第章时间序列分析习题

合集下载

第章时间序列预测习题答案

第章时间序列预测习题答案

第10章时间序列预测教材习题答案下表是1981年一1999年国家财政用于农业的支出额数据(1)绘制时间序列图描述其形态。

(2)计算年平均增长率。

(3)根据年平均增长率预测2000年的支出额。

详细答案:(1)时间序列图如下:从时间序列图可以看出,国家财政用于农业的支出额大体上呈指数上升趋势(2)年平均增长率为:G = - 1 = 035 76 -1 = 113.55% -1 = 13.55%Y 打y110.21。

(3)。

下表是1981年一2000年我国油彩油菜籽单位面积产量数据(单位:kg / hm2 )19901260 2000 1519(1)绘制时间序列图描述其形态。

(2)用5期移动平均法预测2001年的单位面积产量。

(3)采用指数平滑法,分别用平滑系数a二和a=预测2001年的单位面积产量说明用哪一个平滑系数预测更合适?详细答案:(1)时间序列图如下:(2)2001年的预测值为:冲1367 + 1479 + 1272 + 1469+W1? 7106 一小①^ooi = -------------- 7 -------------- 二 F 二14笨2- 」I (3)由Excel输出的指数平滑预测值如下表:年份单位面积产量指数平滑预测a= 误差平方指数平滑预测a=误差平方11981 14511982 1372,分析预测误差,年谕2001年a=时的预测值为:耳观=购 + (1-⑵耳=0.3x1519 + (1-03)x1380 2 = 1^21 8 =时的预测值为:耳DM=叱+ &讯=0.5x1519 + (1-0.5)x14074 = 1463 1比较误差平方可知,a二更合适月份营业额(万元)月份营业额(万元)1 295 10 4732 283 11 4703 322 12 4814 355 13 4495 286 14 5446 379 15 6017 1381 16 5878 431 17 6449 424 18 660(1)用3期移动平均法预测第19个月的营业额(2)采用指数平滑法,分别用平滑系数a二、a=和a二预测各月的营业额,分析预测误差,用哪一个平说明滑系数预测更合适?(3)建立一个趋势方程预测各月的营业额,计算出估计标准误差详细答案:(1)第19个月的3期移动平均预测值为:587 + 644 + 6601891630.33(2)F19= 0 3x660+(1 -0.3)x567.9 = 595.5 误差均方=。

时间序列练习题附标准答案

时间序列练习题附标准答案

第五章时间序列练习题1、时间序列中,数值大小与时间长短没有关系的是(C)。

A.平均数时间序列B.时期序列C.时点序列D.相对数时间序列2、采用几何平均法计算平均发展速度的依据是( A )。

A.各年环比发展速度之积等于总速度B.各年环比发展速度之和等于总速度C.各年环比增长速度之积等于总速度D.各年环比增长速度这和等于总速度3、下列数列中哪一个属于动态数列(D)。

A.学生按学习成绩分组形成的数列B.职工按工资水平分组形成的数列C. 企业按产量多少形成的分组数列D. 企业生产成本按时间顺序形成的数列4.由两个等时期数列相应项对比所形成的相对数动态数列算序时平均数的基本公式是(D)。

A.n aa∑=B.ncc∑=C.∑--++++++=ffaafaafaaannn11232121222D.∑∑=bac5.间隔不等的间断时点数列的序时平均数的计算公式是( C )。

A.n aa∑=B.12121121-++++=-naaaaannC.∑--++++++=ffaafaafaaannn11232121222D.∑∑=fafa6.累计增长量与逐期增长量的关系是( A )A.逐期增长量之和等于累计增长量B.逐期增长量之积等于累计增长量C.累计增加量之和等于逐期增长量D.两者没有直接关系7.环比发展速度与定基发展速度之间的关系是( C )。

A.定基发展速度等于环比发展速度之和B.环比发展速度等于定基发展速度的平方根C.环比发展速度的连乘积等于定基发展速度D.环比发展速度等于定基发展速度减18.某现象前期水平为1500万吨,本期水平为2100万吨,则增长1%的绝对值为( C )。

A.1500万吨B.600万吨C.15万吨D.2100万吨9.已知各期的环比增长速度为9%、8%、10%,则定基增长速度为( C )。

A.9%×8%×10% B.9%×8%×10%-100%C.109%×108%×110%-100%D.109%×108%×110%10.某车间6月、7月、8月、9月末职工人数分别为250人、265人、280人和290人,该公司三季度月职工平均人数为( D )。

时间序列分析第一章王燕习题解答

时间序列分析第一章王燕习题解答

时间序列分析习题解答第一章 P. 7 1.5 习题1.1 什么是时间序列?请收集几个生活中的观察值序列。

答:按照时间的顺序把随机事件变化发展的过程记录下来就构成一个时间序列。

例1:1820—1869年每年出现的太阳黑子数目的观察值;年份黑子数年份黑子数年份黑子数年份黑子数年份黑子数1820 16 1830 71 1840 63 1850 66 1860 96 1821 7 1831 48 1841 37 1851 64 1861 77 1822 4 1832 28 1842 24 1852 54 1862 59 1823 2 1833 8 1843 11 1853 39 1863 44 1824 8 1834 13 1844 15 1854 21 1864 47 1825 17 1835 57 1845 40 1855 7 1865 30 1826 36 1836 122 1846 62 1856 4 1866 16 1827 50 1837 138 1847 98 1857 23 1867 7 1828 62 1838 103 1848 124 1858 55 1868 37 1829 67 1839 86 1849 96 1859 94 1869 74 例2:北京市城镇居民1990—1999年每年的消费支出按照时间顺序记录下来,就构成了一个序列长度为10的消费支出时间序列(单位:亿元)。

