2015届上海市松江区高三第一学期期末考试(一模)文科数学试题
上海市杨浦区2015届高三一模数学文含答案
上海市杨浦区2015届高三一模数学文含答案XXX年度第一学期高三年级学业质量调研数学学科试卷(文科)考生注意:1.答卷前,务必在答题纸上写上姓名、考号,并将核对后的条形码贴在指定位置上。
2.本试卷共有23道题,满分150分,考试时间120分钟。
一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1.已知sinα=1/2,α∈(0,π),则α=π/6.2.设A={x|1≤x≤3},B={xm+1≤x≤2m+4,m∈R},A⊆B,则m的取值范围是[-1,3)。
3.已知等差数列{an}中,a3=7,a7=3,则通项公式为an=-2n+11.4.已知直线l经过点A(1,-2)、B(-3,2),则直线l的方程是y=-x-1.5.函数f(x)=x^2-1(x<0)的反函数f^-1(x)=√(x+1)(x≥1)。
6.二项式(x-1/2)^4的展开式中的第4项是6x^2-12x+5/16.7.不等式log2(x-3)+x>2的解是(3,∞)。
8.已知条件p:x+1≤2;条件q:x≤a,若p是q的充分不必要条件,则a的取值范围是(-∞,1]。
9.向量a=(2,3),b=(-1,2),若ma+b与a-2b平行,则实数m=1/2.10.一家5口春节回老家探亲,买到了如下图的一排5张车票:6排A座 | 6排B座 | 6排C座 | 走廊 | 6排D座 | 6排E座| 窗口 | 窗口 |其中爷爷行动不便要坐靠近走廊的座位,小孙女喜欢看风景要坐靠窗的座位,则座位的安排方式一共有60种。
11.已知一个铁球的体积为36π,则该铁球的表面积为54π。
12.已知集合A={z|z=1+i+i^2+。
+in,n∈N*},则集合A的子集个数为2^n-1.13.设△ABC的内角A,B,C所对的边分别为a,b,c。
若(a+b-c)(a+b+c)=ab,则角C=π/3.14.如图所示,已知函数y=log2(4x)图像上的两点A,B和函数y=log2(x)上的点C,线段AC平行于y轴,三角形ABC 为正三角形时,点B的坐标为(-1,2),则实数p=-1/4.值为_______________。
届松江区高三一模数学卷及答案(理科)
A 2A 3松江区2015学年度第一学期高三期末考试数学(理科)试卷(满分150分,完卷时间120分钟) 2016.1一.填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.已知全集{}1,2,3,4U =,A 是U 的子集,满足{}}{1,2,32A =,{}1,2,3A U =,则集合A = ▲ .2.若复数1z ai =+(i 是虚数单位)的模不大于2,则实数a的取值范围是 ▲ . 3.行列式cos 20sin 20︒︒sin 40cos 40︒︒的值是 ▲ .4.若幂函数()x f的图像过点2,2⎛⎫ ⎪ ⎪⎝⎭,则()12f -= ▲ . 5.若等比数列{}n a 满足135a a +=,且公比2q =,则35a a += ▲ .6.若圆柱的底面直径和高都与球的直径相等,圆柱、球的表面积分别记为1S 、2,S 则有12:S S = ▲ .7.如图所示的程序框图,输出的结果是 ▲ . 8.将函数)32sin(π+=x y 图像上的所有点向右平移6π个单位,再将图像上所有点的横坐标缩短到原来的21倍(纵坐标不变),则所得图像的函数解析式为 ▲ . 9.一只口袋内装有大小相同的5只球,其中3只白球, 2只黑球,从中一次性随机摸出2只球,则恰好有1只是白球的概率为 ▲ (结果用数值表示).10.在ABC ∆中,内角A 、B 、C 所对的边分别是a 、b 、c . 已知14b c a -=,2sin 3sin B C =,则cos A = ▲ .11.若7(13)x -展开式的第4项为280,则()2lim n n x x x →∞+++= ▲ .12.已知抛物线2:4C y x =的准线为l ,过(1,0)M 且斜率为k 的直线与l 相交于点A ,与抛物线C 的一个交点为B .若2AM MB =,则 k = ▲ .13.已知正六边形126A A A 内接于圆O ,点P 为圆O 上一第7题图点,向量OP 与i OA 的夹角为i θ(1,2,,6i =),若将126,,,θθθ从小到大重新排列后恰好组成等差数列,则该等差数列的第3项为 ▲ .14.已知函数()f x ,对任意的[1,)x ∈+∞,恒有(2)2()f x f x =成立, 且当[1,2)x ∈时,()2f x x =-. 则方程1()3f x x =在区间[1,100]上所有根的和为 ▲ . 二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.已知双曲线2215x y m -=的右焦点与抛物线212y x =的焦点相同,则此双曲线的渐近线方程为.A 2y x =±.B 5y x =± .C 3y x =± .D5y x =± 16.设,a b R ∈,则“a b >”是“a b >”的.A 充分而不必要条件 .B 必要而不充分条件.C 充要条件 .D 既不充分也不必要条件 17. 在正方体1111ABCD A B C D -中,E 、F 分别是棱AB 、1AA 的中点,M 、N 分别是线段1D E 与1C F 上的点,则与平面ABCD 平行的直线MN 有.A 0条 .B 1条 .C 2条 .D 无数条18.在一个有穷数列每相邻两项之间添加一项,使其等于两相邻项的和,我们把这样的操作叫做该数列的一次“H扩展”.已知数列1,2. 第一次“H 扩展”后得到1,3,2;第二次“H 扩展”后得到1,4,3,5,2; 那么第10次“H 扩展”后得到的数列的所有项的和为.A 88572 .B 88575 .C 29523 .D 29526三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分如图,在三棱锥ABC P -中,⊥PA 平面ABC ,AB AC ⊥,4==BC AP ,︒=∠30ABC ,E D 、分别是F ED 1C 1B 1A 1C BA DE PAP BC 、的中点.(1)求三棱锥ABC P -的体积;(2)若异面直线AB 与ED 所成的角为θ,求θtan 的值.20.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分已知函数2()2sin cos f x x x x =-+.(1)当[0,]2x π∈时,求函数 f (x)的值域;(2)求函数 y = f (x )的图像与直线 y =1相邻两个交点间的最短距离.21. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分 在一次水下考古活动中,潜水员需潜入水深为30米的水底进行作业.其用氧量包含以下三个方面:①下潜时,平均速度为每分钟x 2x 升;②水底作业需要x 米,每分钟用氧量为0.2升;设潜水员在此次考古活动中的总用氧量为y 升. (1)将y 表示为x 的函数;(1)若[4,8]x ∈,求总用氧量y 的取值范围.22.(本题满分16分,第1小题3分,第2小题中5分、第2小题8分)在平面直角坐标系xOy 中,O 为坐标原点,C 、D两点的坐标为(1,0),(1,0)C D , 曲线E 上的动点P 满足23PC PD .又曲线E 上的点A 、B 满足OA OB ⊥.(1)求曲线E 的方程;(2)若点A在第一象限,且OA =,求点A 的坐标;(3)求证:原点到直线AB 的距离为定值.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.对于数列{}n a ,称122311()()1k k k P a a a a a a a k -=-+-++--(其中2,k k N ≥∈)为数列{}n a 的前k项“波动均值”.若对任意的2,k k N ≥∈,都有1()()k k P a P a +<,则称数列{}n a 为“趋稳数列”.(1)若数列1,x ,2为“趋稳数列”,求x 的取值范围;(2)若各项均为正数的等比数列{}n b 的公比(0,1)q ∈,求证:{}n b 是“趋稳数列”; (3)已知数列{}n a 的首项为1,各项均为整数,前k 项的和为k S . 且对任意2,k k N ≥∈,都有3()2()k k P S P a =,试计算:()()()23232(1)nn n n n C P a C P a n C P a +++-(2,n n N ≥∈).松江区2015学年度第一学期高三期末考试数学(理科)试卷参考答案 2016.1一.填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. {}2,4. 2. ]3,3[-. 3.12. 4.14. 5. 20. 6. 3:2. 7. 15. 8. sin 4x . 9. 0.6. 10. 14-.11. 25-. 12. ±. 13. 512π. 14. 11902.二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.A. 16.B . 17.D. 18.B.19.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分 解: (1)由已知得,,32,2==AB AC ……………………2分所以 ,体积33831==∆--PA S V ABC ABC P ……………………5分 (2)取AC 中点F ,连接EF DF ,,则DF AB //,所以EDF ∠就ﻩ是异面直线AB 与ED 所成的角θ. ……………………8分 由已知,52,32,2=====PC AB AD EA AC ,EF DF EF AB ⊥∴⊥, . ……………………10分在EFD Rt ∆中,5,3==EF DF ,所以,315tan =θ. ……………………12分 20.(满分14分)本题有3小题,第1小题7分,第2小题3分,第,3小题4分. 解:(1)()f x 22sin cos x x x =-sin 222sin(2)3x x x π=-=-……………………4分当[0,]2x π∈时,22[,]333x πππ-∈-,所以()f x 的值域为[2]……7分(2)()2sin(2)13f x x π=-= ∴1sin(2)32x π-=,……………………9分2236x k πππ-=+或52236x k πππ-=+,k Z ∈ ……………………12分 ∴当()1f x =时,两交点的最短距离为3π……………………14分21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分解:(1)下潜所需时间为30x 分钟;返回所需时间为60x分钟 …………2分 ∴213060100.30.290y x x x =⋅+⨯+⋅ …………5分 1233x y x=++ (0)x > …………6分(2)1243x x +≥=,当且仅当123x x =,即6x =时取等号. …8分 因为[4,8]x ∈,所以1233x y x=++在[4,6]上单调递减,在[6,8]上单调递增所以6x =时,y 取最小值7 (1)又4x =时,173y =;8x =时,176y =, …………13分 所以y 的取值范围是1[7,7]3. (4)22.(本题满分16分,第1小题3分,第2小题中5分、第2小题8分) 解(1)由2CD =,232PCPD知,曲线E是以C、D为焦点,长轴圆, ……………… 1分设其方程为22221x y a b+=,则有1a c ==,∴曲线E的方程为22132x y +=……………… 3分(2)设直线OA 的方程为(0)y kx k =>,则直线OB 的方程为1(0)y x k k=-> 由22236x y y kx ⎧+=⎨=⎩得222236x k x +=,解得212623x k =+.………………4分 同理,由则222361x y y x k ⎧+=⎪⎨=-⎪⎩解得2222623k x k =+. ………………5分由OA =知2243OA OB =, 即222226164(1)3(1)2323k k k k k +⋅=+⋅++………………6分 解得26k =,因点A在第一象限,故k = ………………7分此时点A 的坐标为 ………………8分 (3)设11(,)A x y ,22(,)B x y ,当直线AB 平行于坐标轴时,由OAOB ⊥知A、B 两点之一为y x=±与椭圆的交点,由22236x y y x ⎧+=⎨=±⎩解得55x y ⎧=±⎪⎪⎨⎪=±⎪⎩此时原点到直线AB 的距离为5d =…10分 当直线AB 不平行于坐标轴时,设直线AB 的方程x my b =+,由22236x y x my b ⎧+=⎨=+⎩ 得222(23)4260m y bmy b +++-= ………………12分 由12120x x y y +=得1212()()0my b my b y y +++=即221212(1)()0m y y mb y y b ++++=因 2121222426,2323bm b y y y y m m -+=-=++ ………………14分代入得 2222222264(1)02323b b m m b m m -+-+=++ 即2256(1)b m =+……15分原点到直线AB 的距离5d ===………………16分23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分. 解:(1)由题意1212x x x -+-->,即12x x ->-………………2分解得32x >………………4分 (2)由已知,设111(0)n n b b q b -=>,因10b >且01q <<,故对任意的2,*k k N ≥∈,都有1k k b b -> ………………5分∴122311()()1k k k P b b b b b b b k -=-+-++--221122311(1)()(1)11k k k b q b b b b b b q q q k k ---=-+-++-=++++--2111(1)()(1)k k b q P b q q q k -+-=++++, ………………7分因01q <<∴1(1)i k q q i k -><- ∴11k q->,1k q q->,21k q q->,,21k k qq -->,∴2211(1)k k q q q k q--++++>-…………………8分∴22221(1)(1)(1)k k k k q q q k q q q q ---++++>-+++++∴22221(1)(1)1k k k q q q q q q q k k---+++++++++>- ∴2222111(1)(1)(1)(1)1k k k b q q q q b q q q q q k k----++++-+++++>- 即对任意的2,*k k N ≥∈,都有1()()k k P b P b +>,故{}n b 是“趋稳数列”……10分(3) 当2k ≥时,122312311()()()11k k k k P S S S S S S S a a a k k -=-+-++-=+++--当3k ≥时,12311()()2k k P S a a a k --=+++-∴1(1)()(2)()k k k k P S k P S a ----= 同理,11(1)()(2)()k k k k k P a k P a a a -----=-……………… 12分因3()2()k k P S P a =∴3(1)()2(1)()k k k P S k P a -=- 113(2)()2(2)()k k k P S k P a ---=-即132k k ka a a -=- (14)分所以132()k k k a a a -=- 或 132()k k k a a a -=--所以 12k k a a -=-或 125k k a a -=因为11a =,且k a Z ∈,所以12k k a a -=-, 从而1(2)k k a -=-………… 16分所以2113(21)()(1(2)(2)(2)(2)(2))11k k kk P a k k --=--+---++---=--()()()()23423423(1)n n n n n n C P a C P a C P a n C P a ++++-2324312343[(2222)()]n n nn n n n n n n n C C C C C C C C -=⋅+⋅+⋅++⋅-++++1133[(321)(21)](321)22n n n n n n +=-----=-+ ………… 18分。
上海市闵行区2015学年第一学期高三数学(文科一模)质量调研考试卷附答案解析
