大学物理第三章动量动量守恒
合集下载
大学物理动量守衡定律
感谢您的观看
VS
促进基础研究
动量守恒定律不仅在实践中有重要应用, 同时也是物理学基础研究的重要组成部分 。通过深入研究和理解动量守恒定律,科 学家们可以探索物质的本质和宇宙的奥秘 ,推动物理学理论的进步和创新。
06 结论
动量守恒定律的重要性
在物理学中的基础
地位
动量守恒定律是物理学中的基本 定律之一,是理解和分析力学系 统的基础。
推导过程
牛顿第三定律
作用力和反作用力大小相等 、方向相反。
速度守恒定律
在无外力作的平移定理
力是矢量,可以平移而不改 变其效果。
适用范围
惯性参考系
动量守恒定律只在惯性参考系中成立。
封闭系统
只考虑系统内的物体,忽略外界对系统的作用 力。
无外力作用
系统内的物体间相互作用力不受到外界力的影响。
探索动量守恒定律在复杂系统中的应用
随着科技的发展,越来越多的复杂系统需要用到动量守恒定律,如何将其应用到这些系统中是一个值 得研究的方向。
动量守恒定律与其他物理规律的相互作用
动量守恒定律并不是孤立的,它与其他物理规律之间存在相互作用和影响,研究这些相互作用有助于 更深入地理解物理世界的规律。
THANKS FOR WATCHING
动量守恒定律在经典力学、相对论和 量子力学中都有应用,是物理学中非 常重要的一个概念。
学习目标
01 理解动量守恒定律的物理意义和适用范围。
02
掌握动量守恒定律的数学表达形式和推导过 程。
03
能够应用动量守恒定律解决实际问题,如碰 撞、火箭推进等。
04
了解动量守恒定律在科学技术中的应用,如 原子核物理、天体物理等领域。
04 动量守恒定律的实例和应 用
VS
促进基础研究
动量守恒定律不仅在实践中有重要应用, 同时也是物理学基础研究的重要组成部分 。通过深入研究和理解动量守恒定律,科 学家们可以探索物质的本质和宇宙的奥秘 ,推动物理学理论的进步和创新。
06 结论
动量守恒定律的重要性
在物理学中的基础
地位
动量守恒定律是物理学中的基本 定律之一,是理解和分析力学系 统的基础。
推导过程
牛顿第三定律
作用力和反作用力大小相等 、方向相反。
速度守恒定律
在无外力作的平移定理
力是矢量,可以平移而不改 变其效果。
适用范围
惯性参考系
动量守恒定律只在惯性参考系中成立。
封闭系统
只考虑系统内的物体,忽略外界对系统的作用 力。
无外力作用
系统内的物体间相互作用力不受到外界力的影响。
探索动量守恒定律在复杂系统中的应用
随着科技的发展,越来越多的复杂系统需要用到动量守恒定律,如何将其应用到这些系统中是一个值 得研究的方向。
动量守恒定律与其他物理规律的相互作用
动量守恒定律并不是孤立的,它与其他物理规律之间存在相互作用和影响,研究这些相互作用有助于 更深入地理解物理世界的规律。
THANKS FOR WATCHING
动量守恒定律在经典力学、相对论和 量子力学中都有应用,是物理学中非 常重要的一个概念。
学习目标
01 理解动量守恒定律的物理意义和适用范围。
02
掌握动量守恒定律的数学表达形式和推导过 程。
03
能够应用动量守恒定律解决实际问题,如碰 撞、火箭推进等。
04
了解动量守恒定律在科学技术中的应用,如 原子核物理、天体物理等领域。
04 动量守恒定律的实例和应 用
大学物理 第三章 动量守恒定律和能量守恒定律 3-5 保守力与非保守力
①引力势能 引力势能
m' m m' m 引力的功 引力的功 WAB = −(−G r ) − (−G r ) B A
A点势能: 点势能: 且令E 设B点为无限远 即rB=∞ 且令 PB=0 点为无限远
m' m WAB = −G rA
= − ( E pB − E pA ) = E pA
功与路径无关,只决定于初末位置。 功与路径无关,只决定于初末位置。 第三章 动量守恒和能量守恒
4
} ⇒ dW
物理学
第五版
3-5 保守力与非保守力 势能 -
F
dW
O
x1
x2
dx
x2 x
W = ∫ Fdx = ∫
x1
x2
x1
1 2 1 2 − kxdx = −( kx2 − kx1 ) 2 2
5
第三章 动量守恒和能量守恒
W p → p0 = −( Ep0 − Ep ) = −∆Ep
E p ( x, y, z) =
∫
E p0 = 0
( x, y,z )
F ⋅ dr
任意一点的势能等于在保守力作用下 从该点到势能零点保守力所作的功
第三章 动量守恒和能量守恒 10
物理学
第五版
3-5 保守力与非保守力 势能 -
W AB = − ( E pB − E pA ) = − ∆ E P
引力的功 引力的功
m' m m' m WAB = −(−G ) − (−G ) rB rA
引力势能 引力势能
m' m Ep = −G r
弹性势能 弹性势能
弹力的功 弹力的功
W AB 1 1 2 2 = − ( kx B − kx A ) 2 2
m' m m' m 引力的功 引力的功 WAB = −(−G r ) − (−G r ) B A
A点势能: 点势能: 且令E 设B点为无限远 即rB=∞ 且令 PB=0 点为无限远
m' m WAB = −G rA
= − ( E pB − E pA ) = E pA
功与路径无关,只决定于初末位置。 功与路径无关,只决定于初末位置。 第三章 动量守恒和能量守恒
4
} ⇒ dW
物理学
第五版
3-5 保守力与非保守力 势能 -
F
dW
O
x1
x2
dx
x2 x
W = ∫ Fdx = ∫
x1
x2
x1
1 2 1 2 − kxdx = −( kx2 − kx1 ) 2 2
5
第三章 动量守恒和能量守恒
W p → p0 = −( Ep0 − Ep ) = −∆Ep
E p ( x, y, z) =
∫
E p0 = 0
( x, y,z )
