高分子化学第六章作业参考答案

合集下载

高分子化学第六章答案

高分子化学第六章答案

第五章离子聚合2.将1.0×10-3mol萘钠溶于四氢呋喃中,然后迅速加入2.0mol的苯乙烯,溶液的总体积为1L。

假如单体立即均匀混合,发现2000秒钟内已有一半单体聚合,计算在聚合了2000秒和4000秒时的聚合度。

解:无终止的阴离子聚合速率为R p=k p[M-][M]以萘钠为引发剂时,由于聚合开始前,引发剂就以定量地离解成活性中心∴[M-]=[C]=1.0×10-3mol/L将R p式改写为-d[M]/dt=k p[C][M]积分得ln([M]0/[M])=k p[C]t已知t1=2000秒时,[M]0/[M]1=2,代入上面积分式:ln2=k p×2000∴k p[C]=ln2/2000设当t2=4000秒时,剩余单体浓度为[M]2ln([M]0/[M]2)=k p[C]t2=ln2/2000×4000=1.386∴[M]2= [M]0/4则反应掉的单体浓度为[M]0-[M]0/4=3[M]0/4根据阴离子聚合的聚合度公式x n=n[M]/[C] (双阴离子n=2) [C]为引发剂浓度∵聚合到2000秒时,单体转化率为50%,则反应掉的单体浓度为50%[M]0∴=x n×50%[M]0/[C]=2×50%×2.0/(1.0×10-3)=2000n已求得聚合到4000秒时,反应掉的单体浓度为3[M]0/4∴=x n×(3[M]0/4)/[C]=2×(3/4)×2.0/(1.0×10-3)=3000n4.异丁烯在四氢呋喃中用SnCl 4-H 2O 引发聚合。

发现聚合速率R p ∝[SnCl 4][H 2O][异丁烯]2。

起始生成的聚合物的数均分子量为20000。

1.00g 聚合物含3.0×10-5mol 的OH 基,不含氯。

写出该聚合的引发、增长、终止反应方程式。

高分子化学习题与答案

高分子化学习题与答案

高分子化学习题与答案 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998《高分子化学》习题与答案第一章绪论习题1. 说明下列名词和术语:(1)单体,聚合物,高分子,高聚物(2)碳链聚合物,杂链聚合物,元素有机聚合物,无机高分子(3)主链,侧链,侧基,端基(4)结构单元,单体单元,重复单元,链节(5)聚合度,相对分子质量,相对分子质量分布(6)连锁聚合,逐步聚合,加聚反应,缩聚反应(7)加聚物,缩聚物,低聚物2.与低分子化合物比较,高分子化合物有什么特征3. 从时间~转化率、相对分子质量~转化率关系讨论连锁聚合与逐步聚合间的相互关系与差别。

4. 举例说明链式聚合与加聚反应、逐步聚合与缩聚反应间的关系与区别。

5. 各举三例说明下列聚合物(1)天然无机高分子,天然有机高分子,生物高分子。

(2)碳链聚合物,杂链聚合物。

(3)塑料,橡胶,化学纤维,功能高分子。

6. 写出下列单体的聚合反应式和单体、聚合物的名称(1) CH2=CHF(2) CH2=CH(CH3)2CH3|(3) CH2=C|COO CH3(4) HO-( CH2)5-COOH(5) CH2CH2CH2O|__________|7. 写出下列聚合物的一般名称、单体、聚合反应式,并指明这些聚合反应属于加聚反应还是缩聚反应,链式聚合还是逐步聚合(1) -[- CH2- CH-]n-|COO CH3(2) -[- CH2- CH-]n-|OCOCH3(3) -[- CH2- C = CH- CH2-]n-|CH3(4) -[-NH(CH2)6NHCO(CH2)4CO-]n-(5) -[-NH(CH2)5CO-]n-8. 写出合成下列聚合物的单体和反应式:(1) 聚苯乙烯(2) 聚丙烯(3) 聚四氟乙烯(4) 丁苯橡胶(5) 顺丁橡胶(6) 聚丙烯腈(7) 涤纶(8) 尼龙6,10(9) 聚碳酸酯(10) 聚氨酯9. 写出下列单体形成聚合物的反应式。

智慧树知到《高分子化学(南昌大学)》章节测试答案

智慧树知到《高分子化学(南昌大学)》章节测试答案

智慧树知到《高分子化学(南昌大学)》章节测试答案绪论1、高分子是通常由原子或原子团(结构单元)以共价键有规律地连接而成的大分子量(>104)的高分子链组成同系混合物。

A.对B.错答案: 对第一章1、对配位聚合的发现做出贡献并因此而获得Nobel化学奖的是A.StaudingerB.FloryC.Ziegler-Natta答案: Ziegler-Natta2、高分子的概念是20世纪二十年代由()首先提出的A.FloryB.CarothersC.Staudinger答案: Staudinger3、尼龙-6的单体是A.己内酰胺B.己二酸C.己二胺D.己二醇答案: 己内酰胺4、丙烯在烷基铝-TiCl4催化下合成聚丙烯的反应属于A.正离子型加聚B.负离子型加聚C.自由基加聚D.配位聚合答案: 配位聚合5、聚碳酸酯是由双酚A与光气聚合物而得:HOC6H4C(CH3)2C6H4OH + ClCOCl─> H-(-OC6H4C(CH3) 2C6H4OCO-)n-Cl+HCl↑该反应称为A.缩聚反应B.加聚反应C.自由基加成D.亲电加成答案: 缩聚反应6、制造尼龙的原材料是A.链烯B.二烯C.二元羧酸和二元胺D.二元羧酸和二元醇答案: 二元羧酸和二元胺7、线形或支链形大分子以物理力聚集成聚合物,加热时可熔融,并能溶于适当溶剂中。

A.对B.错答案: 对8、聚合物是分子量不等的同系物的混合物,存在一定的分布或多分散性A.对B.错答案: 对9、合成树脂和塑料、合成纤维、合成橡胶统称为三大合成高分子材料A.对B.错答案: 对10、动力学链长是指一个活性中心,从引发开始到真正终止为止,所消耗的单体数目。

A.对B.错答案: 对第二章1、一个聚合反应中将反应程度从98%提高到99%需要0-98%同样多的时间,它应是A.开环聚合反应B.链式聚合反应C.逐步聚合反应D.界面缩聚反应答案: 逐步聚合反应2、欲使1000g环氧树脂(环氧值为0.2)固化,需要己二胺的量为A.0.5molB.2molC.0.25molD.1mol答案: 0.5mol3、聚氨酯通常是由两种单体反应获得,它们是A.己二胺-二异氰酸酯B.己二胺-己二酸二甲酯C.三聚氰胺-甲醛D.己二醇-二异氰酸酯答案: 己二醇-二异氰酸酯4、热固性聚合物的特征是A.可溶可熔B.为体型大分子C.不溶不熔D.不能成型加工答案: 可溶可熔5、在己二酸和己二醇缩聚反应中加入0.4%的对甲苯磺酸起到的作用为A.链转移剂B.控制分子量C.提高聚合速率答案: 提高聚合速率6、尼龙1010(聚癸二酰癸二胺)是根据1010盐中的癸二酸控制分子量,如果要求分子量为1.8万,问1010盐的酸值(以mgKOH/g计)应该是A.0.56B.596C.56.9D.5.96答案: 5.967、等摩尔二元醇和二元酸进行缩聚,如平衡常数为400,在密闭体系内反应,不除去副产物水,反应程度为A.0.9B.1.0C.0.95D.0.92答案: 0.958、缩聚反应中,所有单体都是活性中心,其动力学特点是A.体逐步消失,产物分子量很快增大B.单体慢慢消失,产物分子量逐步增大C.单体很快消失,产物分子量逐步增大答案: 单体很快消失,产物分子量逐步增大9、合成线型酚醛预聚物的催化剂应选用A.正丁基锂B.氢氧化钙C.草酸D.过氧化氢答案: 草酸10、不属于影响缩聚物聚合度的因素的是A.转化率B.反应程度C.平衡常数D.基团数比答案: 转化率第三章1、本体聚合至一定转化率时会出现自动加速效应,这时体系中的自由基浓度和寿命τ的变化规律为A.[M]增加,τ缩短B.[M]增加,τ延长C.[M*]减少,τ延长答案:B2、“ClCH=CHCl能够进行自由基聚合形成高聚物”。