闵行区2015学年第一学期高三年级质量调研考试数学试卷(文科)(满分150分,时间120分钟)考生注意:1 •答卷前,考生务必在答题纸上将学校、班级、准考证号、姓名等填写清楚.2 •请按照题号在答题纸各题答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.3 .本试卷共有23道试题.一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸上相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.若复数z满足iz=.3-i (i为虚数单位),则Izl二212 .若全集U -R,函数y=x2的值域为集合A,则euA= . (-::,0)3.方程4x-2x-6=0 的解为x=log23, cos(兀—x) sinx “口 ,十十4 .函数f(x)= 的取小正周期T = 兀sin (兀+x) cosx1 15.不等式的解集为 ________ .(0,2)x 26 .若一圆锥的底面半径为3,体积是12二,则该圆锥的侧面积等于. 拧二7. 已知△ ABC中,AB =4i,3j , AC =「3i 4j,其中i、j是基本单位向量,则厶ABC的面积为.2528. 在2017年的上海高考改革方案中,要求每位考生必须在物理、化学、生物、政治、历史、地理6门学科中选择3门学科参加等级考试•小明同学决定在生物、政治、历史三门中至多选择一门,那么小明同学的选科方案有__________ 种.10b5E2RGbCAP9 .若S n是等差数列「a「的前n项和,且空二曳・5,则lim马二. 5n n 3 2 F n210.若函数f (x) =2|x4,且f (x)在[m,=)上单调递增,则实数m的最小值等于_ 1” x2y211 .若点P、Q均在椭圆— 1 (a 1)上运动,F1> F2是椭圆]的左、右焦点,则_L. a a -1T T TPR +PF2 — 2PQ的最大值为_________ .2acos — x 0 ■- x '■ 412 .已知函数f(x) 2 ' ,若实数a、b、c互不相等,且满足f(a)二f(b)二f (c),则I.-x 5, x 4a b c 的取值范围是 _____________ . (8, 10)13•我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法b db d设实数x 的不足近似值和过剩近似值分别为一和d ( a,b,c,d ・N *),则是x 的更为精确的不足近似a ca + c 314916值或过剩近似值.我们知道二-3.14159…,若令,则第一次用“调日法”后得是二的更为10 15 53116精确的过剩近似值,即旷二苗,若每次都取最简分数,那么第四次用“调日法”后可得 为.22 p1EanqFDPw714•数列:a n /的前n 项和为S n ,若对任意n • N*,都有S . = (-1)弍• *,n - 3 ,则数列的前n项和为二、选择题(本大题满分 20分)本大题共有 4题,每题只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.DXDiTa9E3d,其理论依据是:二的近似分数15•若 a,b ・ R ,且 ab ・0,则“ a =b ”是“ - a a2等号成立”的( b充分不必要条件既非充分又非必要条件 (A)充要条件 (B) (C)必要不充分条件(D)16•设f (x^ 2 5x 10x 2 10x 3 5x 4 x 5,则其反函数的解析式为( (B) y = 1 - \ x _ 1(D) y = -1 x -1a —b +c a, b, c ,满足—— b(C)「二 (A) y =1 5x _1(C) y - -1 5x -117. △ABC 的内角A, B,C 的对边分别为则角A 的范围是( B ).(A) 0,二(B)18 •函数f(x)的定义域为 示• A={x f (g(x)) =0>,B(0,-I H1-1,1,图像如图1所示;函数< ,a b - cug(x)的定义域为 1-1,2 1, 图像如图2所={x g(f(x)) =0}则 A 「IB 中元素的个数为(C ) .(A) 1(B) 2(C) 3(D) 4RTCrpUDGiT必要的步骤.5PCzVD7HxA的规定区域内写出19. (本题满分12分)如图,三棱柱ABC - AEG中,侧棱AA _底面ABC ,TTAA 二AB = 2 , BC =1, . BAC 二一,D 为棱AA1中点,63T直线B1C1与CD所成角为一,并求三棱柱ABC - 的体2[证明]T在三棱柱ABC —ARG中,侧棱AA _底面ABC,BC//BG,- BCD或它的补角即为异面直线BG与CD角,......... 2分由AB =2 , BC =1, . BAC 二-以及正弦定理得sin . ACB 工一,.ACB 二匸即BC _ AC , 6 2分又二BC 丄AA,二BC 丄面ACGA , ........ 6 分.BC _ CD ......................... 8 分所以异面直线BG与CD所成角的为一• .................... 10分2三棱柱ABC —A^G 的体积为V = S A ABC AA^ = — . 3 1 2 = 3 •............... 12 分220. (本题满分14分)本题共有2个小题,第(1)小题满分8分,第⑵ 小题满分6分.如图,点A、B分别是角:的终边与单位圆的交点,3 2(1 )若-■ = , cos ,求sin2:的值;4 3(2)证明:cos(:;\-') = cos : cos .亠sin : sin :.2[解](1)方法一:;cos〉- :=-,31cos(2:-「2 :)=2cof(x 『)-1 =「…3 分96分8分—cos - sin : = — , 3 分即2 2 31 - sin2 : = - 6 分9 证明积.3 3兀冉1•二二,即cos( 2 -)=4 2 91 sin2 :9方法二:;COS〉_ :=Z , -:•:= 3■:,3 4_ O ' O-sin : - cos :二 ---- ,两边平方得,C iB10 ::::;::一 < :-:::二.91 sin2 :.OA OB =cos : cos ,;- - sin : sin :................. 10 分又因为OA 与OB 夹角为a -P , OA =岡=1 二 OAOB =OA OB cos®-B ) =cos@-B ).......................... 12 分综上 cos(: ——)二cos : cos : sin : sin :成立. ........................ 14 分21. (本题满分14分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分8 分.某沿海城市的海边有两条相互垂直的直线型公路11、|2,海岸边界MPN 近似地看成一条曲线段.为开发旅游资源,需修建一条连接两条公路的直线型观光大道 AB ,且直线AB 与曲线MPN 有且仅有一个公共 点P (即直线与曲线相切),如图所示.若曲线段 MPN 是函数y = a 图像的一段,点M 到l 1、12的距离分x别为8千米和1千米,点N 到l 2的距离为10千米,点P 到l 2的距离为2千米.以l 1、12分别为x 、y 轴建立如 图所示的平面直角坐标系 xOy .jLBHrnAlLg(1 )求曲线段MPN 的函数关系式,并指出其定义域; (2)求直线AB 的方程,并求出公路 AB 的长度(结[解](1)由题意得M (1,8),则a =8,故曲线段MPN)所以定义域为1,101.(2)由(1)知 P(2, 4),设直线 AB 方程为 y -4 二 k(x-2),y -4 二 k(x 「2)由 8得L xkx 2 2(2-k)x-8=0,厶=4(2 -k)2 32k = 4(k 2)2 = 0 …8 分k ,2=0 , k =「2,所以直线AB 方程为y =「2x ,8 ,.................... 10分得 A(0,8)、B(4,0) ,................................... 12 分所以 AB = 丁64 +16 =4屁 8.944千米.答:公路AB 的长度为9千米 ... ..... 14分22. (本题满分16分)本题共有3个小题,第(1)小题满分4分,第⑵(3)小题满分各6 分.(2)[证明]由题意得, OA =(cos : ,sin :), OB =(cos i ;,si n F )果精确到1米)1 2 14 -,2,-成等差数列得- K k k 2k_ % (kx 2 T) x 2(k^ T)(kx 2 -1)(心-1)1 .丄=卷.生=x°2 冷y k 1 k 2 y 1 y 2 % y 22kx~i X 2 _(% x 2) k 2x.]X^ ^k(x 1 x 2) 112分_—16k —8k —2 22-8k -8k 4k 324k 2 ,12k -314分3已知椭圆丨的中心在坐标原点, 且经过点(1,—),它的一个焦点与抛物线;::y 2 =4x 的焦点重合,斜率2为k 的直线丨交抛物线上于A 、B 两点,交椭圆[于C 、D 两点.XHAQX74J0X(1) 直线l 经过点F 1, 0,设点P(-1,k),且△ PAB 的面积为4 3,求k 的值;1 2 1若直线丨过点M 0, -1,设直线OC , OD 的斜率分别为 匕,k 2,且-,-,-成等差数列,求直线 k 1 k k 2l 的方程•(2)设直线丨:y 二 k(x -1),由y :k(X _1),得 k 2x 2 -2(k 2 2)x k 2 =0 y =4x,拱-16(k 21) 0,求椭圆:的方程;(2) (3) [解](1 )设椭圆的方程为飞a2 21x y 22=1 a b 0,由题设得aba 2 二b 2 1lb?=1,…2分a 2 =4b 2=3,.椭圆】的方程是l 与抛物线;■-有两个交点,k = 0 ,则AB 如曲+4"k 2_ 1 ,又 S A PAB = 3 ,-.k 2 1 24k 2 =3k 23,故 k= 3 .P( -1,k)到丨的距离d 二3k 4(k 2 1) 3k| 10分y 二 kx-1,(3)设直线 |:y =kx -1,由 x 2 y 2 消去 y 得 4k 2 3 x 2-8kx-8 = 0 ,I — =14 3 ,[X 1M 0, -1在椭圆内部,• I 与椭圆恒有两个交点 ,设C X !,% ,D X 2,y 2 ,贝UX |X 2 匚8k4k「3〔由_84k 2 3.23 .(本题满分18分)本题共有 3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8 分.LDAYtRyKfE已知数列〈aj 的各项均为整数,其前n 项和为S n .规定:若数列「a/满足前r 项依次成公差为1的等r -1项起往后依次成公比为2的等比数列,则称数列 (a n ?为“ r 关联数列”.zzz6ZB2Ltkd n 的等差数列,求d n ,并探究在数列{ d n }中是否存在三项d m , d k , d p (其中m, k, p 成等差数列) 成等比数列?若存在,求出这样的三项;若不存在,说明理由 J272即k 一亍,直线l 的方程为八px-116分差数列,从第(1) 若数列 (2) 在( 1) laj 为“ 6关联数列”,求数列的通项公式;的条件下,求出 S n ,并证明:对任意n • N *,a n S n _ a 6S 5 ;(3) 若数列 「a n ?为“ 6关联数列”,当n_6时,在a n 与a n ,之间插入n 个数,使这n 2个数组成一个公差为 .dvzfvkwMIl[解](1) ;「a/为“6关联数列”,-:a n ?前6项为等差数列,从第 5项起为等比数列4,且 06 =2 , 即= 2,解得a 5印 + 4 .n-4,n 兰5 小一4,n 兰6 (或a n 二 心 =2 ).n 2n , n_6 2n, n_7工1 2 7 ..1—n — — nn 兰 4 — 由(1)得S n 詔2n 2 4(或S n 才2 [2n^ -7, n 畠5 O n(2)n -4,n _4 n£ 2 ,n _5 27n n,n _ 52 2n* -7,n _6工1 27厂n n,n _ 6、 冒22 ) 2n ,-7,n _ 7................ 6分lanh -3,-2,-1,0,1,2,2 2,23,24,25,|||, M:-3,-5,-6,-6,-5,-3,1,9,25,11) ‘GnS n 1:9,10,6,0, -5, $,4,72,400, III,可见数列;帚?的最小项为 a s Ss 一 -6 ,工1证明:a n S n 二 2n (n -4)(n-7),n '5 , 、2n °(2n " -7), n 启6列举法知当n 乞5时,(O n S n )min =05$ =_5 ;.............................当 n 一6时,a n S n =2 (2n ^)2-7 2n ^(n 一6),设 2心二 t ,则•27 2 49、 2a n S^ -2t —7t =2(t ) 2 2 一7 2 工「6.4 8(3 )由(1)可知,当 n 一6 时,a n =2心,因为:a nO n - (n • 2-1乩,2n * =2n 」(n - 1)d n 故:d厂 dn^2k -5 玄 2“~5 2 P- 2^k A0 和」0---- = ----- ------ , -------2 = ---------------- ( * ) 15分(k+1 , m+1 p+1(k+1) (m + 1)f p +1)因为m, k, p 成等差数列,所以 m • p = 2k , (*)式可以化简为(k -1)2 = (m - 1)( p-"<1), 即:k 2 = mp ,故k = m = p ,这与题设矛盾.所以在数列{d n }中不存在三项d m ,d k ,d p (其中m,k, p 成等差数列)成等比数列•…18分(或:因为下标成等差数列的等差数列一定还是成等差数列,而又要求成等比数列,则必为非零常数列, 2n 三 、 而d n 二一 显然不是非零的常数,所以不存在.)rqyn14ZNXIn +110分13分n 12假设在数列{d n }中存在三项d m ,d k ,d p (其中m,k, p 成等差数列)成等比数列,则: (dk ) =d m d p ,即:。
2015年高考文科数学上海卷及答案解析
绝密★启用前2015年普通高等学校招生全国统一考试(上海卷)文科数学注意事项:1.本试卷共6页,23道试题,满分150分.考试时间120分钟.2.本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上.一、填空题:本大题共有14题,满分56分.直接填写结果,每个空格填对得4分,否则一律得零分.1.函数213sin f x =x -()的最小正周期为 . 2.设全集=U R .若集合={1,2,3,4}A ,{23}B x x =≤≤,则U A B ð= . 3.若复数z 满足31i z z +=+,其中i 为虚数单位,则z = .4.设-1f x ()为=21x f x x +()的反函数,则=-12f () .5.若线性方程组的增广矩阵为122301c c 骣琪琪桫、解为35x y ì=ïí=ïî,,则12c c -= . 6.若正三棱柱的所有棱长均为a,且其体积为,则a= .7.抛物线2=2>0y px p ()上的动点Q 到焦点的距离的最小值为1,则p = .8.方程1122log (95)log (32)2x x ---=-+的解为 . 9.若x ,y 满足0,2,0,x y x y y ì-ïï+íïïî≥≤≥则目标函数2f x y =+的最大值为 .10.在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示).11.在621(2)x x+的二项展开式中,常数项等于 (结果用数值表示).12.已知双曲线1C 、2C 的顶点重合,1C 的方程为22=14x y -.若2C 的一条渐近线的斜率是1C 的一条渐近线的斜率的2倍,则2C 的方程为 .13.已知平面向量a ,b ,c 满足a ⊥b ,且{|a |,|b |,|c |}={1,2,3},则|a +b +c |的最大值是 .14.已知函数()sin f x x =.若存在12,,m x x x 满足1206πm x x x ≤<<<≤,且1|f x ()223-1|||++||=122,m m f x f x f x f x f x m m -+--?*N ()()()()()(≥),则m 的最小值为 .二、选择题:本大题共有4小题,满分20分.每题有且只有一个正确答案,将正确答案填在题后括号内,选对得5分,否则一律得零分.15.设12,z z ÎC ,则“12,z z 均为实数”是“12z z -是实数”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件16.下列不等式中,与不等式2+8<223x x x ++解集相同的是( )A .2(+8)(+2+3)<2x x xB .2+8<2(+2+3)x x xC .212<23+8x x x ++ D .2231>+82x x x ++17.已知点A的坐标为(),将OA 绕坐标原点O 逆时针旋转π3至OB ,则点B 的纵坐标为( )ABC .112D .13218.设(),n n n P x y 是直线2()1nx y n n -=?+*N 与圆222x y +=在第一象限的交点,则极限1lim 1n n n y x -=-( )A .1-B .12- C .1 D .2三、解答题:本大题共有5题,满分74分.解答应写出必要的文字说明、证明过程或演算步骤. 19.(本小题满分12分)如图,圆锥的顶点为P ,底面圆心为O ,底面的一条直径为AB ,C 为半圆弧AB 的中点,E 为劣弧CB 的中点,已知2PO =,1OA =,求三棱锥P AOC -的体积,并求异面直线PA 与OE 所成的角的大小.20.(本小题满分14分)已知函数21()f x ax x=+,其中a 为常数. (Ⅰ)根据a 的不同取值,判断函数()f x 的奇偶性,并说明理由; (Ⅱ)若(1,3)a Î,判断函数()f x 在[1,2]上的单调性,并说明理由.21.(本小题满分14分) 姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------如图,O ,P ,Q 三地有直道相通,3OP =千米,4PQ =千米,5OQ =千米.现甲、乙两警员同时从O 地出发匀速前往Q 地,经过t 小时,他们之间的距离为()f t (单位:千米).甲的路线是OQ ,速度为5千米/小时,乙的路线是OPQ ,速度为8千米/小时.乙到达Q 地后在原地等待.设1t t =时,乙到达P 地;2t t =时,乙到达Q 地. (Ⅰ)求1t 与1()f t 的值;(Ⅱ)已知警员的对讲机的有效通话距离是3千米.当12t t t ≤≤时,求()f t 的表达式,并判断()f t 在12[,]t t 上的最大值是否超过3?说明理由.22.(本小题满分16分)已知椭圆2221x y +=,过原点的两条直线1l 和2l 分别与椭圆交于点A ,B 和C ,D .记△AOC 的面积为S .(Ⅰ)设11(,)A x y ,22(,)C x y .用A ,C 的坐标表示点C 到直线1l 的距离,并证明12211||2S x y x y =-;(Ⅱ)设1:l y kx =,C ,13S =,求k 的值; (Ⅲ)设1l 与2l 的斜率之积为m .求m 的值,使得无论1l 与2l 如何变动,面积S 保持不变.23.(本小题满分18分)已知数列{}n a 与{}n b 满足112()n n n n a a b b ++-=-,n Î*N . (Ⅰ)若35n b n =+,且11a =,求{}n a 的通项公式;(Ⅱ)设{}n a 的第0n 项是最大项,即0()n n a a n Î*N ≥.求证:{}n b 的第0n 项是最大项;(Ⅲ)设130a l =<,()n n b n l =?*N .求l 的取值范围,使得对任意m ,n Î*N ,0n a ¹,且1(,6)6m n a a Î.1235c c ⎡⎤⎤⎡⎤=⎢⎥⎥⎢⎥⎦⎣⎦⎣⎦【提示】根据增广矩阵的定义得到【解析】正三棱柱的体积为14330x -+=30=,即得【提示】利用对数的运算性质化为指数类型方程,解出并验证即可【考点】对数方程.10.【答案】120122,2(m f x -++2m x ,,满足6m x <<≤27811π0,π,22x x x ===,,【提示】由正弦函数的有界性可得,对任意πsin 3OB θ⎛+ ⎝(4OB =cos OP OR O ∠31212OA d x y =1,=得21x =13kx1221mx x kx k -1212k m x x k -=222k m+42(4k S ++k 无关,(21212m k +【考点】椭圆的基本性质,直线与椭圆的关系。
