(医疗药品)基于生物电子等排体的药物设计

合集下载

生物电子等排原理在药物先导化合物优化中的应用

生物电子等排原理在药物先导化合物优化中的应用
摘 要:先导化合物的优化是新药研究和开发的重要环节。由于先导化合物只提供一种具有特定药理 作用的新结构类型,往往由于在药理、药效学、药代动力学等方面的缺点或不足而不能直接用于临 床 。 因 此 ,需 要 对 先 导 化 合 物 进 行 进 一 步 化 学 结 构 改 造 或 修 饰 ,以 期 优 化 上 述 特 性 。“ 生 物 电 子 等 排取代(bioisosteric replacement)”即为对先导化合物进行合理优化的有效策略之一。本文简要综述了 生物电子等排原理在药物先导化合物优化中的应用。 关键词:生物电子等排原理;药物先导化合物;结构优化 中图分类号:R 9 6 2 ; Q 6 4 文献标识码:A
The application of the bioisosterism in lead optimization
CUI Yong-Mei, NAN Fa-Jun*
(National Center for Drug Screening, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of CAS, Shanghai 201203, China)
第2期
崔永梅,等:生物电子等排原理在药物先导化合物优化中的应用
163
构效关系研究表明,肉毒碱 8 的羟基被胺基替换产 生的类似物 9 ,与其四价三甲基胺基团被其电子等 排体叔丁基替换产生的类似物 10 具有相似的活性。
1.5 环等同体 将经典的电子等排替换运用于环系时则产生各
种环等同体。最成功的例子之一为芳环中 -CH =CH- 被 -S- 及 -CH= 被 -NH= 的替代。早期的例子即为磺 胺类抗菌药磺胺吡啶、磺胺噻唑及磺胺嘧啶的发展 (图 1)。

药物设计学第七章77讲述

药物设计学第七章77讲述

目前,使用生物电子等排体进行新化合物设计时,应从物 理、化学、电性和构型参数等多方面进行考虑;
一般要从以下四个方面进行分析,从理论上对生物电子等 排体取代后的化合物进行药效学和药动学性质的预测。
1.原子的大小、体积及电子分布,原子杂化和极化程度,键角 以及结合时的诱导和中介效应。
2.化合物的脂水分配系数及溶解度,以及预测pKa值。 3.官能团和生物电子等排体的化学反应性,主要用来预测生物
举例:羟基π,Es,σm分别是-0.67, 0.69, 0.12, 巯基0.39, 0.17, 0.25,三者均不相似。
OH
H
N
N
NN
SH
H
N
N
NN
此两种电子等排体如在芳环上相互置换,往往生成对 抗药,如机体正常代谢物质次黄嘌呤(6-羟基嘌呤)中的 羟基改换为巯基,则成为抗代谢物,有抗白血病的疗效。
这些参数并不要求完全相似,仅在某些重要参数上求其 近似,并与生物活性存在相关性。
如具有相近脂水分配系数的生物电子等排体,称等疏水 性电子等排体等。
电子等排体还要注意电性,立体性,和疏水性等
某些官能团的等电性,疏水性和立体性
官能团 σm
π
Es
F
0.34
0.14
0.78
Cl
0.37
0.71
0.27
Br
一价原子或基团的取代
O H X
CHOHCH2NHCH3
CH3SO2 ON H
X
CHOHCH2NHCH3
受体 去氧肾上腺素
0.004mg/kg
pKa=9.6
受体
烷基磺酰胺化合物
0.002mg/kg
pKa=9.1
两个对硫喷妥钠麻醉的犬有几乎相同的活性

生物电子等排体

生物电子等排体

生物电子等排原理在药学设计中的应用敬娟(西南交通大学生命科学与工程学院,四川成都610031)摘要:生物电子等排原理在药物设计和结构修饰中起着重要作用。

本文介绍了生物电子等排体的概念,分类以及常见的生物电子等排体在药物优化中应用。

关键词:生物电子等排体;药物设计;结构修饰中图分类号:R97Applications of Bioisosterism in Pharmaceutical DesignJingJuan(School of Life Science and Engerring,Southwest Jiaotong Universty,Chengdu,Sichuan,610031)Abstract: Bioisostere principle plays an important role in drug design and structural modification. Concepts and classifications of bioisosteres and applications of common bioisostere in drug optimization have been introduced in this paper.Key word: Bioisostere; drug design; structure modification我国医药生产多年来以仿制为主,为保障我国人民健康做出来出色贡献。