高分子化学答案(第五版)

高分子化学答案(第五版)

第一章绪论思考题1. 举例说明单体、单体单元、结构单元、重复单元、链节等名词的含义,以及它们之间的相互关系和区别。

答:合成聚合物的原料称做单体,如加聚中的乙烯、氯乙烯、苯乙烯,缩聚中的己二胺和己二酸、乙二醇和对苯二甲酸等。

在聚合过程中,单体往往转变成结构单元的形式,进入大分子链,高分子由许多结构单元重复键接而成。

在烯类加聚物中,单体单元、结构单元、重复单元相同,与单体的元素组成也相同,但电子结构却有变化。

在缩聚物中,不采用单体单元术语,因为缩聚时部分原子缩合成低分子副产物析出,结构单元的元素组成不再与单体相同。

如果用2种单体缩聚成缩聚物,则由2种结构单元构成重复单元。

聚合物是指由许多简单的结构单元通过共价键重复键接而成的分子量高达104-106的同系物的混合物。

聚合度是衡量聚合物分子大小的指标。

以重复单元数为基准,即聚合物大分子链上所含重复单元数目X表的平均值,以DP表示;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值,以n 示。

2. 举例说明低聚物、齐聚物、聚合物、高聚物、高分子、大分子诸名词的的含义,以及它们之间的关系和区别。

答:合成高分子多半是由许多结构单元重复键接而成的聚合物。

聚合物(polymer)可以看作是高分子(macromolecule)的同义词,也曾使用large or big molecule的术语。

从另一角度考虑,大分子可以看作1条大分子链,而聚合物则是许多大分子的聚集体。

根据分子量或聚合度大小的不同,聚合物中又有低聚物和高聚物之分,但两者并无严格的界限,一般低聚物的分子量在几千以下,而高聚物的分子量总要在万以上。

多数场合,聚合物就代表高聚物,不再标明“高”字。

齐聚物指聚合度只有几~几十的聚合物,属于低聚物的范畴。

低聚物的含义更广泛一些。

8. 举例说明和区别线形结构和体形结构、热塑性聚合物和热固性聚合物、非晶态聚合物和结晶聚合物。

答:线形和支链大分子依靠分子间力聚集成聚合物,聚合物受热时,克服了分子间力,塑化或熔融;冷却后,又凝聚成固态聚合物。

《高分子化学》习题与答案

《高分子化学》习题与答案

《高分子化学》习题与答案沈阳化工学院材料科学与工程学院第一章绪论习题1. 说明下列名词和术语:(1)单体,聚合物,高分子,高聚物(2)碳链聚合物,杂链聚合物,元素有机聚合物,无机高分子(3)主链,侧链,侧基,端基(4)构造单元,单体单元,重复单元,链节(5)聚合度,相对分子质量,相对分子质量分布(6)连锁聚合,逐步聚合,加聚反响,缩聚反响(7)加聚物,缩聚物,低聚物2.与低分子化合物比拟,高分子化合物有什么特征?3. 从时间~转化率、相对分子质量~转化率关系探讨连锁聚合与逐步聚合间的互相关系与差异。

4. 举例说明链式聚合与加聚反响、逐步聚合与缩聚反响间的关系与区分。

5. 各举三例说明下列聚合物(1)自然无机高分子,自然有机高分子,生物高分子。

(2)碳链聚合物,杂链聚合物。

(3)塑料,橡胶,化学纤维,功能高分子。

6. 写出下列单体的聚合反响式和单体、聚合物的名称(1) CH2=CHF(2) CH2=CH(CH3)2CH3|(3) CH2=C|COO CH3(4) HO-( CH2)5-COOH(5) CH2CH2CH2O|__________|7. 写出下列聚合物的一般名称、单体、聚合反响式,并指明这些聚合反响属于加聚反响还是缩聚反响,链式聚合还是逐步聚合?(1) -[- CH2- CH-]n-|COO CH3(2) -[- CH2- CH-]n-|OCOCH3(3) -[- CH2- C = CH- CH2-]n-|CH3(4) -[-NH(CH2)6NHCO(CH2)4CO-]n-(5) -[-NH(CH2)5CO-]n-8. 写出合成下列聚合物的单体和反响式:(1) 聚苯乙烯(2) 聚丙烯(3) 聚四氟乙烯(4) 丁苯橡胶(5) 顺丁橡胶(6) 聚丙烯腈(7) 涤纶(8) 尼龙6,10 (9) 聚碳酸酯 (10) 聚氨酯9. 写出下列单体形成聚合物的反响式。

指出形成聚合物的重复单元、构造单元、单体单元和单体,并对聚合物命名,说明聚合属于何类聚合反响。

高分子化学课后完整版答案

高分子化学课后完整版答案

b
CH2=C(CH3)2 异丁烯
-[-CH2-C(CH3)2-]-n 聚异丁烯
c
HO(CH2)5COOHω-羟基己酸
-[-O(CH2)5CO-]-n 聚己内酯
d
CH2CH2CH2O 丁氧环
└—-——──┘
-[-CH2CH2CH2O-]-n
聚氧三亚甲基
e
NH2(CH2)6NH 己二胺+
-[-NH(CH2)6NHCO(CH2)4CO-]-n 聚己二酰己
. 很高,玻璃化温度很低。
www 塑料性能要求介于纤维和橡胶之间,种类繁多,从接近纤维的硬塑料(如聚氯乙烯,也可拉成纤维)到接
近橡胶的软塑料(如聚乙烯,玻璃化温度极低,类似橡胶)都有。低密度聚乙烯结构简单,结晶度高,才
有较高的熔点(130℃);较高的聚合度或分子量才能保证聚乙烯的强度。等规聚丙烯结晶度高,熔点高(175 ℃),强度也高,已经进入工程塑料的范围。聚氯乙烯含有极性的氯原子,强度中等;但属于非晶型的玻
CH3
8. 举例说明和区别线形结构和体形结构、热塑性聚合物和热固性聚合物、非晶态聚合物和结晶聚合物。
答案网()
答:线形和支链大分子依靠分子间力聚集成聚合物,聚合物受热时,克服了分子间力,塑化或熔融;冷却
后,又凝聚成固态聚合物。受热塑化和冷却固化可以反复可逆进行,这种热行为特称做热塑性。但大分子
丁苯橡胶:丁二烯+苯乙烯 CH2=CH-CH=CH2+CH2=CH-C6H5→
聚甲醛:甲醛 CH2O 聚苯醚:2,6 二甲基苯酚
CH3 OH +O2
CH3
CH3 On
CH3
聚四氟乙烯:四氟乙烯 CF2=CF2→2
CH3
H2O

潘祖仁《高分子化学》(第5版)课后习题详解(6-9章)【圣才出品】

潘祖仁《高分子化学》(第5版)课后习题详解(6-9章)【圣才出品】

第6章离子聚合(一)思考题1.试从单体结构来解释丙烯腈和异丁烯离子聚合行为的差异,选用何种引发剂?丙烯酸、烯丙醇、丙烯酰胺、氯乙烯能否进行离子聚合?为什么?答:(1)丙烯腈中氰基为吸电子基团,可以与双键形成π-π共轭,使双键上的电子云密度减弱,有利于阴离子的进攻,并使所形成的碳阴离子的电子云密度分散而稳定,因此丙烯腈能够进行阴离子聚合。