1686,1925,2356,3027,3891,4874,5430,5796,6217,6796。

1.2 时域方法的特点是什么?答:时域方法特点:具有理论基础扎实,操作步骤规范,分析结果易于解释的优点,是时间序列分析的主流方法。

1.3 时域方法的发展轨迹是怎样的?答:时域方法的发展轨迹:一.基础阶段:1. G.U. Yule 1972年AR模型2. G.U.Walker 1931年 MA模型、ARMA模型二.核心阶段:G.E.P.Box和G.M.Jenkins1. 1970年,出版《Time Series Analysis Forecasting and Control》2. 提出ARIMA模型(Box-Jenkins模型)3. Box-Jenkins模型实际上主要运用于单变量、同方差场合的线性模型三.完善阶段:1.异方差场合:a.Robert F.Engle 1982年 ARCH模型b.Bollerslov 1985年 GARCH模型2.多变量场合:C.Granger 1987年提出了协整(co-integration)理论3.非线性场合:汤家豪等 1980年门限自回归模型1.4 在附录1中选择几个感兴趣的序列,创建数据集。

时间序列分析练习题

时间序列分析练习题
通过一阶差分,得到 Yt=a+bt-[a+b(t-1)]=b 消除了线性趋势。
17. 在趋势性检验中,进行单位根检验的意义是什么?
单位根检验就是根据已观测到的时间序列,检验产生这个时间序列的随机过程中的一阶 自回归系数是否为一,这个检验实际上就是对时间序列是否为一个趋势平稳过程的检验,如 果检验表明没有单位根,则它是一个趋势平稳过程,否则,它是一个带趋势的单位根过程。
①( 均值为常数 ) ②( 协方差为时间间隔 的函数 )
则称该序列为宽平稳时间序列,也叫广义平稳时间序列。 8. 对于一个纯随机过程来说,若其期望和方差(均为常数),则称之为白噪声过程。白 噪声过程是一个(宽平稳)过程。 9. 时间序列分析方法按其采用的手段不同可概括为数据图法,指标法和(模型法)
19. 线性趋势平稳的特点:当我们将时间序列中的完全确定的线性趋势去掉以后,所形 成的时间序列就是一个平稳的时间序列。
20. 如何以系统的观点看待时间序列的动态性? 系统的动态性就是在某一时刻进入系统的输入对系统后继行为的影响,也就是系统的记 忆性,描述记忆性的函数称为记忆函数。
三、证明题
1. AR(1)模型: X t 1 X t1 at ,其中 at 是白噪声,且 E at2
37. ARMA(n,m) 的逆转形式 X t I j X t j at 。 j 1
38.
模型适应性检验的相关函数法,在显著性水平

0.05 下,若

k
1.96 /
N,
则接受 k 0 的假设,认为 at 是独立的。
39. 模型适应性检验的 2 检验法,在显著性水平 下,若统计量
G12
G22

第五章时间序列分析习题

第五章时间序列分析习题

第五章时间序列分析习题第五章时间序列分析习题⼀、填空题1.时间序列有两个组成要素:⼀是,⼆是。

2.在⼀个时间序列中,最早出现的数值称为,最晚出现的数值称为。

3.时间序列可以分为时间序列、时间序列和时间序列三种。

其中是最基本的序列。

4.绝对数时间序列可以分为和两种,其中,序列中不同时间的数值相加有实际意义的是序列,不同时间的数值相加没有实际意义的是序列。

5.已知某油⽥1995年的原油总产量为200万吨,2000年的原油总产量是459万吨,则“九五”计划期间该油⽥原油总产量年平均增长速度的算式为。

6.发展速度由于采⽤的基期不同,分为和两种,它们之间的关系可以表达为。

7.设i=1,2,3,…,n,a i为第i个时期经济⽔平,则a i/a0是发展速度,a i/a i-1是发展速度。

8.计算平均发展速度的常⽤⽅法有⽅程式法和.9.某产品产量1995年⽐1990年增长了105%,2000年⽐1990年增长了306.8%,则该产品2000年⽐1995增长速度的算式是。