F ⋅ dr
任意一点的势能等于在保守力作用下 从该点到势能零点保守力所作的功
第三章 动量守恒和能量守恒 10
物理学
第五版
3-5 保守力与非保守力 势能 -
W AB = − ( E pB − E pA ) = − ∆ E P
引力的功 引力的功
m' m m' m WAB = −(−G ) − (−G ) rB rA
引力势能 引力势能
m' m Ep = −G r
弹性势能 弹性势能
弹力的功 弹力的功
W AB 1 1 2 2 = − ( kx B − kx A ) 2 2
大学物理动量守恒定律和能量守恒定律
04
动量守恒定律和能量守恒定 律的意义与影响
在物理学中的地位
基础定律
动量守恒定律和能量守恒定律是物理学中的两个基础定律,它们 在理论物理学和实验物理学中都占据着重要的地位。
理论基石
这两个定律为物理学理论体系提供了基石,许多物理理论和公式都 是基于这两个定律推导出来的。
验证实验
许多实验通过验证动量守恒定律和能量守恒定律的正确性,来检验 实验的准确性和可靠性。
适用条件
系统不受外力或外力合力为零
动量守恒定律只有在系统不受外力或外力合力为零的情况下才成立。如果系统受到外力作 用,则总动量将发生变化。
系统内力的作用相互抵消
系统内力的作用只会改变系统内各物体的速度,而不会改变系统的总动量。如果系统内力 的作用相互抵消,则总动量保持不变。
理想气体和刚体的动量守恒
未来能源利用的发展需要解决环 境问题和能源短缺问题,动量守 恒定律和能量守恒定律将在新能 源技术、节能技术等领域发挥关
键作用。
感谢您的观看
THANKS
在理想气体和刚体的研究中,由于气体分子之间的相互作用力和刚体之间的碰撞力都可以 忽略不计,因此它们的动量守恒。
实例分析
弹性碰撞
当两个小球发生弹性碰撞时,根据动量守恒定律,它们碰撞后 的速度满足m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'。由于弹性碰撞中能 量没有损失,因此碰撞前后两小球的速度变化量相等。
动量与能量的关系
动量是质量与速度的乘积,表 示物体的运动状态;能量是物 体运动状态的度量,包括动能
和势能。
动量和能量都是矢量,具有 方向性,遵循矢量合成法则。
动量和能量可以相互转化,但 总量保持不变,这是动量守恒 和能量守恒定律的内在联系。
火箭 03-3动量守恒定律()大学物理
由此得
v2
mu
(M m)v2 M m
mu 1 1 M m M 2m
v1和v2相比,可知 v1<v2
3.3 动量守恒定律
3.3.2 火箭飞行
设火箭在外层空间飞 行,空气阻力和重力不计, 动量守恒定律适用。
“长征二号E” 运 载火箭
3.3 动量守恒定律
在t0时刻的速度为v0,火箭(包括燃料)的总质 量为M0,热气体相对火箭的喷射速度为u。随着燃 料消耗,火箭质量不断减少。
动画演示:在两球对心碰撞过程中动量的转移
3.3 动量守恒定律
例题1 一辆停在直轨道上质量为M 的平板车上站着 两个人,当他们从车上沿同方向跳下后,车获得了 一定的速度。设两个人的质量均为m ,跳下时相对 于车的水平分速度均为u。试比较两人同时跳下和两 人依次跳下两种情况下,车所获得的速度的大小。
解 以人离开车的速度水平分量方向为正,车的速 度方向沿负方向。当两人同时跳下车时,对人和车 这个系统而言,在水平方向上动量守恒,因而有
可能发生变化。 在碰撞、打击、爆炸等相互作用时间极短的
过程中,由于系统内部相互作用力远大于合 外力,往往可忽略外力,系统动量守恒近似 成立。 动量守恒可在某一方向上成立。
3.3 动量守恒定律
在应用动量守恒定律时,要注意以下几点: 定律中的速度应是对同一惯性系的速度, 动量和应是同一时刻的动量之和。 动量守恒定律在微观和高速范围仍适用。 动量守恒定律只适用于惯性系。
• 一般多采用多级火箭来提高速度
v1 u ln N1 v2 v1 u ln N2
vn vn1 u ln Nn
u ln( N1 N2 Nn )
3.3 动量守恒定律
大学物理之3-2动量守恒定律
实验器材与步骤
• 实验器材:滑块、气垫导轨、挡光板、光电门、天平、砝 码、小车等。
实验器材与步骤
实验步骤 1. 将滑块放置在气垫导轨上,调整挡光板的位置,使滑块能够顺利通过光电门。
2. 使用天平测量滑块和小车的质量,并记录下来。
实验器材与步骤
01
3. 将小车从静止状态释放,使其与滑块发生碰撞。
04 动量守恒定律的推导与证 明
推导过程
01
牛顿第二定律:物体受到的合外 力等于其质量与加速度的乘积。
02
定义动量为物体的质量与速度的 乘积,即$p=mv$。
根据牛顿第二定律,物体受到的 合外力等于其动量的变化率,即 $frac{dp}{dt}=ma$。
03
当合外力为零时,动量守恒,即 $frac{dp}{dt}=0$。
02
4. 使用光电门测量小车和滑块碰撞前后的速度,并记录下来。
5. 根据测量数据计算系统在碰撞前后的动量变化,验证动量守
03
恒定律。
实验结果与结论
实验结果
通过测量和计算,发现系统在碰撞前后的动量变化符合动量守恒定律。
实验结论
实验验证了动量守恒定律的正确性,加深了对动量守恒定律的理解。同时,实验过程中需要注意控制 实验条件,保证测量数据的准确性和可靠性。
能量守恒定律
在某些条件下,动量守恒定律和能量守恒定律可以 结合起来使用,如碰撞过程中动能和动量的关系。
角动量守恒定律
当系统受到的力矩为零时,系统的角动量保 持不变,与动量守恒定律一起描述了机械运 动的守恒规律。
在现代物理学中的应用
01
基本粒子
在研究基本粒子的相互作用和演 化过程中,动量守恒定律是重要 的理论基础。
第三章-动量守恒定律
cos d
R
2、求半径为 R 、顶角为 2 的均匀扇形薄板的质
心?
