高中数学同角三角函数的基本关系教案
《同角三角函数的基本关系》示范课教学设计【高中数学人教】
环节三 同角三角函数的基本关系【新知探究】1.发现规律问题 1 诱导公式一表明,终边相同的角的同一三角函数值相等.而三个三角函数值都是由角的终边与单位圆的交点坐标唯一确定的,所以它们之间一定有内在联系.那么,终边相同的角的三个三角函数之间有什么关系呢?答案:如图1,设P (x ,y )是角α的终边与单位圆的交点.过P 作x 轴的垂线,交x 轴于M ,则△OMP 是直角三角形,而且OP =1.由勾股定理OM ²+MP ²=1.因此x ²+y ²=1。
即同一个角的三个三角函数之间的关系:sin 2α+cos 2α=1 .并且当角α的终边与坐标轴重合时,该公式也成立. 根据三角函数的定义,有:sin tan cos ααα=,2ππ+≠k α,k ∈Z . 即同一个角α的正弦、余弦的平方和等于1,商等于角α的正切.追问 从方程的角度观察同角三角函数关系,你能发现它有什么作用?答案:因为有两个方程,三个未知数sin α,cos α,tan α,所以已知其中一个可以求出另外两个,简称“知一求二”.2.应用规律例1已知sin α=-53,求cos α,tan α的值. 答案:因为sin α<0,sin α≠-1,所以α是第三或第四象限角.由sin 2α+cos 2α=1得cos 2α=1-sin 2α=1-2316()525-=; 如果α是第三象限角,那么cos α<0.于是cos α=164255-=-, 从而sin 353tan ()()cos 544ααα==-⨯-=; 如果α是第四象限角,那么cos α>0.于是cos α=164255=, 从而sin 353tan ()cos 544ααα==-⨯=-. 图1追问 你能对“例1”这种题型总结出它的解题步骤吗?答案:解题步骤如下:第一步,先根据条件判断角所在的象限;第二步,分类讨论确定其中一个三角函数值的符号;第三步,利用基本关系求出其他的三角函数值.例2求证:xx x x cos sin 1sin 1cos +=-. 答案:证法一:由cos x ≠0,知sin x ≠-1,所以1+sin x ≠0,于是左边=22cos (1sin )cos (1sin )cos (1sin )1sin (1sin )(1sin )1sin cos cos x x x x x x x x x x x x++++===-+-=右边. 所以,原式成立.证法二:因为(1-sin x )(1+sin x )=1-sin 2x =cos 2x =cos x cos x ,且1-sin x ≠0,cos x ≠0,所以cos 1sin 1sin cos x x x x +=-. 3.探究延伸问题 2 总结上述研究过程,你能说说我们是从哪些角度入手发现三角函数性质的?你认为还可以从哪些方面入手研究三角函数的性质?答案:借助单位圆,从三角函数的定义出发,我们从三角函数值的符号规律、三角函数的取值规律(相等)入手发现了诱导公式一和同角三角函数的基本关系.自然地,我们还可以进一步研究三角函数取值互为相反数等其他关系的规律.【归纳小结】问题3回顾本单元学习内容,并回答下面问题:(1)本单元知识发生发展过程的基本脉络是怎样的?在上一节的基础上进一步完善本单元的知识结构图?(2)我们是如何发现诱导公式一和同角三角函数的基本关系的?在发现这些性质的过程中,有哪些值得总结的思想方法或经验?答案:(1)基本脉络是:现实背景—获得研究对象—分析对应关系的本质—下定义—研究性质;本单元的知识结构图:(2)三角函数的定义是借助于单位圆来定义的,因此其性质必然与单位圆的几何性质有关,又因为三角函数是一个背景下同时得到三个概念,所以,它们之间一定有某种内在的联系,在此基础上,发现了诱导公式一和同角三角函数的基本关系.。
同角三角函数的基本关系教学设计
同角三角函数的基本关系教学设计一、引言同角三角函数是初中数学中的重要内容,也是高中数学和大学数学的基础。
本文将介绍同角三角函数的基本关系教学设计。
二、教学目标1. 理解同角三角函数的定义及其意义;2. 掌握正弦、余弦、正切、余切四种同角三角函数的基本关系;3. 能够运用同角三角函数解决实际问题。
三、教学过程1. 同角三角函数的定义及其意义1.1 定义:对于任意一个锐角∠A,其正弦值sinA等于∠A所在直角三角形中对边与斜边之比,余弦值cosA等于邻边与斜边之比,正切值tanA等于对边与邻边之比,余切值cotA等于邻边与对边之比。
1.2 意义:同一锐角所对应的四个函数值互相依赖,其中一个确定时其他三个也随之确定。
因此,在求解某些几何问题时可以通过已知一个函数值来求出其他函数值。
2. 正弦、余弦、正切、余切四种同角三角函数的基本关系2.1 正弦和余弦:sin²A + cos²A = 1证明:根据勾股定理可得sin²A + cos²A = 1 - sin²A,即sin²A + sin²A = 1,故sin²A + cos²A = 1。
2.2 正切和余切:tan A × cot A = 1证明:tan A × cot A = (sin A / cos A) × (cos A / sin A) = 1。
2.3 正弦和余切:sin A × cot A = cos A证明:sin A × cot A = sin A × (cos A / sin A) = cos A。
2.4 余弦和正切:cos A × tan A = sin A证明:cos A × tan A = cos A × (sin A / cos A) = sin A。
3. 运用同角三角函数解决实际问题3.1 求解直角三角形的边长对于一个已知锐角∠A及其对边a或邻边b,可以通过正弦、余弦、正切、余切四种函数求出其他两个未知量。
同角三角函数基本关系式教案
