平抛运动常见题型考点分类归纳
高中物理平抛运动--知识归类总结,经典型题精讲,典型习题针对训练
平抛运动考点一平抛运动的基本规律 2019.51.平抛运动(1)定义:(2)性质:(3)研究方法:运动的合成与分解。
(4)运动规律:①速度关系:②位移关系:(5)两个重要推论2.斜抛运动(1)定义:(2)性质:(3)研究方法:①水平方向:②竖直方向: [思维诊断](1)以一定的初速度水平抛出的物体的运动是平抛运动。
()(2)平抛运动的轨迹是抛物线,速度方向时刻变化,加速度方向也可能时刻变化。
()(3)做平抛运动的物体质量越大,水平位移越大。
()(4)做平抛运动的物体初速度越大,落地时竖直方向的速度越大。
()(5)做平抛运动的物体初速度越大,在空中运动的时间越长。
()(6)从同一高度水平抛出的物体,不计空气阻力,初速度大的落地速度大。
()[题组训练]1.[平抛运动的理解](多选)关于平抛运动,下列说法正确的是()A.平抛运动是匀变速曲线运动B.做平抛运动的物体在任何相等的时间内,速度的变化量都相等C.可以分解为水平方向的匀速直线运动和竖直方向上的自由落体运动D.落地时间和落地时的速度只与抛出点的高度有关2.[平抛规律的应用]从正在高空水平匀速飞行的飞机上每隔1 s释放1个小球,先后共释放5个,不计空气阻力,则()A.这5个小球在空中处在同一条竖直线上B.这5个小球在空中处在同一条抛物线上C.在空中,第1、2两球间的距离保持不变D.相邻两球的落地间距相等3.[平抛规律推论的应用](2017·宁波模拟)如图所示,在足够高的竖直墙壁MN的左侧某点O以不同的初速度将小球水平抛出,其中OA沿水平方向,则所有抛出的小球在碰到墙壁前瞬间,其速度的反向延长线() A.交于OA上的同一点B.交于OA上的不同点,初速度越大,交点越靠近O点C.交于OA上的不同点,初速度越小,交点越靠近O点D.因为小球的初速度和OA距离未知,所以无法确定考点二多体平抛运动问题[两个小球从不同高度抛出,落到同一高度上]如图所示,A、B两个小球从同一竖直线上的不同位置水平抛出,结果它们同时落在地面上的同一点C,已知A离地面的高度是B离地面高度的2倍,则A、B两个球的初速度之比为v A∶v B为()A.1∶2B.2∶1C.2∶1 D.2∶2[考法拓展1][小球从同一高度下落到不同高度](2017·内蒙古呼伦贝尔模拟)如图所示,在同一平台上的O点水平抛出的三个物体,分别落到a、b、c三点,则三个物体运动的初速度v a、v b、v c的关系和三个物体运动的时间t a、t b、t c的关系是()A.v a>v b>v c,t a>t b>t c<v b<v c,t a=t b=t cB.vC.v a<v b<v c,t a>t b>t cD.v a>v b>v c,t a<t b<t c[考法拓展2][平抛中的相遇](2017·江西省重点中学协作体联考)如图所示,将a、b两小球以大小为20 5 m/s的初速度分别从A、B两点相差1 s先后水平相向抛出,a小球从A点抛出后,经过时间t,a、b两小球恰好在空中相遇,且速度方向相互垂直,不计空气阻力,g取10 m/s2,则抛出点A、B间的水平距离是()A.805m B.100 mC.200 m D.180 5 m[变式训练](多选)如图,x轴在水平地面内,y轴沿竖直方向。
例析平抛运动题型归类
例析平抛运动题型归类一、类平抛运动问题一般来说,质点受恒力作用具有恒定的加速度,初速度与恒力垂直,质点的运动就与平抛运动类似,通常我们把物体的这类运动称做类平抛运动。
对于类平抛运动都可以应用研究平抛运动的方法来研究、处理其运动规律。
例1. 如图1所示,将质量为m的小球从倾角为的光滑斜面上A点以速度水平抛出(即平行CD),小球沿斜面运动到B点。
已知A点的高度为h,则小球在斜面上运动的时间为多少?小球到达B点时的速度大小为多少?图1解析:小球在光滑斜面上做类平抛运动,沿斜面向下的加速度,设由A运动到B的时间为t,则有,解得小球沿斜面向下的速度因为,所以小球在B点的速度为二. 分解末速度的平抛运动问题例2. 如图2所示,以9.8m/s的水平初速度抛出的物体,飞行一段时间后,垂直地撞在倾角为30°的斜面上,这段飞行所用的时间为:()A. B. C. D.图2解析:把平抛运动分解成水平的匀速直线运动和竖直的自由落体运动,抛出时只有水平方向速度,垂直地撞在斜面上时,既有水平方向分速度,又有竖直方向的分速度。
物体速度的竖直分量确定后,即可求出物体飞行的时间。
如图2所示,把末速度分解成水平方向分速度和竖直方向的分速度,则有①②解方程①②得选项C正确。
三. 分解位移的平抛运动问题例3. 如图3所示,在倾角为的斜面顶点,水平抛出一钢球,落到斜面底端,已知抛出点到落点间斜边长为L,求抛出的初速度?图3解析:钢球做平抛运动,初速度和时间决定水平位移①飞行时间由下落高度决定②由方程①②得即钢球抛出的初速度为四. 由图象求解平抛运动的问题例4. 某同学在做研究平抛运动的实验时,忘记记下斜槽末端位置,图4中的A点为小球运动一段时间后的位置,他便以A点为坐标原点,建立了水平方向和竖直方向的坐标轴,得到如图4所示的图象,试根据图象求出小球做平抛运动的初速度(g取)。
图4解析:从图象中可以看出小球的A、B、C、D位置间的水平距离是相等的,都是0.20m,由于小球在水平方向做匀速直线运动,于是可知小球由A运动到B,以及由B运动到C,由C运动到D所用的时间是相等的,设该时间为t,又由于小球在竖直方向做自由落体运动,加速度等于重力加速度g,可根据匀变速运动的规律求解,要特别注意在A点时竖直速度不为零,但做匀变速直线运动的物体在任意连续相等时间内的位移差相等,即,本题中水平方向①竖直方向②由②得代入①得五. 和体育运动相联系的平抛运动问题例5. 如图5所示,排球场总长为18m,设球网高度为2m,运动员站在离网3m的线上(图中虚线所示)正对网前将球水平击出。