进行阴离子聚合时,可选用碱金属、碱金属化合物、碱金属烷基化合物、碱金属烷氧化合物等作为引发剂。

异丁烯中两个甲基为推电子基团,能使双键上的电子云密度增加,有利于阳离子的进攻,并使所形成的碳阳离子的电子云密度分散而稳定,因此异丁烯能够进行阳离子聚合。

进行阳离子聚合时,通常采用质子酸、Lewis酸及其相应的共引发剂进行引发。

(2)丙烯酸、烯丙醇、丙烯酰胺不能进行离子聚合,因为没有强烈的推电子基团和吸电子基团。

氯乙烯中氯原子的诱导效应为吸电性,而共轭效应却有供电性,两者相抵消后,电子效应微弱,因此氯乙烯不能离子聚合。

2.下列单体选用哪一引发剂才能聚合?指出聚合机理类型。

表6-1答:(1)苯乙烯三种机理均可,可以选用表6-1中任何一种引发剂。

(2)偏二腈乙烯,阴离子聚合,选用Na+萘或n-C4H9Li引发。

(3)异丁烯,阳离子聚合,选用SnC14+H2O或BF3+H2O。

(4)丁基乙烯基醚,阳离子聚合,选用SnC14+H2O或BF3+H2O。

(5)甲基丙烯酸甲酯,阴离子聚合和自由基聚合。

阴离子聚合,选用Na+萘或n-C4H9Li 引发,自由基聚合选用(C6H5CO)2O2作引发剂。

3.下列引发剂可以引发哪些单体聚合?选择一种单体,写出引发反应式。

a.KNH2b.AlCl3+HClc.SnCl4+C2H5Cld.CH3ONa答:a.KNH2是阴离子聚合引发剂,可以引发大多阴离子单体聚合,如引发苯乙烯进行聚合,反应式为b.AlCl3活性高,和微量的水作共引发剂即可,和HCl配合时,氯离子的亲和性过强,容易同阳离子共价终止,所以很少采用。

第6章超临界流体萃取作业参考答案

第6章超临界流体萃取作业参考答案

第6章超临界流体萃取作业参考答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March第6章超临界流体萃取一名词解释1 超临界流体(supercritical fluid, SF)是指某种气体(液体)或气体(液体)混合物在操作压力和温度均高于临界点时,使其密度接近液体,而其扩散系数和黏度均接近气体,其性质介于气体和液体之间的流体。

2 超临界流体萃取法(supercritical fluid extraction, SFE)技术就是利用超临界流体为溶剂,从固体或液体中萃取出某些有效组分,并进行分离的一种技术。

3 拖带剂:在超临界流体萃取过程中,由于二氧化碳是非极性物质,比较适合于脂溶性物质的萃取,但对极性较强的物质来说,其溶解能力明显不足,此时,为增加二氧化碳流体的溶解性能,通常在其中加入少量极性溶剂,以增加其溶解能力,这种溶剂称为拖带剂或提携剂(entrainer),也称夹带剂或修饰剂(cosolvent,modifier)。

二简答题1 超临界流体萃取有哪些特点?答:超临界流体技术在萃取和精馏过程中,作为常规分离方法的替代,有许多潜在的应用前景。

其优势特点是:1)超临界萃取可以在接近室温(35~40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。

因此,在萃取物中保持着药用植物的有效成分,而且能把高沸点、低挥发性、易热解的物质在远低于其沸点温度下萃取出来;2)使用SFE是最干净的提取方法,由于全过程不用有机溶剂,因此萃取物绝无残留的溶剂物质,从而防止了提取过程中对人体有害物的存在和对环境的污染,保证了100%的纯天然性;3)萃取和分离合二为一,当饱和的溶解物的CO2流体进入分离器时,由于压力的下降或温度的变化,使得CO2与萃取物迅速成为两相(气液分离)而立即分开,不仅萃取的效率高而且能耗较少,提高了生产效率也降低了费用成本;4)CO2是一种不活泼的气体,萃取过程中不发生化学反应,且属于不燃性气体,无味、无臭、无毒、安全性非常好;5)CO2气体价格便宜,纯度高,容易制取,且在生产中可以重复循环使用,从而有效地降低了成本;6)压力和温度都可以成为调节萃取过程的参数,通过改变温度和压力达到萃取的目的,压力固定通过改变温度也同样可以将物质分离开来;反之,将温度固定,通过降低压力使萃取物分离,因此工艺简单容易掌握,而且萃取的速度快。

高分子化学习题及解答(39P)

高分子化学习题及解答(39P)

高分子化学习题及解答第一章 绪论1.基本概念单体,聚合物,聚合度,单体单元,结构单元,重复结构单元,重均分子量,数均分子量,分子量分布,多分散系数,碳链聚合物,杂链聚合物,元素有机聚合物,缩聚物,缩聚反应,加聚物,加聚反应,线形聚合物,支化聚合物,交联聚合物,橡胶,塑料,纤维2. 聚合物结构与名称了解聚合物的各种名称及英文缩写与聚合物结构间的关联 , 熟悉系统命名法的基本规则,并用于常见聚合物的命名。

①聚合物结构式书写格式习惯写法IUPAC规定的写法②聚合物的IUPAC 命名法基本规则常见聚合物的名称③聚合物的来源命名法及习惯命名法④常见聚合物的英文缩写⑤等规立构聚合物的结构与名称⑥嵌段共聚物的结构与名称⑦接枝共聚物的结构与名称练习题:一、写出下列聚合物的结构1.聚碳酸酯,涤纶,有机玻璃,Kevlar纤维,尼龙-6,聚甲醛,天然橡胶,聚氯乙烯,聚丙烯第二章 自由基聚合1.基本概念连锁(链式)聚合,初级自由基,单体自由基,活性中心,自由基半衰期,引发效率,稳态,自由基等活性理论,笼蔽效应,诱导分解效应,自动加速,动力学链长,聚合度,链转移,链转移常数,阻聚及缓聚,歧化终止,偶合终止,最高聚合温度,引发转移终止剂(iniferter),原子转移自由基聚合(ATRP)2. 基本原理及现象解释z单体对不同连锁聚合机理的选择性z自由基聚合机理(包括链引发、链增长、链终止、链转移及自由基聚合反应的特征)z自动加速现象及其出现的原因。

z聚合反应速率与引发剂浓度的关系 ; 聚合反应速率与单体浓度的关系,影响引发剂效率的因素。

z链转移剂在聚合物合成中的用途 ; 高压聚乙烯的长支链和短支链的生成原因。

z烯丙基单体的自阻聚作用1整理:潘奇伟z自动加速效应对聚合反应速率与单体和引发剂浓度关系的影z温度、压力对聚合反应速率和聚合度的影响z四类引发剂的引发基元反应(包括偶氮类(AIBN),有机过氧化物类(BPO),无机过氧化物类(KSP)、氧化还原反应体系(亚硫酸盐与硫代硫酸盐))z苯醌及苯酚对自由基反应的阻聚原理。

高分子物理习题参考答案1-6,高分子化学习题集

高分子物理习题参考答案1-6,高分子化学习题集

《高分子物理》标准化作业本参考答案沈阳化工学院材料科学与工程学院《高分子物理》课程组20**.3第一章 高分子链的结构一、 概念1、构型:分子中由化学键所固定的原子在空间的几何排列。

2、由于单键的内旋转而产生的分子中原子在空间位置上的变化叫构象。

3、均方末端距:高分子链的两个末端的直线距离的平方的平均值。

4、链段:链段是由若干个键组成的一段链作为一个独立动动的单元,是高分子链中能够独立运动的最小单位。

5、全同立构:取代基全部处于主链平面的一侧或者说高分子全部由一种旋光异构单元键接而成。

6、无规立构:当取代基在主链平面两侧作不规则分布或者说两种旋光异构体单元完全无规键接而成。

二、选择答案1、高分子科学诺贝尔奖获得者中,( A )首先把“高分子”这个概念引进科学领域。

A 、H. Staudinger,B 、K.Ziegler, G .Natta,C 、P. J. Flory,D 、H. Shirakawa2、下列聚合物中,( A )是聚异戊二烯(PI)。

A 、 CCH 2n CH CH 23B 、O C NH O C NH C 6H 4C 6H 4n C 、 CH Cl CH 2n D 、OC CH 2CH 2O O n O C3、下列聚合物中,不属于碳链高分子的是( D )。