第一章 三角函数任意角的三角函数同角三角函数的基本关系教学目标1.掌握三种基本关系式之间的联系;2.熟练掌握已知一个角的三角函数值求其他三角函数值的方法;3.牢固掌握同角三角函数的关系式,并能灵活运用于解题,提高分析、解决三角函数的思维能力;4.灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力. 教学重难点 重点:同角三角函数基本关系式:22sin sin cos 1,tan cos ααααα+==的运用; 难点:三角函数值的符号的确定,同角三角函数的基本关系式的变式运用. 教学设计一、自主学习问题1:任意角的三角函数是怎样定义的?问题2:sinα,cosα,tanα之间有什么关系?这个关系对于任意角都成立吗?问题3:设P(x,y)是角α的终边与单位圆的交点,x 和y 之间有什么关系?sinα和cosα之间有什么关系?这个关系对于任意角都成立吗?二、自主探究同角三角函数的基本关系式:1.平方关系:2.商的关系:同角三角函数的基本关系式的变形:三、合作探究、典例精析【例1】已知sinα=13,并且α是第二象限角,求cosα,tanα.【例2】已知sinα=-35,求cosα,tanα的值【例3】已知cosα=-817,求sinα,tanα的值.【例4】已知tanα=2,求下列各式的值:(1)sinα+cosαsinα-cosα;(2)sinαcosαsin 2α-cos 2α;(3)sinαcosα.【例5】求证:cosx 1-sinx =1+sinx cosx. 四、课堂练习、巩固基础1.(1)已知sinα=1213,并且α是第二象限角,求cosα,tanα.(2)已知cosα=-45,求sinα,tanα.2.已知tanα=5,求下列各式的值.(1)5sinα-3cosα7sinα+9cosα;(2)cos 2α4sin 2α+2sinαcosα-3; (3)2sin 2α-3cosαsinα+5cos 2α.五、课堂小结1.通过观察、归纳,发现同角三角函数的基本关系.2.同角三角函数关系的基本关系的应用.3.应用同角三角函数的基本关系式的基本关系的变形解决计算和证明问题.六、达标检测+cos 22022等于( )D.不能确定 2.已知sinα=-34,α是第四象限角,则tanα的值为( )A.3√77B.√74 3√77 √743.已知tanα=4,求(1)sinα-2cosα2sinα+5cosα;(2)1sin 2α+2sinαcosα.4.已知tanα=√3,π<α<3π2,求cosα-sinα的值.5.已知tanα=-34,求sinα,cosα的值.。
同角三角函数的基本关系
1.2.2同角三角函数的基本关系教案课题:同角三角函数的基本关系学科:高一数学 教师:王霞授课班级:2017级4班教学目标:1. 通过三角函数定义,导出同角三角函数的基本关系,并能运用同角三角函数的基本关系进行三角函数的化简和证明2. 同角三角函数的基本关系式主要有三个方面的应用:(1)求值(知一求二);(化简三角函数式);(3)证明三角恒等式,通过本节的学习,学生应明了如何进行三角函数式的化简于三角恒等式的证明3. 通过同角三角函数关系的应用是学生养成探究、分析的习惯,提高三角恒等式等变形的能力,树立转化与化归的思想方法。
重点难点:教学重点:课本的两个公式的推导及应用。
教学难点:课本的两个公式的推导及应用。
教学过程导入新课思路:先请学生回忆任意角的三角函数定义,然后引导学生先计算后观察以下各题的结果,并鼓励学生大胆进行猜想,教师点拨学生能否用定义给予证明,由此展开新课。
计算下列各式的值:()()()2222sin 301sin 90+cos 90= 2sin 30+cos 30= 3=cos30︒︒︒︒︒︒一、复习引入:1.任意角的三角函数定义: 设角α是一个任意角,α终边上任意一点(,)P x y ,它与原点的距离为(0)r r ==>,那么:sin y r α=,cos x r α=,tan y xα=, 2.当角α分别在不同的象限时,sin α、cos α、tg α的符号分别是怎样的?3.背景:如果53sin =A ,A 为第一象限的角,如何求角A 的其它三角函数值; 4.问题:由于α的三角函数都是由x 、y 、r 表示的,则角α的三个三角函数之间有什么关系?二、讲解新课:(一)同角三角函数的基本关系式:(板书课题:同角的三角函数的基本关系)1. 由三角函数的定义,我们可以得到以下关系:(1)商数关系:sin tan cos ααα=(2)平方关系:22sin cos 1αα+= 说明:①注意“同角”,至于角的形式无关重要,如22sin 4cos 41αα+=等;②注意这些关系式都是对于使它们有意义的角而言的,如sin tan (,)cos 2k k Z απααα=≠∈; ③对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、变形用),如:cos α= 22sin 1cos αα=-, sin cos tan ααα=等。
5.2.2《同角三角函数的基本关系》教学设计
5.2.2同角三角函数的基本关系一、教材分析本小节内容选自《普通高中数学必修第一册》人教A版(2019)第五章《三角函数》的第二节《三角函数的概念》。
本节课是学生学习了任意角和弧度值,任意角的三角函数后,安排的一节继续深入学习的内容,是求三角函数值、化简三角函数式、证明三角恒等式的基本工具,是整个三角函数的基础,在教材中起着承上启下的作用。
同时,它体现的数学思想与方法在整个高中数学学习中都有着重要的作用。
二、教学目标1.理解并掌握同角三角函数基本关系式及推导,发展数学抽象和逻辑推理的素养。
2.会利用同角三角函数的基本关系式进行简单的求值,化简等有关问题,发展数学运算素养。
三、教学重难点重点:同角三角函数基本关系式的推导及应用。
难点:同角三角函数基本关系的灵活应用。
四、教学过程(一)课程导入引导语:同学们,三角学源于天文学,在研究天文学问题的过程中它得到了发展,常见的三角函数有正弦函数、余弦函数、正切函数等,摸清楚这些三角函数之间的关系是三角学的基本问题之一。