平抛运动整理
平抛运动:
一、水平方向的匀速直线运动和竖直方向的自由落体运动合成
考查点1:利用水平方向的匀速,知道相同的水平位移代表相同的时间间隔,由此求解初速度。
考查点2:利用竖直方向的自由落体,求时间,进而求水平位移。
二、角度问题
考查点1:从斜面平抛,末速度与水平方向夹角正切为斜面正切的两倍。
推论:反向延长末速度与抛出点水平相相交,交点平分水平位移考查点2:平抛到斜面,一般为末速度垂直斜面,由三角关系和考查点1求抛出点三、平抛实验:
考查点1:末端水平
考查点2:坐标纸竖直,在同一平面,末端对坐标纸上一点
考查点3:对应实验失误的解法一(2)
四、小结合
考查点1:不同速度(v和2v)从斜面顶端平抛,求水平位移比。
考查点2:给出水平风力或空气阻力,求水平运动或竖直运动。
考查点3:斜面上的类平抛。
也谈平抛运动几类常见题型及解法
也谈平抛运动几类常见题型及解法
平抛运动是力学中相当重要的思想,它体现了质点在缺乏其他受力的情况下运
动的规律性。
常见的平抛运动题目一般涉及不考虑空气阻力和受力的情况下,由抛物线运动求解各个参数的问题,此类问题可以分为三类:
(1)求反弹高度
此类问题一般要求求解反弹高度,主要利用动量守恒定理,即质点在发射点和
反弹点的动能守恒关系,由此可以得到平抛运动的反弹高度公式:y1=2y0-V0^2/2g,其中y0为发射高度,V0为发射速度,g为重力加速度。
(2)求发射角度
此类问题主要考察学生对初速度和落点的求解能力,其中平抛运动的落点方程
可以写成:X=(V0cosα*T)^2/2g,其中α为发射角度.由此可以求出发射角度。
(3)求初速度
此类问题主要考察学生求解V0的能力,当情况比较复杂时可以利用动量守恒
的方法来求解:V0^2=V^2+2gy ,其中V为质点的速度,y为质点的高度,g为重力加速度。
平抛运动题目的解决可以通过分析其运动轨迹,明确运动物体的参数,然后运
用动力学的改变量守恒定理,以及物体的运动学方法来确定运动物体的位置和动量,从而解决各类问题。
综上所述,平抛运动几类常见题型及解法主要有求反弹高度、求发射角度以及
求初速度三类。
可以通过动量守恒定理和物体的运动学方法来求解平抛运动中各个物理参数,以既定运动物体的位置和动量。
精品专题:平抛运动经典题型分析讲解(个人整理专用)
专题:平抛运动知识点及题型分析一、抛体运动1.定义:以一定的速度将物体抛出,物体只受_____作用的运动。
2.平抛运动:初速度沿_____方向的抛体运动。
3.平抛运动的特点:(1)初速度沿_____方向。
(2)只受_____作用。
二、平抛运动的速度1.水平方向:不受力,为_________运动。
vx=v0。
2.竖直方向:只受重力,为_________运动。
vy=gt。
3.合速度:(1)大小:v=(2)方向:tanθ= (θ是v与水平方向的夹角)。
三、平抛运动的位移1.水平位移:x=___2.竖直位移:y=3.合位移:(1)大小:s=(2)方向:tanα= (α是位移与水平方向的夹角)。
4.运动轨迹:平抛运动的轨迹是一条_______。
四、斜抛运动的规律1.定义:初速度沿_______或_______方向的抛体运动。
2.性质:斜抛运动可以看成是水平方向的_________运动和竖直方向的_________或_________运动的合运动。
一、平抛运动的三个特点特点理解理想化特点物理上提出的抛体运动是一种理想化的模型,即把物体看成质点,抛出后只考虑重力作用,忽略空气阻力。
加速度特点平抛运动的加速度恒定,始终等于重力加速度,学习目标1.知道什么是平抛运动,掌握平抛运动的规律,知道其性质。
2.知道研究平抛运动的方法——运动的合成与分解法,会解决平抛运动问题。
速度变 化特点 由Δv=g Δt,任意两个相等的时间间隔内速度的变化相同,方向竖直向下,如图所示。
典型例题:例1、(多选)关于平抛物体的运动,以下说法正确的是( ) A.做平抛运动的物体,速度和加速度都随时间的增加而增大 B.做平抛运动的物体仅受到重力的作用,所以加速度保持不变 C.平抛物体的运动是匀变速运动 D.平抛物体的运动是变加速运动 【变式训练】1.(2014·成都检测)关于平抛运动的性质,以下说法中正确的是( ) A.变加速运动B.匀变速运动C.匀速曲线运动D.不可能是两个直线运动的合运动2.(2014·广州检测)人站在平台上平抛一小球,球离手时的速度为v1,落地时速度为v2,不计空气阻力,图中能表示出速度矢量的演变过程的是( )3.物体做平抛运动时,描述物体在竖直方向上的分速度vy 随时间变化规律的图线是图中的(取竖直向下为正方向)( )4.如图所示,在光滑的水平面上有一小球a 以初速度v0运动,同时刻在它正上方有一小球b 也以初速度v0水平抛出,并落于c 点,则( ) A.小球a 先到达c 点 B.小球b 先到达c 点 C.两球同时到达c 点 D.不能确定5.(多选)(2012·新课标全国卷)如图,x 轴在水平地面内,y 轴沿竖直方向。
(完整版)平抛运动的知识点总结
(完整版)平抛运动的知识点总结平抛运动是一种常见的物理现象,它涉及到物体在重力作用下沿水平方向以恒定速度运动的情况。
以下是平抛运动的关键知识点总结:1. 基本概念:- 平抛运动是指物体在水平方向上以初速度抛出,同时受到竖直方向重力加速度(g)作用的运动。
- 这种运动可以看作是水平方向的匀速直线运动和竖直方向的自由落体运动的叠加。
2. 运动方程:- 水平方向:$x = v_{0x}t$,其中$v_{0x}$是水平方向的初速度,$t$是时间。