可是,随着我国经济的日益开放,我们必须将立足点逐渐转移到自己创制新药上来。

创制新药的战术,应先易后难。

将已有的药物或活性物质进行局部化学结构改造,一方面较易从事,另方面保持高效,开发另具特色新药的可能性较大[1]。

在药物结构改造中,生物电子等排体发挥着决定性的作用。

生物电子等排体除了常见的一价、二价、三价和四价原子与基团外,还包括环与非环结构、可交换的基团、基团反转。

生物电子等排原理在药学设计中的应用

生物电子等排原理在药学设计中的应用
2.2二价生物电子等排体
局麻药普鲁卡因酯基中的-0-被其电子等排体-S-和-NH取代,得到了硫卡因和普鲁卡因胺。其中,硫卡因的局 麻作用比普鲁卡因大2倍,而普鲁卡因胺的局麻作用仅 为普鲁卡因的1%,目前主要用于治疗心律不齐。
2.3三价生物电子等排体 毛果芸香碱是胆碱神经M受体激动剂。由于它是内酯结构, 易水解,不稳定。将环上的 -CH=改换成电子等排体-N=, 变成氨基甲酸内酯结构。氨基甲酸醋本比甲酸酯更为稳 定,改变后药物的稳定性增强。
4.结论
生物电子等排原理在药物结构的修饰和优化中虽发 挥着重要作用,但是用生物电子等排体修饰后的药 物分子,虽已达到了预定的改造目的,但这种局部 结构的修饰往往使整个分子的性质亦随之发生改变。 例如,某个经电子等排体改造后获得的分子,可能脂 溶性降低或增加, pKa或极性改变,因而影响该药 物的吸收、转运、排泄,最终影响临床疗效。
基团反转是常见的一种非经典电子等排类型,是同一功能基 团间进行的电子等排。-C0R 与R0C-都是酯,在原来的羧酸 和醇的结构差别不大的情况下,这两种酯的空间效应和电性 效应亦较近似,所以这种酯基反转常可作为电子等排体应用。 镇痛药哌替啶是哌啶羧酸的酯, 而安那度尔是哌啶醇的酯, 两者具有相似的溶解度,药理作用相同,但安那度儿的镇痛 作用是哌替啶的16倍。
3.2可交换的基团
抗菌药磺胺类药物的发现可以说是可交换基团作为电子等排 原理运用到药物设计的里程碑。研究表明,对氨基苯磺酸与 对氨基苯甲酸不仅电子分布和构型方面相似,在pKa、logP 等理化性质方面也很相似。所以,-SO2NH2和-COOH可以说是 具有真正意义上的生物电子等排体。
3.3基团反转
生物电子等排原理在药学设计中的应用
1206 王苗
学号: 2012140619

药物设计原理和方法(3)

药物设计原理和方法(3)
Drugs Fut, 1999, 24(8): 853-857.
3.1.3 羟基与甲磺酰氨基的变换
羟基既是氢键的接受体也是氢键的给予体,因此在作等 排体变换时,应考虑到这两种不同的键合能力。酚羟基具
有弱酸性,磺酰氨基也有弱酸性,而且都有形成氢键的能
力,这是它们的共性。
α受体的激动剂
去氧肾上腺素的酚羟基被甲磺酰氨基替代,尽管所得
化合物无酚羟基,但仍具有α受体的激动作用。两者的 pKa分别为9.6、9.1,提示:该酸性基团对激动α受体起
重要作用。
OH HO OH CH3 CH3SO2NH
H N
H N
CH3
Phenylephrine
β受体拮抗剂
异丙肾上腺素的酚羟基用甲磺酰氨基替代,分别得到β受体拮抗剂索特
瑞醇、索他洛尔,口服吸收迅速,生物利用度高,毒性小,同时,因为甲 磺酰氨基不被O-儿茶酚甲基转移酶代谢失活,因而延长了作用时间。两
两年制药企业屡受降价困扰,利润率不断下滑,企业的资 金链相对比较紧张,的确拿不出更多的钱用于新药研发, 也买不起新药项目,只能买相对便宜的仿制药项目。
最近还有一个明显的趋势就是,营销自然人报批品种数
量明显增加。这部分人活跃在各地的终端市场上,数量庞 大,他们中的一些人申报品种也属正常,但迫于资金压力 和承担风险的能力弱,这部分人大都开发仿制药,而且喜 欢选择像奥美拉唑这样已经有了很好的市场基础、疗效确
从奥美拉唑重复开发看我国研发预警机制
《医药经济报 》 2005-7-8
近日,医药界再次传来新药研发领域严重重复开发的消息, 目前国内有高达上百家企业(共300多个受理号)和研发机 构正在对去年刚过行政保护期的经典胃药奥美拉唑展开疯狂 赶仿。奥美拉唑的行政保护于去年11月结束,除了在行政保