问题1:因为sinα,cosα,tanα的值都是由α确定的,所以sinα,cosα,tanα之间是否存在某种关系呢?追问:回到定义中,我们是如何定义三角函数的?问题2:如何建立sin α,cos α,tanα之间的关系式呢?(二)问题探究过P 点作x 轴的垂线,交x 轴于M,则△OMP 是直角三角形,①对于平方关系,若角α是象限角,Rt△OMP 是一直存在,sin 2+cos 2=1是成立的.若角α是轴线角,不妨设α的终边与y 轴非负半轴重合,此时有P(0,1),sin 2+cos 2=1成立。
事实上,α的终边无论与哪条坐标轴重合,sin 2+cos 2=1都成立.综上:对于任意角α,平方关系sin 22②0,所以角α的终边不能落在y 立.cos (三)同角三角函数的基本关系式1、平方关系(1)公式:sin 2α+cos 2α=1,α∈R1.注意:sin 2α是sin 2的简写,读作“sin α的平方”,不能将sin 2α写成sin 2.前者是α的正弦的平方,后者是2的正弦.3、公式赏析①同角讨论:你是如何理解“同角”的?点拨:一是“相同角”,二是(在使函数有意义的前提下)“任意角,所以“同角”指的是“相同的任意角”.②基本讨论:为何将以上关系叫做“基本”关系?点拨:公式简洁、美观,适用范围广.③结构讨论:以上两个公式有何结构特征?点拨:平方关系中有平方+平方=1,左边有变量,右边是常数,动中有静,变化中有不变;商数关系中左边是切,右边是弦,左边是整式,右边是分式,而且是齐次分式。
(完整版)同角三角函数的基本关系教案
同角三角函数的基本关系东宁县绥阳中学教学目的:知识目标:1。
能根据三角函数的定义导出同角三角函数的基本关系式及它们之间的联系;2.熟练掌握已知一个角的三角函数值求其它三角函数值的方法。
能力目标: 牢固掌握同角三角函数的两个关系式,并能灵活运用于解题,提高学生分析、解决三角的思维能力;教学重点:同角三角函数的基本关系式教学难点:三角函数值的符号的确定,同角三角函数的基本关系式的变式应用 教学过程: 一、复习引入:1.任意角的三角函数定义:设角α是一个任意角,α终边上任意一点(,)P x y ,它与原点的距离为(0)r r ==>,那么:sin y r α=,cos x r α=,tan yxα=, 2.当角α分别在不同的象限时,sin α、cos α、tg α的符号分别是怎样的? 3.背景:如果53sin =A ,A 为第一象限的角,如何求角A 的其它三角函数值; 4.问题:由于α的三角函数都是由x 、y 、r 表示的,则角α的三个三角函数之间有什么关系? 二、讲解新课:(一)同角三角函数的基本关系式:(板书课题:同角的三角函数的基本关系)1. 由三角函数的定义,我们可以得到以下关系:(1)商数关系:αααcon sin tan =(2)平方关系:1sin 22=+ααcon说明:①注意“同角”,至于角的形式无关重要,如22sin 4cos 41αα+=等; ②注意这些关系式都是对于使它们有意义的角而言的,如tan cot 1(,)2k k Z πααα⋅=≠∈; ③对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、变形用),如:cos α= 22sin 1cos αα=-, sin cos tan ααα=等。
2.例题分析: 一、求值问题 例1.(1)已知12sin 13α=,并且α是第二象限角,求cos ,tan ,cot ααα. (2)已知4cos 5α=-,求sin ,tan αα.解:(1)∵22sin cos 1αα+=, ∴2222125cos 1sin 1()()1313αα=-=-=又∵α是第二象限角, ∴cos 0α<,即有5cos 13α=-,从而 sin 12tan cos 5ααα==-, 15cot tan 12αα==-(2)∵22sin cos 1αα+=, ∴222243sin 1cos 1()()55αα=-=--=, 又∵4cos 05α=-<, ∴α在第二或三象限角. 当α在第二象限时,即有sin 0α>,从而3sin 5α=,sin 3tan cos 4ααα==-;当α在第四象限时,即有sin 0α<,从而3sin 5α=-,sin 3tan cos 4ααα==. 总结:1. 已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值。
《同角三角函数的基本关系》教案与导学案
《同角三角函数的基本关系》教案与导学案同角三角函数的基本关系是指在一个锐角三角形中,其三个内角的三角函数之间的关系。
教案教学目标:1.了解同角三角函数的概念和基本关系。
2.熟练运用同角三角函数的基本关系,解决相关问题。
教学重点:同角三角函数的基本关系。
教学难点:熟练运用同角三角函数的基本关系,解决相关问题。
教学方法:讲授、演示、练习。
教学过程:Step 1 引入新知引导学生回顾正弦定理、余弦定理的内容,由此引入同角三角函数的概念,解释同角三角函数的意义。
Step 2 基本关系的演示通过投影仪或黑板等教具,演示同角三角函数的基本关系。
1) 演示正弦定理的推导,得到sinA=opposite/hypotenuse。
2) 演示余弦定理的推导,得到cosA=adjacent/hypotenuse。
3) 演示正切比例的推导,得到tanA=opposite/adjacent。
Step 3 列示基本关系向学生展示同角三角函数的基本关系,并要求学生背诵这些关系。
Step 4 发现规律通过解决一些具体问题,引导学生发现同角三角函数之间的一些规律和特点。
Step 5 综合运用结合实际问题,进行综合运用,让学生熟练应用同角三角函数的基本关系解决相关问题。
Step 6 归纳总结复习同角三角函数的基本关系,并帮助学生归纳总结相关知识点。
Step 7 学以致用通过一些挑战性问题,提高学生运用同角三角函数的基本关系解决问题的能力。
导学案学习目标:1.了解同角三角函数的概念和基本关系。
2.熟练运用同角三角函数的基本关系,解决相关问题。
学习重点:同角三角函数的基本关系。