习题3-8
3、求质量均匀分布的半球体的质心?
解:
建立坐标系
计算 C z
dz z
由对称性可知,质心在 z 轴上 根据质心定义式 zC
设球体的体密度为
zdm dm
dm ( R 2 z 2 )dz
v10 v1 v2 v20 v10 v20 v2 v1
碰前相互接近的速度 = 碰后相互离开的速度
m1 m2 时 v1 v20 , v2 v10 m1 m2 2m1 v v , v v10 v20 0 时 1 10 2 m1 m2 m1 m2
根据质点动量定理:
t I Fdt p p0 mv mv0 0 mv0
根据平均冲力定义: F I mv0 t t m(v0 ) mv0 F t t
根据质点动能定理: mgh 1 mv 2 0
F
h
mg
m 2 gh F 3.1105 N t
2
v0 2 gh
方向向上
§ 3-2 质点系动量定理和质心运动定理
一、质点系动量定理
1、两个质点构成的质点系
研究对象 受力分析 内力:
F2
f12
2
f 21
F1
1
外力:
运动特点
t0 :
t:
分别对 应用质点动量定理
i
动量守恒定律
当外力矢量和为零时,质点系的总动量保持不变。
说明
分量守恒
大学物理第三章-动量守恒定律和能量守恒定律-习题及答案
t1
即:作用在两质点组成的系统的合外力的冲量等于系统内两质点动量之和的增 量,即系统动量的增量。 2.推广:n 个质点的情况
t2 t2 n n n n F d t + F d t m v mi vi 0 i外 i内 i i i 1 i 1 i 1 i 1 t1 t1
yv 2
同乘以 ydy,得
y 2 gdty y
积分 得
y
0
y
gdty
yvdt( yv)
0
1 3 1 gy ( yv) 2 3 2
因而链条下落的速度和落下的距离的关系为
2 v gy 3
1/ 2
7
第4讲
动量和冲量
考虑到内力总是成对出现的,且大小相等,方向相反,故其矢量和必为零, 即
F
i 0
n
i内
0
设作用在系统上的合外力用 F外力 表示,且系统的初动量和末动量分别用
5
第4讲
动量和冲量
P0 和 P 表示,则
t2 n n F d t m v mi vi 0 i i 外力 t1
F外 dt=dPFra bibliotek力的效果 关系 适用对象 适用范围 解题分析
*动量定理与牛顿定律的关系 牛顿定律 动量定理 力的瞬时效果 力对时间的积累效果 牛顿定律是动量定理的 动量定理是牛顿定律的 微分形式 积分形式 质点 质点、质点系 惯性系 惯性系 必须研究质点在每时刻 只需研究质点(系)始末 的运动情况 两状态的变化
1
第4讲
动量和冲量
§3-1 质点和质点系的动量定理
实际上,力对物体的作用总要延续一段时间,在这段时间内,力的作用将 积累起来产生一个总效果。下面我们从力对时间的累积效应出发,介绍冲量、 动量的概念以及有关的规律,即动量守恒定律。 一、冲量 质点的动量定理 1.动量:Momentum——表示运动状态的物理量 1)引入:质量相同的物体,速度不同,速度大难停下来,速度小容易停下;速 度相同的物体,质量不同,质量大难停下来,质量小容易停下。 2)定义:物体的质量 m 与速度 v 的乘积叫做物体的动量,用 P 来表示 P=mv 3)说明:动量是矢量,大小为 mv,方向就是速度的方向;动量表征了物体的 运动状态 -1 4)单位:kg.m.s 5)牛顿第二定律的另外一种表示方法 F=dP/dt 2.冲量:Impulse 1)引入:使具有一定动量 P 的物体停下,所用的时间Δt 与所加的外力有关, 外力大,Δt 小;反之外力小,Δt 大。 2)定义: 作用在物体外力与力作用的时间Δt 的乘积叫做力对物体的冲量, 用 I 来表 示 I= FΔt 在一般情况下,冲量定义为
即:作用在两质点组成的系统的合外力的冲量等于系统内两质点动量之和的增 量,即系统动量的增量。 2.推广:n 个质点的情况
t2 t2 n n n n F d t + F d t m v mi vi 0 i外 i内 i i i 1 i 1 i 1 i 1 t1 t1
yv 2
同乘以 ydy,得
y 2 gdty y
积分 得
y
0
y
gdty
yvdt( yv)
0
1 3 1 gy ( yv) 2 3 2
因而链条下落的速度和落下的距离的关系为
2 v gy 3
1/ 2
7
第4讲
动量和冲量
考虑到内力总是成对出现的,且大小相等,方向相反,故其矢量和必为零, 即
F
i 0
n
i内
0
设作用在系统上的合外力用 F外力 表示,且系统的初动量和末动量分别用
5
第4讲
动量和冲量
P0 和 P 表示,则
t2 n n F d t m v mi vi 0 i i 外力 t1
F外 dt=dPFra bibliotek力的效果 关系 适用对象 适用范围 解题分析
*动量定理与牛顿定律的关系 牛顿定律 动量定理 力的瞬时效果 力对时间的积累效果 牛顿定律是动量定理的 动量定理是牛顿定律的 微分形式 积分形式 质点 质点、质点系 惯性系 惯性系 必须研究质点在每时刻 只需研究质点(系)始末 的运动情况 两状态的变化
1
第4讲
动量和冲量
§3-1 质点和质点系的动量定理
实际上,力对物体的作用总要延续一段时间,在这段时间内,力的作用将 积累起来产生一个总效果。下面我们从力对时间的累积效应出发,介绍冲量、 动量的概念以及有关的规律,即动量守恒定律。 一、冲量 质点的动量定理 1.动量:Momentum——表示运动状态的物理量 1)引入:质量相同的物体,速度不同,速度大难停下来,速度小容易停下;速 度相同的物体,质量不同,质量大难停下来,质量小容易停下。 2)定义:物体的质量 m 与速度 v 的乘积叫做物体的动量,用 P 来表示 P=mv 3)说明:动量是矢量,大小为 mv,方向就是速度的方向;动量表征了物体的 运动状态 -1 4)单位:kg.m.s 5)牛顿第二定律的另外一种表示方法 F=dP/dt 2.冲量:Impulse 1)引入:使具有一定动量 P 的物体停下,所用的时间Δt 与所加的外力有关, 外力大,Δt 小;反之外力小,Δt 大。 2)定义: 作用在物体外力与力作用的时间Δt 的乘积叫做力对物体的冲量, 用 I 来表 示 I= FΔt 在一般情况下,冲量定义为
