⌒⌒
又∵五边形PQRST的各边都与⊙O相切,
∴五边形PQRST的是O外切正五边形。
弧相等—弦切角相等—全等三角形

边相等 角相等
—多边形是正多边形
由于正多边形在生产、生活实际中有广泛 的应用性,所以会画正多边形
半径 3. OB叫正△ABC的________ ,它是正 △ABC的________圆的半径. 外接 边心距 4. OD叫作正△ABC的________ ,它是 A 正△ABC的________ 圆的半径。 内切
o
B D C
6. 正六边形ABCDEF外切于⊙O,⊙O 的半径为R,则该正六边形的周长和面积各是 解 : 如图, 设AB切 ⊙ O于M, 连结OA、 OB 多少?则OM AB于M , AM BM . OM ,
F
E O ·
A
D
B
C
说说作正多边形的方法有哪些?
归纳 (1)用量角器等分圆周作正n边形; (2)用尺规作正方形及由此扩展作正八 边形, 用尺规作正六边形及由此扩展作正 12边形、正三角形.
正多边形的性质
• 提出问题: • 我们学习了正多边形的定义,并且 知道只要n等分(n≥3)圆周就可以得到的 圆的内接正n边形和圆的外切正n边 形.反过来,是否每一个正多边形都有 一个外接圆和内切圆呢?
• 定理: • 任何正多边形都有一个 外接圆和一个内切圆, 这两个圆是同心圆.
正多边形及外接圆中的有关概念 中心: 一个正多边形的外接圆的圆心. 正多边形的半径: 外接圆的半径. 正多边形的中心角: 正多边形的每一条边 所对的圆心角.
E
中心角 半径R .边 . 心 距 r

正多边形和圆课件

正多边形和圆课件
所有的边都相等
02
所有的内角都相等
03
04
对角线互相平分且相等
外接圆的半径和内切圆的半径 相等
正多边形的分类
等边三角形
等边n边形 等边六边形
等边四边形 等边五边形
02
正多边形的面积与 周长
正多边形的面积计算
公式
正多边形的面积 = (边长 × 边数) ÷2
解释
正多边形的面积可以通过计算其 边长和边数的乘积,然后除以2得 到。
自然界中的应用
在自然界中,正多边形和圆也经常出 现,如植物的花瓣、动物的壳等,这 些形状具有自然美和生物学意义。
THANKS
感谢您的观看
圆内接正多边形的性质:圆内接 正多边形的所有外角之和等于 360度
圆与直线的位置关系:圆与直线 相切、相交、相离
圆的应用
生活中的圆
车轮、钟表、瓶盖等
数学中的圆
几何证明、代数运算等
工程中的圆
机械零件、建筑设计等
04
圆与正多边形的关 系
圆内接正多边形
01
02
03
定义
圆内接正多边形是指一个 正多边形的所有顶点都在 同一个圆上。
05
正多边形与圆的几 何作图
正多边形的几何作图方法
定义
正多边形是各边等长、 各角等大的多边形。
边长确定
确定正多边形的边长是 作图的关键步骤。
角度确定
确定正多边形的内角大 小也是作图的关键步骤

作图方法
通过边长和角度,可以 按照正多边形的定义进
行作图。
圆的几何作图方法
01
02
03
04
定义
圆是平面上所有与给定点(圆 心)距离相等的点的集合。

正多边形与圆课件

正多边形与圆课件








证明 ∵AB=BC=CD=DE=EA ∴AB=BC=CD=DE=EA
BCE=CDA ∴∠A=∠B 同理∠B=∠C=∠D=∠E ∴五边形ABCDE是正五边形,
A
B
E
O
C
D
问题2:如图,点A,B,C,D,E,F把⊙O六等分. (1)在一张透明纸上画与下图形状、大小相同的图形, 并把它们叠合在一起; (2)把所画图形绕点O旋转60°,你发现了什么?再 旋转60°呢?
六边形ABCDEF是正六边形
E
D
E
D
F O
A
CF O
B
A
C B
归纳
定义:一般地,用量角器把一个圆n(n≥3)等分,依
次连接各等分点就得到这个圆的内接正n边形,这个圆是 这个正n边形的外接圆.正多边形的外接圆的圆心叫做正 多边形的中心.
外接圆的半径叫做正多边形的半径.
正多边形的中心到正多边形一边的距 离叫作正多边形的边心距.
矩形是正多边形吗?为什么?菱形是正多边 形吗?为什么?
矩形不是正多边形,因为边不一定相 等.菱形不是正多边形,因为角不一定相 等.
正多边形与圆有什么关系呢?
正三角形与正方形都有内切圆和外接圆,并且为同 心圆. 分析:正三角形三个顶点把圆三等分; 正方形的四个顶点把圆四等分.要将圆五等分,把 等分点顺次连结,可得正五边形.要将圆六等分呢?
2.如图所示,正五边形ABCDE内接于⊙O,
则∠ADE的度数是 ( C)
A.60° B.45° C. 36° D. 30°
B
A E