学习难点:熟练运用同角三角函数的基本关系,解决相关问题。
学习方法:自主学习、思维导图。
学习过程:Step 1 学习概念自主学习同角三角函数的概念,并在思维导图中整理相关知识点。
Step 2 学习基本关系自主学习同角三角函数的基本关系,并在思维导图中整理相关公式和关系。
《同角三角函数的基本关系》教学设计
《同角三角函数的基本关系》教学设计一、教学目标 1.知识与技能目标(1)能根据三角函数的几何、代数定义导出同角三角函数的基本关系式;(2)掌握同角三角函数的两个基本关系式,并能够根据一个角的三角函数值,求这个角的其他三角函数值.2.过程与方法目标(1)牢固掌握同角三角函数关系式,并能灵活解题,提高学生分析、解决三角函数的思维能力; (2)探究同角三角函数关系式时,体会数形结合的思想;已知一个角的三角函数值,求这个角的其他三角函数值时,进一步树立分类思想;解题时,注重化归的思想,将新题目化归到已经掌握的知识点上; (3)通过对知识的探究,掌握自主学习的方法,通过学习中的交流,形成合作学习的习惯. 3.情感、态度、价值观目标通过教学,使学生学习运用观察、类比、数形结合、联想、猜测、检验等合情推理方法,提高学生运算能力和逻辑推理能力.二、教学重点和难点教学重点:公式1cos sin 22=α+α和α=ααtan cos sin 的推导及其应用 教学难点:同角三角函数的基本关系式的变式应用三、教学流程 (一) 提问引入1、 提出问题:已知53sin -=α,求αcos 、αtan 的值. 2、 在解题过程中,让学生自己探索同角的三角函数关系.(二)探究新知1. 探究对同角三角函数基本关系(1) 根据学生探究出的结果,得出结论.引导学生注意“正弦的平方”的表示方法是“a 2sin ”,而不是:“2sin a ”,进而得到符号表达式:22sin cos 1αα+=;开方计算时,注意“分类”的思想在象限角正负号问题处理时的应用.(2) 探究正弦、余弦和正切函数三者的关系:αααtan cos sin =. 以上的探究由学生自由完成,可以从图形角度,也可以从定义角度加以探究,让学生体会图形语言与符号语言之间的转换关系,体会两种语言的区别于联系.为了让学生及时熟悉公式,同时为后续学生归纳“同角”作铺垫,要求学生完成以下的课堂练习: (1) =+30cos 30sin 22_______________; (2) =+++)4(cos )4(sin 22ππx x ________________;(3) ︒︒45cos 45sin =_______________(4) =+45cos 30sin 22.(3) 学生交流、讨论,最终在教师的引导下得到上述两个公式中应该注意的问题:①注意“同角”指相同的角,例如:145cos 30sin 22≠+ 、12cos 2sin 22=+αα、12cos 2sin22=+αα;②注意这些关系式都是对于使它们有意义的角而言的,如α=ααtan cos sin 中0cos ≠α,且αtan 需有意义等.(三)架构迁移(1)探究上述两个关系式的等价变形式教师点明:由等价变形式αα22cos 1sin -=已知余弦值可以求正弦值;由等价变形式αα22sin 1cos -=已知余弦值可以求正弦值,学生可能得到:αα2cos 1sin -±=的结论,此时,应该向学生说明:αcos 、αsin 的符号受所在象限的限制,不是无条件的,不同于“由12=x 可以推出1±=x ”这种情形,此情况类似于“⎪⎩⎪⎨⎧<-≥=)0()0(||a a a aa ”而不是“a a ±=||”.等价变形式αααcos tan sin =可以将分式可以化为整式例1 已知锐角α满足3tan =α,求(1)ααααcos 2sin 5cos 4sin +-;(2)αααcos sin 2sin 2+.让学生探究第一小题的解法,注意αsin 、αcos 、αtan 之间的关系的应用,学生的解题方法可能有很多种,注意每种解法后对数学思想方法的归纳.然后让学生尝试解决第二小题.第二小题较第一小题难度有所增加,可以让学生采取合作学习的办法,分小组讨论,探究其解题方法.再与第一小题比较,寻找其可借鉴之处.体会类比、化归思想,化未知为已知. 例2 化简αα22cos )tan 1(+.本例在时间允许的情况下进行,否则放到下节课解决. 若时间允许,则进行强化练习: 练习1:已知54cos -=α,且α为第三象限角,求αsin 、αtan 的值.该题与引例配套. 练习2:已知ααcos 5sin =,求ααααcos 2sin cos sin -+的值.该题与例2配套.(四)反思升华:由学生自己反思:“本节课你有些什么收获?”让学生自己总结本节课所学内容,教师从知识层面和思想方法层面帮助学生整理本节课的小节。
同角三角函数的基本关系教案
同角三角函数的基本关系教案教案:同角三角函数的基本关系教学目标:1.理解同角三角函数的概念和性质。
2.掌握同角三角函数之间的基本关系式。
3.能够灵活运用同角三角函数的基本关系进行计算和证明。
教学重点:教学难点:教学准备:教材、白板、彩色笔。
教学过程:Step 1:引入概念(10分钟)1.引导学生回顾正弦函数、余弦函数和正切函数的定义和性质。
2.提问:是否存在一个三角函数,它的值恰好是一个角的正弦值的倒数?反余弦的倒数?正切的相反数?引出同角三角函数的概念。
Step 2:同角三角函数的定义和性质(20分钟)1.讲解同角三角函数的定义:正割函数、余割函数、余切函数。
2.指导学生进行练习,求特定角的正割值、余割值和余切值。
3.总结同角三角函数的定义和性质,并进行板书记录。
Step 3:同角三角函数的基本关系(30分钟)1.引导学生根据同角三角函数的定义,设获得正弦函数、余弦函数和正切函数的倒数的关系式,并进行推导。
2.引导学生利用同角三角函数的定义,进一步推导同角三角函数之间的基本关系式,并进行证明。
3.提醒学生注意数学符号的运用,确保表述的准确性。
4.分步解释和板书同角三角函数的基本关系。