大学物理第三章动量守恒定律和能量守恒定律
动量守恒定律的表述
总结词
动量守恒定律表述为系统不受外力或所 受外力之和为零时,系统总动量保持不 变。
VS
详细描述
动量守恒定律是自然界中最基本的定律之 一,它表述为在一个封闭系统中,如果没 有外力作用或者外力之和为零,则系统总 动量保持不变。也就是说,系统的初始动 量和最终动量是相等的。
动量守恒定律的适用条件
能量守恒定律可以通过电磁学 的基本公式推导出来。
能量守恒定律可以通过相对论 的质能方程推导出来。
能量守恒定律的应用实例
01
02
03
04
机械能守恒
在无外力作用的系统中,动能 和势能可以相互转化,但总和
保持不变。
热能守恒
在一个孤立系统中,热量只能 从高温物体传递到低温物体,
最终达到热平衡状态。
电磁能守恒
详细描述
根据牛顿第三定律,作用力和反作用力大小相等、方向相反。如果将一个物体施加一个力F,则该力会产生一个 加速度a,进而改变物体的速度v。由于力的作用是相互的,反作用力也会对另一个物体产生相同大小、相反方向 的加速度和速度变化。因此,在系统内力的相互作用下,系统总动量保持不变。
02
能量守恒定律
能量守恒定律的表述
感谢观看
01
能量守恒定律表述为:在一个封闭系统中,能量不能被创造或消灭, 只能从一种形式转化为另一种形式。
02
能量守恒定律是自然界的基本定律之一,适用于宇宙中的一切物理过 程。
03
能量守恒定律是定量的,可以用数学公式表示。
04
能量守恒定律是绝对的,不受任何物理定律的限制。
能量守恒定律的适用条件
能量守恒定律适用于孤立系统,即系统与外界没有能量 交换。
大学物理-第三章三大守恒定律
i
i
1 若质点系动量守恒,则动量在三个坐标轴上的分量都守恒。
2、在系统内质点间的碰撞,打击,爆炸过程中,内力很大,可 忽略重力、摩擦力等外力,可近似认为动量守恒。
上一页 下一页
3、虽然有时系统总动量不守恒,但只要系统在某个方向受 的合外力为0,则系统在该方向动量守恒。
即 F x 当 F ix 0 时 p x , m iv ix 常量
mv1
得 F (0 .3 )22 0 32 0 2 2 0 3c0o 3 s()0 14 (N )51
0 .01
根据正弦定理
sm i 2 nvsiF n t() 18 ,即力的 v 夹 方 角 1向 6 。 为 2
上一页 下一页
例2-6质量为m=30kg的铁锤(彩电)从1m高处由静止下落,碰撞
Ixt1 t2F xd tpx2px1mx2 vmx1v Iyt1 t2F yd tpy2py1my2v my1v Izt1 t2F zd tpz2pz1mz2 vmz1v
4 . 对于碰撞、打等 击过 、程 爆, 炸物体互 之作 间用 的
称为冲力, 值其 大特 , 点 变 t短是 化 ,峰 大 在, 某
b v2
d v
d(m v )
d p
t 2
Fm am
Fdtdp
dt dt
微分形式
dt
a
v1
I 定义 :t1 t动2F 量 d ptp p 1 m 2d vp p 2 t 1 p 1 P 2m mv( 2v I2 t1t2v F1 d)t
( M d)v M (d v ) d( v M d v u ) Mv
动量定理及动量守恒定律第三章
在直角坐标系中: , ,
在自然坐标系中: ,
其中 是 、 在坐标轴上的投影,均为代数量,其正负由矢量和坐标轴方向间的夹角小于或大于 来定。方程的数目等于未知数的数目,有时要根据题目中的物理条件列出数字方程。
5解方程,对所得结果进行必要的讨论。
例题讲解:
1如图所示,在光滑的水平地面上放一质量为M的契块,契块底角为 ,斜边光滑,今在其斜边上放一质量为m的物体,求物体沿契块下滑时对契块和对地面的加速度。
解:参考系:地面
研究对象:契块和物体
m
mg
Nm
θ
受力分析: 契块 物体且N‘=-Nm
X
Y
θ
M
m
M
Mg
N
N’
一 章节小结
(一). 惯性定律
1.惯性定律:自由粒子永远保持静止或匀速直线运动状态。
2.惯性参考系 对某一特定物体惯性定律成立的参考系。
其特性:(1)在惯性系中所有物体遵从惯性定律。
(2)一切相对惯性系作匀速直线运动的参考系都是惯性系。
3.相对性原理 对于牛顿动力学规律,一切惯性系都是等价的。
θ
坐标系:如图所示
β
设物体相对地面的加速度为 ,和水平面的夹角为 向下
物体相对契块的加速度为 ,沿斜面,和地面成角
契块相对地面的加速度为 ,沿水平方向后。
根据相对性: ,
例如,对阿特武德机,只能分别选两个物体为研究对象,而不能把两个物体作为一个研究对象来应用牛顿运动定律。
2分析研究对象的受力情况,画出受力图。
3建立坐标系:有了坐标系,才便于把力、加速度等矢量向坐标轴投影,使矢量运算化为标量运算,在动力学中坐标原点的位置可以任意。
大学物理 第三章 动量守恒定律和能量守恒定律 3-9 质心 质心运动定律
物理学
第五版
3-9 质心 -
质心运动定律
一 质心
1 质心的概念
板上C点的运动轨迹是抛物线 板上 点的运动轨迹是抛物线 其余点的运动=随 点的平动+绕 点的 点的平动 点的转动 其余点的运动 随C点的平动 绕C点的转动
第三章 动量守恒和能量守恒
1
物理学
第五版
3-9 质心 -
质心运动定律
2 质心的位置 由n个质点组成 个质点组成 的质点系, 的质点系,其质心 的位置: 的位置:
13
物理学
第五版
3-9 质心 n n v v v m'vC = ∑ mi vi = ∑ pi = p i =1 i =1
质心运动定律
求一阶导数, 再对时间 t 求一阶导数,得
质心加速度
dp v m'aC = dt v v dp ex 根据质点系动量定理 = Fi dt
第三章 动量守恒和能量守恒
}⇒
x2 = 2 xC
17
第三章 动量守恒和能量守恒
物理学
第五版
3-9 质心 -
质心运动定律
例4 用质心运动定律 y F 来讨论以下问题. 来讨论以下问题. 一长为l 一长为 、密度均匀的 y 柔软链条, 柔软链条,其单位长度的质 c yC 量为 λ .将其卷成一堆放在 地面. 若手提链条的一端, 地面. 若手提链条的一端, o 以匀速v 将其上提.当一端 以匀速 将其上提. 被提离地面高度为 y 时,求手的提力. 求手的提力.