- 竖直方向:$y = v_{0y}t - \frac{1}{2}gt^2$,其中$v_{0y}$是竖直方向的初速度(在纯平抛运动中通常为0),$g$是重力加速度。
3. 速度和位移:- 水平方向的速度保持不变,为$v_{0x}$。
- 竖直方向的速度随时间变化,为$v_{y} = gt$。
- 总速度$v$可以通过速度分量合成得到,使用勾股定理:$v =\sqrt{v_{0x}^2 + v_{y}^2}$。
- 位移分量同样可以通过水平和竖直方向的位移合成得到。
4. 运动时间:- 平抛运动的最大高度由公式$h = \frac{1}{2}gt^2$给出,解出时间$t = \sqrt{\frac{2h}{g}}$。
- 物体落地时间是指从抛出到落地的时间,可以通过竖直位移来计算。
5. 能量分析:- 动能:物体在水平和竖直方向上的动能分别为$K_x =\frac{1}{2}m v_{0x}^2$和$K_y = \frac{1}{2}m v_{y}^2$,总动能为两者之和。
- 势能:由于竖直方向的初速度通常为0,物体在初始时刻的势能为$E_p = mgh$,其中$h$是初始高度。
6. 实验验证:- 平抛运动可以通过实验来验证,例如使用高速摄像机捕捉物体的运动轨迹,或者通过测量不同时间点的位置来计算速度和加速度。
7. 应用场景:- 平抛运动的原理广泛应用于各种领域,如体育运动中的投掷项目、军事中的炮弹发射等。
平抛运动常考题型及解析
平抛运动常考题型及解析平抛运动的定义及基本公式:1. 平抛运动是指物体仅在重力作用下,由水平初速度开始运动的一种运动方式。
2. 平抛运动需要满足以下条件:a. 物体只受重力作用;b. 物体的初速度与重力方向垂直。
3. 尽管平抛运动的速度大小和方向时刻在改变,但其运动的加速度始终为重力加速度g,因此平抛运动属于匀变速曲线运动。
4. 研究平抛运动的方法:通常可以将平抛运动理解为两个分运动的合成结果:一个是水平方向(垂直于恒力方向)的匀速直线运动,另一个是竖直方向(沿着恒力方向)的匀加速直线运动。
水平方向和竖直方向的两个分运动既具有独立性,又具有等时性。
5、平抛运动的规律①水平速度:vx=v0,竖直速度:vy=gt合速度(实际速度)的大小:物体的合速度v与x轴之间的夹角为:②水平位移:竖直位移合位移(实际位移)的大小:物体的总位移s与x轴之间的夹角为:可见,平抛运动的速度方向与位移方向不相同。
而且但是要记住6、平抛运动的几个结论①落地时间由竖直方向分运动决定:平抛运动常见题型一:直接应用公式解题。
一带有乒乓球发射机的乒乓球台如图所示。
水平台面的长和宽分别为L1和L2,中间球网高度为h。
发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h。
不计空气的作用,重力加速度大小为g,若乒乓球的发射速率v在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v的最大取值范围是此题是对于公式的直接考查,同学们只要找准题中的限定条件直接带入公式求解就可以了。
具体解题过程如下:平抛运动常见题型二:利用运动的合成与分解解题。
此类题型一般并不能直接代入公式求解,需要先将速度位移进行分解后再去列方程。
例:倾斜雪道的长为50 m,顶端高为30 m,下端经过一小段圆弧过渡后与很长的水平雪道相接,如图所示。
一滑雪运动员在倾斜雪道的顶端以水平速度v0=10 m/s飞出,在落到倾斜雪道上时,运动员靠改变姿势进行缓冲使自己只保留沿斜面的分速度而不弹起。
平抛运动中的题型归类
平抛运动中的题型归类一.常见平抛运动模型的运动时间的计算方法 1.在水平地面上空h 处平抛: 由h =12gt 2知t =2hg,即t 由高度h 决定.2.在半圆内的平抛运动(如图9),由半径和几何关系制约时间t : 图9 h =12gt 2 R +R 2-h 2=v 0t联立两方程可求t .3.斜面上的平抛问题(如图10): (1)顺着斜面平抛 方法:分解位移x =v 0t 图10y =12gt 2 tan θ=yx 可求得t =2v 0tan θg (2)对着斜面平抛(如图11) 方法:分解速度v x =v 0 v y =gt 图11 tan θ=v y v 0=gt v 0 可求得t =v 0tan θg4.对着竖直墙壁平抛(如图12)水平初速度v 0不同时,虽然落点不同,但水平位移相同. t =d v 0图12例1 如图6,从半径为R =1 m 的半圆AB 上的A 点水平抛出一个可视为质点的小球,经t =0.4 s 小球落到半圆上,已知当地的重力加速度g =10 m/s 2,则小球的初速度v 0可能为( )A .1 m /sB .2 m/sC .3 m /sD .4 m/s解析 由于小球经0.4 s 落到半圆上,下落的高度h =12gt 2=0.8 m ,位置可能有两处,如图所示.第一种可能:小球落在半圆左侧,v 0t =R -R 2-h 2=0.4 m ,v 0=1 m/s第二种可能:小球落在半圆右侧, v 0t =R +R 2-h 2,v 0=4 m/s ,选项A 、D 正确. 答案 AD例2 如图8所示,一名跳台滑雪运动员经过一段加速滑行后从O 点水平飞出,经过3 s 落到斜坡上的A 点.已知O 点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员的质量m =50 kg.不计空气阻力(sin 37°=0.6,cos 37°=0.8;g 取10 m/s 2).求:(1)A 点与O 点的距离L ;(2)运动员离开O 点时的速度大小;(3)运动员从O 点飞出开始到离斜坡距离最远所用的时间. 