基于生物电子等排体的药物设计

基于生物电子等排体的药物设计

基于生物电子等排体的药物设计生物电子等排体(Bioelectronics platforms)是一种集成微电子技术与生物学技术的交叉学科,它利用电子学和微电子学的原理来研究和应用生物学系统的电子特性和行为。

药物设计在药物研究和开发中起着至关重要的作用,而基于生物电子等排体的药物设计是利用生物电子等排体技术来改善和优化药物设计的过程。

本文将探讨基于生物电子等排体的药物设计的背景、原理和应用。

背景传统的药物设计通常基于大量的试验和研究,需要较长的时间和高昂的成本。

然而,利用生物电子等排体技术,可以更快速、高效地进行药物设计。

生物电子等排体是一种可以仿真和模拟生物体内电子特性和行为的技术,可以用来研究药物在体内的运输、释放和作用机制,从而优化药物设计和研发过程。

原理基于生物电子等排体的药物设计的原理主要包括模拟和仿真技术、微电子传感器和生物芯片技术。

模拟和仿真技术可以模拟和预测药物在生物体内的动力学行为和药理学效应。

微电子传感器可以测量和监测药物的生物活性和效应,包括药物的释放速率、分布和代谢过程。

生物芯片技术可以模拟和研究药物的作用机制和药理学效应,以及药物与生物体细胞和组织的相互作用。

应用基于生物电子等排体的药物设计可以应用于各个领域,包括新药研发、老药优化和个性化药物治疗。

在新药研发方面,可以通过生物电子等排体技术来进行药物筛选和优化,从而提高药物的疗效和安全性。

在老药优化方面,可以利用生物电子等排体技术来研究和改进药物的释放和药理学特性,以提高药物的效果和降低药物的副作用。

在个性化药物治疗方面,可以通过生物电子等排体技术来研究和预测个体对药物的反应和耐受性,从而实现个体化的药物治疗。

总结基于生物电子等排体的药物设计是一种结合微电子技术和生物学技术的新兴领域,它可以模拟和优化药物在生物体内的动力学行为和药理学效应,从而提高药物的疗效和安全性。

该技术在新药研发、老药优化和个性化药物治疗方面有着广阔的应用前景。

07章基于生物电子等排原理的药物设计

07章基于生物电子等排原理的药物设计

疏水性参数
R
P CnC8H17OH CH2O
X
取代基
母体
πx = logPx - logPH
一、生物电子等排体的提出与发展
疏水性参数
πH =0 π>0 疏水性大于 H,疏水性基团 π<0 疏水性小于 H,亲水性基团 加和性: Σπ
取代基
Br CH3 H COOH NH2
π 0.86 0.56 0 -0.32 -1.23
径的制剂。(注:改变剂型但不改变给药途径,以及增 加新适应症的注册申请获得批准后不发给新药证书;靶 向制剂、缓释、控释制剂等特殊剂型除外。)
6. 已有国家药品标准的原料药或者制剂。(仿制药)
第三节 Me-Too 药物
一、注册分类(中药) 1.未在国内上市销售的从植物、动物、矿物等物质 中提取的有效成份及其制剂。(注:单一成份的含量应 当占总提取物的90%以上) 2.新发现的药材及其制剂。 3.新的中药材代用品。(注:替代国家药品标准中 药成方制剂处方中的毒性药材或处于濒危状态药材的未 被法定标准收载的药用物质) 4.药材新的药用部位及其制剂。
第三节 Me-Too 药物
一、注册分类(中药,续2) 7.改变国内已上市销售中药、天然药物给药途径的 制剂。 8.改变国内已上市销售中药、天然药物剂型的制剂。 9.仿制药。
1~6类为新药,7~8类按新药程序申报。
Me-Too 药物举例
NH CH3 NH
S N
N CN
S O
N
CH3
H
H3C
N CH3
NH
OH
CH2
NH2
CH3
一、生物电子等排体的提出与发展
等疏水性电子等排体 等电性电子等排体 等立体性电子等排体 等疏水性-等电性电子等排体 等疏水性-等立体性电子等排体 等电性-等立体性电子等排体 等疏水性-等电性-等立体性电子等排体