竖直方向作用于链条的合外力为 F − λyg
第三章 动量守恒和能量守恒
20
物理学
第五版
3-9 质心 -
质心运动定律
v 得到 F − yλg = lλ ⋅ l
第五版
3-9 质心 -
质心运动定律
一 质心
1 质心的概念
板上C点的运动轨迹是抛物线 板上 点的运动轨迹是抛物线 其余点的运动=随 点的平动+绕 点的 点的平动 点的转动 其余点的运动 随C点的平动 绕C点的转动
第三章 动量守恒和能量守恒
1
物理学
第五版
3-9 质心 -
质心运动定律
2 质心的位置 由n个质点组成 个质点组成 的质点系, 的质点系,其质心 的位置: 的位置:
13
物理学
第五版
3-9 质心 n n v v v m'vC = ∑ mi vi = ∑ pi = p i =1 i =1
质心运动定律
求一阶导数, 再对时间 t 求一阶导数,得
质心加速度
dp v m'aC = dt v v dp ex 根据质点系动量定理 = Fi dt
第三章 动量守恒和能量守恒
}⇒
x2 = 2 xC
17
第三章 动量守恒和能量守恒
物理学
第五版
3-9 质心 -
质心运动定律
例4 用质心运动定律 y F 来讨论以下问题. 来讨论以下问题. 一长为l 一长为 、密度均匀的 y 柔软链条, 柔软链条,其单位长度的质 c yC 量为 λ .将其卷成一堆放在 地面. 若手提链条的一端, 地面. 若手提链条的一端, o 以匀速v 将其上提.当一端 以匀速 将其上提. 被提离地面高度为 y 时,求手的提力. 求手的提力.
竖直方向作用于链条的合外力为 F − λyg
第三章 动量守恒和能量守恒
20
物理学
第五版
3-9 质心 -
质心运动定律
v 得到 F − yλg = lλ ⋅ l
大学物理第三章动量守恒定律和能量守恒定律
展望了未来在学习相对论和量子力学中,对动量守恒定律和能量守恒定律的更深入理解 和应用。
探索其他守恒定律
鼓励了对其他守恒定律的探索,如角动量守恒定律、电荷守恒定律等。
THANKS
感谢观看
探索性实验:动量与能量的关系研究
实验目的
研究动量与能量的关系,探索两者之间的联系和 区别。
实验步骤
选择合适的实验器材,如弹性碰撞器、非弹性碰 撞器等,设计不同的碰撞条件,记录实验数据。
实验原理
动量和能量是描述物体运动状态的物理量,两者 之间存在一定的关系。通过研究不同运动状态下 物体的动量和能量变化,可以深入理解两者之间 的关系。
05
实验验证与探索
动量守恒定律的实验验证
实验目的
通过实验验证动量守恒定律, 加深对动量守恒定律的理解。
实验原理
动量守恒定律指出,在没有外 力作用的情况下,系统的总动 量保持不变。
实验步骤
选择合适的实验器材,如滑轨、 滑块、碰撞器等,按照实验要求 进行操作,记录实验数据。
实验结果
通过分析实验数据,验证动量 守恒定律的正确性。
动量守恒定律的应用实例
总结词:举例说明
详细描述:应用动量守恒定律的实例包括行星运动、碰撞、火箭推进等。例如,在行星运动中,行星绕太阳旋转时动量守恒 ;在碰撞过程中,两物体相互作用时的动量变化遵循动量守恒定律;火箭推进则是通过燃料燃烧产生高速气体,利用反作用 力推动火箭升空,这一过程中动量守恒。
03
守恒定律的意义
强调了守恒定律在物理学中的重要地位,以及在解决实际问题中的应 用价值。
对动量守恒定律和能量守恒定律的思考
守恒的哲学思考
探讨了守恒定律在哲学上的意义,以及它们 对宇宙观的影响。
探索其他守恒定律
鼓励了对其他守恒定律的探索,如角动量守恒定律、电荷守恒定律等。
THANKS
感谢观看
探索性实验:动量与能量的关系研究
实验目的
研究动量与能量的关系,探索两者之间的联系和 区别。
实验步骤
选择合适的实验器材,如弹性碰撞器、非弹性碰 撞器等,设计不同的碰撞条件,记录实验数据。
实验原理
动量和能量是描述物体运动状态的物理量,两者 之间存在一定的关系。通过研究不同运动状态下 物体的动量和能量变化,可以深入理解两者之间 的关系。
05
实验验证与探索
动量守恒定律的实验验证
实验目的
通过实验验证动量守恒定律, 加深对动量守恒定律的理解。
实验原理
动量守恒定律指出,在没有外 力作用的情况下,系统的总动 量保持不变。
实验步骤
选择合适的实验器材,如滑轨、 滑块、碰撞器等,按照实验要求 进行操作,记录实验数据。
实验结果