Step 4:经典例题演练(30分钟)1.带领学生进行同角三角函数的基本关系的例题演练,注重每一步计算过程的意义和结果的解释。
2.引导学生归纳总结同角三角函数的基本关系式,并进行笔记整理。
Step 5:综合案例分析(20分钟)1.给出一个综合案例,要求学生结合所学的同角三角函数的基本关系进行证明和计算。
2.引导学生合理安排解题思路,按照步骤进行推导和计算。
3.引导学生进行思考和讨论,根据解题过程中出现的问题和困难进行解释和总结。
4.学生互相讨论和交流解题思路和方法。
Step 6:课堂小结(10分钟)1.整理同角三角函数的基本关系的要点。
2.概述同角三角函数的应用领域和意义。
拓展延伸:1.探究其他同角三角函数之间的关系,如正割函数和余割函数的关系等。
同角三角函数的基本关系与诱导公式复习教案
同角三角函数的基本关系与诱导公式复习教案教学目标:1.掌握同角三角函数的基本定义及其性质;2.理解同角三角函数之间的基本关系;3.利用同角三角函数的基本关系和诱导公式解决实际问题。
教学重点:1.同角三角函数的基本定义的理解与应用;2.同角三角函数之间的基本关系的掌握与应用。
教学难点:1.同角三角函数的基本关系的推导过程;2.同角三角函数的应用问题的解决。
教学过程:一、复习1.让学生回顾三角函数的基本定义及其性质。
二、引入1.提问:在之前的学习中,我们已经学习了不同角度上的三角函数,那么,如果两个角度相等,它们的三角函数是否相等呢?2.引导学生思考:同角三角函数指的是角度相同的两个三角函数。
根据角度相等,我们可以猜测同角三角函数之间可能存在一些关系。
三、同角三角函数的基本关系1.讲解:让我们回忆一下,三角函数中的正弦、余弦、正切、余切、正割、余割、余切这七个函数,它们分别由一个角所决定,对应在单位圆上的点的坐标值。
2.补充:这七个函数之间存在一些基本关系。
让我们来总结一下:- 正切函数:tan(θ) = sin(θ) / cos(θ);- 余切函数:cot(θ) = cos(θ) / sin(θ);- 正割函数:sec(θ) = 1 / cos(θ);- 余割函数:csc(θ) = 1 / sin(θ);- 隐含关系:sin^2(θ) + cos^2(θ) = 1;- 隐含关系:1 + tan^2(θ) = sec^2(θ);- 隐含关系:1 + cot^2(θ) = csc^2(θ)。
四、同角三角函数的诱导公式1.引导学生思考:从上述的基本关系中,我们是否可以得到其他同角三角函数之间的关系呢?2.讲解:根据角度和三角函数的性质,我们可以推导出同角三角函数的诱导公式。
- sin(α±β) = sin(α)cos(β) ± cos(α)sin(β)- cos(α±β) = cos(α)cos(β) ∓ sin(α)sin(β)- tan(α±β) = (tanα ± tanβ) / (1 ∓ tanαtanβ)3.通过推导一些简单的例子,进一步巩固同角三角函数的诱导公式。
数学《同角三角函数的基本关系》教案
数学《同角三角函数的基本关系》教案教案:同角三角函数的基本关系一、教学目标:1.理解同角三角函数的概念及意义。
2.掌握正弦、余弦和正切函数之间的基本关系。
3.能够在给定角度范围内计算同角三角函数的值。
二、教学重点与难点:1.理解同角三角函数的概念及意义。
2.掌握正弦、余弦和正切函数之间的基本关系。
三、教学准备:1.教材、课件、黑板、粉笔。
2.学生课前复习笔记。
四、教学过程:1.引入(10分钟)教师可通过提问的方式引导学生复习和回忆上节课所学的三角函数概念及性质,例如:“什么是三角函数?它们有什么特点?”2.概念讲解(10分钟)教师介绍同角三角函数的概念和意义,同角三角函数是以角度的大小和方向为自变量,以比值为因变量的一类函数。
其中,正弦函数、余弦函数和正切函数是最常用和基础的三角函数。
通过图示的方式向学生展示正弦函数、余弦函数和正切函数的形象及它们之间的关系。
3.基本关系的推导(15分钟)3.1正弦函数与余弦函数的基本关系:教师指导学生通过绘制各象限内角度相同的锐角三角形,并利用其定义推导出正弦函数和余弦函数的基本关系:sin^2θ + cos^2θ = 13.2正切函数与正弦函数、余弦函数的基本关系:教师指导学生通过绘制直角三角形,利用其定义推导出正切函数、正弦函数和余弦函数的基本关系:tanθ = sinθ / cosθ。
4.同角三角函数的计算及性质(25分钟)4.1计算角度对应的三角函数值:教师引导学生通过练习,掌握计算给定角度对应的正弦、余弦和正切函数值的方法和技巧。
4.2使用同角三角函数的性质:教师讲解同角三角函数的周期性和奇偶性,并指导学生根据这些性质简化计算,例如,sin(180° + θ) = -sinθ,cos(π + θ) = -cosθ,等等。
5.练习与巩固(20分钟)教师提供一系列基础练习题,让学生在课堂上进行计算和解答,以巩固所学的同角三角函数的基本关系和计算方法。
同角三角函数的基本关系教案
同角三角函数的基本关系教案
一、教学目标
1.掌握并掌握同角三角函数的定义;
2.熟练掌握同角三角函数的基本关系;
3.正确理解并应用同角三角函数的基本关系。
二、教学过程
(一)引入与认识
1.以问题形式引入
(1)教师摆出一个三角形,将小朋友们引入到课题中,问:请你们
凭借视力,给出三角形的内角A、B、C中,边a与边b构成的角是多少度?(答案是:度数相同)
2.概念认识
(1)介绍同角三角函数的概念:同角三角函数是指两个相同角度的
三角形上同名角的三角函数之间的函数关系。
(2)同角三角函数基本关系:
1)sinθ=cos(90°-θ);
2)cosθ=sin(90°-θ);
3)tanθ=1/tan(90°-θ);
4)cotθ=1/cot(90°-θ);
5)secθ=1/sec(90°-θ);
6)cscθ=1/csc(90°-θ);
(3)让学生理解同角三角函数的关系图象,用对称性质和角度试探
的方法将同角三角函数关系图象连接起来,学生必须从图象中感受到同角
三角函数的基本关系,以此为依据产生同角三角函数的运算习惯,以及在