生物电子等排及其在新药研究中的应用

生物电子等排及其在新药研究中的应用

生物电子等排及其在新药研究中的应用摘要:探索生物电子等排原理在新药研究中应用的规律,推动新药研究的进展;通过查阅文献资料,阐述生物电子等排的定义及各类生物电子等排的特点、使用范围、典型事例;运用生物电子等排原理所产生的新化合物优于、近于或拮抗原来药物,因而具有投资少、风险小、成功率高的特点。

应用生物电子等排体进行新药设计,尤其适合我国制药工业中现有的实际情况。

本文简述了生物电子等排的概念、发展、分类及其在药物设计中的应用。

关键词:生物电子等排、结构改造、药物设计随着数学、物理学、化学、分子生物学、细胞生物学、计算机图形学等相关学科的发展,新药的研究开发已进入一个崭新的时代,成为一门新型的多学科交叉的边缘性学【1~3】。

当今,药物合成高速发展,先导化合物的优化是新药研究的有效方法,“生物电子等排取代(bioisosteric replacement)”即为对先导化合物进行合理优化的有效策略之一。

这种方法是利用生物电子等排体(bioisosteres)原理取代先导化合物中的某些结构单元,以提高其活性及选择性,并降低毒性等。

近年来,“生物电子等排取代”方法在药物先导化合物优化中得以广泛应用【4】,实践证明,运用生物电子等排原理进行药物先导化合物优化可大大加快药物先导物到药物候选物的转化【5~6】。

且运用生物电子等排原理所产生的新化合物优于、近于或拮抗原来药物,因而具有投资少、风险小、成功率高的特点。

尤其适合我国制药工业中现有的实际情况。

生物电子等排原理为设计新药提供了一条相当有实用价值的研究途径,并取得了一定的成效。

1 生物电子等排概念的提出及其发展“生物电子等排”概念最初应回溯到1919年,生物等排取代中应用到的一个重要概念就是“生物等排体”,它是由早期的“电子等排体(isosetre)”这一概念发展和引申而来的。

Langmuir提出“电子等排体”概念,当时是用它来描述那些具有相同原子数和价电子数的分子或离子,如O2-、F-和Ne,N2和CO,N2O和CO2,N3和NCO,以及NO3-与CO32-等。

生物电子等排原理在药学设计中的应用

生物电子等排原理在药学设计中的应用

生物电子等排原理在药学设计中的应用整理者:生命科学与生物制药学院 75K 生物工程一班孙雪作者:王淑月1 ,王洪亮1 ,钮敏21.生物电子等排体的含义凡具有相似的物理及化学性质,并能产生相似、相关或相反生物活性的取代基,当这些基团或取代基的外电子层相似或电子云密度有相似分布,而且分子的形状相似时,即可称作生物电子等排体。

2.生物电子等排体的分类。

①经典电子等排体;②非经典电子等排体。

3.经典电子等排体①一价原子或基团:-CH3,-NH2,-OH,-F;②二价原子或基团:-CH2-,-NH-,-O-,-S-;③三价原子或基团:-CH=,-N=;④四价原子或基团:=C=,=Si=;⑤环等价物:-CH=CH-,-S-.4.代表性非经典电子等排体。