通过分析实验数据,验证动量 守恒定律的正确性。
动量守恒定律的应用实例
总结词:举例说明
详细描述:应用动量守恒定律的实例包括行星运动、碰撞、火箭推进等。例如,在行星运动中,行星绕太阳旋转时动量守恒 ;在碰撞过程中,两物体相互作用时的动量变化遵循动量守恒定律;火箭推进则是通过燃料燃烧产生高速气体,利用反作用 力推动火箭升空,这一过程中动量守恒。
03
守恒定律的意义
强调了守恒定律在物理学中的重要地位,以及在解决实际问题中的应 用价值。
对动量守恒定律和能量守恒定律的思考
守恒的哲学思考
探讨了守恒定律在哲学上的意义,以及它们 对宇宙观的影响。
大学物理3_3 角动量 角动量守恒定律
将
R 、 h1 、h2 和 v1 各值代入,得
2 6.13公里/ 秒
3 – 3 角动量 角动量守恒定律 第三章 刚体的转动 例3-8 两个转动惯量分别为 J1 和 J2 的圆盘 A和 B. A 是机器上的飞轮, B 是用以改变飞轮转速的离合器 圆盘. 开始时, 他们分别以角速度ω 1 和ω 2 绕水平轴 转动. 然后,两圆盘在沿水平轴方向力的作用下.啮合 为一体, 其角速度为 ω, 求 齿轮啮合后两圆盘的角速度. 解: 系统角动量守恒
( L mR )
2
得
LdL m gR cosd
3 – 3 角动量 角动量守恒定律
第三章 刚体的转动
LdL m gR cosd
2 3
由题设条件积分上式
L
0
LdL m gR
2
32
3
0
cosd
12
L mR (2 g sin )
L mR
2
2g 12 ( sin ) R
3 – 3 角动量 角动量守恒定律
第三章 刚体的转动
力的时间累积效应 力矩的时间累积效应 角动量定理.
一
冲量、动量、动量定理. 冲量矩、角动量、
刚体定轴转动运动状态的描述 L J Ek J 2 2 0, p 0 0, p 0
质点的角动量定理和角动量守恒定律 质点运动状态的描述 p mv Ek mv 2 2
2
航天器调姿
1
3 – 3 角动量 角动量守恒定律 第三章 刚体的转动 例3-6 如图所示,有一质量为 m1 、长度为 l 的均质细 棒,原先静止地平放在水平桌面上,它可绕通过其端点O 且与桌面垂直的固定轴转动,另有一质量为 m2 的水平运动 的小滑块,从棒的侧面沿垂直于棒的方向与棒的另一端A 相碰撞,并被棒反向弹回,设碰撞时间极短。已知小滑块 碰撞前、后的速率分别为 和 u ,桌面与细棒的滑动摩 擦系数为 。求:(1)从碰撞到细棒停止运动所需的时 间;(2)从碰撞到细棒停止运动,细棒转过的圈数。
基础物理第7讲力学第三章动量及其守恒
由此得火箭所受燃气的反推力为
dm
F F气 对 箭 u
dt
二. 重力场中的火箭发射
先分析一微过程: t t +dt
初态:系统质量 M,速度v (对地),动量 M v
末态:喷出燃料后
喷出燃料的质量:dm = - dM,
喷出燃料速度(对地): v - u
火箭壳体 +尚存燃料的质量: M - dm
如图, 一物体在地面滑动,
地面系:f 作负功 生热
f
m
S
m 静止系:有摩擦没位移, f 不作功
“摩擦生热”与参考系有关?
如图, 相互作用力(一对力) f A f B
若位移为 drA 、drB
则这对力所作总元功为:
dA f A drA f B drB
dM
dv u
gdt
M
dM
dv u
gdt
M
忽略地面附近重力加速度 g 的变化,
可得 t 时刻火箭的速度:
Mi
v ( t ) v i gt u ln
Mt
比较:不计重力时
Mt: t 时刻火箭壳和
尚余燃料的质量
Mi
v f v i uln
Mf
(89.5%) 质量相等的两个物体甲和乙,并
AF ( oab )
x
1
b
a
2 x (m)
y
oab
( 2 ydx 4 x dy )
2
1
0
16 dy 16 J
oab
AF ( ob ) ( 2 ydx 4 x 2 dy )
dm
F F气 对 箭 u
dt
二. 重力场中的火箭发射
先分析一微过程: t t +dt
初态:系统质量 M,速度v (对地),动量 M v
末态:喷出燃料后
喷出燃料的质量:dm = - dM,
喷出燃料速度(对地): v - u
火箭壳体 +尚存燃料的质量: M - dm
如图, 一物体在地面滑动,
地面系:f 作负功 生热
f
m
S
m 静止系:有摩擦没位移, f 不作功
“摩擦生热”与参考系有关?