分析实际问题时对角度的改变规律的判断。
(二)认识方法
1.找出两个相同角度的三角形,给出两个三角形的同名角的三角函数。
2.推导同角三角函数的基本关系。
同角三角函数的基本关系教学设计
同角三角函数的基本关系教学设计教学设计:同角三角函数的基本关系一、教学目标:1.学生能够理解同角三角函数的概念及其在数学中的意义;2.学生能够掌握正弦函数、余弦函数和正切函数的基本关系;3.学生能够熟练运用同角三角函数的基本关系解题。
二、教学重点:1.同角三角函数的概念及基本关系;2.正弦函数、余弦函数和正切函数的图像特征。
三、教学难点:1.正弦函数、余弦函数和正切函数的图像特征;2.同角三角函数的应用解题。
四、教学准备:1.教师准备:教学课件、教学素材PPT;2.学生准备:教材、笔记、计算器。
五、教学过程:Step 1:导入新课1.教师打开课件,介绍本节课的主题:同角三角函数的基本关系;2.教师和学生一起回顾三角函数的概念,回顾正弦函数、余弦函数和正切函数的定义。
Step 2:正弦函数与余弦函数的关系1.教师让学生观察并比较正弦函数与余弦函数的图像,引导学生发现它们之间的关系;2.教师引导学生思考,正弦函数与余弦函数的图像是否关于y轴对称?这两个函数的最大值和最小值又有怎样的关系?3. 教师讲解正弦函数与余弦函数的关系:sin(x) = cos(x - 90°);4.教师通过具体的数值计算和计算器演示,验证正弦函数与余弦函数的关系。
Step 3:正切函数与余弦函数的关系1.教师让学生观察并比较正切函数与余弦函数的图像,引导学生发现它们之间的关系;2.教师引导学生思考,正切函数与余弦函数的图像之间是否有什么特殊的关系?它们的零点位置有什么规律?3. 教师讲解正切函数与余弦函数的关系:tan(x) = sin(x) /cos(x);4.教师通过具体的数值计算和计算器演示,验证正切函数与余弦函数的关系。
Step 4:同角三角函数的应用解题1.教师提供一些应用题,如角度的边长比例问题、太阳高度角问题等,并引导学生运用同角三角函数的基本关系解答;2.教师讲解解题思路和步骤,帮助学生理解问题的意义和解题的方法;3.教师与学生互动,共同解答一个或多个应用题;4.学生独立或小组合作解答剩下的应用题,教师巡视指导。
同角三角函数的基本关系(教案)
1.2.2 同角三角函数的基本关系(教案)吴川一中 陈亮 任教班级:高一47、48班一、教学目标:1. 知识与能力理解同角三角函数的基本关系式,会用同角三角函数的基本关系式进行化简、求值与证明.2. 过程与方法通过在单位圆中构造出以任意角的正弦线、余弦线为直角边的直角三角形得出三角函数基本关系式. 3. 情感、态度与价值观培养学生用数形结合思想方法解决问题的能力.二、教学重点:同角三角函数的基本关系式的推导及其应用(求值、化简、恒等式证明).三、教学难点:关系式在解题中的灵活运用和对学生思维灵活性的培养.四、教学方法与手段:本节主要涉及到两个公式,均由三角函数定义和勾股定理推出.在教学过程中,要注意引导学生理解每个公式,懂得公式的来龙去脉,并灵活运用.要给学生提供展示自己思路的平台,营造自主探究解决问题的环境,把鼓励带进课堂,把方法带进课堂,充分发挥学生的主体作用.五、教学过程: 【探究引入】 思考1:如图,设α是一个任意角,它的终边与单位圆交于点P ,那么,正弦线MP 和余弦线OM 的长度有什么内在联系?由此你能得到什么结论?分析:221MP OM +=22sin cos 1αα+=.思考2:上述关系反映了角α方关系.那么当角α的终边在坐标轴上时,上述关系成立吗? 分析:当角α的终边在坐标轴上时,上述关系也成立.思考3:设角α的终边与单位圆交于点 P (x ,y ),根据三角函数定义,有tan (0)yx xα=≠,由此可得sin α、cos α、tan α之间满足什么关系?分析:sin tan cos ααα=. 思考4:上述关系称为商数关系,那么商数关系成立的条件是什么?分析:()2a k k Z ππ≠+∈.【讲授新课】 1.同角三角函数基本关系: (1)平方关系:22sin cos 1αα+=;(2)商数关系:sin tan cos ααα=,()2a k k Z ππ≠+∈. Ⅰ、【新知理解训练】判断以下等式是否恒成立:①()22sin cos 1;αβαβ+=≠ ②22sin cos 122αα+=; ③sin 2tan 2.cos 2ααα=Ⅱ、说明:① 注意这里“同角”有两层含义,一是“角相同”;二是对“任意”一个角(在使得函数有意义的前提下)关系式都成立.② 2sin α是()2sin α的简写,读作“sin α的平方”,不能写成“2sin α或sin 2α”.③ 对这些关系式不仅要牢固掌握,还要能灵活运用(正用、逆用、变形用),如:22sin 1cos αα=-, cos α= ()212sin cos sin cos αααα±⋅=± sin cos tan ααα=, s i n c o s t a n ααα=⋅. 2、典型例题 题型一、化简 例1. 化简下列各式:(1) 2422sin cos sin cos ββββ++; (2 ) 222cos 112sin αα--.分析:(1)一提取公因式2cos β,便“柳暗花明”; (2)逆用平方关系:式子中的“1”用22"sin cos "αα+一代,结果不打自招.解:(1)原式=()222222sin cos cos sin sin cos 1.ββββββ++=+=(2)原式=()22222222222cos sin cos cos sin 1.sin cos 2sin cos sin αααααααααα-+-==+-- 【点评】灵活运用平方关系、商数关系及其变式是解决化简问题的灵丹妙药.变式训练:化简下列各式: (1) ()221tan cos αα+⋅ (2) 1sin cos 2sin cos 1sin cos αααααα+--⋅+-.答案:(1)1; (2)sin cos αα-. 题型二、已知一个三角函数值,求另外两个三角函数值(简称“知一求二”)例2.