A 、聚甲基丙烯酸甲酯,B 、聚氯乙烯,C 、聚乙烯,D 、聚酰胺4、下列四种聚合物中,不存在旋光异构和几何异构的为( B )。

A 、聚丙烯,B 、聚异丁烯,C 、聚丁二烯,D 、聚苯乙烯5、下列说法,表述正确的是( A )。

A 、工程塑料ABS 树脂大多数是由丙烯腈、丁二烯、苯乙烯组成的三元接枝共聚物。

B 、ABS 树脂中丁二烯组分耐化学腐蚀,可提高制品拉伸强度和硬度。

C 、ABS 树脂中苯乙烯组分呈橡胶弹性,可改善冲击强度。

D 、ABS 树脂中丙烯腈组分利于高温流动性,便于加工。

6、下列四种聚合物中,链柔顺性最好的是( C )。

高分子化学课后习题与解答_韩哲文主编_华东理工大学出版社

高分子化学课后习题与解答_韩哲文主编_华东理工大学出版社

《高分子化学》课后习题与解答韩哲文主编华 东理工大学出版社第一章、绪论习题与思考题1. 写出下列单体形成聚合物的反应式。

注明聚合物的重复单元和结构单元,并对聚合物命名,说明属于何类聚合反应。

(1)CH 2=CHCl; (2)CH 2=C (CH 3)2; (3)HO(CH 2)5COOH; (4) ;(5)H 2N(CH 2)10NH 2 + HOOC(CH 2)8COOH ; (6)OCN(CH 2)6NCO + HO(CH 2)2OH ;2. 写出下列聚合物的一般名称、单体和聚合反应式。

(1) (2) (3) (4)(5) (6) 3. 写出合成下列聚合物的单体和聚合反应式:(1) 聚丙烯晴 (2) 丁苯橡胶 (3) 涤纶 (4) 聚甲醛 (5) 聚氧化乙烯 (6) 聚砜4. 解释下列名词:(1) 高分子化合物,高分子材料 (2) 结构单元,重复单元,聚合度;(3) 分子量的多分散性,分子量分布,分子量分布指数; (4) 线型结构大分子,体型结构大分子; (5) 均聚物,共聚物,共混物; (6) 碳链聚合物,杂链聚合物。

5. 聚合物试样由下列级分组成,试计算该试样的数均分子量n M 和重均分子量w M 及分子量分布指数。

CH 2CH 2CH 2O [ CH 2 C ]nCH 3COOCH 3[ CH 2 CH ]nCOOCH 3[ CH 2 C=CH CH 2 ]n 3 [ O C O C ]OCH 3CH 3n[ NH(CH 2)6NHOC(CH 2)4CO ]n[ NH(CH 2)5CO ]n级分 重量分率 分子量 1 0.5 1×1042 0.2 1×1053 0.2 5×1054 0.11×1066. 常用聚合物分子量示例于下表中。

试计算聚氯乙烯、聚苯乙烯、涤纶、尼龙-66、顺丁橡胶及天然橡胶的聚合度,并根据这六种聚合物的分子量和聚合度认识塑料、纤维和橡胶的差别。

高分子化学重点课后习题解答

高分子化学重点课后习题解答

1.图1 相对分子质量~转化率关系1.链式聚合2.活性聚合3.逐步聚合对链式聚合,存在活性中心,活性中心的特点一是在反应过程中不断生成,二是高活性,可使高分子链是瞬间形成,因此在不同转化率下分离所得聚合物的相对分子质量相差不大,延长反应时间只是为了提高转化率。

对逐步聚合,是官能团间反应,由于大部分单体很快聚合成二聚体、三聚体等低聚物,短期内可达到很高转化率,但因官能团活性低,故需延长反应时间来提高相对分子质量。

对活性聚合,活性中心同时形成,且无链转移和链终止,故随反应进行,相对分子质量和转化率均线性提高。

2.连锁聚合与逐步聚合的单体有何相同与不同?连锁聚合单体的主要反应部位是单体上所含不饱合结构(双键或叁键),在聚合过程中不饱合键打开,相互连接形成大分子链。

需要有活性中心启动聚合反应,为此多需用引发剂,反应活化能低,反应速率快,相对分子质量高。

逐步聚合单体的主要反应部位是单体上所带可相互反应的官能团,在聚合过程中官能团相互反应连接在一起,形成大分子链。

不需活性中心启动反应,但反应活化能高,为此多需用催化剂,反应速率慢,受平衡影响大,相对分子质量低。

3.凝胶点:出现凝胶化时的反应程度。

(逐步聚合概念)凝胶化:体形逐步聚合的交联反应到一定程度时,体系粘度变得很大,难以流动,反应及搅拌产生的气泡无法从体系中溢出,出现凝胶或不溶性聚合物明显生成的实验现象。

(逐步聚合概念)凝胶效应:自由基聚合中随反应进行体系粘度加大,妨碍了大分子链自由基的扩散运动,降低了两个链自由基相遇的几率,导致链终止反应速率常数随粘度的不断增加而逐步下降;另一方面,体系粘度的增加对小分子单体扩散的影响并不大,链增长反应速率常数基本不变,因而出现了自动加速现象。

这种因体系粘度增加引起的自动加速又称凝胶效应。

(自由基聚合概念)4.为什么在缩聚反应中不用转化率而用反应程度描述反应过程?在逐步聚合中,带不同官能团的任何两分子都能相互反应,无特定的活性种,因此,在缩聚早期单体很快消失,转变成二聚体、三聚体等低聚物,单体的转化率很高。

高分子化学参考答案

高分子化学参考答案

⾼分⼦化学参考答案第⼀章、聚合物的链结构⼀、名词解释。

链段:⾼分⼦链上划分的可任意取向的最⼩结构单元。

构象:这种围绕单键内旋转⽽产⽣的分⼦在空间的不同形态。

构型:分⼦中化学键所固定的原⼦在空间的⼏何排列。

柔顺性:⾼分⼦链的各种可卷曲的性能,或者⾼分⼦链改变其构想的性质。

末端距:线型⾼分⼦链的⼀端到另⼀端的直线距离,这是⼀个向量。

均⽅末端距:末端距平⽅的平均值。

等效⾃由结合链:它是以链段为独⽴运动单元的,⾼分⼦链相当于有许多⾃由结合的连段组成,这种链段称为Kuhn链段,只要链段数⽬⾜够⼤,它还是柔性的,称之为等效⾃由结合链。

⽆扰尺⼨:选择适当的溶剂和温度使溶剂分⼦对聚合物分⼦链结构和结构参数的影响降到最低甚⾄可忽略的理想条件下测定的分⼦链尺⼨称为“⽆扰尺⼨”。

⼆、填空。

1、越多、越短2、⾼分⼦链结构;⾼分⼦聚集态结构三、简答题。

1、影响⾼分⼦链柔顺性的因素:内在因素:(1)主链结构①主链全部为单键且⽆刚性侧基时,柔顺性较好;②分⼦链越长,构象数越多,链柔性越好;③主链单键内旋转位垒越⼩,链柔性越好;④主链含有芳杂环及共轭双键时,链柔性降低;⑤主链含有孤⽴双键时,链柔性增⼤.(2)取代基①极性取代基②⾮极性取代基(3)⽀链和交联(4)分⼦链的长短(5)分⼦间作⽤⼒(6)分⼦链的规整性外界因素:温度外⼒溶剂2、原因有三:(1)、分⼦间有极性,分⼦链间相互作⽤⼒强;(2)、六元吡喃环结构使内旋转困难;(3)分⼦内和分⼦间都能形成氢键,尤其是分⼦间氢键使糖苷键不能旋转,从⽽⼤⼤增加了刚性。

3、热塑性⾼聚物如PE/PP/PS/PVC四⼤热塑性通⽤塑料热固性⾼聚物PF/EP4、PE的分⼦链是柔顺性的,但结构规整整,很容易结晶,⼀旦结晶,链的柔性就表现不出来,故聚合物具有塑料性质。

5、由于⼀般线型聚合物的相对分⼦量很⼤,分⼦链很长,分⼦链内和分⼦间作⽤⼒远强于低分⼦同系物,要使之⽓化需要供给很⼤的能量,即需要很⾼的温度,这个温度远远⾼于其分解温度,故⾼聚物没有⽓态。

高分子化学习题与解答( 61页)

高分子化学习题与解答( 61页)

第一章绪论名词解释高分子化合物(High Molecular Compound):所谓高分子化合物,系指那些由众多原子或原子团主要以共价键结合而成的相对分子量在一万以上的化合物。