非经典电子等排体结构差别往往很大,但可产生相同生物活性。

例如,抗肿瘤药物氟尿嘧啶、巯嘌呤的设计。

5.经典的生物电子等排体的新药设计1.1 一价电子等排体的新药设计1) F,C1,Br,I互换以后,产生的化合物作用相同,活性相似或增强。

如苯海拉明为抗过敏药,分子中一个苯环上对位H 被卤素(X)替代以后,其抗过敏作用随原子量增加而增加。

2)苯并二吡咯类抗生素Duocarmycin(DUM)为抗肿瘤抗生素,其B。

和C。

异构体,仅为氯(C1)和溴(Br)的区别,二者都有较好的抗肿瘤活性,均已开发为抗肿瘤新药[8]。

3)OH与SH互换次黄嘌呤为肌体正常代谢物,参与体内代谢和蛋白质的合成,其C OH 为代谢中要除去的基团,SH 代替C OH,成为Ce巯基嘌呤后,产生拮抗作用,为抗癌药物,有抗白血病等作用。

1.2 二价电子等排体的新药设计二价电子等排体键角及空间分布相似,但疏水性相差较大,互相替代后生物活性常发生一定变化,如酯和酰胺,在酯化合物中,C—O—C键的旋转受到共轭和脂烃取代基的影响,脂肪族酯以顺式占优势;酰胺亦处于类似平面结构,占优势的构型也是顺式[9]。

因此含有相似结构组份的具有相似的生理活性,如普鲁卡因和普鲁卡因酰胺,都具有局麻作用,但前者活性强;这是因为酯羰基碳原子上的电子云密度最低,与受体产生偶极吸引而产生药效。

基于生物电子等排原理的药物

基于生物电子等排原理的药物

NN
O
N
H
N
NN
NC 7-69
O
NC 7-70 法尼 基 转移 酶抑 制 剂
2、可交换的基团
H N
H
O SNH2 2.4
O
6.9 对氨基苯磺酰胺
H N
H
O 2.3
O
6.7 对氨基苯甲酸
O HO
NH2
7-74 γ- 氨基丁酸
NN N
N H
7-75
NH2
CI
N
OH
N
CI
N
OH
N
COOH
7-76 EXP7711
▪ 氢化物取代规则:1925年,Grimm建立了一套 氢化物取代规则,即周期表中C、N、O等原子每 结合一个氢原子,即与下一列原子或基团形成电 子等排体。
▪ Hinsberg开始注意到各种芳杂环的相互交 换,如噻吩、苯、吡啶、吡咯和呋喃作为 电子等排体的相互取代。
以上研究与生物活性分子无直接关系, 但却为向生物科学的渗透奠定了基础。
▪ 1951年药物化学家Friedman提出了生物电子等 排体的概念
▪ 近代生物电子等排体:生物电子等排不仅应具有 相同总数外层电子,还应在分子大小、形状、构 象、电子分布、酯水分配系数、PKa、化学反应 性和氢键形成能力等方面存在相似性。
这些参数并不要求完全相似,仅在某些重要 参数上求其相近,并与生物活性存在相关性。
Me Too药物的设计策略
▪ 关注新出现的突破性新药 ▪ 关注尚无专利保护的NCE ▪ 进行专利边缘的创新
进行专利边缘的创新策略
▪ 对化合物的局部化学结构进行改造 ▪ 改变化合物的元素组成 ▪ 分析总结构效关系,充分利用拼合原理 ▪ 重视手性药物开发与研究

生物电子等排在药物设计中的应用

生物电子等排在药物设计中的应用

生物电子等排体在药物设计中的应用摘要随着数学、物理学、化学、分子生物学、细胞生物学、计算机图形学等相关学科的发展,新药的研究开发已进入一个崭新的时代,成为一门新型的多学科交叉的边缘性学科。

我国医药生产多年来以仿制为主,为保障我国人民健康做出来出色贡献。

可是,随着我国经济的日益开放,我们必须将立足点逐渐转移到自己创制新药上来。

创制新药的战术,应先易后难。

将已有的药物或活性物质进行局部化学结构改造,一方面较易从事,另方面保持高效,开发另具特色新药的可能性较大[1]。

在药物结构改造中,生物电子等排体发挥着决定性的作用。

生物电子等排体除了常见的一价、二价、三价和四价原子与基团外,还包括环与非环结构、可交换的基团、基团反转。

关键词:生物电子等排体药物设计药物创新前言1979年, Thornber 综合了电子等排体的概念, 提出凡具有相似理化性质且由其产生广泛的相似生物活性的分子或基团都应是生物电子等排体[1]。