10.如果移动时间长度适当,采⽤移动平均法能有效地消除循环变动和。

11.时间序列的波动可分解为长期趋势变动、、循环变动和不规则变动。

12.⽤最⼩⼆乘法测定长期趋势,采⽤的标准⽅程组是。

⼆、单项选择题1.时间序列与变量数列( )A都是根据时间顺序排列的B都是根据变量值⼤⼩排列的C前者是根据时间顺序排列的,后者是根据变量值⼤⼩排列的D前者是根据变量值⼤⼩排列的,后者是根据时间顺序排列的2.时间序列中,数值⼤⼩与时间长短有直接关系的是( )A平均数时间序列B时期序列C时点序列D相对数时间序列3.发展速度属于( )A⽐例相对数B⽐较相对数C动态相对数D强度相对数4.计算发展速度的分母是( )A报告期⽔平B基期⽔平C实际⽔平D计划⽔平5.某车间⽉初⼯⼈⼈数资料如下:A 296⼈B 292⼈C 295 ⼈D 300⼈6.某地区某年9⽉末的⼈⼝数为150万⼈,10⽉末的⼈⼝数为150.2万⼈,该地区10⽉的⼈⼝平均数为( )A150万⼈ B150.2万⼈ C150.1万⼈ D ⽆法确定 7.由⼀个9项的时间序列可以计算的环⽐发展速度( ) A 有8个 B 有9个 C 有10个 D 有7个 8.采⽤⼏何平均法计算平均发展速度的依据是( )A 各年环⽐发展速度之积等于总速度B 各年环⽐发展速度之和等于总速度C 各年环⽐增长速度之积等于总速度D 各年环⽐增长速度之和等于总速度9.某企业的科技投,3,2000年⽐1995年增长了58.6%,则该企业1996—2000年间科技投⼊的平均发展速度为( ) A5%6.58 B5%6.158 C6%6.58 D6%6.15810.根据牧区每个⽉初的牲畜存栏数计算全牧区半年的牲畜平均存栏数,采⽤的公式是( )A 简单平均法B ⼏何平均法C 加权序时平均法D ⾸末折半法 11.在测定长期趋势的⽅法中,可以形成数学模型的是( )A 时距扩⼤法B 移动平均法C 最⼩平⽅法D 季节指数法三、多项选择题1.对于时间序列,下列说法正确的有( )A 序列是按数值⼤⼩顺序排列的B 序列是按时间顺序排列的C 序列中的数值都有可加性D 序列是进⾏动态分析的基础E 编制时应注意数值间的可⽐性 2.时点序列的特点有( )A 数值⼤⼩与间隔长短有关B 数值⼤⼩与间隔长短⽆关C 数值相加有实际意义D 数值相加没有实际意义E 数值是连续登记得到的3.下列说法正确的有( )A 平均增长速度⼤于平均发展速度B 平均增长速度⼩于平均发展速度C 平均增长速度=平均发展速度-1D 平均发展速度=平均增长速度-1E 平均发展速度×平均增长速度=14.下列计算增长速度的公式正确的有( )A 增长速度=%100?基期⽔平增长量 B 增长速度=%100?报告期⽔平增长量C 增长速度= 发展速度—100%D 增长速度=%100?-基期⽔平基期⽔平报告期⽔平E 增长速度= %100?基期⽔平报告期⽔平5.采⽤⼏何平均法计算平均发展速度的公式有( ) A 1 231201-?=n n a a a a a a a a nx B 0a a nx n =C 1a a nx n = D R n x = E nx x ∑=A 第⼆年的环⽐增长速度⼆定基增长速度=10%B 第三年的累计增长量⼆逐期增长量=200万元C 第四年的定基发展速度为135%D 第五年增长1%绝对值为14万元E 第五年增长1%绝对值为13.5万元7.下列关系正确的有( )A 环⽐发展速度的连乘积等于相应的定基发展速度B 定基发展速度的连乘积等于相应的环⽐发展速度C 环⽐增长速度的连乘积等于相应的定基增长速度D 环⽐发展速度的连乘积等于相应的定基增长速度E 平均增长速度=平均发展速度-1 8.测定长期趋势的⽅法主要有( )A 时距扩⼤法B ⽅程法C 最⼩平⽅法D 移动平均法E ⼏何平均法 9.关于季节变动的测定,下列说法正确的是( ) A ⽬的在于掌握事物变动的季节周期性 B 常⽤的⽅法是按⽉(季)平均法C 需要计算季节⽐率D 按⽉计算的季节⽐率之和应等于400%E 季节⽐率越⼤,说明事物的变动越处于淡季 10.时间序列的可⽐性原则主要指( )A 时间长度要⼀致B 经济内容要⼀致C 计算⽅法要⼀致D 总体范围要⼀致E 计算价格和单位要⼀致四、判断题1.时间序列中的发展⽔平都是统计绝对数。

统计学习题答案 第9章 时间序列分析

统计学习题答案 第9章  时间序列分析

第9章 时间序列分析——练习题●1. 某汽车制造厂2003年产量为30万辆。

(1)若规定2004—2006年年递增率不低于6%,其后年递增率不低于5%,2008年该厂汽车产量将达到多少?(2)若规定2013年汽车产量在2003年的基础上翻一番,而2004年的增长速度可望达到7.8%,问以后9年应以怎样的速度增长才能达到预定目标?(3)若规定2013年汽车产量在2003年的基础上翻一番,并要求每年保持7.4%的增长速度,问能提前多少时间达到预定目标?解:设i 年的环比发展水平为x i ,则由已知得:x 2003=30, (1)又知:320042005200620032004200516%x x x x x x ≥+(),2200720082006200715%x x x x ≥+(),求x 2008由上得32200820072008200320032007(16%)(15%)x x x x x x =≥++ 即为3220081.061.0530x ≥,从而2008年该厂汽车产量将达到 得 x 2008≥30× 31.06×21.05= 30×1.3131 = 39.393(万辆) 从而按假定计算,2008年该厂汽车产量将达到39.393万辆以上。

(2)规定201320032x x =,20042003x x =1+7.8%由上得=107.11%==可知,2004年以后9年应以7.11%的速度增长,才能达到2013年汽车产量在2003年的基础上翻一番的目标。

(3)设:按每年7.4%的增长速度n 年可翻一番, 则有 201320031.0742na a == 所以 1.074log 20.30103log 29.70939log1.0740.031004n ====(年)可知,按每年保持7.4%的增长速度,约9.71年汽车产量可达到在2003年基础上翻一番的预定目标。

原规定翻一番的时间从2003年到2013年为10年,故按每年保持7.4%的增长速度,能提前0.29年即3个月另14天达到翻一番的预定目标。

(完整word版)时间序列分析基于R__习题答案及解析

(完整word版)时间序列分析基于R__习题答案及解析

第一章习题答案略第二章习题答案2.1(1)非平稳(2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376(3)典型的具有单调趋势的时间序列样本自相关图2.2(1)非平稳,时序图如下(2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图2.3(1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118(2)平稳序列(3)白噪声序列2.4,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。

显著性水平=0.05不能视为纯随机序列。

2.5(1)时序图与样本自相关图如下(2) 非平稳 (3)非纯随机 2.6(1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机第三章习题答案3.1 ()0t E x =,21() 1.9610.7t Var x ==-,220.70.49ρ==,220φ= 3.2 1715φ=,2115φ=3.3 ()0t E x =,10.15() 1.98(10.15)(10.80.15)(10.80.15)t Var x +==--+++10.80.7010.15ρ==+,210.80.150.41ρρ=-=,3210.80.150.22ρρρ=-=1110.70φρ==,2220.15φφ==-,330φ=3.4 10c -<<, 1121,1,2k k k c c k ρρρρ--⎧=⎪-⎨⎪=+≥⎩3.5 证明:该序列的特征方程为:32--c 0c λλλ+=,解该特征方程得三个特征根:11λ=,2c λ=3c λ=-无论c 取什么值,该方程都有一个特征根在单位圆上,所以该序列一定是非平稳序列。