单体(Monomer):合成聚合物所用的-低分子的原料。

如聚氯乙烯的单体为氯乙烯。

重复单元(Repeating Unit):在聚合物的大分子链上重复出现的、组成相同的最小基本单元。

如聚氯乙烯的重复单元为。

单体单元(Monomer Unit):结构单元与原料相比,除了电子结构变化外,其原子种类和各种原子的个数完全相同,这种结构单元又称为单体单元。

结构单元(Structural Unit):单体在大分子链中形成的单元。

聚氯乙烯的结构单元为。

聚合度(DP、X n)(Degree of Polymerization) :衡量聚合物分子大小的指标。

以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值,以DP表示;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值,以X n 表示。

聚合物是由一组不同聚合度和不同结构形态的同系物的混合物所组成,因此聚合度是一统计平均值。

聚合物分子量(Molecular Weight of Polymer):重复单元的分子量与重复单元数的乘积;或结构单元数与结构单元分子量的乘积。

数均分子量(Number-average Molecular Weight):聚合物中用不同分子量的分子数目平均的统计平均分子量。

,Ni :相应分子所占的数量分数。

重均分子量(Weight-average Molecular Weight):聚合物中用不同分子量的分子重量平均的统计平均分子量。

,Wi :相应的分子所占的重量分数。

粘均分子量(Viscosity-average Molecular Weight):用粘度法测得的聚合物的分子量。

分子量分布(Molecular Weight Distribution, MWD ):由于高聚物一般由不同分子量的同系物组成的混合物,因此它的分子量具有一定的分布,分子量分布一般有分布指数和分子量分布曲线两种表示方法。

高分子化学第六章聚合方法解答

高分子化学第六章聚合方法解答

解:⑴解:⑴ 如反应前后的聚合度不变,由于原料的原有官能团往往和产物同在一个分子链中,也就是说,分子链中官能团很难完全转化,因此这类反应需以结构单元作为化学反应的计算单元。

计算单元。

⑵ 如反应前后聚合度发生变化,则情况更为复杂。

这种情况常发生在原料聚合物主链中有弱键、易受化学键进攻的部位,由此导致裂解或交联。

中有弱键、易受化学键进攻的部位,由此导致裂解或交联。

⑶ 与低分子反应不同,聚合物化学反应的速度还会受到大分子在反应体系的形态和参加反应的相邻基团等的影响。

加反应的相邻基团等的影响。

⑷ 对均相的聚合物化学反应,反应常为扩散控制,溶剂起着重要作用。

对非均相反应情况更为复杂。

情况更为复杂。

2. 解:⑴解:⑴ 物理因素:主要反映在反应物质的扩散速度和局部浓度两方面。

结晶和无定型聚合物;线性、支链型及交联聚合物;不同的链构象以及反应呈均相还是非均相等,对小分子物质的扩散都有着不同的影响,从而影响到基团的反应能力。

另外,链的构象也有一定影响,聚合物呈紧密线团、疏松线团或螺旋线团时,链上官能团与小分子反应物反应的活性也并不相同。

的活性也并不相同。

⑵ 化学因素:主要是大分子链上邻近基团间效应和几率效应。

大分子链上邻近基团间的静电作用、空间位阻及构型的不同,可改变官能团的反应活性;聚合物相邻官能团作无规成双反应时,中间往往会有孤立的单个基团,使最高转化程度受到限制,则此时要考虑几率效应。

考虑几率效应。

3 解:①解:① 自由基聚合反应:自由基聚合反应:nCH 2 CH [CH2CH]n OCOCH 3OCOCH 3AIBN② 醇解反应:醇解反应:[CH 2C H ]nOCOCH 3[CH 2C H ]nOHCH 3OH③ 缩醛化反应(包括分子内和分子间):HCHO H2O CH 2O OCH 2CH 2CH CHOH OHCH 2CH CHCH 24.解:聚合物与低分子化合物反应,聚合物与低分子化合物反应,仅限于侧基和/或端基而聚合度基本不变的反应,仅限于侧基和/或端基而聚合度基本不变的反应,仅限于侧基和/或端基而聚合度基本不变的反应,称为聚称为聚合物的相似转变。

高分子第六章习题参考答案

高分子第六章习题参考答案

高分子第六章习题参考答案1.什么是配位阴离子聚合?特点如何?它和典型的阴离子聚合有何不同?BuLi引发苯乙烯聚合是不是配位阴离子聚合?参考答案:主、助引发剂络合,形成或性点(或空位),单体在空位上配位,形成络合物(б-л络合物),而配位活化后的单体在金属-烷基键中间插入增长,形成增长大分子链的聚合过程叫配位阴离子聚合。

其特点是:(1)单体首先在亲电性反离子或金属上配位;(2)大多数具有阴离子的性质;(3)反应是经四元环的插入过程;(4)单体插入可能有两种途径。

配位阴离子聚合与典型的阴离子聚合的差别:配位阴离子聚合是经四元环的插入过程,而典型的阴离子聚合不是经四元环的插入过程。

BuLi引发苯乙烯聚合不是配位阴离子聚合。

2.解释和区别下列名词:配位聚合,络合聚合,插入聚合,定向聚合。

参考答案:配位聚合——是指单体分子首先在活性种的空位处配位,形成某些形式(σ-π)的配位络合物。

随后单体分子插入过渡金属(Mt)——碳(C)键中增长形成大分子的过程。

这种聚合本质上是单体对增长链Mt——R键的插入反应,所以常称插入聚合(insertion polymerzation)。

络合聚合——配位聚合与络合聚合是同义词,一方面指引发剂有配位或络合能力,另一方面指聚合过程中伴有配位和络合能力。

插入聚合——见配位聚合。

定向聚合——配位阴离子聚合的结果有可能制得立构规整聚合物,因此可称定向聚合。

3.聚合物的立构规整性的含义是什么?如何评价?光学异构和几何异构有何不同,它和单体的化学结构有何关系?参考答案:聚合物的立构规整性是指聚合物中基团在空间排列的形态,它影响聚合物的紧密程度和结晶能力,进而影响密度、熔点、溶解性能、强度的一系列物理机械性能。