C
D
3.如图,已知⊙O的内接正六边形ABCDEF的边心距OM=2, 则该圆的内接正三角形ACE的面积为( D )

初中数学《正多边形和圆(第一课时)》课件

初中数学《正多边形和圆(第一课时)》课件

思考:各边相等的圆内接多边形是正多边形吗?
你能总结出用量角器画正n边形的方法吗?
先计算圆心角的度数是360度除以n, 再用量角器度量一个360/n的圆心角, 在圆周上得到一段弧,然后再用圆规 顺次在圆上截取相等的弧,就把圆周n 等分了。这种方法称为等分圆周法。
学以致用 用量角器画一个正九边形。
· O
学习新知
正多边形:各边相等,各角也相等的多边形叫做正多边形. 如果一个正多边形有n(n≥3)条边,就叫做正n边形。 等边三角形有三条边叫正三角形。 正方形有四条边叫正四边形。
思考: 1.矩形是正多边形吗?为什么?
2.菱形是正多边形吗?为什么?
注意 正多边形
各边相等 各角相等
缺一不可
多姿ቤተ መጻሕፍቲ ባይዱ彩的正多边形
思考:如果你手中只有圆规和直尺,类比用量角器画正n边形的 方法,你能利用等分圆周法作出一个正六边形吗?同学们先独 立思考,然后小组讨论后动手画一画。
思考:还有别的方法吗?
怎样用直尺和圆规作一个正十二边形?作一个正 三角形呢?
学以致用 用直尺和圆规作一个正方形.
· O
尺规作图虽然是一种 准确的等分圆的方法,但 是它有一定的局限性,不 能将圆任意等分。
A
B
E
O
C
D
如何将圆周五等分?你有哪些方法呢?请同学 们先独立思考,然后小组讨论后动手画一画。
· O
猜想:顺次连结圆的五等分点所得的五边形是正五边形。
已知: 在⊙O 中,A⌒B=B⌒C=C⌒D=D⌒E=E⌒A,
求证: 五边形ABCDE是正五边形。
A
证明: ∵AB=BC=CD=DE=EA,
B
E
∴ AB=BC=CD=DE=EA,

正多边形和圆ppt课件

正多边形和圆ppt课件

D.60°或120°
随堂练习
2. 如图,点O是正五边形ABCDE的中心,求∠BAO的度数.
解:连接OB,则OB=OA,
∴∠BAO=∠ABO,
∵点O是正五边形ABCDE的中心,
∴∠AOB=360°÷5=72°,

∴∠BAO= (180°﹣72°)=54°.

随堂练习
3. 如图,已知等边△ABC内接于⊙O,BD为内接正十二边形的一边,
(3)正多边形每一边所对的圆心角叫做正多边形的中心角.
(4)正多边形的中心到正多边形的一边的距离叫做正多边形的边心距.
知识讲解
知识点1 正多边形及有关概念
【例1】矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?
解析:矩形不是正多边形,因为矩形不符合各边相
等;菱形不是正多边形,因为菱形不符合各角相等.
显然,A、E、F(或C、B、D)是⊙O的3等分点.
知识讲解
知识点3 正多边形的画法
②正六、三、十二边形的作法.
同样,在图(3)中平分每条边所对的弧,就可把⊙O 12等分…….
知识讲解
知识点3 正多边形的画法
【例 4】如图,已知半径为R的⊙O,用多种工具、多种方法作出圆内
接正三角形.
点拨:【度量法】用量角器量出圆心角是120度
而作出正四边形. 再逐次平分各边所对的弧就可作出正八边形、正十六
边形等,边数逐次倍增的正多边形.
知识讲解
知识点3 正多边形的画法
②正六、三、十二边形的作法.
通过简单计算可知,正六边形的边长与其半径相等,所以,在⊙O中,
任画一条直径AB, 分别以A、 B为圆心,以⊙O的半径为半径画弧与⊙O
相交于C、D和E、F,则A、C、E、B、F、D是⊙O的6等分点.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档