高考数学一模考试试题2015年松江高三一模(理)
开始结束S 输出YN4≥a 1,5←←S a a S S ⨯←1-←a a上海市松江区2014学年度第一学期高三期末考试数学试卷(理)(满分150分,完卷时间120分钟) 2015.1一、填空题 (本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果, 每个空格填对得4分,否则一律得零分. 1.若复数z 满足014=-zz ,则z 的值为 ▲ .2.已知()log (0,1)a f x x a a =>≠,且2)1(1=--f ,则=-)(1x f ▲ .3.在等差数列{}n a 中,15,652==a a ,则=++++108642a a a a a ▲ .4.已知正方形ABCD 的边长为2,E 为CD 的中点,则BD AE ⋅= ▲ .5.在正四棱柱1111ABCD A B C D -中,1BC 与平面ABCD 所成的角为60︒,则1BC 与AC 所成的角为 ▲ (结果用反三角函数表示).6.若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴都相切, 则该圆的标准方程是 ▲ . 7.按如图所示的流程图运算,则输出的S = ▲ .8.已知函数()sin()3f x x πω=+(R x ∈,0>ω)的最小正周期为π,将)(x f y =图像向左平移ϕ个单位长度)20(πϕ<<所得图像关于y 轴对称,则=ϕ ▲ .9.已知双曲线22214x yb-=的右焦点与抛物线212y x =的焦点重合,则该双曲线的焦点到其渐近线的距离为▲. 10.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是5的概率为 ▲ . 11.已知函数13()sin 2cos 2122f x x x =-+,若2()log f x t ≥对x R ∈恒成立,则t 的取值范围为 ▲ . 12.某同学为研究函数()()()2211101f x x x x =++-≤≤的性质,构造了如图所示的两个边长为1的正方形ABCD 和BEFC ,点P 是边BC 上的一个动点,设CP x =,则()f x AP PF =+.此时max min ()()f x f x += ▲ .13.设)(x f 是定义在R 上的偶函数,对任意R x ∈,都有)2()2(+=-x f x f ,且当[]0,2-∈x 时,121)(-⎪⎭⎫⎝⎛=xx f .若函数)1)(2(log )()(>+-=a x x f x g a 在区间(]6,2-恰有3个不同的零点,则a 的取值范围是 ▲ .14.在正项等比数列{}n a 中,已知120115a a <=,若集合12121110,t t A t a a a t N a a a *⎧⎫⎛⎫⎛⎫⎛⎫⎪⎪=-+-++-≤∈⎨⎬ ⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎩⎭L ,则A 中元素个数为 ▲ .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸相应编号上, 将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.已知R q p ∈,,则“0<<p q ”是“1pq<”的 A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件16.若二项式23nx ⎛ ⎝*()n N ∈展开式中含有常数项,则n 的最小取值是 A .4 B .5 C .6 D .717.设P 是ABC ∆所在平面内一点,2BC BA BP +=u u u r u u u r u u u r,则A .0PA PB +=u u u r u u u r r B .0PB PC +=u u u r u u u r r C .0PC PA +=u u u r u u u r rD .0PA PB PC ++=u u u r u u u r u u u r r18.已知满足条件122≤+y x 的点(,)x y 构成的平面区域面积为1S ,满足条件1][][22≤+y x 的点(,)x y构成的平面区域的面积为2S ,其中][][y x 、分别表示不大于y x ,的最大整数,例如:[0.4]1-=-,[1.7]1=,则21S S 与的关系是A .21S S <B .21S S =C .21S S >D .321+=+πS S三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内 写出必要的步骤.19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分在ABC ∆中,,,a b c 分别为内角,,A B C 所对的边,且满足c b a <<,B a b sin 2=. (1)求A 的大小;(2)若2a =,32=b ,求ABC ∆的面积.20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分已知函数()(0,1,)x bf x aa ab R +=>≠∈.(1)若()f x 为偶函数,求b 的值; (2)若()f x 在区间[)2,+∞上是增函数,试求a 、b 应满足的条件.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙 全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时。
2015年上海市高考数学试卷文科学生版
2015年上海市高考数学试卷(文科)一、填空题(本大题共14小题,满分56分)考生应在答题纸相应编的空格内直接填写结果,每个空格填对得4分,否则一律零分)2x的最小正周期为=1(x)﹣3sin.1.(4分)(2015?上海)函数f2.(4分)(2015?上海)设全集U=R,若集合A={1,2,3,4},B={x|2≤x≤3},则A∩B=.3.(4分)(2015?上海)若复数z满足3z+=1+i,其中i是虚数单位,则z=.11﹣﹣.(2)为f(x)=的反函数,则f2015?4.(4分)(上海)设f=(x)解为,则上海)若线性方程组的增广矩阵为(4分)(2015?5..c=c﹣21,则162015?上海)若正三棱柱的所有棱长均为a,且其体积为6.(4分)(.a=2到焦点的距离的最小Qp>0分)(2015?上海)抛物线y)上的动点=2px (7.(4.值为1,则p=1xx1﹣﹣.29)+﹣5)=log(32的解为﹣方程8.(4分)(2015?上海)log(22的最大值+2yz=x4.(分)(2015?上海)若x,y满足,则目标函数9.为人参加名女教师中,选取5上海)在报名的3名男老师和610.(4分)(2015?(结果义务献血,要求男、女教师都有,则不同的选取方式的种数为.用数值表示)6(结果2x+的二项式中,常数项等于)上海)在(11.(4分)(2015?.用数值表示)2=1y,﹣的顶点重合,、2015?(12.4分)(上海)已知双曲线CCC的方程为121的方程C倍,则的一条渐近线的斜率的C若C的一条渐近线的斜率是2221为.,1{=|}|,||,||且,⊥满足、、已知平面向量上海)2015?(分)4(.13..+|的最大值是2,3},则|+≤x满足0x,x,…,2015?14.(4分)(上海)已知函数f(x)=sinx.若存在m12)(xx)|+…+|f)﹣f(x)|+|f(x)﹣f(6πx<x<…<x≤,且|f(x13221m12m﹣*.m 的最小值为(m≥2,m∈N ),则﹣f(x)|=12m分)每题有且只有一个正确答案,考生20二、选择题(本大题共4小题,满分分,否则一律5应在答题纸的相应编上,将代表答案的小方格涂黑,选对得.零分的”“z﹣z是实数均为实数z∈C,则“z、z”是分)15.(5(2015?上海)设z、222111)(.必要非充分条件BA.充分非必要条件.既非充分又非必要条件DC.充要条件16.(5分)(2015?上海)下列不等式中,与不等式<2解集相同的是)(22+2x+x3).x+8+8)(x3+2x+)<2<2(BA.(x<DC..>17.(5分)(2015?上海)已知点A的坐标为(4,1),将OA绕坐标原点O逆)的纵坐标为(时针旋转至OB,则点B..C.DBA.*22=22x﹣y=+与圆)xy (n∈N是直线,(上海)518.(分)(2015?设Pxy)nnn)(在第一象限的交点,则极限=B.﹣C.1DA.﹣1.2三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编的规定区域内写出必要的步骤.19.(12分)(2015?上海)如图,圆锥的顶点为P,底面圆为O,底面的一条直为半圆弧C,AB径为,求OA=1,PO=2的中点,已知为劣弧E的中点,三棱锥P﹣AOC的体积,并求异面直线PA和OE所成角的大小.2为常数=ax+,其中a(2015?上海)已知函数f(x)分)20.(14)的奇偶性,并说明理由;(x1()根据a的不同取值,判断函数f上的单调性,并说明理由.2](x)在[1,3(2)若a∈(1,),判断函数fPQ=4千米,,P,Q三地有直道相通,OP=3(21.14分)(2015?上海)如图,Ot 地,经过千米,OQ=5千米,现甲、乙两警员同时从O地出发匀速前往Q千5)(单位:千米).甲的路线是OQ,速度为小时,他们之间的距离为f(t设/小时,乙到达Q地后在原地等待.米/小时,乙的路线是OPQ,速度为8千米地.地,t=t时乙到达Qt=t时乙到达P21)的值;tf(与(1)求t11)的(tt千米,当t≤≤t时,求f(2)已知警员的对讲机的有效通话距离是321?说明理由.3,)在[tt]上的最大值是否超过表达式,并判断f(t2122分别与和l=1,过原点的两条直线l1622.(分)(2015?上海)已知椭圆x2y+21.S,记△AOC的面积为、椭圆交于点A、B和CD的距离,并C到直线l的坐标表示点,用,Cyx,),(xy)A、C()设(1A11122;证明S=|,S=,,求kl:y=kx,的值;(2)设1(3)设l与l的斜率之积为m,求m的值,使得无论l和l如何变动,面积S2112保持不变.23.(18分)(2015?上海)已知数列{a}与{b}满足a﹣a=2(b﹣b),n∈n1n1nnnn++*.N (1)若b=3n+5,且a=1,求{a}的通项公式;nn1(2)设{a}的第n项是最大项,即≥a(n∈N*),求证:{b}的第n项是0n0nn最大项;n**,N∈m,n的取值范围,使得对任意b<0,=λ(n∈N),求λ=3λa3()设n1,0,且.≠a n。
松江区2015年高三一模数学试卷(文理合卷)含答案
f
(x)
log2
t
y 轴对
对
x
R
开始
a 5, S 1
a4 Y
S Sa
a a 1
恒成立,则 t
第7题
N 输出S
的取值范围为
2015.1
结束
g(x) f (x) loga (x 2)(a 1) 在区间 2,6恰有 3 个不同的零点,则 a 的取值范围是 ▲ . 14.(理)在正项等比数列 an 中,已知 a1 a2015 1,若集合
D.7
17.设 P 是 ABC 所在平面内一点, BC BA 2BP 则
A. PA PB 0
B. PB PC 0
C. PC PA 0 D. PA PB PC 0
已知函数 f (x) a xb (a 0, a 1, b R) . (1)若 f (x) 为偶函数,求 b 的值;
(2)若 f (x) 在区间2, 上是增函数,试求 a 、 b 应满足的条件.
21.(本题满分 14 分)本题共有 2 个小题,第 1 小题满分 6 分,第 2 小题满分 8 分 沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细
通项公式;若不存在,请说明理由.
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资0配不料置仅试技可卷术以要是解求指决,机吊对组顶电在层气进配设行置备继不进电规行保范空护高载高中与中资带资料负料试荷试卷下卷问高总题中体2资2配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,卷.编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试写5交、卷重底电保要。气护设管设装备线备置4高敷、调动中设电试作资技气高,料术课中并3试中、件资且卷包管中料拒试含路调试绝验线敷试卷动方槽设技作案、技术,以管术来及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
松江区2016年高三数学文科一模试卷(含答案)
A 2A 3OA 4A 1松江区2015学年度第一学期高三期末考试数学(文科)试卷(满分150分,完卷时间120分钟) 2016.1一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.已知全集{}1,2,3,4U =,A 是U 的子集,满足{}}{1,2,32A = ,{}1,2,3A U = ,则集合A = ▲ .2.若复数1z ai =+(i 是虚数单位)的模不大于2,则实数a 的取值范围是 ▲ . 3.行列式cos 20sin 20︒︒ sin 40cos 40︒︒的值是 ▲ .4.若幂函数()x f的图像过点2,2⎛⎫⎪ ⎪⎝⎭,则()12f -= ▲ . 5.若等比数列{}n a 满足135a a +=,且公比2q =,则35a a += ▲ .6.若圆柱的底面直径和高都与球的直径相等,圆柱、球的表面积分别记为1S 、2,S 则有12:S S = ▲ .7.如图所示的程序框图,输出的结果是 ▲ . 8.将函数)32sin(π+=x y 图像上的所有点向右平移6π个单位,再将图像上所有点的横坐标缩短到原来的21倍(纵坐标不变),则所得图像的函数解析式为 ▲ . 9.一只口袋内装有大小相同的5只球,其中3只白球, 2只黑球,从中一次性随机摸出2只球,则恰好有1只是白球的概率为 ▲ (结果用数值表示).10.在ABC ∆中,内角A 、B 、C 所对的边分别是a 、b 、c . 已知14b c a -=,2sin 3sin B C =,则cos A =▲ .11.若7(13)x -展开式的第4项为280,则()2lim nn x x x→∞+++= ▲ .12.已知抛物线2:4C y x =的准线为l ,过(1,0)M 且斜率为k 的直线与l 相交于点A ,与抛物线C 的一个交点为B .若2AM MB =,则 k = ▲ .13.已知正六边形126A A A 内接于圆O ,点P 为圆O 上一点,向量OP 与i OA的夹角为i θ(1,2,,6i = ),若将126,,,θθθ 从小到大重新排列后恰好组成等差数列,第7题图则该等差数列的第3项为 ▲ .14.已知函数()f x ,对任意的[0,)x ∈+∞,恒有(2)()f x f x +=成立, 且当[0,2)x ∈时,()2f x x =-.则方程1()f x x n=在区间[0,2)n (其中*n N ∈)上所有根的和为 ▲ . 二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.已知双曲线2215x y m -=的右焦点与抛物线212y x =的焦点相同,则此双曲线的渐近线方程为.A 2y x =±.B 5y x =± .C 3y x =± .D5y x =± 16.设,a b R ∈,则“a b >”是“a b >”的.A 充分而不必要条件 .B 必要而不充分条件.C 充要条件 .D 既不充分也不必要条件17. 在正方体1111ABCD A B C D -中,E 、F 分别是棱AB 、1AA 的中点,M 、N 分别是线段1D E 与1C F 上的点,则与平面ABCD 平行的直线MN 有.A 0条 .B 1条 .C 2条 .D 无数条18. 在一个有穷数列每相邻两项之间添加一项,使其等于两相邻项的和,我们把这样的操作叫做该数列的一次“H 扩展”. 已知数列1,2. 第一次“H 扩展”后得到1,3,2;第二次“H 扩展”后得到1,4,3,5,2. 那么第10次“H 扩展”后得到的数列的项数为.A 1023 .B 1025 .C 513 .D 511三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分 如图,在三棱锥ABC P -中,⊥PA 平面ABC ,AB AC ⊥,4==BC AP ,︒=∠30ABC ,E D 、分别是AP BC 、的中点. (1)求三棱锥ABC P -的体积;(2)若异面直线AB 与ED 所成的角为θ,求θtan 的值.F E D 1C 1B 1A 1CB A DE PA BCD20.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分已知函数2()2sin cos f x x x x =-+ (1)当[0,]2x π∈时,求函数 f (x )的值域;(2)求函数 y = f (x )的图像与直线 y =1相邻两个交点间的最短距离.21. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分 在一次水下考古活动中,潜水员需潜入水深为30米的水底进行作业.其用氧量包含以下三个方面:①下潜时,平均速度为每分钟x 2x 升;②水底作业需x 米,每分钟用氧量为0.2升;设潜水员在此次考古活动中的总用氧量为y 升. (1)将y 表示为x 的函数;(1)若[4,8]x ∈,求总用氧量y 的取值范围.22.