解析 (1)运动员在竖直方向做自由落体运动,有 L sin 37°=12gt 2,L =gt 22sin 37°=75 m.(2)设运动员离开O 点时的速度为v 0,运动员在水平方向的分运动为匀速直线运动,有L cos 37°=v 0t , 即v 0=L cos 37°t=20 m/s.(3)解法一 运动员的平抛运动可分解为沿斜面方向的匀加速运动(初速度为v 0cos 37°、加速度为g sin 37°)和垂直斜面方向的类竖直上抛运动(初速度为v 0sin 37°、加速度为 g cos 37°).当垂直斜面方向的速度减为零时,运动员离斜坡距离最远,有 v 0sin 37°=g cos 37°·t ,解得t =1.5 s解法二 当运动员的速度方向平行于斜坡或与水平方向成37°角时,运动员与斜坡距离最远,有gt v 0=tan 37°,t=1.5 s. 答案 (1)75 m (2)20 m/s (3)1.5 s训练1 如图13所示是倾角为45°的斜坡,在斜坡底端P 点正上方某一位置Q 处以速度v 0水平向左抛出一个小球A ,小球恰好能垂直落在斜坡上,运动时间为t 1,小球B 从同一点Q 处自由下落,下落至P 点的时间为t 2,不计空气阻力,则t 1∶t 2= ( ) A .1∶2 B .1∶2 图13 C .1∶3D .1∶ 3答案 D训练2.(2012·江苏·6)如图19所示,相距l 的两小球A 、B 位于同一高度h (l 、h 均为定值).将A 向B 水平抛出的同时,B 自由下落.A 、B 与地面碰撞前后,水平分速度不变,竖直分速度大小不变、方向相反.不计空气阻力及小球与地面碰撞的时间,则( )图19A .A 、B 在第一次落地前能否相碰,取决于A 的初速度B .A 、B 在第一次落地前若不碰,此后就不会相碰C .A 、B 不可能运动到最高处相碰D .A 、B 一定能相碰答案 AD 解析 由题意知A 做平抛运动,即水平方向做匀速直线运动,竖直方向为自由落体运动;B 为自由落体运动,A 、B 竖直方向的运动相同,二者与地面碰撞前运动时间t 1相同,且t 1=2hg,若第一次落地前相碰,只要满足A 运动时间t =l v <t 1,即v >lt 1,所以选项A 正确;因为A 、B 在竖直方向的运动同步,始终处于同一高度,且A 与地面相碰后水平速度不变,所以A 一定会经过B 所在的竖直线与B 相碰.碰撞位置由A 的初速度决定,故选项B 、C 错误,选项D 正确.训练3.如图22所示,斜面上a 、b 、c 、d 四个点,ab =bc =cd ,从a 点以初动能E 0水平抛出一个小球,它落在斜面上的b 点,若小球从a 点以初动能2E 0水平抛出,不计空气阻力,则下列判断正确的是( ) A .小球可能落在d 点与c 点之间图22B .小球一定落在c 点C .小球落在斜面的速度方向与斜面的夹角一定增大D .小球落在斜面的速度方向与斜面的夹角一定相同答案 BD 解析 设第一次平抛的初速度为v 0,v 0与斜面的夹角为θ 则有ab sin θ=12gt 21 v 0t 1=ab cos θ.当初速度变为2E 0时,速度变为2v 0.设此时小球在斜面上的落点到a 点的距离为x ,则有x cos θ=2v 0t 2,x sin θ=12gt 22,解得x =2ab ,即小球一定落在c 点,A 项错误,B 项正确.由tan α=2tan θ知,斜面倾角一定时,α也一定,C 项错误,D 项正确. 训练4.如图所示,水平抛出的物体,抵达斜面上端P 处时其速度方向恰好沿斜面方向,然后沿斜面无摩擦滑下,下列选项中的图象描述的是物体沿x 方向和y 方向运动的速度—时间图象,其中正确的是 ( )答案 C 解析 O ~t P 段,水平方向:v x =v 0恒定不变;竖直方向:v y =gt ;t P ~t Q 段,水平方向:v x =v 0+a水平t ,竖直方向:v y =v Py +a 竖直t (a 竖直<g ),因此选项A 、B 、D 均错误,C 正确.训练5.如图4所示,在竖直放置的半圆形容器的中心O 点分别以水平初速度v 1、v 2抛出两个小球(可视为质点),最终它们分别落在圆弧上的A 点和B 点,已知OA 与OB 互相垂直,且OA 与竖直方向成α角,则两小球初速度之比v 1v 2为( ) 图4 A .tan αB .cos αC .tan αtan αD .cos αcos α答案 C 解析 两小球被抛出后都做平抛运动,设容器半径为R ,两小球运动时间分别为t 1、t 2,对A 球:R sin α=v 1t 1,R cos α=12gt 21;对B 球:R cos α=v 2t 2,R sin α=12gt 22,解四式可得:v 1v 2=tan αtan α,C 项正确.二、平抛运动中临界问题的分析例3 如图所示,水平屋顶高H =5 m ,围墙高h =3.2 m ,围墙到房子的水平距离L =3 m ,围墙外马路宽x =10 m ,为使小球从屋顶水平飞出落在围墙外的马路上,求小球离开屋顶时的速度v 的大小范围.(g 取10 m/s 2)解析 若v 太大,小球落在马路外边,因此,要使球落在马路上,v 的最大值v max 为球落在马路最右侧A 点时的平抛初速度,如图所示,小球做平抛运动,设运动时间为t 1. 则小球的水平位移:L +x =vmax t 1,小球的竖直位移:H =12gt 21解以上两式得 v max =(L +x )g2H=13 m/s. 