立构规整度是评价聚合物的立构规整性的参数,立构规整度是指立构规整聚合物质量占聚合产物总量的分率。

几何异构是由于大分子中的双键而产生的,,互为两种构型,不能互相转变,除非化学键断裂。

光学异构是指大分子中含有手性碳原子,使物体和镜象不能重叠,从而有不同的旋光性。

【高分子化学题目删减版】 高分子化学第五版第六章课后答案

【高分子化学题目删减版】 高分子化学第五版第六章课后答案

高分子化学题目删减版】高分子化学第五版第六章课后答案重复结构单元:重复组成高分子分子结构的最小结构单元. 单体单元:高分子分子结构中由单个单体分子衍生而来的最大结构单元. 聚合度:单个聚合物分子中所含单体单元的数目成为该聚合物分子的聚合度. 逐步聚合反应:是指在聚合反应过程中,聚合物分子是由体系中的单体分子以及全部聚合度不同的中间产物分子之间通过缩合或加成反应生成的,聚合反应可在单体分子以及任何中间产物分子之间进行. 链式聚合反应:是指在聚合反应过程中,单体分子之间不能发生聚合反应,聚合反应只能发生在单体分子和聚合反应活性中心之间,单体和聚合反应活性中心反应后生成聚合度更大的新的活性中心,如此反复生成聚合物分子. 单体功能度:单体分子所含的参加聚合反应的功能基或反应点的数目叫单体功能度(f). 反应程度:反应过程中功能基的转化程度. 凝胶化现象:是指在交联逐步聚合反应过程中,随着聚合反应的进行,体系粘度突然增大,失去流淌性,反应及搅拌所产生的气泡无法从体系中逸出,可看到凝胶或不溶性聚合物明显生成的试验现象. 凝胶点:出现凝胶化现象时的反应程度叫做凝胶点,以pc表示. 诱导分解:诱导分解的实质是自由基(包括初级自由基、单体自由基、链自由基)向引发剂分子的转移反应. 引发效率:初级自由基用于形成单体自由基的百分率,以f表示.通常状况下引发效率小于100%,主要缘由有笼蔽效应和诱导分解两种. 自加速现象:在很多聚合反应中,当转化率到达肯定值(如15~20%)后,聚合反应速率不但没有降低,反而快速增大的反常动力学行为称为自加速现象.自加速现象主要是由体系黏度增加引起的,因此又称为凝胶效应.因为只有自由基才会双基终止,只有双基终止才会出现自加速现象,故自加速现象是自由基聚合的一个特征. 阻聚和缓聚:某些物质对自由基聚合有抑制作用,这些物质能与自由基(包括初级自由基和链自由基)反应,使其成为非自由基或反应性太低而不能增长的自由基即稳定的自由基.依据对聚合反应的抑制程度,可将这类物质分成阻聚剂和缓聚剂.阻聚剂能完全终止自由基而使聚合反应完全停止;而缓聚剂则只使部分自由基失活或使自由基活性衰减,从而使聚合速率下降.所产生的抑制作用分别称为阻聚和缓聚作用. 动力学链长:是指平均每一个活性中心(自由基)从产生(引发)到消逝(终止)所消耗的单体分子数. 链转移常数:链转移速率常数与链增长速率常数之比,以C表示,它代表这两种反应的竞争力,反映某一物质的链转移能力. 竞聚率:每种单体同系链增长速率常数与交叉链增长速率常数之比称为竞聚率. 不饱和聚酯的主要原料为乙二醇、马来酸酐和邻苯二甲酸酐,各自的主要作用是什么?若要提高树脂的柔韧性可接受什么方法?比例调整的原则.用苯乙烯固化的原理是什么?考虑室温固化使用何种引发体系?乙二醇、马来酸酐和邻苯二甲酸酐是合成不饱和聚酯的主要原料.乙二醇提供羟基,与马来酸酐和邻苯二甲酸酐发生缩聚反应;马来酸酐可在聚酯中引入双键,增加交联密度,从而提高脆性;邻苯二甲酸酐可降低双键含量,降低交联密度,防止聚酯过脆.若要提高树脂的柔韧性,可加入饱和二元脂肪酸或长链二元醇. 不饱和聚酯是主链中含有双键的聚酯,聚合时,由二元醇提供的羟基与二元酸的羧基发生酯化反应而聚合.马来酸酐使聚合物主链含有双键,这些双键能够发生交联反应,得到体型化合物.假如加入邻苯二甲酸酐共缩聚,可以提高树脂的刚性和耐热性.用1,2-丙二醇、1,3-丁二醇以及一缩乙二醇等代替部分乙二醇进行共缩聚可以提高树脂的柔韧性.邻苯二甲酸酐和马来酸酐的比例是操纵不饱和聚酯的不饱和度和以后材料的交联密度的.苯乙烯固化是利用自由基引发苯乙烯聚合并与不饱和聚酯线形分子中双键共聚最终形成体型结构,如考虑室温固化可选用油溶性的过氧化苯甲酰-二甲基苯胺氧化还原体系. 比较链式聚合和逐步聚合的特征. 链式聚合:(1)聚合过程由多个基元反应组成,由于各基元反应机理不同,因此它们的反应速率和活化能差异大;(2)单体只能与活性中心反应生成新的活性中心,单体之间不能发生聚合反应;(3)聚合体系始终是由单体、聚合产物和微量引发剂及浓度极低的增长活性链所组成;(4)聚合产物的分子量一般不随单体转化率而变(活性聚合除外),延长聚合时间,单体转化率增加.逐步聚合:(1)聚合反应是由单体和单体、单体和聚合中间产物以及聚合中间产物分子之间通过功能基反应逐步进行的;(2)每一步反应都是相同功能基之间的反应,因此每步反应的反应速率常数和活化能都大致相同;(3)单体以及聚合中间产物任意两分子间都能够发生反应生成聚合度更高的产物;(4)聚合产物的聚合度是逐步增大的.其中聚合体系中单体分子以及聚合物分子之间都能互相反应生成聚合度更高的聚合物分子是逐步聚合反应最根本的特征,可作为逐步聚合反应的推断根据. 分析产生自加速现象的缘由,比较苯乙烯、甲基丙烯酸甲酯和丙烯腈三种单体在进行本体聚合时,发生自动加速现象早晚. 自加速现象产生的缘由:链终止反应受扩大操纵,随着反应的进行,体系粘度增加,长链自由基运动受阻而导致其扩大速率下降,双基链终止速率常数kt显著下降.而链增长反应是链自由基与小分子单体的反应,粘度增加还缺乏于严峻阻碍单体扩大,也就是说粘度增加对链增长反应的影响较小,链增长速率常数kp基本保持不变.因此,聚合反应速率方程式中RP=kP(fkd/kt)1/2[I]1/2[M]的kp/kt1/2项大幅度增加,聚合速率相应随之增加,即出现自动加速. 苯乙烯、甲基丙烯酸甲酯和丙烯腈三种单体在进行本体聚合时,最早发生自加速现象的是丙烯腈,其次是甲基丙烯酸甲酯,最晚是苯乙烯.丙烯腈的单体是其自聚合物的非溶剂(即沉淀剂),在聚合过程中一旦大分子链自由基生成,很快会从单体中析出,链的自由基的卷曲和包裹都很大,双基终止困难,所以很简单发生自加速现象,聚合一开始就出现;甲基丙烯酸甲酯并不是其聚合物的良溶剂,在本体聚合时,长链自由基肯定的卷曲和包裹,同时体系的黏度相对较高,所以自加速现象在较低转化率10~15%以后便开始出现;对于苯乙烯的本体聚合,由于单体是聚苯乙烯的良溶剂,长链自由基处于比较伸展状态,体系黏度相对较低,双基扩大终止比较简单,所以自加速现象出现得较晚,要到转化率30%左右. 自由基聚合中,链终止反应比链增长反应的速率常数要大四个数量级左右,但一般的自由基聚合反应却仍旧可以得到聚合度高达103 ~104以上的聚合物,为什么?链终止和链增长是一对竞争反应,两者的活化能都较低,反应速率均很快.但相比之下,链终止活化能更低:链增长活化能约为20~34kJmol-1,链终止活化能约为8~21kJmol-1.因此,链终止反应速率常数远大于链增长速率常数(分别为106~108 Lmol-1S-1、102~104 Lmol-1S-1).但在自由基聚合体系中,链自由基浓度很低,约为10-7~10-9molL-1,远远小于单体浓度(一般约为1molL-1).综合考虑速率常数和反应物浓度,链增长反应速率较链终止反应速率高三个数量级. 苯乙烯本体聚合时,加入少量乙醇后聚合产物分子量下降,加入量超过肯定限度时,产物分子量增加,请解释. 加少量乙醇时,聚合体系仍为均相,但是由于乙醇的链转移作用会使其相对分子质量下降;当乙醇量增加到肯定比例后,聚合体系变为非均相沉淀聚合此时由于增长自由基被包埋会出现明显的自动加速现象,从而造成产物的相对分子质量反而比本体聚合的高. 乳液聚合的一般规律是:初期聚合速率随时间的延长而增加,然后进行恒速聚合,最终聚合速率渐渐下降.试从乳液聚合机理(和动力学方程)分析上述动力学现象. 阶段I:乳胶粒生成阶段—成核期. 引发剂在水相中分解,产生的自由基扩大至增容胶束内,随即在增容胶束中发生聚合反应,使增容胶束转变成乳胶粒.此阶段相态特征是乳胶粒、增溶胶束和单体液滴三者共存. 聚合反应开始后,水相中的自由基进攻增溶胶束,将生成越来越多的新乳胶粒.聚合发生场所的增多意味着聚合速率的增加,以动力学的角度看,这段可称为加速期. 随着聚合的进行,乳胶粒可不断地汲取来自单体仓库—单体液滴扩大而来的单体,以补充聚合消耗掉的单体,而使单体浓度保持在一平衡(饱和)水平.这样,乳胶粒渐渐变大,而单体液滴体积相应不断缩小,但数目保持不变. 乳胶粒不断增大,要保持稳定,就需要更多的乳化剂分子对其外表覆盖.越来越多的乳化剂从水相转移到乳胶粒外表上,使溶解在水相中的乳化剂不断削减,直到其浓度低于CMC,增溶胶束不稳定而被瓦解破坏以至最终消逝,相应地乳胶粒的数目也不再增加,这时标志着阶段I的结束.单体转化率仅约为2-15%. 阶段Ⅱ:乳胶粒长大阶段这阶段乳胶粒数目保持恒定,约为开始存在胶束数的0.1%.同时单体液滴的存在为乳胶粒内的聚合反应提供稳定的单体补充,因此聚合速率是恒定状态,又被称为恒速期.随着聚合的进行,乳胶粒体积不断增大,单体液滴体积不断缩小,直至最终消逝,意味着恒速期的结束,此时单体转化率约为15~60%范围内.这阶段体系的相态特征是乳胶粒和单体液滴二者共存. 阶段Ⅲ:聚合后期(完成)阶段这阶段乳胶粒数目虽然不变,但单体液滴消逝,乳胶粒内单体得不到补充,所以乳胶粒内单体浓度逐步减小,聚合速率不断降低,直至聚合完全停止,因此又称减速期.