狂犬病病毒实验室检测方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

狂犬病病毒实验室检测方法

摘要:狂犬病(Rabies)是一种重要的人兽共患传染病,由狂犬病病毒(Rabies virus,RV)感染温血动物和人后引起,近年来又有感染上升的趋势。一种准确、灵敏、快速的实验室检测诊断方法就显得极为重要。现就酶联免疫吸附试验(ELISA)、荧光抗体方法(FAT)、快速荧光抑制灶技术(RFFIT)、反转录-聚合酶链反应(RT-PCR)、荧光定量RT-PCR,基因芯片技术和恒温扩增技术等狂犬病病毒实验室诊断方法做一综述。

关键词:狂犬病狂犬病病毒检测方法

狂犬病(Rabies)是一种重要的人兽共患传染病,由狂犬病病毒(Rabies virus,RV)感染温血动物和人后引起,以恐水、畏光、吞咽困难、狂躁、急性致死性脑脊髓炎,进行性麻痹和最终死亡为主要临床特征。RV可感染多种温血动物引起死亡,表现为高度嗜神经性。脑组织感染RV后遭到破坏,使得狂犬病感染的病死率几乎100%。

据WHO数据显示狂犬病在全世界150个国家和地区出现过狂犬病病例。尽管狂犬病可以通过疫苗免疫进行预防,全世界每年仍有超过5.5 万人死于该病,主要集中在亚、非、拉等发展中国家[1]。中国狂犬病疫情较严重,居世界第2位[2~3],近年来,狂犬病疫情呈现回升的趋势[4]。检测狂犬病抗原抗体、分析狂犬病的流行特点,并建立高效、快速、可靠的实验室检测方法可以有效控制此病的流行。下面主要针对RV的形态特征和分子结构及主要的检测技术进行概述。1、狂犬病病毒形态特征

RV属于弹状病毒科(Rhabdoviridae)狂犬病病毒属(Lyssavirus)血清/基因1 型,单股负链RNA病毒。电镜下观察病毒粒子直径为70~80nm,长160~240nm,一端钝圆,另一端平凹,整体呈子弹状[5]。病毒有双层脂质外膜,其外面镶嵌有1072-1900个8-10nm长的纤突(spike),为糖蛋白,每个糖蛋白呈同源三聚体形式,电镜还显示了糖蛋白具有“头”和“茎”结构。病毒双层脂质包膜的内侧主要是膜蛋白,亦称基质蛋白(Matrix,简称M),是狂犬病毒的最小结构

蛋白。病毒的中央核心是一个直径为40nm的核衣壳,核衣壳(Nucleocaps)由病毒核酸(-ssRNA)和紧密包在其外面的蛋白组成,呈紧密的连续性螺旋形式,它充满在由脂蛋白外壳形成的空间内,有30一35个卷曲。每个病毒约有1800个紧密排列的核蛋白。另外两种核衣壳核心的蛋白为大转录酶蛋白或称RNA多聚酶(Polymerase,简称L)和磷蛋白(Phosphoprotein,简称P)。N、P和L三种蛋白总称为核糖核酸蛋白(Ribonueleoprotein,简称RNP)[6]。

2、狂犬病病毒基因组结构

RV基因组为不分节段的单股负链RNA,分子质量约为4.6×106,大小约为12kb,由7个功能区组成,包括3′先导区、5个连续的结构基因和5′非转录区。其中约91%的核苷酸为结构基因,由3′端poly(A)→5’ 端AACA依次为N、P、M、G、L,其长度分别为1421、991、804或805,1675或2059、2069,和6429 或6384个核苷酸,对应的开放读码框((Open reading frame ,ORF)大小依次为1353、894、609、1575、6429个核苷酸,分别编码核蛋白(NP)、磷蛋白(PP)、基质蛋白(MP)、糖蛋白(GP)和依赖RNA的RNA多聚酶(LP)。在狂犬病病毒3ˊ端有一段58个核苷酸的先导序列,第59位核苷酸是N基因mRNA5ˊ端的起始位点,第一个开放阅读框架是第71位的ATG起始密码子和第1424位的TAA终止密码子之间延伸,编码病毒的核蛋白,核蛋白基因高度保守又高效表达,可以用于狂犬病毒感染的诊断和调查。各结构基因之间的间隔区核苷酸分别为2、5、5、423nt[7]。其中G-L之间的居间序列为伪基因,在某些类型的病毒中可以转录出第6个mRNA。