(本题满分16分,第1小题3分,第2小题中5分、第2小题8分)在平面直角坐标系xOy 中,O 为坐标原点,C 、D 两点的坐标为(1,0),(1,0)C D -, 曲线E 上的动点P 满足PC PD +=E 上的点A 、B 满足OA OB ⊥. (1)求曲线E 的方程;(2)若点A 在第一象限,且OA =,求点A 的坐标; (3)求证:原点到直线AB 的距离为定值.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.对于数列{}n a ,称122311()()1k k k P a a a a a a a k -=-+-++-- (其中2,k k N ≥∈)为数列{}n a 的前k 项“波动均值”.若对任意的2,k k N ≥∈,都有1()()k k P a P a +<,则称数列{}n a 为“趋稳数列”. (1)若数列1,x ,2为“趋稳数列”,求x 的取值范围;(2)已知等差数列{}n a 的公差为d ,且10,0a d >>,其前n 项和记为n S ,试计算:()()()2323nn n n n C P S C P S C P S +++ (2,n n N ≥∈); (3)若各项均为正数的等比数列{}n b 的公比(0,1)q ∈,求证:{}n b 是“趋稳数列”.松江区2015学年度第一学期高三期末考试数学(文科)试卷参考答案 2016.1一.填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. {}2,4. 2. ]3,3[-. 3.12. 4.14. 5. 20. 6. 3:2. 7. 15. 8. sin 4x . 9. 0.6. 10. 14-.11. 25-. 12. ±. 13. 512π. 14. 2n .二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.A . 16.B . 17.D . 18.B . 19.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分 解: (1)由已知得,,32,2==AB AC ……………………2分所以 ,体积33831==∆--PA S V ABC ABC P ……………………5分 (2)取AC 中点F ,连接EF DF ,,则DF AB //,所以EDF ∠就 是异面直线AB 与ED 所成的角θ. ……………………8分 由已知,52,32,2=====PC AB AD EA AC ,EF DF EF AB ⊥∴⊥, . ……………………10分在EFD Rt ∆中,5,3==EF DF , 所以,315tan =θ. ……………………12分 20.(满分14分)本题有3小题,第1小题7分,第2小题3分,第,3小题4分. 解:(1)()f x 22sin cos x x x =-sin 222sin(2)3x x x π==-……………………4分当[0,]2x π∈时,22[,]333x πππ-∈-,所以()f x 的值域为[……7分(2)()2sin(2)13f x x π=-= ∴1sin(2)32x π-=,……………………9分 2236x k πππ-=+或52236x k πππ-=+,k Z ∈ ……………………12分∴当()1f x =时,两交点的最短距离为3π……………………14分 21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分解:(1)下潜所需时间为30x 分钟;返回所需时间为60x分钟 …………2分 ∴213060100.30.290y x x x =⋅+⨯+⋅ …………5分 1233x y x=++ (0)x > …………6分(2)1243x x +≥=,当且仅当123x x =,即6x =时取等号. …8分 因为[4,8]x ∈,所以1233x y x=++在[4,6]上单调递减,在[6,8]上单调递增所以6x =时,y 取最小值7 …………11分又4x =时,173y =;8x =时,176y =, …………13分所以y 的取值范围是1[7,7]3. …………14分22.(本题满分16分,第1小题3分,第2小题中5分、第2小题8分)解(1)由2CD =,2PC PD +=>知,曲线E 是以C 、D为焦点,长轴圆, ……………… 1分设其方程为22221x y a b+=,则有1a c ==,∴曲线E 的方程为22132x y +=……………… 3分(2)设直线OA 的方程为(0)y kx k =>,则直线OB 的方程为1(0)y x k k=-> 由则22236x y y kx ⎧+=⎨=⎩得222236x k x +=,解得212623x k =+.………………4分同理,由则222361x y y x k ⎧+=⎪⎨=-⎪⎩解得2222623k x k =+. ………………5分由OA =知2243OA OB =, 即222226164(1)3(1)2323k k k k k +⋅=+⋅++………………6分 解得26k =,因点A在第一象限,故k = ………………7分此时点A 的坐标为 ………………8分 (3)设11(,)A x y ,22(,)B x y ,当直线AB 平行于坐标轴时,由OA OB ⊥知A 、B 两点之一为y x =±与椭圆的交点,由22236x y y x ⎧+=⎨=±⎩解得x y ⎧=⎪⎪⎨⎪=⎪⎩此时原点到直线AB的距离为d =…10分 当直线AB 不平行于坐标轴时,设直线AB 的方程x my b =+,由22236x y x my b ⎧+=⎨=+⎩ 得222(23)4260m y bmy b +++-= ………………12分 由12120x x y y +=得1212()()0my b my b y y +++=即221212(1)()0m y y mb y y b ++++=因 2121222426,2323bm b y y y y m m -+=-=++ ………………14分 代入得 2222222264(1)02323b b m m b m m -+-+=++ 即2256(1)b m =+……15分 原点到直线AB的距离d ===………………16分23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分. 解:(1)由题意1212x x x -+-->,即12x x ->-………………2分解得32x > ………………4分 (2)122311()()1k k k P S S S S S S S k -=-+-++-- 231()1n a a a k =+++- ………………5分 ∵10,0a d >> ∴1(1)0n a a n d =+->, ………………6分∴2311()()12k n k P S a a a a d k =+++=+- ………………7分 ∴()()()2323nn n n n C P S C P S C P S +++231()nn n n a C C C =+++ 23(23)2n n nn d C C nC ++++ ………………8分 1(21)n a n =--+121111()2n n n n d nC nC nC ----+++ ………………9分1(21)n a n =--+(21)2nnd - …………………10分(3)由已知,设111(0)n n b b q b -=>,因10b >且01q <<,故对任意的2,*k k N ≥∈,都有1k k b b -> …………………11分 ∴对122311()()1k k k P b b b b b b b k -=-+-++--221122311(1)()(1)11k k k b q b b b b b b q q q k k ---=-+-++-=++++--2111(1)()(1)k k b q P b q q q k-+-=++++ , …………………13分 因01q <<∴1(1)i k q q i k -><- ∴11k q->,1k q q->,21k q q->, ,21k k qq -->,∴2211(1)k k q q qk q--++++>-…………………15分∴22221(1)(1)(1)k k k k q q qk q q q q ---++++>-+++++∴22221(1)(1)1k k k q q q q q q q k k---+++++++++>- ∴2222111(1)(1)(1)(1)1k k k b q q q q b q q q q q k k----++++-+++++>- 即对任意的2,*k k N ≥∈,都有1()()k k P b P b +>,故{}n b 是“趋稳数列”………18分。
上海市静安区2015届高三上学期期末教学质量检测(一模)数学(文)试题 Word版含答案
上海市静安区2015届高三第一学期期末教学质量检测数学(文)试卷(试卷满分150分 考试时间120分钟) 2014.12一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. 计算:22lim127n n n →∞=+ . 2. 已知集合{|2,0}M y y x x ==≥,2{|lg(2)}N x y x x ==-,则MN = .3. 已知等差数列{}n a 的首项为3,公差为4,则该数列的前n 项和n S = .4. 一个不透明袋中有10个不同颜色的同样大小的球,从中任意摸出2个,共有 种不同结果(用数值作答).5. 不等式4021x x -<-的解集是 . 6. 设8780178(1)x a a x a x a x -=++++,则0178||||||||a a a a ++++= .7. 已知圆锥底面的半径为1,侧面展开图是一个圆心角为23π的扇形,则该圆锥的侧面积是 .8. 已知角α的顶点与直角坐标系的原点重合,始边在x 轴的正半轴上,终边在射线2y x =-(0x ≤)上,则sin 2α= .9. 已知两个向量a ,b 的夹角为30,||3a =,b 为单位向量,(1)c ta t b =+-,若0b c =,则t = .10. 已知两条直线的方程分别为1l :10x y -+=和2l :220x y -+=,则这两条直线的夹角大小为 (结果用反三角函数值表示). 11. 若α,β是一二次方程2230x x ++=的两根,则11αβ+= .12. 直线l 经过点(2,1)P -且点(2,1)A --到直线l 的距离等于1,则直线l 的方程是 .13. 已知实数x 、y 满足||||1x y ≥+,则2y x-的取值范围是 . 14. 一个无穷等比数列的首项为2,公比为负数,各项和为S ,则S 的取值范围是 .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.224685101O xyQPPAM15. 在下列幂函数中,是偶函数且在(0,)+∞上是增函数的是( )A. 2y x -= B. 12y x = C. 13y x = D. 23y x =16. 已知直线1l :3(2)60x k y -++=与直线2l :(23)20kx k y +-+=,记3(2)23k D k k -+=- .0D =是两条直线1l 与直线2l 平行的( ) A. 充分非必要条件 B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件 17. 已知i 为虚数单位,图中复平面内的点A 表示复数z ,则表示复数1zi+的点是( )A. MB. NC. PD. Q18. 到空间不共面的四点距离相等的平面的个数为( )A. 1个B. 4个C. 7个D. 8个三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.在锐角ABC 中,a 、b 、c 分别为内角A 、B 、C 所对的边长,且满足sin 32A a b=. (1)求B ∠的大小; (2)若7b =,ABC 的面积334ABCS=,求a c +的值.20.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分.B 1B C 1C DD1AA 1P M N上海出租车的价格规定:起步费14元,可行3公里,3公里以后按每公里2.4元计算,可再行7公里;超过10公里按每公里3.6元计算,假设不考虑堵车和红绿灯等所引起的费用,也不考虑实际收取费用去掉不足一元的零头等实际情况,即每一次乘车的车费由行车里程唯一确定.(1)小明乘出租车从学校到家,共8公里,请问他应付出租车费多少元?(本小题只需要回答最后结果)(2)求车费y (元)与行车里程x (公里)之间的函数关系式()y f x =.21.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.如图,正方体1111ABCD A B C D -的棱长为2,点P 为面11ADD A 的对角线1AD 的中点.PM ⊥平面ABCD 交AD 与M ,MN BD ⊥于N .(1)求异面直线PN 与11AC 所成角的大小;(结果可用反三角函数值表示) (2)求三棱锥P BMN -的体积.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分8分.已知函数2()log (1)a f x x x =++(其中1a >).(1)判断函数()y f x =的奇偶性,并说明理由; (2)求函数()y f x =的反函数1()y f x -=;(3)若两个函数()F x 与()G x 在闭区间[,]p q 上恒满足|()()|2F x G x ->,则称函数()F x 与()G x 在闭区间[,]p q 上是分离的.试判断函数1()y f x -=与()x g x a =在闭区间[1,2]上是否分离?若分离,求出实数a 的取值范围;若不分离,请说明理由.23.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.在数列{}n a 中,已知21a =,前n 项和为n S ,且1()2n n n a a S -=.(其中*n N ∈) (1)求1a ;(2)求数列{}n a 的通项公式; (3)设1lg 3n n na b +=,问是否存在正整数p 、q (其中1p q <<),使得1b 、p b 、q b 成等比数列?若存在,求出所有满足条件的数组(,)p q ;否则,说明理由.静安区2014学年第一学期期末教学质量检测高三年级数学(文科)试卷答案(试卷满分150分 考试时间120分钟) 2014.12一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. 计算:22lim127n n n →∞=+ . 解:112. 2. 已知集合{|2,0}M y y x x ==≥,2{|lg(2)}N x y x x ==-,则M N = .解:(0,2).3. 已知等差数列{}n a 的首项为3,公差为4,则该数列的前n 项和n S = . 解:22n n +.4. 一个不透明袋中有10个不同颜色的同样大小的球,从中任意摸出2个,共有 种不同结果(用数值作答). 解:45. 5. 不等式4021x x -<-的解集是 . 解:1,42⎛⎫⎪⎝⎭. 6. 设8780178(1)x a a x a x a x -=++++,则0178||||||||a a a a ++++= .解:256.7. 已知圆锥底面的半径为1,侧面展开图是一个圆心角为23π的扇形,则该圆锥的侧面积是 . 解:3π.8. 已知角α的顶点与直角坐标系的原点重合,始边在x 轴的正半轴上,终边在射线2y x =-(0x ≤)上,则sin 2α= . 解:45-. 9. 已知两个向量a ,b 的夹角为30,||3a =,b 为单位向量,(1)c ta t b =+-,若0b c =,则t = .解:-2.10. 已知两条直线的方程分别为1l :10x y -+=和2l :220x y -+=,则这两条直线的夹角224685101O xyQPPAM大小为 (结果用反三角函数值表示). 解:1arctan3(或310arccos 10或10arcsin 10). 11. 若α,β是一二次方程2230x x ++=的两根,则11αβ+= .解:-3.12. 直线l 经过点(2,1)P -且点(2,1)A --到直线l 的距离等于1,则直线l 的方程是 .解:31230x y -++=或31230x y --+-=. 13. 已知实数x 、y 满足||||1x y ≥+,则2y x-的取值范围是 . 解:[2,2]-.14. 一个无穷等比数列的首项为2,公比为负数,各项和为S ,则S 的取值范围是 . 解:(1,2).二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. 在下列幂函数中,是偶函数且在(0,)+∞上是增函数的是( )A. 2y x -= B. 12y x = C. 13y x = D. 23y x = 解:D.16. 已知直线1l :3(2)60x k y -++=与直线2l :(23)20kx k y +-+=,记3(2)23k D k k -+=- .0D =是两条直线1l 与直线2l 平行的( ) A. 充分非必要条件 B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件 解:B.17. 已知i 为虚数单位,图中复平面内的点A 表示复数z ,则表示复数1zi+的点是( )A. MB. NC. PD. Q解:D.18. 到空间不共面的四点距离相等的平面的个数为( )A. 1个B. 4个C. 7个D. 8个B 1C 1D 1AA 1P M解:C.三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.在锐角ABC 中,a 、b 、c 分别为内角A 、B 、C 所对的边长,且满足sin 32A a b=. (1)求B ∠的大小; (2)若7b =,ABC 的面积334ABCS=,求a c +的值. 解:(1)由正弦定理:sin sin a b A B =,得sin 3sin 2A B a b b ==,∴ 3sin 2B =,(4分) 又由B 为锐角,得3B π=.(6分)(2)1sin 2ABCSac B =,又∵ 334ABCS =,∴ 3ac =,(8分) 根据余弦定理:2222cos 7310b a c ac B =+-=+=,(12分) ∴ 222()216a c a c ac +=++=,从而4a c +=.(14分)20.