时间序列练习题

时间序列练习题

时间序列练习题时间序列分析是一种对随时间变化的数据进行建模和预测的统计分析方法。

它在经济学、金融学、气象学、环境科学等领域都有着广泛的应用。

为了加深对时间序列分析的理解,以下是一些时间序列练习题,帮助读者巩固相关知识和技能。

1. 下面是某城市某共享单车平台的日订单量数据(单位:订单数)。

请问这组数据属于哪种类型的时间序列数据?日期订单量1月1日 1201月2日 1601月3日 1501月4日 1801月5日 2002. 下面是某公司某产品在2020年1月至6月的月销售额数据(单位:万元)。

请根据给出数据回答以下问题:1月 802月 853月 704月 905月 956月 100(1)请计算该产品在第二季度(4月、5月、6月)的总销售额。

(2)根据给出数据,绘制该产品的销售额趋势图。

3. 下面是某超市某商品每周销量数据(单位:件)。

请计算该商品的季节性指数。

周次销量1 1002 1203 1354 1405 1506 1557 1608 1809 20010 2204. 假设一家公司的销售额数据如下(单位:万元):日期销售额2019-01 802019-02 852019-03 902019-04 1002019-05 1102019-06 115(1)请计算该公司在2019年第一季度(1月、2月、3月)的平均月销售额。

(2)根据给出数据,绘制该公司的销售额线性趋势图。

5. 下面是某餐厅某菜品2019年1月至6月的月销售量数据(单位:份)。

请根据给出数据,计算该菜品的季节指标和趋势指数。

1月 502月 553月 484月 605月 656月 70以上是时间序列练习题,通过思考和计算这些问题,读者可以进一步巩固和应用时间序列分析的相关知识和方法。

在实际应用中,时间序列分析可以用于预测未来趋势、制定合理的经营策略、评估政策实施效果等。

希望读者通过练习题的探索,能够更好地理解时间序列分析的重要性和实用性。

时间序列分析作业

时间序列分析作业

习题2.21975-1980年夏威夷岛莫那罗亚火山每月释放的co2数据如下330.45 330.97 331.64 332.87 333.61 333.55331.90 330.05 328.58 328.31 329.41 330.63331.63 332.46 333.36 334.45 334.82 334.32333.05 330.87 329.24 328.87 330.18 331.50332.81 333.23 334.55 335.82 336.44 335.99334.65 332.41 331.32 330.73 332.05 333.53334.66 335.07 336.33 337.39 337.65 337.57336.25 334.39 332.44 332.25 333.59 334.76335.89 336.44 337.63 338.54 339.06 338.95337.41 335.71 333.68 333.69 335.05 336.53337.81 338.16 339.88 340.57 341.19 340.87339.25 337.19 335.49 336.63 337.74 338.36程序如下:(1)绘制该序列时序图,并判断该序列是否平稳。

co2328329330331332333334335336337338339340341342time01JAN7501JUL7501JAN7601JUL7601JAN7701JUL7701JAN7801JUL7801JAN7901JUL7901JAN8001JUL8001JAN81时序图清晰地显示释放的co2的数量以月为周期呈现出规则的周期性,除此之外,还有明显的逐个周期递增的趋势。

显然该序列不是平稳序列。

(2) 计算该序列的样本自相关系数 由样本自相关图可知,序列自相关系数如下:1ˆ0.90751ρ=2ˆ0.72171ρ=3ˆ0.51252ρ=4ˆ0.34982ρ=5ˆ0.24690ρ=6ˆ0.20309ρ= 7ˆ0.21021ρ=8ˆ0.26429ρ=9ˆ0.36433ρ=10ˆ0.48472ρ=11ˆ0.58456ρ=12ˆ0.60198ρ= 13ˆ0.51841ρ=14ˆ0.36856ρ=15ˆ0.20671ρ=16ˆ0.08138ρ=17ˆ0.00135ρ=18ˆ0.03248ρ=-19ˆ0.02710ρ=-20ˆ0.01124ρ=21ˆ0.08275ρ=22ˆ0.17011ρ=23ˆ0.24320ρ= 24ˆ0.25252ρ= (3) 绘制该样本自相关图,并解释该图形。

统计学:时间序列分析习题与答案

统计学:时间序列分析习题与答案

一、单选题1、根据季度数据测定季节比率时,各季节比率之和为()。

A.100%B.0C.400%D.1200%正确答案:C2、增长1%水平值的表达式是()。

A.报告期增长量/增长速度B.报告期发展水平/100C.基期发展水平/100D.基期发展水平/1%正确答案:C3、若报告期水平是基期水平的8倍,则我们称之为()。

A.翻了 3番B.翻了 8番C.发展速度为700%D.增长速度为800%正确答案:A4、若时间数列呈现出长时间围绕水平线的周期变化,这种现象属于()。

A.无长期趋势、有循环变动B.有长期趋势、有循环变动C.无长期趋势、无循环变动D.有长期趋势、无循环变动正确答案:B5、银行年末存款余额时间数列属于()。

A.平均指标数列B.时点数列C.时期数列D.相对指标数列正确答案:B6、某一时间数列,当时间变量t=1,2,3,...,n时,得到趋势方程为y=38+72t,那么,取t=0,2,4,6,8,...时,方程中的b将为()。

A.36B.34C.110D.144正确答案:A7、某企业2018年的产值比2014年增长了 200%,则年平均增长速度为()。

A.50%B.13.89%C.29.73%D.31.61%正确答案:D8、2010年某市年末人口为120万人,2020年年末达到153万人,则年平均增长量为()万人。