3、狂犬病病毒的实验室检测

3.1病毒形态学观察

电镜观察:病毒颗粒呈圆柱体,底部扁平,另一端钝圆,整个病毒粒子的外型呈子弹状,直径75nm,长130~200nm。表面有1072~1900个突起,排列整齐,于负染标本中表现为六边形蜂房状结构。

3.2 组织病理学检测

狂犬病引起的脑炎主要体现在病毒对神经的广泛侵入, 但只局限于细胞损伤[10狂犬病毒G,N基因的表达]。组织病理学变化为一定程度的脑水肿,不存在其他特异的组织病理学变化。据Jogai S.等[8]报道,Adlochi Negri于1903在狂犬病

感染组织内观察到胞浆内嗜酸性包涵体,这些包涵体被命名为Negri小体,因此可通过检测Negri小体来确诊狂犬病。Negri小体大多出现在海马回、大脑皮质锥体细胞和浦肯也氏细胞中,较少出现在丘脑、桥脑、髓质、脊髓和感觉神经节等神经组织中。组织切片及海马回、脑干、小脑新鲜组织涂片经Sllers,苏木精-伊红,Mann或其他物质染色后,可观察到Negri小体的存在。Negri小体是典型的圆形或椭圆形有嗜碱性颗粒的嗜酸性物质[9]。

该方法优缺点:当组织学检查发现有狂犬病特征性病变时,通过检测内基氏小体,能达到简便、快速地确诊。然而从感染病毒的动物标本中检测Negri小体,只有50% ~80%的检出率。因此,镜检Negri小体,虽然快速而且容易操作,但检测方法的敏感度不够。

3.3 生物学检测

3.3.1乳鼠颅内接种分离狂犬病病毒法

此方法最初用于狂犬病的诊断是在1935年[10]。改良后MIT,即小鼠病毒中和试验(MVNT)被广泛用于疫苗接种动物和人的抗体检测[11][12]。依照WHO狂犬病专家委员会推荐[13],荧光抗体实验检测阴性的结果的脑样品必须再次经MIT证实。

狂犬病病毒具有较强的嗜神经性,可采用小鼠颅内接种法分离病毒后,再进行狂犬病特异性抗原的检测。MIT具体操作方法为:采集脑或唾液腺等病料加缓冲盐水研磨成10%乳剂,无菌处理后离心,取上清液脑内接种5~7日龄乳鼠,性别、品种不限,每只0. 03 mL,每份标本接种4~6只。乳鼠在接种后继续由母鼠同窝哺养, 3~4 d后如发现哺乳减少,痉挛,麻痹死亡,即可取脑检查包涵体。如经7 d仍不发病,可杀死其中2只,剖取鼠脑作成悬液,如上传代。如第二代仍不发病,可再传代。连续盲传三代总计观察4周而仍不发病者,作阴性结果报告。也可应用3周龄以内的幼鼠,如上作脑内接种。可疑动物脑组织或唾液腺组织可用于病毒的分离,从流行病学角度考虑,检查唾液腺中的病毒更为重要,但脑组织的病毒检出率更高。在欧、美等发达国家,小鼠接种试验逐渐被细胞培养所取代,但小鼠接种试验仍然是发展中国家用以确诊狂犬病的重要检测方法。

MIT方法优缺点:小鼠接种试验敏感,准确率高,适于不具备组织培养条件的实验室检测、分离狂犬病病毒,但耗时较长,仅凭动物发病症状不足以确定为狂犬病病毒感染,常常需要配合免疫荧光法(见下文)作特异性鉴定。

相关文档
最新文档