若v 太小,小球被墙挡住,因此,球不能落在马路上,v 的最小值v min 为球恰好越过围墙的最高点P 落在马路上B 点时的平抛初速度,设小球运动到P 点所需时间为t 2,则此过程中小球的水平位移:L =v min t 2 小球的竖直方向位移:H -h =12gt 22解以上两式得v min =Lg2(H -h )=5 m/s因此v 0的范围是v min ≤v ≤v max ,即5 m /s ≤v ≤13 m/s. 答案 5 m /s ≤v ≤13 m/s1.本题使用的是极限分析法,v 0不能太大,否则小球将落在马路外边;v 0又不能太小,否则被围墙挡住而不能落在马路上.因而只要分析落在马路上的两个临界状态,即可解得所求的范围.2.从解答中可以看到,解题过程中画出示意图的重要性,它既可以使抽象的物理情境变得直观,也可以使隐藏于问题深处的条件显露无遗.小球落在墙外的马路上,其速度最大值所对应的落点位于马路的外侧边缘,而其速度最小值所对应的落点却不是马路的内侧边缘,而是围墙的最高点P ,这一隐含的条件只有在示意图中才能清楚地显露出来.训练6 2011年6月4日,李娜获得法网单打冠军,实现了大满贯这一梦想,如图15所示为李娜将球在边界A 处正上方B 点水平向右击出,球恰好过网C 落在D 处(不计空气阻力)的示意图,已知AB =h 1,AC =x ,CD =x2,网高为h 2,下列说法中正确的是()图15A .击球点高度h 1与球网的高度h 2之间的关系为h 1=1.8h 2B .若保持击球高度不变,球的初速度v 0只要不大于x 2gh 1h 1,一定落在对方界内C .任意降低击球高度(仍高于h 2),只要击球初速度合适(球仍水平击出),球一定能落在对方界内D .任意增加击球高度,只要击球初速度合适(球仍水平击出),球一定能落在对方界内答案 AD 解析 由平抛运动规律可知h 1=12gt 21,1.5x =v 0t 1,h 1-h 2=12gt 22,x =v 0t 2,得h 1=1.8h 2,A 正确;若保持击球高度不变,球的初速度v 0较小时,球可能会触网,B 错误;任意降低击球高度,只要初速度合适,球可能不会触网,但球会出界,C 错误;任意增加击球高度,只要击球初速度合适,使球的水平位移小于2x ,一定能落在对方界内,D 正确.训练7.(2011·广东·17)如图20所示,在网球的网前截击练习中,若练习者在球网正上方距地面H 处,将球以速度v 沿垂直球网的方向击出,球刚好落在底线上.已知底线到网的距离为L ,重力加速度为g ,将球的运动视作平抛运动,下列叙述正确的是( ) 图20 A .球被击出时的速度v 等于L g 2H B .球从击出至落地所用时间为2H gC .球从击球点至落地点的位移等于LD .球从击球点至落地点的位移与球的质量有关 答案AB 由平抛运动规律知,H =12gt 2得,t =2Hg,B 正确.球在水平方向做匀速直线运动,由s =v t 得,v =s t=L2H g=L g2H,A 正确.击球点到落地点的位移大于L ,且与球的质量无关,C 、D 错误. 训练8.如图所示,在水平路面上一运动员驾驶摩托车跨越壕沟,壕沟两侧的高度差为0.8 m ,水平距离为8 m ,则运动员跨越壕沟的初速度至少为(取g =10 m/s 2)( ) A .0.5 m /sB .2 m/sC .10 m /sD .20 m/s答案 D 解析 运动员做平抛运动的时间t =2Δh g =0.4 s ,v =x t =80.4m /s =20 m/s. 训练9.《愤怒的小鸟》是一款时下非常流行的游戏,游戏中的故事也相当有趣,如图9甲所示,为了报复偷走鸟蛋的肥猪们,鸟儿以自己的身体为武器,如炮弹般弹射出去攻击肥猪们的堡垒.某班的同学们根据自己所学的物理知识进行假设:小鸟被弹弓沿水平方向弹出,如图乙所示,若h 1=0.8 m ,l 1=2 m ,h 2=2.4 m ,l 2=1 m,小鸟飞出后能否直接打中肥猪的堡垒?请用计算结果进行说明.(取重力加速度g =10 m/s 2)图9解析 (1)设小鸟以v 0弹出后能直接击中堡垒,则 ⎩⎪⎨⎪⎧h 1+h 2=12gt2l 1+l 2=v 0tt =2(h 1+h 2)g= 2×(0.8+2.4)10s =0.8 s所以v 0=l 1+l 2t =2+10.8 m /s =3.75 m/s设在台面的草地上的水平射程为x ,则⎩⎪⎨⎪⎧x =v 0t 1h 1=12gt21 所以x =v 0 2h 1g=1.5 m<l 1 可见小鸟不能直接击中堡垒.三、类平抛问题模型的分析方法 1.类平抛运动的受力特点物体所受的合外力为恒力,且与初速度的方向垂直. 2.类平抛运动的运动特点在初速度v 0方向上做匀速直线运动,在合外力方向上做初速度为零的匀加速直线运动,加速度a =F 合m .3.类平抛运动的求解方法(1)常规分解法:将类平抛运动分解为沿初速度方向的匀速直线运动和垂直于初速度方向(即沿合外力的方向)的匀加速直线运动.两分运动彼此独立,互不影响,且与合运动具有等时性.(2)特殊分解法:对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度a 分解为a x 、a y ,初速度v 0分解为v x 、v y ,然后分别在x 、y 方向列方程求解.例4 质量为m 的飞机以水平初速度v 0飞离跑道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受到重力和竖直向上的恒定升力(该升力由其他力的合力提供,不含重力).今测得当飞机在水平方向的位移为l 时,它的上升高度为h ,如图16所示,求: 图16 (1)飞机受到的升力大小; (2)上升至h 高度时飞机的速度.