随着生物电子等排原理的广泛应用, 生物电子等排体的范围逐渐扩大, 研究者把生物电子等排体分为2 类, 即经典和非经典的生物电子等排体。

经典的生物电子等排体包括Grimm的氢化物替代规律及Erlenmeyer 定义所限定的电子等排体。

取代基团的形状、大小和外层电子构型大致相同,组成基团的原子数、价键数、不饱和程度及芳香性等方面极其相似, 按照Erlenmeyer 氢化物取代规律可分为一价、二价、三价、四价及环内等价5 种类型。

非经典的生物电子等排体不符合Erlenmeyer 的电子等排定义,基团的原子数可以不同,形状和大小变化亦较大,但保留了原基团的pKa值、静电势能、最高占据分子轨道和最低空轨道等性能,因而仍显示相应的生物活性,如—CO —和—SO2—以及—SO2NH2和PO( OH) NH2等[2]。

1生物电子等排体的分类传统的生物电子等排体可分为经典和非经典两大类。

经典的生物电子等排体包括,一价原子和基团(如-OH与-NH2)、二价原子与基团(如-CH2-与-O-)、三价原子与基团(如=N-与=CH-)、四价原子与基团(如=C=与=Si=)。

10.《跟我学药物设计》药物设计中的生物电子等排体

10.《跟我学药物设计》药物设计中的生物电子等排体

跟我学药物设计 | 药物设计中的生物电子等排体收录于合集#跟我学药物设计14个君子善假于物科研快人一步云计算平台 | 公共化合物库 | 医药软件开发殷赋科技团队正在陆续推出基础学习、经典阅读、计算方案、案例讨论、科研时事等主题学习专栏。

让我们一起夯实基础,开拓思路,在殷赋云计算平台上做出更好的科研成果。

本期是【跟我学药物设计】专栏第十篇文章,下面就药物设计中的生物电子等排体展开介绍。

生物电子等排体指具有相似物理化学性质的基团或取代基产生相似、相关或相反的生物活性的一种物质。

生物电子等排体不仅具有相同外层电子总数(同价),还应在分子大小、分子形状(包括键角、杂化度)、构象、电子分布(包括极化度、诱导效应、共轭效应、电荷、偶极等)、脂水分配系数、pKa 、化学反应活性(包括代谢相似性)和氢键形成能力等方面存在相似性。

如-CH 3、-OH和-NH 2、-CH 2-和-O-互为电子等排体。

01氢键2022-05-12 18:06发表于广东原创殷赋科技生物电子等排体概念的发展1)电子等排的概念生物电子等排(Bioisosterism)是由早期的电子等排(Isosteriam)发展和延伸来的。

早在1919年Langmuir就在无机化学中提出了电子等排体(Isostere)的概念,即凡是具有相同数目的原子和电子,并且电子排列状况也相同的分子、原子或基团(离子)称为电子等排体【1】。

如N 2和CO、N 2O和CO 2、N 3-和NCO-等属于电子等排体,它们具有相似的性质。

苯、噻吩和吡啶的理化性质很相似,为解释它们之间的相似性,1916年Hinsberg提出环等价物(Ring Equivalents)概念,即当芳香环的等价部分相互替代时,理化性质不会显著地改变,如-S-与-CH=CH-、-N=与-CH=为两对环等价部分【2】。

此后,Hückel将Hinsberg的等价概念推广到其他有机物和无机物中,认为-CH3、=CH2和≡CH分别与F、O、N相当而可以相互替代。

生物电子等排体双环[1.1.1]戊烷(BCP)在药物设计中的应用

生物电子等排体双环[1.1.1]戊烷(BCP)在药物设计中的应用

Journal of China Pharmaceutical University2022,53(1):1-9学报生物电子等排体双环[1.1.1]戊烷(BCP)在药物设计中的应用黄雨,张寅生*(正大天晴药业集团股份有限公司,江苏省抗病毒靶向药物研究重点实验室,南京211100)摘要随着药物化学和有机化学的发展,越来越多经典的和非经典的生物电子等排体被运用到新药的设计中。