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分.上海出租车的价格规定:起步费14元,可行3公里,3公里以后按每公里2.4元计算,可再行7公里;超过10公里按每公里3.6元计算,假设不考虑堵车和红绿灯等所引起的费用,也不考虑实际收取费用去掉不足一元的零头等实际情况,即每一次乘车的车费由行车里程唯一确定.(1)小明乘出租车从学校到家,共8公里,请问他应付出租车费多少元?(本小题只需要回答最后结果)(2)求车费y (元)与行车里程x (公里)之间的函数关系式()y f x =. 解:(1)他应付出出租车费26元.(4分)(2)14,03() 2.4 6.8,3103.6 5.2,10x f x x x x x <≤⎧⎪=+<≤⎨⎪->⎩ . 21.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.如图,正方体1111ABCD A B C D -的棱长为2,点P 为面11ADD A 的对角线1AD 的中点.PM ⊥平面ABCD 交AD 与M ,MN BD ⊥于N .(1)求异面直线PN 与11AC 所成角的大小;(结果可用反三角函数值表示) (2)求三棱锥P BMN -的体积.解:(1)∵ 点P 为面11ADD A 的对角线1AD 的中点,且PM ⊥平面ABCD ,∴ PM 为1ADD 的中位线,得1PM =, 又∵ MN BD ⊥,∴ 2222MN ND MD ===,(2分) ∵ 在底面ABCD 中,MN BD ⊥,AC BD ⊥,∴ //MN AC , 又∵ 11//AC AC ,PNM ∠为异面直线PN 与11AC 所成角,(6分) 在PMN 中,PMN ∠为直角,tan 2PNM ∠=,∴ arctan 2PNM ∠=. 即异面直线PN 与11AC 所成角的大小为arctan 2.(8分) (2)2322222BN =-=,(9分) 1132P BMN V PM MN BN -=⋅⋅⋅⋅,(12分)22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分8分.已知函数2()log (1)a f x x x =++(其中1a >).(1)判断函数()y f x =的奇偶性,并说明理由;(2)求函数()y f x =的反函数1()y f x -=;(3)若两个函数()F x 与()G x 在闭区间[,]p q 上恒满足|()()|2F x G x ->,则称函数()F x 与()G x 在闭区间[,]p q 上是分离的.试判断函数1()y fx -=与()x g x a =在闭区间[1,2]上是否分离?若分离,求出实数a 的取值范围;若不分离,请说明理由.解:(1)∵ 21||0x x x x ++>+≥,∴ 函数()y f x =的定义域为R ,(1分)又∵ 22()()log (1)log (1)0a a f x f x x x x x +-=++++-=,∴ 函数()y f x =是奇函数.(4分)(2)由210x x ++>,且当x →-∞时,210x x ++→,当x →+∞时,21x x ++→+∞,得2()log (1)a f x x x =++的值域为实数集.解2log (1)a y x x =++得11()()2xx f x a a --=-,x R ∈.(8分) (3)1()22xx x a a a --->在区间[1,2]上恒成立,即122x x a a -+>,即4xxa a-+>在区间[1,2]上恒成立,(11分)令xa t =,∵ 1a >,∴ 2[,]t a a ∈,1t t +在2[,]t a a ∈上单调递增,∴ min114t a t a ⎛⎫+=+> ⎪⎝⎭, 解得23a >+,∴ (23,)a ∈++∞.(16分)23.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.在数列{}n a 中,已知21a =,前n 项和为n S ,且1()2n n n a a S -=.(其中*n N ∈) (1)求1a ;(2)求数列{}n a 的通项公式; (3)设1lg 3n n na b +=,问是否存在正整数p 、q (其中1p q <<),使得1b 、p b 、q b 成等比数列?若存在,求出所有满足条件的数组(,)p q ;否则,说明理由. 解:(1)∵ 1()2n n n a a S -=,令1n =,得111()02a a a -==,∴ 10a =,(3分)或者令2n =,得21122()2a a a a -+=,∴ 10a =.(2)当2n ≥时,1111(1)()(1)22n n n n a a n a S ++++-+==,∴ 111(1)22n n n n n n a na a S S ++++=-=-,∴ 11n n a n a n +=-, 推得132n a na +=,又∵ 21a =,∴ 3223a a ==,∴ 1n a n +=, 当1,2n =时也成立,∴ 1n a n =-(*n N ∈).(9分)(3)假设存在正整数p 、q ,使得1b 、p b 、q b 成等比数列,则1lg b 、lg p b 、lg q b 成等差数列,故21333p q p q=+(**)(11分)由于右边大于13,则2133p p >,即136p p >, 考查数列3p p ⎧⎫⎨⎬⎩⎭的单调性,∵ 111120333p p p p p p +++--=<,∴ 数列3p p ⎧⎫⎨⎬⎩⎭为单调递减数列.(14分) 当2p =时,21396p p =>,代入(**)式得139q q =,解得3q =; 当3p ≥时,139p p ≤(舍).综上得:满足条件的正整数组(,)p q 为(2,3).(16分) (说明:从不定方程21333p q p q=+以具体值代入求解也可参照上面步骤给分)。
上海市高三数学一模考试试题(含解析).doc
高三数学一模考试试题(含解析)一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1.若(1)2z i i +=(i 是虚数单位),则||z =________.【解析】 【分析】根据复数代数形式的运算性质先求出z ,再根据模的计算公式求解即可. 【详解】解:∵(1)2z i i +=,∴21iz i ==+()()()21111i i i i i -=++-,∴||z ==.【点睛】本题主要考查复数代数形式的运算性质,考查复数的模,属于基础题. 2.已知4251λλ-=-,则λ=________【答案】3 【解析】 【分析】由行列式的计算公式化简求解即可. 【详解】解:4251λλ-=-()()4125λλ∴-⨯-⨯-=,解得3λ=, 故答案为:3.【点睛】本题考查二阶行列式的计算,属于基础题. 3.函数13x y -=(1x ≤)的反函数是________【答案】31log ,(0,1]y x x =+∈ 【解析】【分析】首先求出函数的值域,再利用反函数的求法,先反解x ,再对换x ,y ,求出即可. 【详解】解:13(1)x y x -=,(]0,1y ∴∈,得31log x y -=,x ,y 对换,得31log y x =+,(]0,1x ∈,故答案为:31log y x =+,(]0,1x ∈,【点睛】本题考查了反函数的求法,属于基础题.4.2019年女排世界杯共有12支参赛球队,赛制采用12支队伍单循环,两两捉对厮杀一场定胜负,依次进行,则此次杯赛共有_______ 场球赛. 【答案】66 【解析】 【分析】直接利用组合数的应用求出结果.【详解】解:根据题意利用组合数得2121211662C ⨯==. 故答案为:66.【点睛】本题考查的知识要点:组合数的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.5.以抛物线26y x =-的焦点为圆心,且与抛物线的准线相切的圆的方程是________【答案】22392x y ⎛⎫++= ⎪⎝⎭ 【解析】 【分析】首先求出抛物线的焦点坐标和准线方程,进一步求出圆的方程. 【详解】解:抛物线26y x =-的焦点坐标为3,02⎛⎫- ⎪⎝⎭,准线的方程为32x =, 所以焦点到准线的距离为3,所以以焦点为圆心且与抛物线的准线相切的圆的方程是:22392x y ⎛⎫++= ⎪⎝⎭.故答案为:22392x y ⎛⎫++= ⎪⎝⎭. 【点睛】本题考查的知识要点:圆锥曲线的性质的应用,圆的方程的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题. 6.在53(1)(1)x x -+的展开式中,3x 的系数为________ 【答案】9- 【解析】 【分析】利用二项展开式把5(1)x -展开,再求展开式中3x 的系数. 【详解】解:53(1)(1)x x -+()()2345315101051x x x x x x =-+-+-+()()23453234515101051510105x x x x x x x x x x x =-+-+-+-+-+-则含3x 的项有310x -与3x 两项∴展开式中3x 的系数为1109-=-.故答案为:9-.【点睛】本题考查了二项式系数的性质与应用问题,属于基础题. 7.不等式22|2|36x x x x -->--的解集是________ 【答案】(4,)-+∞ 【解析】 【分析】将不等式22|2|36x x x x -->--转换为不等式22|2|36x x x x -+>--,再根据220x x -+>恒成立,则原不等式等价于22236x x x x -+>--解得即可;【详解】解:不等式22|2|36x x x x -->--转换为不等式22|2|36x x x x -+>--, 由于函数22y x x =-+的图象在x 轴上方,所以220x x -+>恒成立,所以22236x x x x -+>--, 解得4x >-,故不等式的解集为(4,)-+∞. 故答案为:(4,)-+∞【点睛】本题考查的知识要点:不等式的解法及应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.8.已知方程220x kx -+=(k ∈R )的两个虚根为1x 、2x ,若12||2x x ,则k =_____【答案】2± 【解析】 【分析】由题意设1x a bi =+,2(,)x a bi a b R =-∈,利用根与系数的关系结合12||2x x 求得a 与b 的值,则k 可求. 【详解】解:方程程220x kx -+=的两个虚根为1x 、2x ,可设1x a bi =+,2(,)x a bi a b R =-∈. 122x x a k ∴+==,22122x x a b =+=,12||2x x -=,|2|2bi ∴=, 联立解得:1b =±,1a =±.2k ∴=±.故答案为:2±.【点睛】本题考查了实系数一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于基础题.9.已知直线l 过点(1,0)-且与直线20x y -=垂直,则圆22480x y x y +-+=与直线l 相交所得的弦长为__【答案】【解析】 【分析】先求出直线l 的方程,再求出圆心C 与半径r ,计算圆心到直线l 的距离d ,由垂径定理求弦长||AB .【详解】解:由题意可得,l 的方程为210x y ++=,22480x y x y +-+=可化为22(2)(4)20x y -++=,圆心(2,4)-,半径r =,∴圆心(2,4)-到l的距离d ==,AB ∴==故答案为:【点睛】本题考查直线与圆的方程的应用问题,考查两条直线垂直以及直线与圆相交所得弦长的计算问题,属于基础题.10.有一个空心钢球,质量为142g ,测得外直径为5cm ,则它的内直径是________cm (钢的密度为7.93/g cm ,精确到0.1cm )【答案】4.5 【解析】 【分析】直接利用球的体积公式和物理学的关系式的应用求出结果. 【详解】解:设钢球的内半径为r , 所以33457.9 3.1414232r ⎡⎤⎛⎫⨯⨯⨯-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,解得 2.25r ≈. 故内直径为4.5cm . 故答案为:4.5.【点睛】本题考查的知识要点:球的体积公式和相关的物理中的关系式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.11.已知{}n a 、{}n b 均是等差数列,n n n c a b =⋅,若{}n c 前三项是7、9、9,则10c =_______ 【答案】47- 【解析】 【分析】{}n a 、{}n b 均是等差数列,故{}n c 为二次函数,设2n c an bn c =++,根据前3项,求出a ,b ,c 的值,即可得到10c .【详解】解:因为{}n a 、{}n b 均是等差数列,其通项公式均为关于n 的一次式,所以n n nc a b =⋅为关于n 的二次式,故设2n n n c c b n a an b =+⋅+=,17c =,29c =,39c =则7429939a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,解得153a b c =-⎧⎪=⎨⎪=⎩253n c n n ∴+-+=210110510347c ∴=-⨯+⨯+=-, 故答案为:47-.【点睛】本题考查了等差数列的通项公式,考查分析和解决问题的能力和计算能力,属于基础题.12.已知0a b >>,那么,当代数式216()a b a b +-取最小值时,点(,)P a b 的坐标为________【答案】 【解析】 【分析】先根据基本不等式得到22()24b a b a b a b +-⎛⎫-=⎪⎝⎭;再利用基本不等式即可求解. 【详解】解:因0:a b >>22()24b a b a b a b +-⎛⎫∴-≤=⎪⎝⎭; 所以222166416()a a b a b a +≥+≥=-.当且仅当464a b a b ⎧=⎨=-⎩,即a b ⎧=⎪⎨=⎪⎩时取等号,此时(,)P a b的坐标为:(. 故答案为:(.【点睛】本题考查的知识点:关系式的恒等变换,基本不等式的应用,属于基础题.二.选择题(本大题共4题,每题5分,共20分) 13.若函数1()ln f x x a x=-+在区间(1)e ,上存在零点,则常数a 的取值范围为( ) A. 01a <<B.11a e<< C.111a e-<< D.111a e+<< 【答案】C 【解析】 【分析】函数f(x)在定义域内单调递增,由零点存在性定理可知()()10,0f f e <>,解不等式即可求得a 的取值范围.【详解】函数1()ln f x x a x=-+在区间()1,e 上为增函数, ∵(1)ln110f a =-+<,1()ln 0f e e a e=-+>, 可得111a e-<< 故选:C .【点睛】本题主要考查了导数在函数零点存在性问题中的应用,对于零点存在性问题,有两种思考方向:(1)直接利用导数研究函数单调性,结合零点存在性定理,讨论函数零点的情况;(2)先将函数零点问题等价转化为两个函数图像的交点问题,再利用导数,并结合函数图像讨论两函数交点情况,从而确定函数零点的情况. 14.下列函数是偶函数,且在[0,)+∞上单调递增的是( ) A. 2()log (41)x f x x =+-B. ()||2cos f x x x =-C. 2210()0x x f x x x ⎧+≠⎪=⎨⎪=⎩D. |lg |()10x f x =【答案】A 【解析】 【分析】由偶函数的定义,及在[0,)+∞上单调即可求解; 【详解】解:对于2241:()log (41)log 4x xx A f x x x -+-=++=+2222log (41)log 2log (41)()x x x x x f x =+-+=+-=.且2222(2)11()log (41)log log (2)22x xxx xf x x +=+-==+, 当0x 时,函数122xx y =+单调递增,()f x ∴在[)0,+∞上单调递增,故A 正确; :0B x >时,()2cos f x x x =-,令()12sin 0f x x '=->,得(0x ∈,52)(266k k ππππ++⋃,*22)()k k N ππ+∈,故B 不正确;:0C x ≠时,2212x x +,当且仅当221x x =,即1x =±时,等号成立, ∴不满足在[)0,+∞上单调递增,故C 不正确;对于D :|lg |()10x f x =定义域为()0,∞+,由偶函数的定义,偶函数的定义域关于原点对称,故D 错;故选:A .【点睛】考查偶函数的定义,函数在特定区间上的单调性,属于基础题;15.已知平面αβγ、、两两垂直,直线a b c 、、满足:,,a b c αβγ⊆⊆⊆,则直线a b c 、、不可能满足以下哪种关系( ) A. 两两垂直 B. 两两平行 C. 两两相交 D. 两两异面【答案】B 【解析】 【分析】通过假设//a b ,可得,a b 平行于,αβ的交线,由此可得c 与交线相交或异面,由此不可能存在////a b c ,可得正确结果.【详解】设l αβ=,且l 与,a b 均不重合假设:////a b c ,由//a b 可得://a β,//b α 又l αβ=,可知//a l ,//b l又////a b c ,可得://c l因为,,αβγ两两互相垂直,可知l 与γ相交,即l 与c 相交或异面 若l 与a 或b 重合,同理可得l 与c 相交或异面 可知假设错误,由此可知三条直线不能两两平行 本题正确选项:B【点睛】本题考查空间中的直线、平面之间的位置关系,关键在于能够通过线面关系得到第三条直线与前两条线之间的位置关系,从而得到正确结果. 16.提鞋公式也叫李善兰辅助角公式,其正弦型如下:22sin cos sin()a x b xa b x,πϕπ-<<,下列判断错误的是( )A. 当0a >,0b >时,辅助角arctan b a ϕ=B. 当0a >,0b <时,辅助角arctan ba ϕπ=+C. 当0a <,0b >时,辅助角arctan ba ϕπ=+D. 当0a <,0b <时,辅助角arctan baϕπ=-【答案】B 【解析】 【分析】分别判断出a ,b 的值,对辅助角ϕ的影响. ①0a >,0b >,则辅助角ϕ在第一象限; ②0a >,0b <,则辅助角ϕ在第四象限; ③0a <,0b <,则辅助角ϕ在第三象限; ④0a <,0b >,则辅助角ϕ在第二象限. 