解析 (1)飞机水平方向速度不变,则有l =v 0t 竖直方向上飞机加速度恒定,则有h =12at 2解以上两式得 a =2h l 2v 20,故根据牛顿第二定律得飞机受到的升力F 为F =mg +ma =mg (1+2h gl2v 20)(2)由题意将此运动分解为水平方向速度为v 0的匀速直线运动,l =v 0t ;竖直方向初速度为0、加速度a =2h l 2v 20的匀加速直线运动. 上升到h 高度其竖直速度 v y =2ah =2·2h v 20l 2·h =2h v 0l所以上升至h 高度时其速度v =v 20+v 2y =v 0ll 2+4h 2如图所示,tan θ=v y v 0=2h l ,方向与v 0成θ角,θ=arctan 2hl.答案 (1)mg (1+2h gl 2v 20) (2)v 0l l 2+4h 2,方向与v 0成θ角,θ=arctan 2hl训练10 如图17所示,两个倾角分别为30°、45°的光滑斜面放 在同一水平面上,斜面高度相等.有三个完全相同的小球a 、b 、c ,开始均静止于同一高度处,其中b 小球在两斜面之间,a 、c 两小球 图17在斜面顶端,两斜面间距大于小球直径.若同时由静止释放,a 、b 、c 小球到达水平面的时间分别为t 1、t 2、t 3.若同时沿水平方向抛出,初速度方向如图所示,到达水平面的时间分别为t 1′、t 2′、t 3′.下列关于时间的关系不正确的是 ( )A .t 1>t 3>t 2B .t 1=t 1′、t 2=t 2′、t 3=t 3′C .t 1′>t 3′>t 2′D .t 1<t 1′、t 2<t 2′、t 3<t 3′ 答案 D训练11.如图所示,一小球从平台上水平抛出,恰好落在临近平台的一倾角为α=53°的光滑斜面顶端,并刚好沿光滑斜面下滑,已知斜面顶端与平台的高度差h =0.8 m ,g =10 m /s 2,sin 53°=0.8,cos 53°=0.6,则:(1)小球水平抛出的初速度v 0是多大? (2)斜面顶端与平台边缘的水平距离x 是多少?(3)若斜面顶端高H =20.8 m ,则小球离开平台后经多长时间t 到达斜面底端?(1)3 m/s (2)1.2 m (3)2.4 s解析 (1)由题意可知,小球落到斜面上并沿斜面下滑,说明此时小球速度方向与斜面平行,否则小球会弹起,所以v y =v 0tan 53°,v 2y =2gh ,则v y =4 m /s ,v 0=3 m/s.(2)由v y =gt 1得t 1=0.4 s ,x =v 0t 1=3×0.4 m =1.2 m(3)小球沿斜面做匀加速直线运动的加速度a =g sin 53°,初速度v =5 m/s.则 H sin 53°=v t 2+12at 22,解得t 2=2 s(或t 2=-134 s 不合题意舍去),所以t =t 1+t 2=2.4 s.。
平抛运动专题
平抛运动专题专题一:平抛运动轨迹问题——认准参考系如果从水平匀速飞行的直升机上向外自由释放一个物体,不计空气阻力,在物体下落过程中,正确的说法是从地面上看,物体做平抛运动。
专题二:平抛运动运动性质的理解——匀变速曲线运动(a→)如果把物体以一定速度水平抛出,不计空气阻力,g取10,那么在落地前的任意一秒内,物体下落的高度一定比前一秒多10m。
专题三:平抛运动“撞球”问题——判断两球运动的时间是否相同(h是否相同);类比追击问题,利用撞上时水平位移、竖直位移相等的关系进行解决如果在同一水平直线上的两位置分别沿同方向抛出小两小球在空中相遇,则必须使两球同时抛出两球且使两球质量相等。
如果甲乙两球位于同一竖直线上的不同位置,甲比乙高h,将甲乙两球分别以v1、v2的速度沿同一水平方向抛出,不计空气阻力,有可能使乙球击中甲球的条件是甲先抛出,且v1<v2.专题四:平抛运动的基本计算题类型——关键在于对公式、结论的熟练掌握程度;建立等量关系一个物体从某一确定的高度以v0的初速度水平抛出,已知它落地时的速度为v1,那么它的运动时间是2v1/g。
作平抛运动的物体,在水平方向通过的最大距离取决于物体的初速度和抛出点的高度。
一物体自倾角为的固定斜面顶端沿水平方向抛出后落在斜面上。
物体与斜面接触时速度与水平方向的夹角满足tanφ=2tanθ。
将物体在h=20m高处以初速度v=10m/s水平抛出,不计空气阻力(g取10m/s),可以利用等量关系求出物体在落地时的速度v1,即v1=sqrt(2gh+100)。
1.物体的水平射程为20m,落地时速度大小为105m。
2.一条小河两岸的高度差为h,河宽为4h。
一辆摩托车以水平速度v=20m/s向河对岸飞出,恰好越过小河。
求摩托车在空中的飞行时间为1s,小河的宽度为20m。
3.一小球从距水平地面h高处,以初速度v水平抛出。
求小球落地点距抛出点的水平位移为v*2h/g,若把抛出点高度增大到原来的4倍,则落地点到抛出点的水平位移增大到原来的2倍,求抛出点距地面的高度为4h。
高中物理物理总复习:平抛运动专题讲解
物理总复习:平抛运动【知识网络】【考点梳理】 考点一、平抛运动1、定义:水平抛出的物体只在重力作用下的运动叫做平抛运动。
2、性质:加速度为重力加速度g 的匀变速曲线运动,轨迹是抛物线。
3、研究方法:(1)平抛运动可以分解为水平方向上的匀速直线运动和竖直方向上的自由落体运动。
分别研究两个分运动的规律,必要时再用运动合成的方法进行合成。
(2)可独立研究竖直方向上的运动:竖直方向上为初速度为零的匀变速直线运动a g =。
连续相等时间内竖直位移之比为1:3:5:(21)n ⋅⋅⋅⋅⋅⋅- (0,1,2,)n =⋅⋅⋅ 。
连续相等时间内竖直位移之差为一恒量。
2y gT ∆= 要点诠释:2y gT ∆= 在处理实验题时极其重要。
竖直方向上是自由落体运动,加速度就是g ,T 是相等的时间间隔,与0x v T ∆= 结合求解。