A. 3B.33C. 3.3D.30正确答案:C9、在测定长期趋势时,如果时间数列逐期增长量大体相等,则宜拟合()。

A.抛物线模型B.直线模型C.曲线模型D.指数曲线模型正确答案:B10、在测定长期趋势时,当时间数列的逐期增长速度基本不变时,宜拟合()。

A.逻辑曲线模型B.二次曲线模型C.直线模型D.指数曲线模型正确答案:D二、多选题1、编制时间数列的原则有()。

A.经济内容的一致性B.计算方法的一致性C.时间的一致性D.总体范围的一致性正确答案:A、B、C、D2、以下表述正确的有()。

时间序列练习题

时间序列练习题

时间序列练习题时间序列分析是一种用于研究以时间为顺序的数据变动规律的方法。

它可以帮助我们理解和预测未来的趋势,对于决策和规划具有重要的意义。

本文将通过一些时间序列练习题,帮助读者更好地理解和应用时间序列分析。

练习题一:季度销售数据分析某公司的销售数据按照季度记录如下:季度销售额Q1 100Q2 200Q3 300Q4 400请你根据这些数据,进行以下的分析和预测:1. 绘制季度销售额的时间序列图。

2. 计算季度销售额的平均值。

3. 判断季度销售额是否存在趋势性,并进行趋势线的拟合。

4. 判断季度销售额是否存在季节性,如果存在,请进行季节性分解。

5. 使用你认为最适合的模型进行未来一年季度销售额的预测,并给出预测结果。

练习题二:月度股票收益率分析某股票连续12个月的收益率数据如下:月份收益率1 0.032 0.053 -0.024 0.025 -0.016 0.047 -0.038 0.019 0.0210 -0.0511 0.0112 0.03请你根据这些数据,进行以下的分析和预测:1. 绘制月度股票收益率的时间序列图。

2. 计算月度收益率的平均值和标准差。

3. 判断股票收益率是否存在趋势性,并进行趋势线的拟合。

4. 判断股票收益率是否存在季节性,如果存在,请进行季节性分解。

5. 使用你认为最适合的模型进行未来三个月股票收益率的预测,并给出预测结果。

练习题三:年度气温分析某城市过去10年(2011年至2020年)的年度平均气温数据如下:年份平均气温(摄氏度)2011 192012 212013 202014 182015 172016 182017 202018 222019 232020 21请你根据这些数据,进行以下的分析和预测:1. 绘制年度平均气温的时间序列图。

2. 计算年度平均气温的平均值、中位数和极差。

3. 判断气温是否存在趋势性,并进行趋势线的拟合。

4. 判断气温是否存在季节性,如果存在,请进行季节性分解。

时间序列分析——基于R答案

时间序列分析——基于R答案

时间序列分析——基于R 王燕答案第一章时间序列分析简介略第二章时间序列的预处理#========================================## 2.5习题-1##========================================library(tseries)par(mfrow=c(1,2))x=rep(1:20)temp=ts(x)plot(temp)#不是平稳序列as.vector(acf(temp)$acf[1:6])#序列的自相关系数递减到零的速度相当缓慢,#在很长的延迟时期里,自相关系数一直为正,#而后又一直为负,在自相关图上显示出明显的#三角对称性,这是具有单调趋势的非平稳序列#的一种典型的自相关图形式。

这和该序列时序#图显示的显著的单调递增性是一致的。

#======================================== ## 2.5习题-2##======================================== library(tseries)par(mfrow=c(1,2))volcano.co2=read.table('习题2.2数据.txt',sep='\t',header=F) data=ts(as.vector(t(as.matrix(volcano.co2))),start=c(1975,1)) plot(data)#不是平稳序列as.vector(acf(data,lag.max=23)$acf)#序列自相关系数长期位于零轴的一边。

这是#具有单调趋势序列的典型特征,同时自相关#图呈现出明显的正弦波动规律,这是具有周#期变化规律的非平稳序列的典型特征。

自相#关图显示出来的这两个性质和该序列时序图#显示出的带长期递增趋势的周期性质是非常#吻合的。

#========================================## 2.5习题-3##======================================== library(tseries)par(mfrow=c(1,2))rain=read.table('习题2.3数据.txt',sep='\t',header=F) data=ts(as.vector(t(as.matrix(rain))),start=c(1945,1)) plot(data)#该序列为平稳序列as.vector(acf(data,lag.max = 23)$acf)#该序列的自相关系数一直都比较小,#基本控制在2倍的标准差范闹以内,#可以认为该序列自始至终都在零轴附#近波动,这是随机性非常强的平稳时#间序列通常具有的自相关图特征。

第4章_时间序列分析

第4章_时间序列分析

校级精品课程《统计学》习题第四章时间序列一、单项选择题1.时间序列是()A.分配数列B.分布数列C.时间数列D.变量数列2.时期序列和时点序列的统计指标()。

A.都是绝对数B.都是相对数C.既可以是绝对数,也可以是相对数D.既可以是平均数,也可以是绝对数3.时间序列是( )。

A.连续序列的一种B.间断序列的一种C.变量序列的一种D.品质序列的一种4.最基本的时间序列是( )。

A.时点序列B.绝对数时间序列C.相对数时间序列D.平均数时间序列5.为便于比较分析,要求时点序列指标数值的时间间隔( )。

A.必须连续B.最好连续C.必须相等D.最好相等6.时间序列中的发展水平( )。

A.只能是总量指标B.只能是相对指标C.只能是平均指标D.上述三种指标均可7.在平均数时间序列中各指标之间具有( )。

A.总体性B.完整性C.可加性D.不可加性8.序时平均数与一般平均数相比较()。

A.均抽象了各总体单位的差异B.均根据同种序列计算C.序时平均数表明现象在某一段时间内的平均发展水平,一般平均数表明现象在规定时间内总体的一般水平D.严格说来,序时平均数不能算作平均数9.序时平均数与一般平均数的共同点是( )。