【详解】解:因为cos ϕ=sin ϕ=,tan baϕ=,(,]ϕππ∈-对于A ,因为0a >,0b >,则辅助角ϕ在第一象限02πϕ∴<<,0b a>,arctan (0,)2b a π∴∈,故A 选项正确;对于B ,因为0a >,0b <,则辅助角ϕ在第四象限02πϕ∴-<<;0b a <, arctan (,)2b a πππ∴+∈,故B 选项错误; 对于C ,因为0a <,0b >,则辅助角ϕ在第二象限2πϕπ∴<<;0b a <, arctan (,)2b a πππ∴+∈,故C 选项正确; 对于D ,因为0a <,0b <,则辅助角ϕ在第三象限2ππϕ∴-<<-,0b a <, arctan (,)2b a πππ∴-∈--,故D 选项正确; 故选:B .【点睛】本题考查了三角函数的性质,考查学生的分析能力,属于中档题. 三.解答题(本大题共5题,共14+14+14+16+18=76分)17.在直四棱柱1111ABCD A B C D -中,底面四边形ABCD 是边长为2的菱形,60BAD ︒∠=,13DD =,E 是AB 的中点.(1)求四棱锥1C EBCD -的体积;(2)求异面直线1C E 和AD 所成角的大小.(结果用反三角函数值表示) 【答案】(133;(2)5arccos 8;【解析】 【分析】(1)求解三角形求出底面梯形BCDE 的面积,再由棱锥体积公式求解;(2)在直四棱柱1111ABCD A B C D -中,由题意可得11//AD B C ,则11B C E ∠即为异面直线1C E 和AD 所成角,求解三角形得答案.【详解】解:(1)在直四棱柱1111ABCD A B C D -中, 底面四边形ABCD 是边长为2的菱形,60BAD ∠=︒,B ∴到DC 边的距离为3,又E 是AB 的中点,1BE ∴=,则()3311232BCDE S =+⨯=梯形. 13DD =,∴11333311333C BCDE BCDE V S DD -=⨯=⨯⨯=四边形;(2)在直四棱柱1111ABCD A B C D -中,11//AD B C ,11B C E ∴∠即为异面直线1C E 和AD 所成角,连接1B E ,在11C B E ∆中,112B C =,2213110B E =+=, 222211121211()942C E EC CC =+=+-⨯⨯⨯-+=.2221124(10)5cos 8B C E +-∴∠==,∴异面直线1C E 和AD 所成角的大小为5arccos 8.【点睛】本题考查多面体体积的求法及异面直线所成角的求法,考查空间想象能力与思维能力,属于中档题.18.已知函数()sin cos()cos 2f x x x x x π=+.(1)求函数()f x 的最小正周期及对称中心; (2)若()f x a =在区间[0,]2π上有两个解1x 、2x ,求a 的取值范围及12x x +的值.【答案】(1)π,对称中心:1,,2122k k Z ππ⎛⎫--∈ ⎪⎝⎭;(2)10,2a ⎡⎫∈⎪⎢⎣⎭,123x x π+=【解析】 【分析】(1)直接利用三角函数关系式的恒等变换的应用,把函数的关系式变形成正弦型函数,进一步求出函数的周期和对称中心.(2)利用函数的定义域求出函数的值域,进一步求出参数a 的范围和12x x +的值.【详解】解:(1)函数()sin cos cos 2f x x x x x π⎛⎫=+ ⎪⎝⎭21cos 21sin 22sin 2262x x x x x π-⎛⎫=-+=-+=+- ⎪⎝⎭. 所以函数的最小正周期为22T ππ==, 令2()6x k k Z ππ+=∈,解得()212k x k Z ππ=-∈, 所以函数的对称中心为1,()2122k k Z ππ⎛⎫--∈⎪⎝⎭. (2)由于02xπ,所以72666x πππ+,在区间[0,]2π上有两个解1x 、2x ,所以函数1sin 2126x π⎛⎫+< ⎪⎝⎭时,函数的图象有两个交点, 故a 的范围为10,2⎡⎫⎪⎢⎣⎭.由于函数的图象在区间0,2π⎡⎤⎢⎥⎣⎦上关于6x π=对称, 故12263x x ππ+=⋅=.【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.19.一家污水处理厂有A B 、两个相同的装满污水的处理池,通过去掉污物处理污水,A 池用传统工艺成本低,每小时去掉池中剩余污物的10%,B 池用创新工艺成本高,每小时去掉池中剩余污物的19%.(1)A 池要用多长时间才能把污物的量减少一半;(精确到1小时)(2)如果污物减少为原来的10%便符合环保规定,处理后的污水可以排入河流,若A B 、两池同时工作,问经过多少小时后把两池水混合便符合环保规定.(精确到1小时) 【答案】(1)7小时;(2)17小时 【解析】 【分析】(1)由题意可得A 池每小时剩余原来的90%,设A 池要用t 小时才能把污物的量减少一半,则0.90.5x =,两边取对数,计算可得所求值;(2)设A 、B 两池同时工作,经过x 小时后把两池水混合便符合环保规定,B 池每小时剩余原来的81%,可得090.810.12x x+=,由二次方程的解法和两边取对数可得所求值. 【详解】解:(1)A 池用传统工艺成本低,每小时去掉池中剩余污物的10%,剩余原来的90%, 设A 池要用t 小时才能把污物的量减少一半, 则0.90.5x=,可得0.570.9lg x lg =≈, 则A 池要用7小时才能把污物的量减少一半;(2)设A 、B 两池同时工作,经过x 小时后把两池水混合便符合环保规定,B 池用创新工艺成本高,每小时去掉池中剩余污物的19%,剩余原来的81%, 可得090.810.12x x+=,即20.90.90.20x x +-=, 可得0.9x=, 可得170.9lg x lg ⎝⎭=≈. 则A 、B 两池同时工作,经过17小时后把两池水混合便符合环保规定.【点睛】本题考查对数在实际问题的应用,考查方程思想和运算能力,属于中档题.20.已知直线:l x t =(02)t <<与椭圆22:142x y Γ+=相交于AB 、两点,其中A 在第一象限,M 是椭圆上一点.(1)记1F 、2F 是椭圆1(,]2t ∈-∞的左右焦点,若直线AB 过2F ,当M 到1F 的距离与到直线AB 的距离相等时,求点M 的横坐标;(2)若点M A 、关于y 轴对称,当MAB △的面积最大时,求直线MB 的方程; (3)设直线MA 和MB 与x 轴分别交于P Q 、,证明:||||OP OQ ⋅为定值.【答案】(1)642-+(2)2y x =;(3)证明见解析 【解析】 【分析】(1)由题意可得焦点1F ,2F 的坐标,进而可求出A 的坐标,设M 的坐标,注意横坐标的范围[]22-,,在椭圆上,又M 到1F 的距离与到直线AB 的距离相等,可求出M 的横坐标; (2)M ,A ,3B 个点的位置关系,可设一个点坐标,写出其他两点的坐标,写出面积的表达式,根据均值不等式可求出横纵坐标的关系,又在椭圆上,进而求出具体的坐标,再求直线MB 的方程;(3)设M ,A 的坐标,得出直线MA ,MB 的方程,进而求出两条直线与x 轴的交点坐标,用M ,A 的坐标表示,而M ,A 又在椭圆上,进而求出结果. 【详解】(1)设1(,),(2,0)M x y F -22(2)||x y x t ++=-,联立椭圆方程:22:142x y Γ+=,把22122y x =-代入得:22221222222x x x x tx t +++-=-+,(22)2x t ∴=--;又因为2t =,代入得:642M x =-+;(2)设()()11,,A t y B t y -,则()1,M t y -,则12MABSt y =⋅,又因为()1,A t y 在椭圆22:142x y Γ+=上,所以221142y t +=,11122t y ∴≥1ty ∴≤则MAB S≤,当且仅当1t =时,取等号,即t =,则(1)M B -,所以:2MB l y x =-; (3)设()()()1100,,,,,A t y B t y M x y -,则01100110:():()MA MB y y l y x t y x ty y l y x t y x t-⎧=-+⎪-⎪⎨+⎪=--⎪-⎩100101001,00,0d y t y x P y y y y t y x Q y y ⎧⎛⎫-⎪⎪-⎪⎝⎭=⎨⎛⎫+⎪ ⎪⎪+⎝⎭⎩令,则22220102201||||=y t y x O Q y P O y --⋅,又因为2212200122122y t y x ⎧=-⎪⎪⎨⎪=-⎪⎩,代入得:2202222||||41122t x OP OQ t x -⋅==-,故为定值.【点睛】考查直线与椭圆的综合应用,属于中档题.21.已知数列{}n a 满足11a =,2a e =(e 是自然对数的底数),且2n a +=令ln n nb a =(n ∈*N ).(1)证明:2n b +> (2)证明:211{}n n n n b b b b +++--是等比数列,且{}n b 的通项公式是121[1()]32n n b -=--;(3)是否存在常数t ,对任意自然数n ∈*N 均有1n n b tb +≥成立?若存在,求t 的取值范围,否则,说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)存在,12t ≤ 【解析】 【分析】(1)由已知可得:1n a >.利用基本不等式的性质可得:112n n nlna lna lna +++,可得1n lna lna +,代入化简即可得出.(2)设1+=-n n n c b b ,由2n a +=*()n n b lna n N =∈.可得121112n n n n n n c b b c b b ++++-==--.即可证明211n n n n b b b b +++⎧⎫-⎨⎬-⎩⎭是等比数列,利用通项公式、累加求和方法即可得出.(3)假设存在常数t ,对任意自然数*n N ∈均有1n n b tb +成立.由(2)可得:1211032n n b -⎡⎤⎛⎫=--≥⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.1n =时,10t ,解得t R ∈.2n 时,1min n n b t b +⎛⎫≤ ⎪⎝⎭,利用单调性即可得出.【详解】解:(1)依题意得,要证明2n b +>2ln na + 又因为2n a +=2lnn a +=,要证明2lnn a+>> 要证明>()1ln n n aa +⋅> 又因为1ln ln n n a a ++≥.(2)设1+=-n n n c b b ,因为2n a +=*ln ()n n b a n N =∈,则2112111111lnln 212ln ln n n nn n n n n n n n n n n a ac b b a a a a c b b a a +++++++++--====--所以:{}1n n b b +-是公比为12的等比数列,则()111211122n n n n b b b b --+⎛⎫⎛⎫-=-⋅-=- ⎪ ⎪⎝⎭⎝⎭,()()()121321n n n b b b b b b b b -∴=+-+-++-2211101()()()222n -=++-+-+⋯⋯+-11111221113212n n --⎡⎤⎛⎫⋅--⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==--⎢⎥⎪⎛⎫⎝⎭⎢⎥⎣⎦-- ⎪⎝⎭. nb 的通项公式是121132n n b -⎡⎤⎛⎫=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦; (3)假设存在常数t ,对任意自然数*n N ∈均有1n n b tb +≥成立,由(2)知,1211032n n b -⎡⎤⎛⎫=--≥⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 1︒当1n =时,t R ∈;2︒当2n ≥时,1minn n b t b +⎛⎫≤⎪⎝⎭, 而1111(2)1(2)23321(2)2(2)2(2)2112nn n n n n n n b b +-⎛⎫-- ⎪---+-⎝⎭-===--+-+-+⎛⎫-- ⎪⎝⎭, 则当2n =时,m 132in12n n b b b b +⎛⎫==⎪⎝⎭,故存在这样的t ,12t ≤ 【点睛】本题考查了数列递推关系、数列的单调性、等比数列的定义通项公式求和公式,考查了推理能力与计算能力,属于难题.。
上海市高三上学期数学一模试卷附解析
高三上学期数学一模试卷一、填空题1. ,命题:假设,那么且的逆否命题是________.2.的展开式中的常数项是________.3.如下列图,弧长为,半径为1的扇形(及其内部)绕所在的直线旋转一周,所形成的几何体的外表积为________.4.设是虚数单位,复数为纯虚数,那么实数为________5.在△ABC中,AB=2,AC=1,D为BC的中点,那么=________.6.某校的“希望工程〞募捐小组在假期中进行了一次募捐活动.他们第一天得到15元,从第二天起,每一天收到的捐款数都比前一天多10元.要募捐到不少于1100元,这次募捐活动至少需要________天.(结果取整)7.某校开设9门选修课程,其中A,B,C三门课程由于上课时间相同,至多项选择一门,假设规定每位学生选修4门,那么一共有________种不同的选修方案.8.如下列图,在平面直角坐标系中,动点以每秒的角速度从点出发,沿半径为2的上半圆逆时针移动到,再以每秒的角速度从点沿半径为1的下半圆逆时针移动到坐标原点,那么上述过程中动点的纵坐标关于时间的函数表达式为________.二、单项选择题9.假设,,那么下面不等式中成立的一个是〔〕.A. B. C. D.10.以下四个选项中正确的选项是〔〕A. 关于的方程( )的曲线是圆B. 设复数是两个不同的复数,实数,那么关于复数的方程的所有解在复平面上所对应的点的轨迹是椭圆C. 设为两个不同的定点,为非零常数,假设,那么动点的轨迹为双曲线的一支D. 双曲线与椭圆有相同的焦点11.在平面直角坐标系中,、是位于不同象限的任意角,它们的终边交单位圆(圆心在坐标原点)于A、BA、B两点的纵坐标分别为正数a、b,且,那么a+b的最大值为( )A. 1B.C. 2D. 不存在三、解答题12.如下列图,等腰梯形是由正方形和两个全等的Rt△FCB和Rt△EDA组成,,.现将Rt△FCB沿BC所在的直线折起,点移至点,使二面角的大小为.〔1〕求四棱锥的体积;〔2〕求异面直线与所成角的大小.13.设,其中常数.〔1〕设,,求函数( )的反函数;〔2〕求证:当且仅当时,函数为奇函数.14.如下列图,在河对岸有两座垂直于地面的高塔和.张明在只有量角器(可以测量从测量人出发的两条射线的夹角)和直尺(可测量步行可抵达的两点之间的直线距离)的条件下,为了计算塔的高度,他在点A测得点的仰角为,,又选择了相距100米的点,测得.〔1〕请你根据张明的测量数据求出塔高度;〔2〕在完成〔1〕的任务后,张明测得,并且又选择性地测量了两个角的大小(设为、).据此,他计算出了两塔顶之间的距离.请问:①张明又测量了哪两个角?(写出一种测量方案即可)②他是如何用表示出的?(写出过程和结论)15.个正数排成行列方阵,其中每一行从左至右成等差数列,每一列从上至下都是公比为同一个实数的等比数列.,,.〔1〕设,求数列的通项公式;〔2〕设,求证:( );〔3〕设,请用数学归纳法证明:.16.如下列图,定点到定直线的距离.动点到定点的距离等于它到定直线距离的2倍.设动点的轨迹是曲线.〔1〕请以线段所在的直线为轴,以线段上的某一点为坐标原点,建立适当的平面直角坐标系,使得曲线经过坐标原点,并求曲线的方程;〔2〕请指出〔1〕中的曲线的如下两个性质:①范围;②对称性.并选择其一给予证明.〔3〕设〔1〕中的曲线除了经过坐标原点,还与轴交于另一点,经过点的直线交曲线于,两点,求证:.答案解析局部一、填空题1.【解析】【解答】由逆否命题定义可得原命题的逆否命题为:假设a=0或b=0,那么ab=0故答案为:假设a=0或b=0,那么ab=0.【分析】根据逆否命题的定义进行求解即可。
上海市松江区高三数学一模试题 文(含解析)