4、平抛运动的规律设平抛运动的初速度为0v ,建立坐标系如图所示。
(1)速度公式:0x v v = y v gt = 22t x y v v v =+速度与水平方向的夹角为φ 0tan gtv φ=(2)位移公式: 0x v t = 212y gt =2222201()()2S x y v t gt =+=+速度与位移方向的夹角为θ 200tan 22y gt gtx v t v θ===(3)轨迹: 22220011()222x gy gt g x v v === (抛物线的一个单支) (4)运动时间和射程要点诠释:平抛运动的物体从高度为h 的地方抛出,飞行时间:2ht g=,只与竖直下落的高度有关。
射程002hx v t v g== 取决于竖直下落的高度和初速度。
(5)两个重要推论推论1:瞬时速度t v 的反向延长线一定通过水平位移x 的中点。
推论2:tan 2tan φθ= 速度偏向角的正切等于位移偏向角的两倍。
由 0tan y x v gt v v φ== 2tan 2y gt x x θ=='' 所以 tan 2tan φθ=可证得:20011222gt v x v t x gt '=== 5、平抛运动中速度变化量的方向平抛运动是匀变速曲线运动,故相等时间内速度变化量相等,且必沿竖直方(v g t∆=∆)如图所示。
平抛运动知识点总结材料及解题方法归类总结材料
三、平抛运动及其推论一、 知识点巩固:1.定义:①物体以一定的初速度沿水平方向抛出,②物体仅在重力作用下、加速度为重力加速度g ,这样的运动叫做平抛运动。
2.特点:①受力特点:只受到重力作用。
②运动特点:初速度沿水平方向,加速度方向竖直向下,大小为g ,轨迹为抛物线。
③运动性质:是加速度为g 的匀变速曲线运动。
3.平抛运动的规律:①速度公式:0x v v = y v gt =合速度:t v ==②位移公式:20,2gt x v t y ==合位移:s == 0tan 2y gtx v α== ③轨迹方程:2202gx y v =,顶点在原点(0、0),开口向下的抛物线方程。
注:(1)平抛运动是一个同时经历水平方向的匀速直线运动和竖直方向的自由落体运动的合运动。
(2)平抛运动的轨迹是一条抛物线,其一般表达式为。
(3)平抛运动在竖直方向上是自由落体运动,加速度恒定,所以竖直方向上在相等的时间相邻的位移的高度之比为… 竖直方向上在相等的时间相邻的位移之差是一个恒量(T 表示相等的时间间隔)。
(4)在同一时刻,平抛运动的速度(与水平方向之间的夹角为ɑ)方向和位移方向(与水平方向之间的夹角是)是不相同的,其关系式(即任意一点的速度延长线必交于此时物体位移的水平分量的中点)。
描绘平抛运动的物理量有、、、、、、、θ、,已知这八个物理量中的任意两个,可以求出其它六个。
tan yxv gt vv θ==ɑ θɑɑ4. ①运行时间:t =h,g 决定,与0v 无关。
②水平射程:x v =h,g, 0v 共同决定。
③任何相等的时间t ∆,速度改变量v ∆=g t ∆相等,且v g t ∆=∆,方向竖直向下。
④以不同的初速度,从倾角为θ的斜面上沿水平方向抛出的物体,再次落到斜面上时速度与斜面的夹角a 相同,与初速度无关。
(飞行的时间与速度有关,速度越大时间越长。
)如上图:所以θtan 20gv t =)tan(v gt v v a xy ==+θ 所以θθtan 2)tan(=+a ,θ为定值故a 也是定值,与速度无关。
平抛运动题型总结
平抛运动题型总结
平抛运动是物理学中最基础的运动之一,在学生的学习中也是必学的内容之一。
以下是平抛运动题型的总结,希望对同学们的学习有所帮助。
1.已知初速度和时间,求落地点的水平距离
解题步骤:根据初速度和时间求出水平方向的位移,即x=v0*t,其中v0为初速度,t为时间。
2.已知初速度和落地点的水平距离,求落地时间
解题步骤:根据水平方向的位移和初速度求出时间,即t=x/v0,其中x为落地点的水平距离,v0为初速度。
3.已知初速度和落地点的高度,求落地时间
解题步骤:先根据初速度和重力加速度求出垂直方向上的运动轨迹,即y=v0*t+1/2*g*t^2,其中g为重力加速度,t为时间,y为落地点的高度。
然后根据公式求解t。
4.已知初速度和落地时间,求落地点的高度
解题步骤:根据初速度、重力加速度和落地时间求出垂直方向上的位移,即y=v0*t+1/2*g*t^2,其中g为重力加速度,t为时间。
5.已知初速度和最高点高度,求最高点到落地点的时间
解题步骤:先根据初速度和重力加速度求出运动轨迹方程,即
y=v0^2/2g,然后根据高度差和重力加速度求解时间,即t=sqrt(2h/g),其中h为最高点高度。
6.已知初速度和最高点高度,求最高点到落地点的水平距离
解题步骤:先根据初速度和重力加速度求出运动轨迹方程,即
y=v0^2/2g,然后根据运动轨迹和最高点高度求出最高点的水平位置,即x=v0^2/g,最后根据落地点的高度和最高点的高度求解最高点到落地点的水平距离。
以上是平抛运动题型的总结,需要注意的是,在解题过程中要仔细理解题目,明确已知条件和未知量,然后根据物理公式进行计算,最后得出答案。
平抛运动专题
平抛运动专题知识点一、平抛运动的规律:1、速度公式:0x v v = y v gt =合速度:()22220t x y v v v v gt =+=+ 0tan y xv gtv v θ==2、位移公式:20,2gt x v t y ==合位移:222222012s x y v t gt ⎛⎫=+=+ ⎪⎝⎭ 0tan 2y gt x v α==3、轨迹方程:2202gx y v =,顶点在原点(0、0),开口向下的抛物线方程。