聚合完成后乳胶粒熟化,外层由乳化剂包围的聚合物颗粒,其相态特征是只有乳胶粒(最终变成聚合物颗粒). 概况地说,乳液聚合机理是:在胶束中引发,随后在乳胶粒中进行增长.单体/聚合物乳胶粒平均只有一半含有自由基. 聚合速率方程为:Rp=kp[M][N]/2式中,kp为链增长常数;[M]为乳胶粒中单体浓度;[N]为乳胶粒数目.又故由速率方程可知,当聚合温度肯定时,kp是常数,此时聚合速率主要取决于[M]和[N].在聚合初期,由于单体液滴(单体储库)存在,扩大速度肯定,所以乳胶粒中的单体浓度[M]也近似为常数.随着聚合反应的进行,乳胶粒的数目不断增多,由此导致聚合速度随聚合时间的延长而增大.当聚合进行肯定时间后,乳胶粒的数目到达最大值,同时单体液滴又未消逝,此时[N]和[M]都近似恒定,所以聚合速度进入恒速期.最终由于单体液滴消逝,乳胶粒中的[M]急剧下降,导致聚合速率下降. 典型乳液聚合的特点是持续反应速度快,产物分子量高.在大多数本体聚合中又经常出现反应速度变快,分子量增大的现象.试分析上述现象的缘由并比较其异同. 典型乳液聚合反应中,聚合是在乳胶粒中进行.平均每个乳胶粒中只有一个活性链增长,若再扩大进入一个自由基即告终止.由于链自由基受乳化剂的爱护因此双基终止的概率小,链自由基的寿命长,链自由基浓度比一般自由基聚合要高得多,因此反应速度快,产物相对分子质量高. 在本体聚合到达肯定转化率后,由于体系黏度增大或聚合物不溶等因素,使链终止反应受阻,导致活性链浓度增大,活性链寿命延长,结果导致反应速度加快,产物相对分子质量增大. 两者相像或相同之处是,聚合体系中活性链浓度比一般自由基聚合要大,活性链寿命亦比一般自由基聚合时要长.但二者的操纵因素不同.在乳液聚合中,通过转变乳化剂用量和引发剂用量,可以操纵体系中链自由基的浓度和寿命,从而可持续维持反应的高速度和产物的高相对分子质量.而在本体聚合中,自动加速是由于体系物理状态不断改变造成的,这种状况虽可转变但其可控性不如乳液聚合. 在离子聚合反应过程中,能否出现自动加速效应,为什么?在离子聚合反应过程中,不会出现自动加速效应.自由基聚合反应过程中出现自加速现象产生的缘由是:随着聚合反应的进行,体系的黏度不断增大,当体系的黏度增大到肯定程度时,双基终止受阻碍,因此kt明显变小,链终止速度下降;但单体扩大速度几乎不受影响,kp下降很小,链增长速度改变不大,因此相对提高了聚合反应速度,出现了自动加速现象.在离子聚合反应过程中由于相同电荷相互排斥不存在双基终止,因此不会出现自动加速效应. 用动力学法推导二元共聚物组成微分方程,并说明:(1)推导过程中的假定;(2)可能产生的偏离;(3)何谓竞聚率,其物理意义是什么?-d[M1]/dt=k11[M1*][M1]+k21[M2*][M1] -d[M2]/dt=k12[M1*][M2]+k22[M2*][M2] d[M1]/d[M2]= k11[M1*][M1]+k21[M2*][M1]/k12[M1*][M2]+k22[M2*][M 2] 由稳态条件:k12[M1*][M2]= k21[M2*][M1] 又r1 = k11/k12,r2 = k22/k21 整理得d[M1]/ d[M2]=([M1]/[M2])×(r1[M1]+[M2])/(r2[M2]+[M1]) (1)推导过程中的假定:()链增长活性中心的活性与链长无关;(b)长链假定,即链增长是消耗单体并确定共聚物组成的最主要过程,引发与终止反应对共聚物组成没有影响;(c)稳态假设,体系中两种链增长活性中心的浓度恒定;(d)不考虑前末端(倒数第二)单元结构对链增长活性中心的影响;(e)假设共聚反应是不行逆的. (2)该方程不适用于有解聚的二元共聚,有前末端效应的二元共聚,以及多活性种的二元共聚. (3)竞聚率是单体均聚链增长和共聚链增长速率常数之比,即r1=k11/k12,r2=k22/k21;它表征两个单体的相对活性,依据r值可以估量两个单体共聚的可能性和推断共聚物的组成状况. 在生产丙烯腈(M1)和苯乙烯(M2)共聚物时,已知r1=0.04,r2=0.4,若在投料重量比为24:76(M1: M2)下接受一次投料的工艺,并在高转化率下才停止反应,试商量所得共聚物组成的匀称性. 此共聚体系属于r11,r21有恒比点的共聚体系,恒比点的f1若为(f1),则(f1)=(1-r2)÷(2-r1-r2)=(1-0.4)÷(2-0.4-0.04)=0.385两单体的分子量可知,两单体投料重量比为24:76,相当于其摩尔比为45:70,则f1为0.39.f1与(f1)十分接近.因此用这种投料比,一次投料于高转化率下停止反应仍可制得组成相当匀称的共聚物. 过硫酸盐无论在受热、受光或受还原剂作用下均能产生SO4- ·自由基.假如要随时调整反应速度或随时停止反应,应选择哪种方式产生自由基.假如工业上要求生产分子量很高的聚合物,需聚合温度尽量低,应选择哪种方式产生自由基. 选用受光引发、停止光照或转变光强可以停止或调整反应速度.选用氧化还原体系,通过乳液聚合,可以在较低聚合度下得到相对分子质量高的聚合物. 在自由基均聚反应中,乙酸乙烯酯的聚合速率大于苯乙烯,但在自由基共聚反应中,苯乙烯单体的消耗速率远大于乙酸乙烯酯,为什么?若在乙酸乙烯酯均聚时,加入少量苯乙烯将会如何,为什么?自由基聚合反应中,聚合反应速率由单体活性和自由基活性两者共同确定.苯乙烯带共轭取代基,乙酸乙烯酯不带共轭取代基,而单体及其自由基的反应活性与其取代基的共轭效应紧密相关,取代基的共轭效应越强,单体活性越高,但自由基越稳定,活性越小.因此,由于取代基的共轭效应,苯乙烯单体的活性大于乙酸乙烯酯单体的活性,苯乙烯自由基的活性低于乙酸乙烯酯自由基的活性.但由于取代基共轭效应对自由基活性的影响要比对单体活性的影响大得多,即取代基共轭效应使苯乙烯自由基活性相对乙酸乙烯酯自由基活性下降的程度比其单体活性相对乙酸乙烯酯单体活性增大的程度要大得多,因此两者综合的结果是苯乙烯单体与苯乙烯自由基反应的活性比乙酸乙烯酯单体与乙酸乙烯酯自由基反应的活性要低得多,即乙酸乙烯酯均聚反应速率远大于苯乙烯均聚反应速率.但在苯乙烯与乙酸乙烯酯的共聚体系中,苯乙烯单体和乙酸乙烯酯单体共存于同于聚合体系中,两单风光对的自由基是相同的,因此两单体的消耗速率仅取决于单体活性,由于苯乙烯单体活性大于乙酸乙烯酯,体系中的自由基优先与苯乙烯单体反应,因此苯乙烯的消耗速率远大于乙酸乙烯酯.在乙酸乙烯酯均聚体系中加入少量的苯乙烯时,由于苯乙烯活性高于乙酸乙烯酯,自由基优先与苯乙烯反应,链自由基转化为苯乙烯自由基,而苯乙烯自由基由于苯环的共轭效应其活性低于乙酸乙烯酯自由基,结果聚合反应由原来的高活性自由基与低活性单体之间的反应变成了低活性自由基与低活性单体之间的反应,使得乙酸乙烯酯聚合反应速率下降. 商量无规、交替、接枝和嵌段共聚物在结构上的差异. (1)无规共聚物,两种单体单元M1和M2呈无序排列,按概率分布:; (2)交替共聚物,M1和M2两种单体单元有规则的交替分布: ; (3)嵌段共聚物,M1和M2两种单体单元各自组成长序列链段互相连结而成: (4)接枝共聚物,以一种单体为主链,在主链上接上一条或多条另一单体形成的支链: 比较本体聚合、溶液聚合、悬浮聚合、乳液聚合的基本特征和优缺点. 本体聚合是单体本身在不加溶剂或分散介质(常为水)的条件下,由少量引发剂或光、热、辐射的作用下进行的聚合反应.依据需要有时还可加入必要量的颜料、增塑剂、防老剂等.优点:产品纯度高,有利于制备透亮和电性能好的产品,聚合设备也较简洁.另外,由于单体浓度高,聚合反应速率较快、产率高.缺点:聚合体系由于无溶剂存在而粘度大,自加速现象显著,聚合热不易导出,体系温度难以操纵.因此会引起局部过热甚至暴聚而影响最终产物的质量,如变色、产生气泡、分子量分布宽等.为了解决聚合热的导出问题,试验室或工业上往往接受分段聚合工艺,即分预聚合和后聚合两段进行.可先在低温下预聚合,然后渐渐升高温度进行后聚合.也可相反,先在较高温度下预聚合,操纵转化率在肯定范围内,然后再快速冷却再较低温度下缓慢聚合(后聚合). 溶液聚合是把单体和引发剂溶于适当的溶剂中,在溶液状态下进行的聚合反应.优点是溶剂可作为传热介质,有利于聚合热的导出,体系温度简单操纵;体系粘度低,自加速现象较弱,体系中聚合物浓度被溶剂稀释而变小,向聚合物链转移生成支化或交联产物的几率大大降低.缺点是体系单体浓度小,聚合速率较慢而使生产效率下降;由于适用溶剂,对人体或环境都有污染;同时产物是聚合物溶液,必定涉及聚合物分别纯化,溶剂回收等后序,增加了本钱;再者由于溶剂的链转移作用,溶液聚合难以合成分子量较高的聚合物. 悬浮聚合是在分散剂存在下,借助搅拌把非水溶性单体分散成小液滴悬浮于水中进行的聚合反应.优点是水做分散介质,无毒安全,散热好,温度易操纵;由于产物是珠状或粉状的固体微粒,分别、枯燥等后处理方便,适合大规模生产.主要缺点是分散剂易残留于聚合物中,而使其纯度和透亮性降低. 乳液聚合是非水溶性(或低水溶性)单体在乳化剂的作用和搅拌下,在水中形成乳状液而进行的聚合反应.乳液聚合的优点有:用水作分散介质、传热、控温简单;体系粘度与聚合物分子量及聚合物含量无关,反应后期体系粘度仍旧较低,有利于搅拌、传热和物料输送,特别适合制备粘性大的橡胶类聚合物;由于特别反应机理,导致聚合速率较快,产物分子量高,且不像其它聚合方法那样,聚合速率与产物聚合度成反比规律的限制,能在提高聚合分子量的同时又不牺牲聚合速率.缺点是产物含乳化剂而纯度差,需经破乳、洗涤、枯燥等后工序,增加生产本钱.。