近几年来,双环[1.1.1]戊烷基团(BCP)作为苯环、叔丁基和炔烃的生物电子等排体越来越受到药物化学家和有机化学家们的广泛关注。

本文综述了BCP在药物设计中的应用,旨在为新药研究人员提供参考。

关键词双环[1.1.1]戊烷;生物电子等排体;药物设计中图分类号R914.2文献标志码A文章编号1000-5048(2022)01-0001-09doi:10.11665/j.issn.1000-5048.20220101引用本文黄雨,张寅生.生物电子等排体双环[1.1.1]戊烷(BCP)在药物设计中的应用[J].中国药科大学学报,2022,53(1):1–9.Cite this article as:HUANG Yu,ZHANG Yinsheng.Application of bioisostere-bicyclo[1.1.1]pentane(BCP)in drug design[J].J China Pharm Univ,2022,53(1):1–9.Application of bioisostere-bicyclo[1.1.1]pentane(BCP)in drug design HUANG Yu,ZHANG Yinsheng*Jiangsu Key Laboratory of Targeted Antiviral Research,Chia Tai Tianqing Pharmaceutical Group,Nanjing211100,ChinaAbstract With the development of medicinal and organic chemistry,more and more classical and non-classical bioisosteres are used in the design of novel drugs.Bicyclo[1.1.1]pentane(BCP),as a bioisostere of benzene,t-butyl and alkyne moieties,has recently received extensive attention from medicinal and organic chemists.This paper briefly reviews its application in drug design to provide reference for drug discovery researchers.Key words bicyclo[1.1.1]pentane;bioisostere;drug designThis study was supported by the Program of Jiangsu Key Laboratory of Targeted Antiviral Research([2019]No.1627)生物电子等排是指将化合物结构中的某些原子或基团,用其外层电子总数相等(同价)或在体积、形状、构象、电子分布、脂水分配系数、pKa,化学反应性和氢键形成能力等重要参数上存在相似性的原子或基团进行替换,从而产生新化合物的一种方法[1]。

生物电子等排原理

生物电子等排原理

一价等排体
二价等排体 三价等排体 四价等排体 环内相当体
F OH NH2CH3
O
N
C
CH CH
Cl SH PH2
S
P
N
As
S
Br
Se
Sb
As
O
I
Te
CH
Sb
NH
第7页,本讲稿共16页
一价电子等排体的应用 抗癌药五氟脲嘧啶
O
HN
H
O
N
O
HN
F
O
N
第8页,本讲稿共16页
• 抗癌药甲氨蝶呤
OH
N N
H2N N N

• 经典电子等排:即符合Erlenmeyer定义。
• 非经典电子等排:不符合Erlenmeyer定义,但置换 后可使化合物的立体排列、电子构型与原化合物具 有相似的原子或原子团。如:H与F,CO-与-
SO2。
第5页,本讲稿共16页
1974年Hanch提出广义生物电子等排的定义:在同一标准 实验系统中能也引起相等的生化或药理作用的化合物。所 谓实验系统是指用酶、膜、鼠或人的试验。
第13页,本讲稿共16页
非经典的电子等排体在药物设计中 的应用
非经典的电子等排体不符合Erlenmeyer 定义,但能产生相似或相拮抗的生理作用。 其不必具备相同总数的外层电子,但在分 子大小、分子形状、构像、电子分布、脂 水分配系数、pKa、化学反应活性、氢键形 成能力等方面存在相似性。这些参数不必 全部相似,仅在某些重要参数上近似,并 能产生相似的生物活性。
第14页,本讲稿共16页
• 酯基倒置
C2H5O C O
N CH3
度冷丁
C2H5 C O O
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于生物电子等排体的药物设计
1.生物电子等排体的概念
生物电子等排体的概念脱胎于物理化学家Langmuir在1919年提出的化学电子等排体的概念。

狭义的电子等排体是指原子数、电子总数以及电子排列状态都相同的不同分子或基团。

如N2与CO;CH2=C=O与CH2=N=N等。

广义的电子等排体是指具有相同数目价电子的不同分子或基团,不论其原子及电子总数是否相同。

如-F、-OH、-NH2;-O-、-CH2-、-NH-等。

近代生物电子等排体的概念认为:生物电子等排体不仅应具有相同总数外层电子,还应在分子大小、形状(键角、杂化度)、构象、电子分布(极化度、诱导效应、共轭效应、电荷、偶极等)、脂水分布系数、pKa、化学反应性(代谢相似性)和氢键形成能力等方面存在相似性。