上海市松江区2015届高考数学一模试卷(文科)一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.若复数z满足|=0,则z的值为__________.2.已知f(x)=log a x(a>0,a≠1),且f﹣1(﹣1)=2,则f﹣1(x)=__________.3.在等差数列{a n}中,a2=6,a5=15,则a2+a4+a6+a8+a10=__________.4.已知正方形ABCD的边长为2,E为CD的中点,则=__________.5.在正四棱柱ABCD﹣A1B1C1D1中,BC1与平面ABCD所成的角为60°,则BC1与AC所成的角为__________(结果用反三角函数表示).6.若圆C的半径为1,圆心在第一象限,且与直线4x﹣3y=0和x轴都相切,则该圆的标准方程是__________.7.按如图所示的流程图运算,则输出的S=__________.8.已知函数f(x)=sin(ωx+)(x∈R,ω>0)的最小正周期为π,将y=f(x)图象向左平移φ个单位长度(0<φ<)所得图象关于y轴对称,则φ=__________.9.已知双曲线的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于__________.10.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是5的概率为__________.11.函数f(x)=sin2x﹣cos2x+1的单调递增区间为__________.12.某同学为研究函数的性质,构造了如图所示的两个边长为1的正方形ABCD和BEFC,点P是边BC上的一个动点,设CP=x,则AP+PF=f (x).请你参考这些信息,推知函数f(x)的值域是__________.13.设f(x)是定义在R上的偶函数,对任意x∈R,都有f(x﹣2)=f(x+2),且当x∈[﹣2,0]时,f(x)=.若函数g(x)=f(x)﹣log a(x+2)(a>1)在区间(﹣2,6]恰有3个不同的零点,则a的取值范围是__________.14.在正项等比数列{a n}中,已知a1<a4=1,若集A={t|(a1﹣)+(a2﹣)+…+(a t﹣)≤0,t∈N*},则A中元素个数为__________.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.已知p,q∈R,则“q<p<0”是“||<1”的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件16.若二项式展开式中含有常数项,则n的最小取值是( )A.5 B.6 C.7 D.817.设P是△ABC所在平面内的一点,,则( )A.B.C.D.18.已知满足条件x2+y2≤1的点(x,y)构成的平面区域面积为S1,满足条件[x]2+[y]2≤1的点(x,y)构成的平面区域的面积为S2,其中[x]、[y]分别表示不大于x,y的最大整数,例如:[﹣0.4]=﹣1,[1.6]=1,则S1与S2的关系是( )A.S1<S2B.S1=S2C.S1>S2D.S1+S2=π+3三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.在△ABC中,a,b,c分别为内角A,B,C所对的边,且满足a<b<c,b=2asinB.(1)求A的大小;(2)若a=2,b=2,求△ABC的面积.20.已知函数f(x)=a|x+b|(a>0,a≠1,b∈R).(1)若f(x)为偶函数,求b的值;(2)若f(x)在区间[2,+∞)上是增函数,试求a、b应满足的条件.21.沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时.如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8cm,细沙全部在上部时,其高度为圆锥高度的(细管长度忽略不计).(1)如果该沙漏每秒钟漏下0.02cm3的沙,则该沙漏的一个沙时为多少秒(精确到1秒)?(2)细沙全部漏入下部后,恰好堆成个一盖住沙漏底部的圆锥形沙堆,求此锥形沙堆的高度(精确到0.1cm).22.(16分)已知数列{a n}的首项为1,设f(n)=a1C n1+a2C n2+…+a k C n k+…+a n C n n(n∈N*).(1)若{a n}为常数列,求f(4)的值;(2)若{a n}为公比为2的等比数列,求f(n)的解析式;(3)数列{a n}能否成等差数列,使得f(n)﹣1=2n•(n﹣1)对一切n∈N*都成立?若能,求出数列{a n}的通项公式;若不能,试说明理由.23.(18分)对于曲线C:f(x,y)=0,若存在最小的非负实数m和n,使得曲线C上任意一点P(x,y),|x|≤m,|y|≤n恒成立,则称曲线C为有界曲线,且称点集{(x,y)||x|≤m,|y|≤n}为曲线C的界域.(1)写出曲线(x﹣1)2+y2=4的界域;(2)已知曲线M上任意一点P到坐标原点O与直线x=1的距离之和等于3,曲线M是否为有界曲线,若是,求出其界域,若不是,请说明理由;(3)已知曲线C上任意一点P(x,y)到定点F1(﹣1,0),F2(1,0)的距离之积为常数a(a>0),求曲线的界域.上海市松江区2015届高考数学一模试卷(文科)一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.若复数z满足|=0,则z的值为±2i.考点:二阶行列式的定义;复数代数形式的乘除运算.专题:矩阵和变换.分析:由已知得z2+4=0,由此能求出z=±2i..解答:解:∵=0,∴z2+4=0,解得z=±2i.故答案为:±2i.点评:本题考查复数的求法,是基础题,解题时要注意二阶行列式性质的合理运用.2.已知f(x)=log a x(a>0,a≠1),且f﹣1(﹣1)=2,则f﹣1(x)=.考点:对数函数图象与性质的综合应用.专题:计算题;函数的性质及应用.分析:由题意可得f(2)=log a2=﹣1;从而得到a=;再写反函数即可.解答:解:由题意,∵f﹣1(﹣1)=2,∴f(2)=log a2=﹣1;故a=;故f﹣1(x)=;故答案为:.点评:本题考查了反函数的应用及指数对数函数的应用,属于基础题.3.在等差数列{a n}中,a2=6,a5=15,则a2+a4+a6+a8+a10=90.考点:等差数列的前n项和.专题:等差数列与等比数列.分析:由已知条件,利用等差数列的前n项和公式求出首项和公差,由此能求出结果.解答:解:∵在等差数列{a n}中,a2=6,a5=15,∴,解得a1=3,d=3,∴a2+a4+a6+a8+a10=5a1+25d=90.故答案为:90.点评:本题考查数列的若干项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.4.已知正方形ABCD的边长为2,E为CD的中点,则=2.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据两个向量的加减法的法则,以及其几何意义,可得要求的式子为()•(),再根据两个向量垂直的性质,运算求得结果.解答:解:∵已知正方形ABCD的边长为2,E为CD的中点,则=0,故=()•()=()•()=﹣+﹣=4+0﹣0﹣=2,故答案为 2.点评:本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量垂直的性质,属于中档题.5.在正四棱柱ABCD﹣A1B1C1D1中,BC1与平面ABCD所成的角为60°,则BC1与AC所成的角为arccos(结果用反三角函数表示).考点:异面直线及其所成的角.专题:计算题;空间位置关系与距离;空间角.分析:连接A1C1,A1B,则AC∥A1C1,∠BC1A1即为BC1与AC所成的角.由于CC1⊥平面ABCD,则∠C1BC=60°,设正四棱柱ABCD﹣A1B1C1D1中的底面边长为a,侧棱长为b,即b=a,再由余弦定理,即可得到.解答:解:连接A1C1,A1B,则AC∥A1C1,∠BC1A1即为BC1与AC所成的角.设正四棱柱ABCD﹣A1B1C1D1中的底面边长为a,侧棱长为b,则由于CC1⊥平面ABCD,则∠C1BC=60°,即有tan60°=,即b=a,在△BA1C1中,BC1=BA1==2a,A1C1=a,cos∠BC1A1==.则BC1与AC所成的角为arccos.故答案为: arccos.点评:本题考查空间的直线和平面所成的角,异面直线所成的角的求法,考查运算能力,属于基础题.6.若圆C的半径为1,圆心在第一象限,且与直线4x﹣3y=0和x轴都相切,则该圆的标准方程是(x﹣2)2+(y﹣1)2=1.考点:圆的标准方程;圆的切线方程.专题:计算题.分析:依据条件确定圆心纵坐标为1,又已知半径是1,通过与直线4x﹣3y=0相切,圆心到直线的距离等于半径求出圆心横坐标,写出圆的标准方程.解答:解:∵圆C的半径为1,圆心在第一象限,且与直线4x﹣3y=0和x轴都相切,∴半径是1,圆心的纵坐标也是1,设圆心坐标(a,1),则1=,又 a>0,∴a=2,∴该圆的标准方程是(x﹣2)2+(y﹣1)2=1;故答案为(x﹣2)2+(y﹣1)2=1.点评:本题考查利用圆的切线方程求参数,圆的标准方程求法.7.按如图所示的流程图运算,则输出的S=20.考点:循环结构.专题:阅读型.分析:根据流程图,先进行判定条件,不满足条件则运行循环体,一直执行到满足条件即跳出循环体,输出结果即可.解答:解:第一次运行得:S=5,a=4,满足a≥4,则继续运行第二次运行得:S=20,a=3,不满足a≥4,则停止运行输出S=20故答案为:20点评:本题主要考查了当型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断,在近两年的新课标地区2015届高考都考查到了,属于基础题.8.已知函数f(x)=sin(ωx+)(x∈R,ω>0)的最小正周期为π,将y=f(x)图象向左平移φ个单位长度(0<φ<)所得图象关于y轴对称,则φ=.考点:函数y=Asin(ωx+φ)的图象变换.专题:计算题;三角函数的图像与性质.分析:根据函数的周期为π,结合周期公式可得ω=2.得到函数的表达式后,根据函数y=f (x+φ)是偶函数,由偶函数的定义结合正弦的诱导公式化简整理,即可得到实数φ的值.解答:解:∵函数f(x)=sin(ωx+)(x∈R,ω>0)的最小正周期为π,∴ω==2,函数表达式为:f(x)=sin(2x+),又∵y=f(x)图象向左平移φ个单位长度所得图象为y=sin[2(x+φ)+)]关于y轴对称,∴2φ+=+kπ,k∈Z,因为0<φ<,所以取k=0,得φ=,故答案为:.点评:本题给出y=Asin(ωx+φ)的图象左移φ个单位后得到偶函数的图象,求φ的值.着重考查了函数y=Asin(ωx+φ)的图象与性质和正弦的诱导公式等知识,属于基本知识的考查.9.已知双曲线的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于.考点:双曲线的简单性质.专题:计算题.分析:可求得抛物线y2=12x的焦点坐标,从而可求得b2及双曲线﹣=1的右焦点坐标,利用点到直线间的距离公式即可.解答:解:∵抛物线y2=12x的焦点坐标为(3,0),依题意,4+b2=9,∴b2=5.∴双曲线的方程为:﹣=1,∴其渐近线方程为:y=±x,∴双曲线的一个焦点F(3,0)到其渐近线的距离等于d==.故答案为:.点评:本题考查双曲线的简单性质,求得b2的值是关键,考查点到直线间的距离公式,属于中档题.10.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是5的概率为.考点:古典概型及其概率计算公式.专题:概率与统计.分析:由题意知,七个数的中位数是5,说明5之前5个数中取3个,5之后4个数中取3个,根据概率公式计算即可.解答:解:5之前5个数中取3个,5之后4个数中取3个,P==.故答案为:.点评:本题主要考查了古典概率和中位数的问题,关键是审清题意,属于基础题.11.函数f(x)=sin2x﹣cos2x+1的单调递增区间为[kπ﹣](k∈Z).考点:两角和与差的正弦函数;正弦函数的单调性.专题:三角函数的求值;三角函数的图像与性质.分析:化简可得解析式f(x)=sin(2x﹣)+1,令2kπ﹣≤2x﹣≤2kπ+,k∈Z 即可解得函数f(x)的单调递增区间.解答:解:∵f(x)=sin2x﹣cos2x+1=sin(2x﹣)+1,∴令2kπ﹣≤2x﹣≤2kπ+,k∈Z,∴可解得函数f(x)=sin2x﹣cos2x+1的单调递增区间为:[kπ﹣](k∈Z),故答案为:[kπ﹣](k∈Z).点评:本题主要考查了两角和与差的正弦函数公式的应用,正弦函数的单调性,属于基本知识的考查.12.某同学为研究函数的性质,构造了如图所示的两个边长为1的正方形ABCD和BEFC,点P是边BC上的一个动点,设CP=x,则AP+PF=f (x).请你参考这些信息,推知函数f(x)的值域是[,].考点:函数的值域.专题:计算题;函数的性质及应用.分析:分别在Rt△PCF和Rt△PAB中利用勾股定理,得PA+PF=+.运动点P,可得A、P、B三点共线时,PA+PF取得最小值;当P在点B或点C时,PA+PF取得最大值.由此即可得到函数f(x)的值域.解答:解:Rt△PCF中,PF==同理可得,Rt△PAB中,PA=∴PA+PF=+∵当A、B、P三点共线时,即P在矩形ADFE的对角线AF上时,PA+PF取得最小值=当P在点B或点C时,PA+PF取得最大值+1∴≤PA+PF≤+1,可得函数f(x)=AP+PF的值域为[,].故答案为:[,].点评:本题以一个实际问题为例,求函数的值域,着重考查了勾股定理和函数的值域及其求法等知识点,属于基础题.13.设f(x)是定义在R上的偶函数,对任意x∈R,都有f(x﹣2)=f(x+2),且当x∈[﹣2,0]时,f(x)=.若函数g(x)=f(x)﹣log a(x+2)(a>1)在区间(﹣2,6]恰有3个不同的零点,则a的取值范围是(,2).考点:根的存在性及根的个数判断;函数的周期性.专题:计算题;压轴题;数形结合.分析:由题意中f(x﹣2)=f(2+x),可得函数f(x)是一个周期函数,且周期为4,又由函数为偶函数,则可得f(x)在区间(﹣2,6]上的图象,结合方程的解与函数的零点之间的关系,可将方程f(x)﹣log a x+2=0恰有3个不同的实数解,转化为两个函数图象恰有3个不同的交点,数形结合即可得到实数a的取值范围.解答:解:∵对于任意的x∈R,都有f(x﹣2)=f(2+x),∴函数f(x)是一个周期函数,且T=4又∵当x∈[﹣2,0]时,f(x)=,且函数f(x)是定义在R上的偶函数,故函数f(x)在区间(﹣2,6]上的图象如下图所示:若在区间(﹣2,6]内关于x的方程f(x)﹣log a(x+2)=0恰有3个不同的实数解则log a4<3,log a8>3,解得:<a<2,即a的取值范围是(,2);故答案为(,2).点评:本题考查根的存在性及根的个数判断,关键是根据方程的解与函数的零点之间的关系,将方程根的问题转化为函数零点问题.14.在正项等比数列{a n}中,已知a1<a4=1,若集A={t|(a1﹣)+(a2﹣)+…+(a t ﹣)≤0,t∈N*},则A中元素个数为7.考点:等比数列.专题:等差数列与等比数列.分析:设公比为q,由已知得a1=q﹣3,从而(a1﹣)+(a2﹣)+…+(a t﹣)=﹣=(a12q n﹣1﹣1)=•[q n﹣7﹣1]≤0,由此求出n≤7.解答:解:设公比为q∵a1<a4=a1q3=1∴0<a1<1 1<q3,q>1,①∴a1=q﹣3,②∴(a1﹣)+(a2﹣)+…+(a t﹣)=(a1+a2+…+a t)﹣(++…+)(后一个首项,公比)=﹣=(a12q n﹣1﹣1),代入②,得•[q n﹣7﹣1]≤0∵>0∴q t﹣7﹣1≤0q t﹣7≤1∴t﹣7≤0解得t≤7故答案为:7.点评:本题考查集合中元素个数的求法,是中档题,解题时要认真审题,注意等比数列的性质的合理运用.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.已知p,q∈R,则“q<p<0”是“||<1”的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据不等式之间的关系结合充分条件和必要条件的定义进行判断即可.解答:解:∵“q<p<0”,∴0<<1,则||<1成立,即充分性成立,若当q=2,p=﹣1时,满足||<1,但q<p<0不成立,即必要性不成立,故“q<p<0”是“||<1”充分不必要条件,故选:A点评:本题主要考查充分条件和必要条件的判断,利用不等式的性质是解决本题的关键.16.若二项式展开式中含有常数项,则n的最小取值是( )A.5 B.6 C.7 D.8考点:二项式定理的应用.专题:计算题.分析:利用二项展开式的通项公式求出展开式的通项,令x的指数为0方程有解.由于n,r都是整数求出最小的正整数n.解答:解:展开式的通项为T r+1=3n﹣r(﹣2)r C n r x2n﹣令2n﹣=0,据题意此方程有解∴n=,当r=6时,n最小为7.故选C.点评:本题考查利用二项展开式的通项公式解决二项展开式的特定项问题,属于中档题.17.设P是△ABC所在平面内的一点,,则( )A.B.C.D.考点:向量的加法及其几何意义;向量的三角形法则.专题:平面向量及应用.分析:根据所给的关于向量的等式,把等式右边二倍的向量拆开,一个移项一个和左边移来的向量进行向量的加减运算,变形整理,得到与选项中一致的形式,得到结果.解答:解:∵,∴,∴∴∴故选B.点评:本题考查了向量的加法运算和平行四边形法则,可以借助图形解答.向量是数形结合的典型例子,向量的加减运算是用向量解决问题的基础,要学好向量的加减运算.18.已知满足条件x2+y2≤1的点(x,y)构成的平面区域面积为S1,满足条件[x]2+[y]2≤1的点(x,y)构成的平面区域的面积为S2,其中[x]、[y]分别表示不大于x,y的最大整数,例如:[﹣0.4]=﹣1,[1.6]=1,则S1与S2的关系是( )A.S1<S2B.S1=S2C.S1>S2D.S1+S2=π+3考点:二元一次不等式(组)与平面区域.专题:计算题;不等式的解法及应用;直线与圆.分析:先把满足条件x2+y2≤1的点(x,y)构成的平面区域,满足条件[x]2+[y]2≤1的点(x,y)构成的平面区域表达出来,然后看二者的区域的面积,再求S1与S2的关系.解答:解:满足条件x2+y2≤1的点(x,y)构成的平面区域为一个圆;其面积为:π当0≤x<1,0≤y<1时,满足条件[x]2+[y]2≤1;当0≤x<1,1≤y<2时,满足条件[x]2+[y]2≤1;当0≤x<1,﹣1≤y<0时,满足条件[x]2+[y]2≤1;当﹣1≤x<0,0≤y<1时,满足条件[x]2+[y]2≤1;当0≤y<1,1≤x<2时,满足条件[x]2+[y]2≤1;∴满足条件[x]2+[y]2≤1的点(x,y)构成的平面区域是五个边长为1的正方形,其面积为:5综上得:S1与S2的关系是S1<S2,故选A.点评:本题类似线性规划,处理两个不等式的形式中,第二个难度较大,[x]2+[y]2≤1的平面区域不易理解.三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.在△ABC中,a,b,c分别为内角A,B,C所对的边,且满足a<b<c,b=2asinB.(1)求A的大小;(2)若a=2,b=2,求△ABC的面积.考点:余弦定理;正弦定理.专题:解三角形.分析:(1)已知等式利用正弦定理化简,根据sinB不为0求出sinA的值,根据A为锐角求出A的度数即可;(2)由a,b,cosA的值,利用余弦定理求出c的值,根据b,c,sinA的值,利用三角形面积公式即可求出三角形ABC面积.解答:解:(1)∵b=2asinB,∴由正弦定理化简得:sinB=2sinAsinB,∵sinB≠0,∴sinA=,∵a<b<c,∴A为锐角,则A=;(2)∵a=2,b=2,cosA=,∴由余弦定理得:a2=b2+c2﹣2bccosA,即4=12+c2﹣2×2×c×,整理得:c2﹣6c+8=0,解得:c=2(舍去)或c=4,则S=bcsinA=×2×4×=2.点评:此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.20.已知函数f(x)=a|x+b|(a>0,a≠1,b∈R).(1)若f(x)为偶函数,求b的值;(2)若f(x)在区间[2,+∞)上是增函数,试求a、b应满足的条件.考点:函数奇偶性的判断;函数单调性的判断与证明.专题:函数的性质及应用.分析:(1)因为f(x)为偶函数,得到对任意的x∈R,都有f(﹣x)=f(x),求出b;(2)记h(x)=|x+b|=,讨论a值得到b的范围.解答:解:(1)因为f(x)为偶函数,∴对任意的x∈R,都有f(﹣x)=f(x),即a|x+b|=a|﹣x+b|,所以|x+b|=|﹣x+b|得 b=0.