(1)已知12sin 13α=,并且α是第二象限角,求cos ,tan αα.(2)已知4cos 5α=-,求sin ,tan αα.分析:由已知条件和sin α的值可依平方关系求得cos α的值,再由商数关系可求得tan α的值,但不知α所在象限时要对α所在象限进行分类讨论.解:(1)∵22sin cos 1αα+=, ∴2222125cos 1sin 1()()1313αα=-=-=,又∵α是第二象限角,∴cos 0α<,即有5cos 13α=-,从而 sin 12tan cos 5ααα==-.(2)∵22sin cos 1αα+=, ∴222243sin 1cos 1()()55αα=-=--=,又∵4cos 05α=-<, ∴α在第二或三象限.① 当α在第二象限时,即有sin 0α>,从而3sin 5α=,sin 3tan cos 4ααα==-;② 当α在第四象限时,即有sin 0α<,从而3sin 5α=-,sin 3tan cos 4ααα==.【点评】三角函数的结果都要用分情况叙述的形式表达出来,而不用cos a α=±或sin b α=±或tan c α=±的书写形式,因为三角函数值的符号受限制,不是无条件的,这不同于“由21x =可以推出1x =±”的情形.变式训练:《中》191P-变.(07全国Ⅰ)已知α是第四象限角,5tan12α=-,则s i nα等于( D )A.15B.15- C.513D.513-六、板书设计1.同角三角函数基本关系:(1)平方关系.(2)商数关系.2、题型一、化简例1.变式训练:3、题型二、知一求二例2.变式训练:七、小结1. 同角三角函数基本关系及其变式.2. 化简.3. 求值:①知一求二;②弦化切.八、作业课本第20页练习题第2题,22页B组第2、3题.九、教学后记本节真正体现“高、大、优”的课堂教学特色,但内容多、时间紧,要合理安排、讲练结合.。
同角三角函数的基本关系教案
同角三角函数的基本关系教案教案标题:同角三角函数的基本关系教学目标:1. 理解同角三角函数的定义及其基本关系。
2. 掌握同角三角函数之间的基本关系公式。
3. 能够运用同角三角函数的基本关系解决相关问题。
教学准备:1. 教师:黑板、白板、彩色粉笔/白板笔、教学投影仪。
2. 学生:教科书、笔记本、计算器。
教学过程:步骤一:导入新知1. 引入同角三角函数的概念,解释其在几何图形中的应用。
2. 提问学生是否了解正弦、余弦和正切函数,以及它们之间的关系。
步骤二:同角三角函数的定义及基本关系1. 介绍正弦、余弦和正切函数的定义,并在黑板上绘制三角函数的单位圆图。
2. 解释同角三角函数之间的基本关系:- 正弦函数:sinθ = 对边/斜边- 余弦函数:cosθ = 邻边/斜边- 正切函数:tanθ = 对边/邻边3. 强调同角三角函数之间的关系:sinθ/cosθ = tanθ,以及1 + tan²θ = sec²θ 和1 + cot²θ = csc²θ。
步骤三:同角三角函数的基本关系公式1. 教师在黑板上列出同角三角函数之间的基本关系公式,并解释每个公式的意义。
2. 提供示例问题,引导学生使用基本关系公式计算同角三角函数的值。
步骤四:解决相关问题1. 提供一些与同角三角函数相关的问题,要求学生运用所学知识解决问题。
2. 学生独立或合作完成问题,并在黑板上展示解题过程。
步骤五:总结和拓展1. 总结同角三角函数的基本关系及其应用。
2. 引导学生思考其他可能的应用场景,并展示相关例子。
教学延伸:1. 提供更多的练习题,巩固学生对同角三角函数基本关系的理解和运用能力。
2. 引导学生探索其他三角函数的基本关系,如余切、正割和余割函数。
评估方法:1. 教师观察学生在课堂上的参与度和理解程度。
2. 批改学生完成的问题解答,并提供反馈。
拓展阅读:1. 探索三角函数的周期性和图像变换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同角三角函数的基本关系
教学目的:
知识目标:1.能根据三角函数的定义导出同角三角函数的基本关
系式及它们之间的联系;
2.熟练掌握已知一个角的三角函数值求其它三角函
数值的方法。
能力目标: 牢固掌握同角三角函数的两个关系式,并能灵活运用
于解题,提高学生分析、解决三角的思维能力;
教学重点:同角三角函数的基本关系式
教学难点:三角函数值的符号的确定,同角三角函数的基本关系式的变式应用
教学过程:
一、复习引入:
1.任意角的三角函数定义:
设角α是一个任意角,α终边上任意一点(,)P x y ,它与原点的距离为
(0)r r ==>,那么:sin y r α=,cos x r α=,tan y x
α=, 2.当角α分别在不同的象限时,sin α、cos α、tg α的符号分别是怎样的?
3.背景:如果5
3sin =A ,A 为第一象限的角,如何求角A 的其它三角函数值;
4.问题:由于α的三角函数都是由x 、y 、r 表示的,则角α的三个三角函数之间有什么关系?
二、讲解新课:
(一)同角三角函数的基本关系式:
(板书课题:同角的三角函数的基本关系)
1. 由三角函数的定义,我们可以得到以下关系:
(1)商数关系:α
ααcon sin tan = (2)平方关系:1sin 22=+ααcon 说明:
①注意“同角”,至于角的形式无关重要,如22sin 4cos 41αα+=等; ②注意这些关系式都是对于使它们有意义的角而言的,如
tan cot 1(,)2
k k Z πααα⋅=≠∈; ③对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、
变形用),如:
cos α= 22sin 1cos αα=-, sin cos tan ααα
=等。
2.例题分析:
一、求值问题
例1.(1)已知12sin 13α=
,并且α是第二象限角,求cos ,tan ,cot ααα. (2)已知4
cos 5α=-,求sin ,tan αα.