这些参数并不要求完全相似,仅在某些重要参数上相似即可。

2.生物电子等排体的分类
1970年,AlfredBurger等人将生物电子等排体分为经典的生物电子等排体与非经典的生物电子等排体两大类。

经典的生物电子等排体包括,一价原子和基团(如-OH与-NH2)、二价原子与基团(如-CH2-与-O-)、三价原子与基团(如=N-与=CH-)、四价原子与基团(如=C=与=Si=)。

非经典的生物电子等排体包括,环与非环结构、可交换的基团(如羧基与四氮唑)、基团反转(如-COOR与-OCOR)。

非经典的生物电子等排体,即前述的近代生物电子等排体概念,它不是简单地满足经典生物电子等排体的立体性和电性规则。

3.生物电子等排体在药物设计中的应用举例
3.1一价原子或基团的取代
在抗炎药的研究过程中,人们一直致力于寻找选择性的环氧合酶-2(COX-2)抑制剂。

先导化合物SC-58125(化合物1)具有很高的COX-2选择性和抑酶活性,但其半衰期却超过200小时,将其结构中的-CH3用-NH2取代,-F用-CH3取代,得到化合物celecoxib(化合物2),于1999年由辉瑞/西尔公司引入巴西市场,用于治疗类风湿性关节炎和其他炎症,成为第一个选择性的非甾体抗炎药,且无胃刺激性的副作用。

3.2二价原子或基团的取代
吩噻嗪类抗精神失常药氯丙嗪(化合物3)杂环中的-S-和-N-被其电子等排体-CH2CH2-和=C=取代,得到了抗抑郁药丙咪嗪(化合物4)和阿米替林(化合物5)。

对七元环进一步修饰,-CH2-被电子等排体-O-取代,产生了精神病治疗药物多赛平(化合物6)。

3.3四价基团的取代及环系等价体
在生物电子等排的应用中,由于C、Si原子之间在原子大小、负电性和亲脂性等方面有很大差异,而且Si-H键也很不稳定,所以这类电子等排体之间的替换还存在很大局限性。

在各类药物中,环系等价体的取代是十分常见的,而且成功率极高。

如:
抗菌药
止痛药
3.4环与非环结构及构象限制
环与非环生物电子等排体的一个典型例子是己烯雌酚(化合物7)和雌二醇(化合物8),两者的生理活性基本相同。

己烯雌酚的双键对于酚羟基和乙烯基在受体部位正确的空间分布取向是极其重要的,其顺式异构体的活性仅有反式异构体
活性的1/4左右。

己烷雌酚与其他雌二醇的非环类似物,由于不存在双键结构,通过碳碳单键的自由旋转可转变为与雌激素立体结构相似的构象。

但也正是由于C-C单键可以自由旋转,形成的构象不如己烯雌酚的立体结构固定,所以活性弱。

虽然己烯雌酚可以看做是雌二醇的开环修饰产物,但是其发现完全是偶然的。

3.5可交换的基团
抗菌药磺胺类药物的发现可以说是可交换基团作为电子等排原理运用到药物设计的里程碑。

对氨基苯磺酸是百浪多息的活性代谢产物,在上世纪三十年代作为抗菌药使用。

后来的研究表明,对氨基苯磺酸与对氨基苯甲酸在结构上极为相似,这种相似性不仅体现在电子分布和构型方面,还体现在pKa、logP等理化性质方面。

所以,磺酰胺基(-SO2NH2)和羧基(-COOH)可以说是具有真正意义上的生物电子等排体。

四氮唑基团可以作为羧基的交换基团,如血管紧张素Ⅱ受体的拮抗剂氯沙坦(化合物10)是由先导化合物EXP7711(化合物9)中的羧基变为四氮唑基团而得到的。

这是由于四氮唑基团与羧基具有相似的酸性,而且比羧基更稳定,亲脂性更强,因此,具有四氮唑结构的化合物更易通过血脑屏障,而到达预订部位发挥药效。

3.6基团反转
基团反转是常见的一种非经典电子等排类型,是同一功能基团间进行的电子等排。

如镇痛药二甲基哌替啶(化合物11)是一个哌啶醇的丙酸酯,而哌替啶(化合物12)则是一个哌啶的已酯,两者具有酯基反转的关系。

2008级药物化学专业硕士曹江营
2008年12月23日。

相关文档
最新文档