如图, 相互作用力(一对力) f A f B
若位移为 drA 、drB
则这对力所作总元功为:
dA f A drA f B drB
dM
dv u
gdt
M
dM
dv u
gdt
M
忽略地面附近重力加速度 g 的变化,
可得 t 时刻火箭的速度:
Mi
v ( t ) v i gt u ln
Mt
比较:不计重力时
Mt: t 时刻火箭壳和
尚余燃料的质量
Mi
v f v i uln
Mf
(89.5%) 质量相等的两个物体甲和乙,并
AF ( oab )
x
1
b
a
2 x (m)
y
oab
( 2 ydx 4 x dy )
2
1
0
16 dy 16 J
oab
AF ( ob ) ( 2 ydx 4 x 2 dy )
大学物理-第三章-动量守恒定律和能量守恒定律
20
★一对作用力与反作用力的功只与相对位移有关
f ji
ri
f ij
rij
rj
0
dW
jidWij
f
ji
dri
fij drj
f ji fij
fji f ji
(dd(rriidrrjj))
f ji
drij
S
S u
动量的相 对性和动量定 理的不变性
F(t)
t1 m
v1
光滑
v 2
m t2
参考系 t1 时刻 t2 时刻
动量定理
S系
S’系
mv1
mv2
m(v1 u) m(v2 u)
t2 t1
F (t )dt
mv2
mv1
5
例3-1: 作用在质量为1kg 的物体上的力 F=6t+3,如果物体在这
0=m1(v1+v2)+m2v2
v2
m1v1 m1 m2
x
t 0
v2dt
m1 m1 m2
t 0
v1dt
L
t
0 v1dt
x m1L 0.8m m1 m2
负号表示船移动的方向与人前进的方向相反。
17
3-4 动能定理
一、功的概念(work) 功率(power) 1、恒力的功
2、动能定理
2
1
或
F
dr
F
dr
1 2
mv22
大学物理 动量动量守恒定律
大学物理动量动量守恒定律
物理学中,动量是描述物体运动的一种量度。
它是由物体的质量和它的速度相乘而得到的。
换句话说,动量是物体的运动量。
在物理学中,动量也被称为动量矢量,它的单位是千克·米/秒(kg·m/s)。
动量守恒定律是一个重要的物理定律,它是指在一个闭合系统内,如果没有外力作用其上,那么这个系统的总动量将会保持不变。
这个定律适用于所有物体,无论是静止或运动的,无论它们是同向运动或相向运动的。
动量守恒定律可以用以下方式表述:在一个系统内,所有物体的总动量在任何时刻都保持不变。
这意味着,如果一个物体的动量增加,那么另一个物体的动量必须减少,以保持系统的总动量不变。
一个常见的例子是在弹性碰撞中,两个物体相互碰撞并且弹回。
在这种情况下,物体的动量守恒,因为每个物体都会在碰撞前和碰撞后拥有相同的动量。
碰撞前后,两个物体的动能总和也保持不变。
另一个例子是在火箭推进器中,燃料的喷射会产生反冲力,使火箭向前加速。
在这种情况下,燃料的质量减少,但系统的总动量仍保持不变。
这是因为火箭推进器在释放燃料的同时产生了相等而相反的动量。
动量守恒定律对于理解运动的基本原理至关重要,它可以用来解决许多物理问题。
例如,当两个物体以不同的速度运动,碰撞后它们的速度会如何变化。
使用动量守恒定律,可以准确计算碰撞后物体的速度和能量分配。
总的来说,动量守恒定律是物理学中的核心原则之一,并且在物理学的许多分支中都有广泛的应用。
通过了解这个定律,我们可以更深入地理解物体的运动和相互作用,并且能够更准确地预测系统的运动和它们的结果。
大学物理动量守恒定律和能量守恒定律
比 外力做正功等于相应动能的增加; 较 外力做负功等于相应动能的减少。
注意:
1、计算势能必须规定零势能参考点。势能是相对量, 其量值与零势能点的选取有关。
2、势能函数的形式与保守力的性质相关,对应于一种 保守力的函数就可以引进一种相关的势能函数。
3、势能是属于以保守力形式相互作用的物体系统所共 有的。
第三章 动量守恒定律和能量守恒定律
守恒定律
动量守恒定律 机械能守恒定律 能量守恒定律
物理学大厦 的基石
3-1 质点和质点系的动量定理
一、冲量 质点的动量定理
F dpd(mv) dt dt
牛顿第二定律 动量 pm v
F d td pd(m v)
I t 1 t2 F d t p p 1 2 d p p 2 p 1 m v 2 m v 1
vv 21 vv 2m m 1v 1 rvm r 23 .1 2 7 .1 71 0 1 3 0m 3m /s /s
3-4 动能定理
一、功、功率
1、功
r
i
F
B
i
恒力功: W F s c o s F s
变力功
A
元功:
d W Fd r
取得有限位移 W dW r2Fdr r1
冲量: I t2 Fdt t1
力对时间的累积效应
作用于物体上的合外力的冲量等于物体动量的增量
——质点的动量定理
分量表示式
t1t2FxdtIx mv2xmv1x t1 t2FydtIymv2ymv1y t1t2FzdtIz mv2zmv1z
问题:动量增量方向?
o v0
x
冲量的方向?动量增量的 方向,一般与力的方向不一致。
功的单位:焦耳(J)
注意:
1、计算势能必须规定零势能参考点。势能是相对量, 其量值与零势能点的选取有关。
2、势能函数的形式与保守力的性质相关,对应于一种 保守力的函数就可以引进一种相关的势能函数。
3、势能是属于以保守力形式相互作用的物体系统所共 有的。
第三章 动量守恒定律和能量守恒定律
守恒定律
动量守恒定律 机械能守恒定律 能量守恒定律
物理学大厦 的基石
3-1 质点和质点系的动量定理
一、冲量 质点的动量定理
F dpd(mv) dt dt
牛顿第二定律 动量 pm v
F d td pd(m v)
I t 1 t2 F d t p p 1 2 d p p 2 p 1 m v 2 m v 1
vv 21 vv 2m m 1v 1 rvm r 23 .1 2 7 .1 71 0 1 3 0m 3m /s /s
3-4 动能定理
一、功、功率
1、功
r
i
F
B
i
恒力功: W F s c o s F s
变力功
A
元功:
d W Fd r
取得有限位移 W dW r2Fdr r1
冲量: I t2 Fdt t1
力对时间的累积效应
作用于物体上的合外力的冲量等于物体动量的增量
——质点的动量定理
分量表示式
t1t2FxdtIx mv2xmv1x t1 t2FydtIymv2ymv1y t1t2FzdtIz mv2zmv1z
问题:动量增量方向?
o v0
x
冲量的方向?动量增量的 方向,一般与力的方向不一致。
功的单位:焦耳(J)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
mivi
n
mivi0
t1
i1
i1
I= P- P0
作用在系统的合外力的冲量等于系统 动量的增量——质点系的动量定理
3.分量形式
Ix=Px-Pxo Iy=Py-Pyo Iz=Pz-Pz0
即某一方向作用于系统达到的所有外力的冲量的代数和等
于在同一时间内该方向系统的动量的增量。
4.无限小的时间间隔的质点系的动量定理
牛顿第二定律 F m a m d v d(m v )d P dtdt dt
2、冲量(力与作用时间的乘积,矢量)
定义: 作用在物体外力与力作用的时间Δt的乘积叫做 力对物体的冲量,用I来表示 I= FΔt
大小:
I=
t2
Fdt
t1
方向:动量增量的方向
单位:N·s
量纲:MLT-1
ห้องสมุดไป่ตู้说明:
F
•冲量是表征力持续作用一段时 F
F
t2 t1
Fdtmv2 mv1
t2 t1
t2 t1
思考:冲量的方向是否与作用力的方向相同?