解:(1)∵22sin cos 1αα+=, ∴2222125cos 1sin 1()()1313
αα=-=-= 又∵α是第二象限角, ∴cos 0α<,即有5cos 13
α=-,从而 sin 12tan cos 5ααα==-, 15cot tan 12αα==-
(2)∵22sin cos 1αα+=, ∴222243sin 1cos 1()()55αα=-=--=, 又∵4cos 05α=-<, ∴α在第二或三象限角。
当α在第二象限时,即有sin 0α>,从而3sin 5
α=,sin 3tan cos 4
ααα==-; 当α在第四象限时,即有sin 0α<,从而3sin 5α=-,sin 3tan cos 4ααα==. 总结:
1. 已知一个角的某一个三角函数值,便可运用基本关系式求出其它
三角函数值。
在求值中,确定角的终边位置是关键和必要的。
有时,由于角的终边位置的不确定,因此解的情况不止一种。
2. 解题时产生遗漏的主要原因是:①没有确定好或不去确定角的终
边位置;②利用平方关系开平方时,漏掉了负的平方根。
例2.已知tan α为非零实数,用tan α表示sin ,cos αα.
解:∵22sin cos 1αα+=,sin tan cos ααα
=, ∴2222(cos tan )cos cos (1tan )1ααααα⋅+=+=,即有221cos 1tan αα=
+, 又∵tan α为非零实数,∴α为象限角。
当α在第一、四象限时,即有cos 0α>,从
而
cos α==,
2tan sin tan cos 1tan αααα
=⋅=+; 当α在第二、三象限时,即有cos 0α<,从
而
2cos 1tan αα
==-+,
sin tan cos ααα=⋅=. 例3、已知α=αcos 2sin ,求ααααcos 2sin 5cos 4sin +-
解:2tan cos 2sin =α∴α
=α 6
11222tan 54tan cos 2sin 5cos 4sin -=-=+α-α=α+αα-α∴ 强调(指出)技巧:1︒ 分子、分母是正余弦的一次(或二次)齐次式
注意所求值式的分子、分母均为一次齐次式,把分子、分母
同除以αcos ,将分子、分母转化为αtan 的代数式;
2︒ “化1法”
可利用平方关系1cos sin 22=+αα,将分子、分母都变为二次齐次式,再利用商数关系化归为αtan 的分式求值;
小结:化简三角函数式,化简的一般要求是:
(1)尽量使函数种类最少,项数最少,次数最低;
.αααα22cos cos sin 2sin 2-+⑵
(2)尽量使分母不含三角函数式;
(3)根式内的三角函数式尽量开出来;
(4)能求得数值的应计算出来,其次要注意在三角函数式变形时,常将式子中的“1”作巧妙的变形,
二、化简
练习1440. 解:原式
2(36080)1sin 80=+=-80cos80==.
练习2.)23( cos 1cos 1cos 1cos 1 πθπθθθθ<<-+++-化简 三、证明恒等式
例4.求证:
cos 1sin 1sin cos x x x x
+=-. 证法一:由题义知cos 0x ≠,所以1sin 0,1sin 0x x +≠-≠.
∴左边=2cos (1sin )cos (1sin )(1sin )(1sin )cos x x x x x x x ++=-+1sin cos x x +==右边. ∴原式成立.
证法二:由题义知cos 0x ≠,所以1sin 0,1sin 0x x +≠-≠.
又∵22(1sin )(1sin )1sin cos cos cos x x x x x x -+=-==⋅,
∴
cos 1sin 1sin cos x x x x
+=-. 证法三:由题义知cos 0x ≠,所以1sin 0,1sin 0x x +≠-≠. cos 1sin 1sin cos x x x x +--cos cos (1sin )(1sin )(1sin )cos x x x x x x ⋅-+-=-22cos 1sin 0(1sin )cos x x x x
-+==-, ∴cos 1sin 1sin cos x x x x
+=-. 总结:证明恒等式的过程就是分析、转化、消去等式两边差异来促成统一的过程,证明时常用的方法有:(1)从一边开始,证明它等于另一边;
(2)证明左右两边同等于同一个式子;
(3)证明与原式等价的另一个式子成立,从而推出原式成立。
四、小 结:本节课学习了以下内容:
1.同角三角函数基本关系式及成立的条件;
2.根据一个角的某一个三角函数值求其它三角函数值;
五、课后作业:《习案》作业第 五 课时
参考资料 40cos40.
解:原式240cos 402sin 40cos40=+-
240cos40)|cos40sin 40|cos40sin 40=-=-=-.
思考1.已知)0(5
1cos sin π<θ<=
α+α,求的值。
及θ-θθ33cos sin tan 解:1︒ 由),2
(0cos ,0,2512cos sin ππ∈θ∴<θπ<θ<-=αα得: 由57cos sin ,2549)cos (sin 2=θ-θ=α-α得: 联立: 34tan 53cos 54sin 57cos sin 51cos sin -=θ⇒⎪⎪⎩⎪⎪⎨⎧⎪⎩
⎪⎨⎧-=θ=θ⇒=θ-θ=θ+θ 2︒ 125
91)5
3()54(cos sin 3333=--=θ-θ 2、已知是第四象限角,α+-=α+-=α,5
3cos ,524sin m m m m 求的值。
αtan 解:∵sin 2α + cos 2α = 1 ∴1)53()524(22=+-++-m m m m 化简,整理得:8,00
)8(21==∴=-m m m m 当m = 0时,是第四象限角不合)与,α-=α=α(5
3cos ,54
sin
当m = 8时,512tan 135cos ,1312sin -=α∴=α-
=α,。