A.两者均是反映同一总体的一般水平B.都是反映现象的一般水平C.两者均可消除现象波动的影响D.都反映同质总体在不同时间的一般水平10.时期序列计算序时平均数应采用( )。

A.加数算术平均法B.简单算术平均法C.简单算术平均法D.加权算术平均数11.间隔相等连续时点序列计算序时平均数,应采用( )。

A.简单算术平均法B.加数算术平均法C.简单序时平均法D.加权序时平均法12.由间断时点序列计算序时平均数,其假定条件是研究现象在相邻两个时点之间的变动为( )。

A.连续的B.间断的C.稳定的D.均匀的13.时间序列最基本速度指标是( )。

A.发展速度B.平均发展速度C.增减速度D.平均增减速度14.用水平法计算平均发展速度应采用( )。

时间序列分析习题解答(2):上课展示的典型题

时间序列分析习题解答(2):上课展示的典型题

时间序列分析习题解答(2):上课展⽰的典型题由于本答案由少部分⼈完成,难免存在错误,如有不同意见欢迎在评论区提出。

第⼀题⼀、已知零均值平稳序列{X t}的⾃协⽅差函数为γ0=1,γ±1=ρ,γk=0,|k|≥2.计算{X t}的偏相关系数a1,1,a2,2。

计算最佳线性预测L(X3|X2),L(X3|X2,X1)。

计算预测的均⽅误差E[X3−L(X3|X2)]2,E[X3−L(X3|X2,X1)]2。

证明:ρ应满⾜|ρ|≤1 2。

若ρ=0.4,计算{X t}的谱密度函数,给出{X t}所满⾜的模型。

解:(1)由Yule-Walker⽅程,a1,1=γ1/γ0=ρ,1ρρ1a2,1a2,2=ρ,解得a2,2=−ρ2 1−ρ2.(2)由预测⽅程,有L(X3|X2)=ρX2。

设L(X3|X2,X1)=a2X2+a1X1,则1ρρ1a1a2=ρ,a1=−ρ21−ρ2,a2=ρ1−ρ2.所以L(X3|X2,X1)=−ρ2X1+ρX21−ρ2.(3)预测的均⽅误差是E(X3−ρX2)2=(1+ρ2)γ0−2ργ1=1−ρ2,E X3−−ρ2X1+ρX21−ρ22=(1−ρ2)2+ρ4+ρ2(1−ρ2)2−2ρρ3+ρ(1−ρ2)(1−ρ2)2 =2ρ4−3ρ2+1(1−ρ2)2=1−2ρ21−ρ2.(4)由于{X t}的⾃协⽅差函数1后截尾,所以它是⼀个MA(1)模型,即存在b≤1,⽩噪声εt∼WN(0,σ2)使得X t=εt+bεt−1.于是γ0=(1+b2)σ2=1,γ1=bσ2=ρ,所以ρ(b)=b1+b2,在b∈[−1,1]上ρ(b)是单调的,所以−12≤ρ(−1)≤ρ≤ρ(1)=12.(5)由谱密度反演公式,容易得到[][][][][][]()[][]Processing math: 49%f(λ)=12π[1+0.8cosλ]=12π451+cosλ+14=(2/√5)22π1+12(e iλ)2.所以X t=εt+12εt−1,{εt}∼WN0,45.第⼆题⼆、设零均值平稳序列{X t}的⾃协⽅差函数满⾜γk=187×25|k|,k≠0,k∈Z.当γ0取何值时,该序列为AR(1)序列?说明理由并给出相应的模型。

统计基础知识第五章时间序列分析习题及答案

统计基础知识第五章时间序列分析习题及答案

D.平均数数列二、多项选择题1.将不同时期的发展水平加以平均而得到的平均数称为 A. 序时平均数2.定基发展速度和环比发展速度的关系是 ( BD A 相邻两个环比发展速度之商等于相应的定基发展速度B. 环比发展速度的连乘积等于定基发展速度一、单项选择题 第五章 时间序列分析1.构成时间数列的两个基本要素是 ( A.主词和宾词 )(20XX 年 1 月) B. 变量和次数 C.现象所属的时间及其统计指标数值 D.时间和次数2.某地区历年出生人口数是一个 ( A 时期数列 B ) (20XX 年 10月)B.时点数列C.分配数列 3. 某商场销售洗衣机, 共销售 6000 台, 年 10) 年底库存 50 台,这两个指标是 ( C ) 20XXA. 时期指标B. 时点指标C. 前者是时期指标,后者是时点指标 4.累计增长量(A ) (20XX 年 10)A. 等于逐期增长量之和 D. 前者是时点指标,后者是时期指标B. 等于逐期增长量之积C. 等于逐期增长量之差D .与逐期增长量没有关系5. 某企业银行存款余额 4 月初为 80 万元, 160 万元,则该企业第二季度的平均存款余额为( 5 月初为 150 万元, 6 月初为 210 万元, 7 月初为10)A.140 万元B.150 万元6. 下列指标中属于时点指标的是 ( A ) C.160 万元 D.170 万元A. 商品库存量 (10)B .商品销售C. 平均每人销售额D .商品销售额 7. 时间数列中,各项指标数值可以相加的是A. 时期数列10)( A )B.相对数时间数列C.平均数时间数列D.时点数列8. 时期数列中各项指标数值( A A. 可以相加 1月)B. 不可以相C.绝大部分可以相加D. 绝大部分不可以相加10. 某校学生人数 比 增长了 8%,增长了( D )( 10 月)比 增长了 15%, 比 增长了 18%,则 2004- 学生人数共A.8%+15%+18%B. 8 %X 15%X 18%C. (108%+115%+118%) -1D.108 %X 115%X 118% -1( ABD B.动态平均数)(20XX 年 1 月) C.静态平均数 D.平均发展水平 E. 般平均数 )(20XX 年 10 月)B. 数列中各个指标数值不具有可加性C. 指标数值是通过一次登记取得的D. 指标数值的大小与时期长短没有直接的联系E.指标数值是通过连续不断的登记取得的 )(20XX 年 1)B. 增加一个百分点所增加的相对量E. 环比增长量除以100再除以环比发展速度7. 增长速度( ADE )( 1 月)A.等于增长量与基期水平之比6. 计算平均发展速度常用的方法有( A.几何平均法(水平法)C.方程式法(累计法)E.加权算术平均法 AC)(10)B.调和平均法 D.简单算术平均法C.累计增长量与前一期水平之比D. 等于发展速度 -1E.包括环比增长速度和定基增长速度 8. 序时平均数是( CE )( 10 月)A.反映总体各单位标志值的一般水平B. 根据同一时期标志总量和单位总量计算C. 说明某一现象的数值在不同时间上的一般水平D.由变量数列计算E. 由动态数列计算三、判断题 1 .职工人数、产量、产值、商品库存额、工资总额指标都属于时点指标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8章时间序列分析一、填空题:1.平稳性检验的方法有__________、__________和__________。