(1)如果 F 是一个方向不变,大小变的变力,
那末冲量I方向与
F
方向相同;
It1 t2F d tF (t2t1)
(2)如果
F
是一个方向和大小都变的变力,那末冲量
I 的大小和方向是由这段时间内所有微分冲量
概念:动量、冲量、动能、势能。 定理:动量定理、动能定理、功能原理。 定律:动量守恒定律、机械能守恒定律。
3--1 质点和质点系的动量定理 一、冲量 质点的动量定理
1、动量 ——表示运动状态的物理量
定义:物体的质量与速度的乘积叫做物体的动量
P mv
•动量是矢量,大小为 mv,方向就是速度的方向;
•动量表征了物体的运动状态 •单位: kg·m·s-1 •量纲:MLT-1
I y F y dt mv 2 y mv 1 y t
I z F z dt mv 2 z mv 1z t
•应用: 利用冲力:增大冲力,减小作用时间——冲床 避免冲力:减小冲力,增大作用时间——轮船靠岸时的缓冲
利用动量定理计算平均冲力
F = 1ttF d t 1tm v 2m v 1
t 0.v 1 0 1 m 1 0s 2 v /2 s m 0 m /2 s.
22
F x 6 .1 NF y 0 .7 NF F x F y 6 .1N 4
Ix0.0N 61sIy0.0N 07s
I Ix 2Iy 26.1 41 02Ns
tgIy Ix 0.1148
6.54
为 I 与x 方向的夹角。
大学物理学电子教案
动量与动量守恒定律
3-1 质点和质点系的动量守恒 3-2 动量守恒定律
复习 •牛顿运动三定律 •几种常见的力 •牛顿运动定律的应用
第三章 动量守恒定律和能量守恒定律
•力的作用需要持续一段时间,或者需要持续一段 距离,这就是力对时间的累积作用和力对空间的 累积作用。 •质点或质点系的动量、动能或能量将发生变化或 转移。在一定条件下,质点系内的动量或能量将 保持守恒。
t1
作用在两质点组成的系统的合外力的冲量等于系统内 两质点动量之和的增量,即系统动量的增量。
2、多个质点的情况
t2 nF i外 d+ tt2 nF i内 d tnm iv inm iv i0
t1 i 1
t1 i 1
i 1
i 1
n
Fi内 0
i0
t2 F外力 dt
v1
解:取挡板和球为研究对象,由于作用 时间很短,忽略重力影响。设挡板对球
的冲力为F 则有:
I F d tm v 2 m v 1
y v2 O 30o
45ox n
v1
IxF xd tm2cvo 3 s0 (m1)c vo 4 s5 F x t
IyF yd tm2svi3n0 m1svi4n5 F y t
Fdt的矢量总和所决定。
例1、质量为2.5g的乒乓球以10m/s的速
率飞来,被板推挡后,又以20m/s的速率 飞出。设两速度在垂直于板面的同一平面 内,且它们与板面法线的夹角分别为45o 和30o,求:(1)乒乓球得到的冲量; (2)若撞击时间为0.01s,求板施于球的 平均冲力的大小和方向。
v2 30o 45o n
F外d= t dP
动量定理与牛顿定律的关系
牛顿定律
动量定理
力的效果 力的瞬时效果
力对时间的积累效果
关系
牛顿定律是动量定 动量定理是牛顿定律
理的微分形式
的积分形式
适用对象 质点
质点、质点系
适用范围 惯性系
惯性系
解题分析
必须研究质点在每 时刻的运动情况
只需研究质点(系) 始末两状态的变化
例2、一质量均匀分布的柔软细绳
o
铅直地悬挂着,绳的下端刚好触到
水平桌面上,如果把绳的上端放开,
绳将落在桌面上。试证明:在绳下
落的过程中,任意时刻作用于桌面
的压力,等于已落到桌面上的绳重
量的三倍。
证明:取如图坐标,设t时刻已有x长
的柔绳落至桌面,随后的dt时间内将
x
有质量为dx的柔绳以dx/dt的速率碰
到桌面而停止,它的动量变化率为:
间的累积效应;
•冲量是矢量: 大小和方向;
•冲量是过程量, 改变物体机 0
t
械运动状态的原因。
t1 dt
t2
3、动量定理
推导
Fmamdv
Fdt
v2
dt
mdv
t
v1
F d tmv d
I m v 2m v 1
F 为恒力时,可以得出I=F t
F 作用时间很短时,可用力的平均值来代替。
I
Fdt=P
dP
dx
dx dt
dt
dt
根据动量定理,桌面对柔绳的冲力为:
I Ft P
在给定的时间间隔内,外力作用在质点上的冲量,
等于该质点在此时间内动量的增量——动量定理
说明
•冲量的方向不是与动量的方向相同,而是与动量增 量的方向相同; •动量定理说明质点动量的改变是由外力和外力作用 时间两个因素,即冲量决定的; •动量定理的分量式
I x F x dt mv 2 x mv 1 x t
二、质点系的动量定理
1、两个质点的情况
t2
F1+F12
dt m1v1 m1v10
t1
t2
F2+F21
dt m2v2 m2v20
t1
t2 t2 F1+F2 d+ t F12+F21dt
t1 (m1v1 m2v2t1)(m1v10m2v20)
F 12F21
t2F 1 + F 2d t(m 1v 1m 2v 2)(m 1v 1 0m 2v 2)0