(完整word版)《高分子化学》习题与答案

(完整word版)《高分子化学》习题与答案

1. 说明下列名词和术语:(1)单体,聚合物,高分子,高聚物(2)碳链聚合物,杂链聚合物,元素有机聚合物,无机高分子(3)主链,侧链,侧基,端基(4)结构单元,单体单元,重复单元,链节(5)聚合度,相对分子质量,相对分子质量分布(6)连锁聚合,逐步聚合,加聚反应,缩聚反应(7)加聚物,缩聚物,低聚物2.和低分子化合物比较,高分子化合物有什么特征?3. 从时间~转化率、相对分子质量~转化率关系讨论连锁聚合和逐步聚合间的相互关系和差别。

4. 举例说明链式聚合和加聚反应、逐步聚合和缩聚反应间的关系和区别。

5. 各举三例说明下列聚合物(1)天然无机高分子,天然有机高分子,生物高分子。

(2)碳链聚合物,杂链聚合物。

(3)塑料,橡胶,化学纤维,功能高分子。

6. 写出下列单体的聚合反应式和单体、聚合物的名称(1) CH2=CHF(2) CH2=CH(CH3)2CH3|(3) CH2=C|COO CH3(4) HO-( CH2)5-COOH(5) CH2CH2CH2O|__________|7. 写出下列聚合物的一般名称、单体、聚合反应式,并指明这些聚合反应属于加聚反应还是缩聚反应,链式聚合还是逐步聚合?(1) -[- CH2- CH-]n-|COO CH3(2) -[- CH2- CH-]n-|OCOCH3(3) -[- CH2- C = CH- CH2-]n-|CH3(4) -[-NH(CH2)6NHCO(CH2)4CO-]n-(5) -[-NH(CH2)5CO-]n-8. 写出合成下列聚合物的单体和反应式:(1) 聚苯乙烯(2) 聚丙烯(3) 聚四氟乙烯(4) 丁苯橡胶(5) 顺丁橡胶(6) 聚丙烯腈 (7) 涤纶(8) 尼龙6,10 (9) 聚碳酸酯(10) 聚氨酯9. 写出下列单体形成聚合物的反应式。

指出形成聚合物的重复单元、结构单元、单体单元和单体,并对聚合物命名,说明聚合属于何类聚合反应。

10. 写出聚乙烯、聚氯乙烯、尼龙66、维尼纶、天然橡胶、顺丁橡胶的分子式,根据表1-4所列这些聚合物的相对分子质量,计算这些聚合物的聚合度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高分子化学第六章作业参考答案
1.将PMMA、PAN、PE、PVC四种聚合物进行热降解反应,分别得到何种产物?
解:PMMA进行热解反应时发生解聚,主要产物为单体
PE进行热解反应时发生无规降解,主要产物为不同聚合度的低聚物
PVC进行热解反应时首先脱HCl,生成分子主链中带烯丙基氯结构的聚合物;长期热解则进一步发生环交联甚至碳化反应。

PAN进行热解反应时首先发生主链环化,然后脱氢生成梯形聚合物。

进一步热解脱氢后生成碳纤维。

2.利用热降解回收有机玻璃边角料时,如该边角料中混有PVC杂质,则使MMA 的产率变低,质量变差,试用化学反应式说明其原因。

解:因为PVC杂质在加热时会脱出HCl,HCl与甲基丙烯酸按下式进行加成反应,因而降低了甲基丙烯酸甲酯的产率,并影响产品质量。

CH2C(CH3)COOCH3+HCl3CCO2CH3
3
CH3
3.橡胶为什么要经过塑炼后再进一步加工?
解:由于橡胶分子量通常很大,为了使它易与配合剂混合均匀以便于后续成型加工,所以要先进行塑炼以达到降低分子量提高塑性的目的。

4.橡胶制品常填充碳黑,试说明其道理。

答:碳黑起着光屏蔽剂的作用,可防止橡胶直接受到光照而发生光降解反应,另外碳黑还起到增强剂的作用。

5.聚乳酸OC(CH3)2CO
n为什么可以用作外科缝合线,伤口愈合后不必拆
除?
解:因聚乳酸在体内易水解为乳酸,由代谢循环排出体外。

相关文档
最新文档