2.单位根检验的方法有:__________和__________。

3.当随机误差项不存在自相关时,用__________进行单位根检验;当随机误差项存在自相关时,用__________进行单位根检验。

4.EG检验拒绝零假设说明______________________________。

5.DF检验的零假设是说被检验时间序列__________。

6.协整性检验的方法有__________和__________。

7.在用一个时间序列对另一个时间序列做回归时,虽然两者之间并无任何有意义的关系,但经常会得到一个很高的2R的值,这种情况说明存在__________问题。

8.结构法建模主要是以______________________________来确定计量经济模型的理论关系形式。

9.数据驱动建模以____________________作为建模的主要准则。

10.建立误差校正模型的步骤为一般采用两步:第一步,____________________;第二步,____________________。

二、单项选择题:1. 某一时间序列经一次差分变换成平稳时间序列,此时间序列称为()。

A.1阶单整 ??? B.2阶单整???C.K阶单整 ?? ?D.以上答案均不正确2.? 如果两个变量都是一阶单整的,则()。

A.这两个变量一定存在协整关系B.这两个变量一定不存在协整关系C.相应的误差修正模型一定成立D.还需对误差项进行检验3.当随机误差项存在自相关时,进行单位根检验是由()来实现。

A DF检验 B.ADF检验C.EG检验 D.DW检验4.有关EG检验的说法正确的是()。

A.拒绝零假设说明被检验变量之间存在协整关系B.接受零假设说明被检验变量之间存在协整关系C.拒绝零假设说明被检验变量之间不存在协整关系D.接受零假设说明被检验变量之间不存在协整关系?三、多项选择题:1. 平稳性检验的方法有()。

A.散点图?B.自相关函数检验??C.单位根检验?D.?ADF检验2.当时间序列是非平稳的时候()。

A.均值函数不再是常数B.方差函数不再是常数C.自协方差函数不再是常数D.时间序列的统计规律随时间的位移而发生变化3.随机游走序列是()序列。

A.平稳序列B.非平稳序列C.统计规律不随时间的位移而发生变化的序列D.统计规律随时间的位移而发生变化的序列4.下面可以做协整性检验的有()。

A DF检验 B.ADF检验C.EG检验 D.DW检验5.有关DF检验的说法正确的是()。

A. DF检验的零假设是“被检验时间序列平稳”B. DF检验的零假设是“被检验时间序列非平稳”C. DF检验是单侧检验D. DF检验是双侧检验?四、名词解释:1.伪回归2.平稳序列3.协整4.单整?五、简答题1.结构法建模和数据驱动建模的区别。

2.引入随机过程和随机时间序列概念的意义。

3.简述DF检验和ADF检验的适用条件。

4.简述DF检验的步骤。

5.简述建立误差校正模型的步骤。

6.简述建立误差校正模型(ECM)的基本思路。

7.相互协整隐含的意义。

?六、计算及推导1.ADF法对居民消费总额时间序列进行平稳性检验。

数据如下:?2.用1中数据,对居民消费总额时间序列进行单整性分析。

3.以t Q 表示粮食产量,t A 表示播种面积,t C 表示化肥施用量,经检验,它们取对数后都是)1(I 变量且互相之间存在)1,1(CI 关系。

同时经过检验并剔除不显着的变量(包括滞后变量),得到如下粮食生产模型:t t t t t t C C A Q Q μααααα+++++=--1432110ln ln ln ln ln (1) ⑴ 写出长期均衡方程的理论形式; ⑵ 写出误差修正项ecm 的理论形式; ⑶ 写出误差修正模型的理论形式;⑷ 指出误差修正模型中每个待估参数的经济意义。

4.固定资产存量模型t t t t t I I K K μαααα++++=--132110中,经检验,)1(~),2(~I I I K t t ,试写出由该ADL 模型导出的误差修正模型的表达式。

一、填空题:1.散点图,自相关函数检验?,单位根检验? 2.DF 检验,ADF 检验 3.DF 检验,ADF 检验4.被检验变量之间存在协整关系 5.非平稳6.EG 检验,DW 检验 7.伪回归8.某种经济理论或对某种经济行为的认识 9.描述样本数据的特征10.建立长期关系模型,建立短期动态关系即误差校正方程?二、单项选择题: 1.A 2.D 3.B 4.A ?三、多项选择题: 1.ABCD 2.ABCD 3.BD 4.CD 5.BC ?四、名词解释:1.伪回归:在用一个时间序列对另一个时间序列做回归时,虽然两者之间并无任何有意义的关系,但经常会得到一个很高的2R 的值,这种情况说明存在伪回归问题。

2.平稳序列:如果时间序列{t X }满足下列条件:1)均值μ=)(t X E 与时间t 无关的常数; 2)方差2σ)var(=t X 与时间t 无关的常数;3)协方差k k t t X X γ=+)cov( 只与时期间隔k 有关,与时间t 无关的常数。