(2)记h(x)=|x+b|=,①当a>1时,f(x)在区间[2,+∞)上是增函数,即h(x)在区间[2,+∞)上是增函数,∴﹣b≤2,b≥﹣2②当0<a<1时,f(x)在区间[2,+∞)上是增函数,即h(x)在区间[2,+∞)上是减函数但h(x)在区间[﹣b,+∞)上是增函数,故不可能∴f(x)在区间[2,+∞)上是增函数时,a、b应满足的条件为a>1且b≥﹣2点评:本题考查了函数奇偶性的运用以及讨论思想的运用,属于中档题.21.沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时.如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8cm,细沙全部在上部时,其高度为圆锥高度的(细管长度忽略不计).(1)如果该沙漏每秒钟漏下0.02cm3的沙,则该沙漏的一个沙时为多少秒(精确到1秒)?(2)细沙全部漏入下部后,恰好堆成个一盖住沙漏底部的圆锥形沙堆,求此锥形沙堆的高度(精确到0.1cm).考点:根据实际问题选择函数类型;函数的最值及其几何意义.专题:计算题;应用题;函数的性质及应用.分析:(1)开始时,沙漏上部分圆锥中的细沙的高为H=×8=,底面半径为r=×4=;从而求时间;(2)细沙漏入下部后,圆锥形沙堆的底面半径4,设高为H′,从而得V=π×42×H′=π;从而求高.解答:解:(1)开始时,沙漏上部分圆锥中的细沙的高为H=×8=,底面半径为r=×4=;V=πr2H=π×()2×=π≈39.71;V÷0.02≈1986(秒)所以,沙全部漏入下部约需1986秒.(2)细沙漏入下部后,圆锥形沙堆的底面半径4,设高为H′,V=π×42×H′=π;H′=≈2.4;锥形沙堆的高度约为2.4cm.点评:本题考查了函数在实际问题中的应用,属于中档题.22.(16分)已知数列{a n}的首项为1,设f(n)=a1C n1+a2C n2+…+a k C n k+…+a n C n n(n∈N*).(1)若{a n}为常数列,求f(4)的值;(2)若{a n}为公比为2的等比数列,求f(n)的解析式;(3)数列{a n}能否成等差数列,使得f(n)﹣1=2n•(n﹣1)对一切n∈N*都成立?若能,求出数列{a n}的通项公式;若不能,试说明理由.考点:二项式定理的应用;等差数列的性质;等比数列的性质.专题:综合题;转化思想.分析:(1){a n}为常数列,a1=1,可求a n=1,代入f(n)=a1C n1+a2C n2+…+a k C n k+…+a n C n n(n∈N*)可求f(4)的值;(2)根据题意可求a n=2n﹣1(n∈N*),f(n)=C n1+2C n2+4C n3+…+2n﹣1C n n,两端同时2倍,配凑二项式(1+2)n,问题即可解决;(3)假设数列{a n}能为等差数列,使得f(n)﹣1=(n﹣1)2n对一切n∈N*都成立,利用倒序相加法求得,最终转化为(d﹣2)+(d﹣2)(n+2)2n﹣1=0对n∈N*恒成立,从而求得d=2,问题解决.解答:解:(1)∵{a n}为常数列,∴a n=1(n∈N*).∴f(4)=C41+C42+C43+C44=15.(2)∵{a n}为公比为2的等比数列,∴a n=2n﹣1(n∈N*).∴f(n)=C n1+2C n2+4C n3+…+2n﹣1C n n,∴1+2f(n)=1+2C n1+22C n2+23C n3+…+2n C n n=(1+2)n=3n,故.(3)假设数列{a n}能为等差数列,使得f(n)﹣1=(n﹣1)2n对一切n∈N*都成立,设公差为d,则f(n)=a1C n1+a2C n2+…+a k C n k+…+a n﹣1C n n﹣1+a n C n n,且f(n)=a n C n n+a n﹣1C n n﹣1+…+a k C n k+…+a2C n2+a1C n1,相加得 2f(n)=2a n+(a1+a n﹣1)(C n1+C n2+…+C n k+…+C n n﹣1),∴==1+(n﹣1)d+[2+(n﹣2)d](2n﹣1﹣1).∴f(n)﹣1=(d﹣2)+[2+(n﹣2)d]2n﹣1=(n﹣1)2n对n∈N*恒成立,即(d﹣2)+(d﹣2)(n+2)2n﹣1=0对n∈N*恒成立,∴d=2.故{a n}能为等差数列,使得f(n)﹣1=(n﹣1)2n对一切n∈N*都成立,它的通项公式为a n=2n ﹣1.点评:本题重点考查二项式定理的应用,解决的方法有倒序相加法求 f(n),难点在于综合分析,配凑逆用二项式定理,属于难题.23.(18分)对于曲线C:f(x,y)=0,若存在最小的非负实数m和n,使得曲线C上任意一点P(x,y),|x|≤m,|y|≤n恒成立,则称曲线C为有界曲线,且称点集{(x,y)||x|≤m,|y|≤n}为曲线C的界域.(1)写出曲线(x﹣1)2+y2=4的界域;(2)已知曲线M上任意一点P到坐标原点O与直线x=1的距离之和等于3,曲线M是否为有界曲线,若是,求出其界域,若不是,请说明理由;(3)已知曲线C上任意一点P(x,y)到定点F1(﹣1,0),F2(1,0)的距离之积为常数a(a>0),求曲线的界域.考点:曲线与方程.专题:圆锥曲线中的最值与范围问题.分析:(1)由已知得(x﹣1)2≤4,y2≤4,由此能求出曲线(x﹣1)2+y2=4的界域.(2)设P(x,y),则+|x﹣1|=3,从而得到﹣1≤x≤2,﹣2,由此得到曲线M为有界曲线,并能求出求出其界域.(3)由已知得:=a,×=a,从而得到|x|,,进而得到|y|≤,由此能求出曲线C界域.解答:解:(1)∵曲线(x﹣1)2+y2=4,∴(x﹣1)2≤4,y2≤4,∴﹣1≤x≤3,﹣2≤y≤2,∴界域为{(x,y)||x|≤3,|y|≤2}.(2)设P(x,y),则+|x﹣1|=3,化简,得:y2=,∴﹣1≤x≤2,﹣2,∴界域为{(x,y)||x|≤2,|y|}.(3)由已知得:=a,×==a,∴(x2+y2+1)2﹣4x2=a2,∴,∵y2≥0,∴,∴(x2+1)2≤4x2+a2,∴(x2﹣1)2≤a2,∴1﹣a≤x2≤a+1,∴|x|,,令t=,,,当t=2,即时,等号成立.若0<a≤2,1﹣[1﹣a,1+a],时,,∴|y|≤,若a>2,1﹣<0,,∴x=0时,=a﹣1,∴|y|≤,∴曲线C界域为:①0<a≤2时,{(x,y)|x|≤,|y|≤}.②a>2时,{(x,y)||x|,|y|≤}.点评:本题考查曲线的界域的求法,考查曲线是否为有界曲线的判断与界域的求法,解题时要认真审题,注意函数与方程思想的合理运用.。
2015届海市松江区高三上学期期末考试文科数学试卷(带解析)
绝密★启用前2015届海市松江区高三上学期期末考试文科数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:164分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、设是所在平面内一点,则A .B .C .D .2、已知,则“”是“”的A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件3、若二项式展开式中含有常数项,则的最小取值是A .4B .5C .6D .74、已知满足条件的点构成的平面区域面积为,满足条件的点构成的平面区域的面积为,其中分别表示不大于的最大整数,例如:,,则的关系是A .B .C .D .第II卷(非选择题)二、填空题(题型注释)5、设是定义在上的偶函数,对任意,都有,且当时,.若函数在区间恰有3个不同的零点,则的取值范围是.6、某同学为研究函数的性质,构造了如图所示的两个边长为的正方形和,点是边上的一个动点,设,则.此时= .7、(文)函数的单调递增区间为.8、已知双曲线的右焦点与抛物线的焦点重合,则该双曲线的焦点到其渐近线的距离为.9、已知正方形的边长为,为的中点,则= .10、在等差数列中,,则.11、已知,且,则.12、若复数满足,则的值为.13、从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是5的概率为 .14、在正四棱柱中,与平面所成的角为,则与所成的角为 .(结果用反三角函数表示)15、若圆的半径为1,圆心在第一象限,且与直线和轴都相切,则该圆的标准方程是 .16、按如图所示的流程图运算,则输出的.17、已知函数(,)的最小正周期为,将图像向左平移个单位长度所得图像关于轴对称,则.三、解答题(题型注释)18、(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分 (文)对于曲线,若存在非负实数和,使得曲线上任意一点,恒成立(其中为坐标原点),则称曲线为有界曲线,且称的最小值为曲线的外确界,的最大值为曲线的内确界. (1)写出曲线的外确界与内确界;(2)曲线与曲线是否为有界曲线?若是,求出其外确界与内确界;若不是,请说明理由; (3)已知曲线上任意一点到定点的距离之积为常数,求曲线的外确界与内确界.19、(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分) 在中,分别为内角所对的边,且满足,.(1)求的大小; (2)若,,求的面积.20、(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分 已知函数.(1)若为偶函数,求的值; (2)若在区间上是增函数,试求、应满足的条件.21、(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分 沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市松江区2014学年度第一学期高三期末考试数学试卷(文科)(满分150分,完卷时间120分钟) 2015.1一、填空题 (本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.若复数z 满足014=-zz ,则z 的值为 ▲ .2.已知()log (0,1)a f x x a a =>¹,且2)1(1=--f,则=-)(1x f ▲ .3.在等差数列{}n a 中,15,652==a a ,则=++++108642a a a a a ▲ . 4.已知正方形ABCD 的边长为2,E 为CD 的中点,则×= ▲ .5.在正四棱柱1111ABCD A B C D -中,1BC 与平面ABCD 所成的角为60°,则1BC 与AC 所成的角为 ▲ (结果用反三角函数表示).6.若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴都相切,则该圆的标准方程是 ▲ .7.按如图所示的流程图运算,则输出的S = ▲ .8.已知函数()sin()3f x x pw =+(R x Î,0>w )的最小正周期为p ,将)(x f y =图像向左平移j 个单位长度20(pj <<所得图像关于y 轴对称,则=j ▲ . 9.已知双曲线22214x yb-=的右焦点与抛物线212y x =的焦点重合,则该双曲线的焦点到其渐近线的距离为 ▲ .10.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是5的概率为 ▲ .11.(文)函数1()sin 2cos 2122f x x x =-+的单调递增区间为 ▲ .12.某同学为研究函数()()01f x x =££的性质,构造了如图所示的两个边长为1的正方形ABCD 和BEFC ,点P 是边BC 上的一个动点,设CP x =,则()f x AP PF =+.此时max min ()()f x f x += ▲ .13.设)(x f 是定义在R 上的偶函数,对任意R x Î,都有第7题)2()2(+=-x f x f ,且当[]0,2-Îx 时,121)(-÷øöçèæ=xx f .若函数)1)(2(log )()(>+-=a x x f x g a 在区间(]6,2-恰有3个不同的零点,则a 的取值范围是▲ .14.(文)在正项等比数列{}n a 中,已知141=<a a ,若集合12121110,t t A ta a a t N a a a *ìüæöæöæöïï=-+-++-£Îíýç÷ç÷ç÷ïïèøèøèøîþL ,则A 中元素个数为 ▲ .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.已知R q p Î,,则“0<<p q ”是“1pq<”的 A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件16.若二项式23nx æçè*()n N Î展开式中含有常数项,则n 的最小取值是A .4B .5C .6D .717.设P 是ABC D 所在平面内一点,2BC BA BP +=uuu r uuu r uuu r则A .0PA PB +=uuu r uuu r r B .0PB PC +=uuu r uuu r rC .0PC PA +=uuu r uuu r rD .0PA PB PC ++=uuu r uuu r uuu r r18.已知满足条件122£+y x 的点(,)x y 构成的平面区域面积为1S ,满足条件1][][22£+y x 的点(,)x y 构成的平面区域的面积为2S ,其中][][y x 、分别表示不大于y x ,的最大整数,例如:[0.4]1-=-,[1.7]1=,则21S S 与的关系是 A .21S S < B .21S S =C .21S S >D .321+=+p S S三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分在ABC D 中,,,a b c 分别为内角,,A B C 所对的边,且满足c b a <<,B a b sin 2=. (1)求A 的大小;(2)若2a =,32=b ,求ABC D 的面积.20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分已知函数()(0,1,)x bf x aa ab R +=>¹Î.(1)若()f x 为偶函数,求b 的值;(2)若()f x 在区间[)2,+¥上是增函数,试求a 、b 应满足的条件.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时。
如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8cm ,细沙全部在上部时,其高度为圆锥高度的23(细管长度忽略不计). (1)如果该沙漏每秒钟漏下0.02cm 3的沙,则该沙漏的一个沙时为多少秒(精确到1秒)? (2)细沙全部漏入下部后,恰好堆成个一盖住沙漏底部的圆锥形沙堆,求此锥形沙堆的高度(精确到0.1cm ).22.(本题满分16分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分6分已知数列{}n a 的首项为1,记1212()knn n k n n n f n a C a C a C a C =+++++L L (*N n Î).(1)若{}n a 为常数列,求(4)f 的值;(2)若{}n a 为公比为2的等比数列,求()f n 的解析式;(3)是否存在等差数列{}n a ,使得()1(1)2nf n n -=-对一切*N n Î都成立?若存在,求出数列{}n a 的通项公式;若不存在,请说明理由.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分(文)对于曲线:(,)0C f x y =,若存在非负实数M 和m ,使得曲线C 上任意一点(,)P x y ,||m OP M ££恒成立(其中O 为坐标原点),则称曲线C 为有界曲线,且称M 的最小值0M 为曲线C 的外确界,m 的最大值0m 为曲线C 的内确界. (1)写出曲线1(04)x y x +=<<的外确界0M 与内确界0m ;(2)曲线24y x =与曲线22(1)4x y -+=是否为有界曲线?若是,求出其外确界与内确界;若不是,请说明理由;(3)已知曲线C 上任意一点(,)P x y 到定点12(1,0),(1,0)F F -的距离之积为常数(0)a a >,求曲线C 的外确界与内确界.上海市松江区2014学年度第一学期高三期末考试数学试卷参考答案2015.1一、填空题1. i 2± 2. x÷øöçèæ213.90 4.25. arccos 46. ()()22211x y -+-=7.20 8. 12p9. 10.1311.(理)(0,1] (文)5[,)1212k k k Z p pp p -+Î121+13.(2,43 14. (理)4029 (文) 7二、选择题15.A 16. D 17.C 18.A三、解答题 19. 解:(1)B a b sin 2= B A B sin sin 2sin =\……………2分0sin >B Q 21sin =\A ……………4分 由于c b a <<,A \为锐角,6p=\A ……………6分(2)由余弦定理:2222cos a b c bc A =+-,233221242´´´-+=\c c ,……………8分 0862=+-c c ,2=c 或4=c由于c b a <<,4=c ……………10分所以1sin 2S bc A ==12分20. 解:(1)Q ()f x 为偶函数,∴对任意的x R Î,都有()()f x f x -=,……………2分 即x bx baa+-+= x b x b +=-+ ……………4分得 0b =。
……………6分 (2)记()x b x bh x x b x bx b+³-ì=+=í--<-î,……………8分①当1a >时,()f x 在区间[)2,+¥上是增函数,即()h x 在区间[)2,+¥上是增函数, ∴2b -£,2b ³-……………10分②当01a <<时,()f x 在区间[)2,+¥上是增函数,即()h x 在区间[)2,+¥上是减函数但()h x 在区间[),b -+¥上是增函数,故不可能……………12分∴()f x 在区间[)2,+¥上是增函数时,a 、b 应满足的条件为1a >且2b ³-……14分 21.解(1)开始时,沙漏上部分圆锥中的细沙的高 为216833H =´=,底面半径为28433r =´=……………22118163333V r H p p æö==´´=ç÷èø39.71……………5分198602.0=¸V (秒)所以,沙全部漏入下部约需1986秒。