则称该随机时间序列是平稳的。

3.协整:若两个时间序列)(~d I y t ,)(~d I x t ,并且这两个时间序列的线性组合)(~21b d I x a y a t t -+,0≥≥b d ,则t y 和t x 被称为是),(b d 阶协整的。

记为t y ,),(~b d CI x t4.单整:若一个非平稳序列必须经过d 次差分之后才能变换成一个平稳序列,则称原序列是d 阶单整的,表示为I(d )。

?五、简答题1.结构法建模和数据驱动建模的区别。

答:结构法建模主要是以某种经济理论或对某种经济行为的认识来确定计量经济模型的理论关系形式,并借此形式进行数据收集、参数估计以及模型检验的过程。

数据驱动建模以描述样本数据的特征作为建模的主要准则,在“让数据为自身说话”的信念之下分析序列本身的概率或随机性质。

任何经济变量的观察值被认为是由随机数据生成过程生成,在建模中,首先应对这个生成过程作出假定,然后才能开展模型的参数估计及推断工作。

2.引入随机过程和随机时间序列概念的意义。

答:有两个方面:一是在计量经济建模过程中,但所选变量的观察值为时间序列数据时,我们可以假定,这些变量时序列数据是由某个随机过程生成的。

二是时间序列数据的若干统计特征,使得在计量经济模型的建模过程中有许多重要的研究成果问世,其中不少成果已经成熟,成为计量经济学新的组成部分。

3.简述DF 检验和ADF 检验的适用条件。

答:在检验所设定的模型时,若随机误差项不存在自相关,则进行DF 检验;若随机误差项存在自相关,则进行DF 检验。

4.简述DF 检验的步骤。

在检验所设定的模型时,若随机误差项不存在自相关,则进行单位根检验用DF 检验法。

DF 检验,按以下两步进行:第一步:对t t t u y y +=∆-1δ进行OLS 回归,得到常规的δt 统计值,第二步:检验假设0H :0≥δ;1H :0<δ用上一步得到的δt 与检验查表得到的临界值比较。

判别准则是,若τδ>t 则接受原假设0H ,即t y 非平稳,若τδ<t 则拒绝原假设0H ,t y 为平稳序列。

5.简述建立误差校正模型的步骤。

答:一般采用两步:第一步,建立长期关系模型。

即通过水平变量和OLS 法估计出时间序列变量间的关系。

若估计结果形成平稳的残差序列时,那么这些变量间就存在相互协整的关系,长期关系模型的变量选择是合理的,回归系数由经济意义。

第二步,建立短期动态关系,即误差校正方程。

将长期关系模型中各变量以一阶差分形式重新构造,并将长期关系模型所产生的残差序列作为解释变量引入,在一个从一般到特殊的检验过程中,对短期动态关系进行逐项检验,不显着的项逐渐被剔除,直到最恰当的表示方法被找到为止。

6.简述建立误差校正模型(ECM )的基本思路。

答:若变量间存在协整关系,即表明这些变量间存在着长期稳定的关系,而这种长期稳定的关系是在短期动态过程的不断调整下得以维持。

7.相互协整隐含的意义。

答:即使所研究的水平变量各自都是一阶差分后平稳,受支配于长期分量,但这些变量的某些线性组合也可以是平稳的,即所研究变量中的长期分量相互抵消,产生了一个平稳的时间序列。

?六、计算及推导 1.解:经过偿试,模型3取了3阶滞后:321123.078.024.106.014.19585.894----∆+∆-∆+-+-=∆t t t t t X X X X T X() ) ()DW 值为,可见残差序列不存在自相关性,因此该模型的设定是正确的。

从1-t X 的参数值看,其t 统计量的绝对值小于临界值绝对值,不能拒绝存在单位根的零假设。

同时,由于时间T 的t 统计量也小于ADF 分布表中的临界值,因此不能拒绝不存在趋势项的零假设。

需进一步检验模型2 。

经试验,模型2中滞后项取3阶:321130.095.043.101.061.401----∆+∆-∆++=∆t t t t t X X X X X() ()DW 值为,模型残差不存在自相关性,因此该模型的设定是正确的。

从1-t X 的参数值看,其t 统计量为正值,大于临界值,不能拒绝存在单位根的零假设。

同时,常数项的t 统计量也小于ADF 分布表中的临界值,因此不能拒绝不存常数项的零假设。

需进一步检验模型1。

经试验,模型1中滞后项取3阶:321135.002.153.101.0----∆+∆-∆+=∆t t t t t X X X X X ()DW 值为,残差不存在自相关性,因此模型的设定是正确的。

从1-t X 的参数值看,其t 统计量为正值,大于临界值,不能拒绝存在单位根的零假设。

至此,可断定居民消费总额时间序列是非平稳的。

2.解:利用ADF 检验,经过试算,发现居民消费总额是2阶单整的,适当的检验模型为:13123471.0854.0--∆+∆-=∆t t t X X X() ()Correlogram-Q-Statistics 检验证明随机误差项已不存在自相关。

从12-∆t X 的参数值看,其t 统计量绝对值大于临界值的绝对值,所以拒绝零假设,认为居民消费总额的二阶差分是平稳的时间序列,即居民消费总额是2阶单整的。

3.解:⑴ 长期均衡方程的理论形式为:t t t t C A Q εβββ+++=ln ln ln 210⑵ 误差修正项ecm 的理论形式为:t t t t C A Q ecm ln ln ln 210βββ---=⑶ 误差修正模型的理论形式为:t t t t t ecm C A Q μλαα+-∆+∆=∆-132ln ln ln⑷ 误差修正模型中每个待估参数的经济意义为:2α:播种面积对产量的短期产出弹性;3α:化肥施用量对产量的短期产出弹性;λ:前个时期对长期均衡的偏离程度对当期短期变化的影响系数。

相关文档
最新文档