4、任何相等的时间t ∆内,速度改变量v ∆=g t ∆相等,且v g t ∆=∆,方向竖直向下。
知识点二、平抛运动的推论1、平抛运动是一个同时经历水平方向的匀速直线运动和竖直方向的自由落体运动的合运动。
即tx=ty (分运动的等时性)运行时间:2ht g=,由h,g 决定,与无关。
2、在同一时刻,平抛运动的速度(与水平方向之间的夹角为)方向和位移方向(与水平方向之间的夹角是)是不相同的,其关系式3、任意一点的速度延长线必交于此时物体位移的水平分量的中点。
4、描绘平抛运动的物理量有、、、、、θ、、,已知这八个物理量中的任意两个,可以求出其它六个。
知识点三、平抛运动和斜面结合问题1、落回斜面: 隐含条件:位移和斜面平行运用2、撞击斜面:隐含条件:速度方法与水平方向的夹角与斜面的倾角互余。
3、离斜面距离最远:合速度的矢量合成,沿斜面方向和垂直斜面方向。
知识点四、平抛运动的综合应用问题1、平抛运动与其它运动形式的综合。
2、多体平抛问题。
当堂练习:1、如图所示,一物体自倾角为θ的固定斜面顶端沿水平方向抛出后落在斜面上,物体与斜面接触时速度与水平方向的夹角φ满足( )A . tan φ=sin θ B. tan φ=cos θ C. tan φ=tan θ D. tanφ=2tan θ2、物体以v的速度水平抛出,当其竖直分位移与水平分位移大小相等时,以下说法正确的是()A。
竖直分速度等于水平分速度 B.瞬时速度的大小为5vC.运动时间为2v0/g D.运动的位移大小为g222v/3、在“研究平抛物体运动”的实验中,某同学只记录了小球运动途中的A、B、C三点位置,取A点为坐标原点(0、0),则各点位置坐标如图所示,g取10m/s2,那么(注意:A点不一定是抛出点)①平抛运动的初速度是多少?②小球抛出点的位置坐标是多少?4、平抛运动的物体,在落地前的最后1s内,其速度方向由跟竖直方向成60°角变为跟竖直方向成45°角,求:物体抛出时的速度和高度分别是多少?5、如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过的壕沟,沟面对面比A处低,摩托车的速度至少要有多大?g取106、以10m/s的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角为的斜面上。
平抛运动的五个结论和六类典型题
平抛运动的五个结论和六类典型题平抛运动是指物体在重力场中自由落体,无论沿着任何方向,都不受外力的影响而进行的直线运动。
它是一种常见的物理现象,在我们的日常生活中随处可见。
在物理学家的努力下,研究出了平抛运动的五个结论和六大类几乎所有的物理题型都可以用这五个结论来求解。
1、任何物体以相同的加速度沿直线运动。
2、从时间t0到t1,物体在竖直方向上的运动距离相等,而水平方向上的运动距离为两个时间之间的重力加速度乘以时间。
3、时间t0和t1之间的重力加速度和时间无关。
4、物体从t0开始运动接近水平时,针对两个时间之间的水平距离没有重力影响。
5、在竖直方向上,物体的运动距离变小,而水平方向上的运动距离由时间的变化而决定。
根据这五个结论,可以分为六大类典型题:1、物体从高度h出发,求t0到t1这个时间内的垂直距离。
2、物体已知发射角与发射速度,求t0到t1这个时间内的水平距离。
3、物体从高度h发射,求t0到t1这段时间内的水平距离。
4、物体从高度h发射,求一段时间内发射角和发射速度来使其最远到达水平距离。
5、物体从高度h发射,求t0到t1这段时间内的最高点距离。
6、物体从高度h发射,求在一段时间内的最大的水平距离。
上面就是平抛运动的五个结论以及六类典型题。
下面我们用这些结论和题型来计算经典问题:一个物体从高度h发射,求它在前一秒内到达的最大水平距离。
根据平抛运动第二个结论,从时间t0到t1,物体在竖直方向上的运动距离相等,而水平方向上的运动距离为两个时间之间的重力加速度乘以时间,因此,一秒内的最大水平距离就是重力加速度t乘以1秒,即g×t。
所以,要求解这个问题,只需要知道重力加速度g的大小就可以了。
以上就是平抛运动的五个结论和六类典型题的介绍,以及如何使用这五个基本结论来解决实际问。
物理平抛运动实验题型及解析
物理平抛运动实验题型及解析
在物理中,平抛运动实验是一个重要的实验,它主要考察学生对平抛运动的理解以及实验设计和操作能力。
以下是一些常见的平抛运动实验题型及解析:
1. 基本概念题:
题型:什么是平抛运动?请描述其运动特点。
解析:平抛运动是指一个物体以一定的初速度水平抛出,在重力的作用下,沿曲线轨迹运动。
其运动特点是初速度恒定,仅受重力影响,轨迹为抛物线。
2. 实验设计题:
题型:请设计一个实验来研究平抛运动的轨迹。
解析:可以使用频闪仪或高速摄像机来捕捉平抛运动的轨迹。
通过调整频闪仪或高速摄像机的参数,可以观察和记录物体在不同时刻的位置,从而描绘出其运动轨迹。
3. 数据分析题:
题型:给定一组平抛运动的实验数据,如何计算初速度和落地时间?
解析:通过分析物体的水平位移和竖直位移,结合时间间隔,可以计算出物体的初速度和落地时间。
使用公式$x = v_{0}t$和$y =
\frac{1}{2}gt^{2}$进行计算。
4. 误差分析题:
题型:在平抛运动的实验中,如何减小测量误差?
解析:可以采用多种方法减小误差,例如使用更精确的测量工具、多次测量求平均值、优化实验设计和操作等。
此外,还要注意消除系统误差和随机误差的影响。
5. 综合应用题:
题型:请解释在平抛运动的实验中,为何需要选择合适的实验参数?
解析:选择合适的实验参数是确保实验准确性和可靠性的关键。
例如,选择合适的初速度可以确保平抛运动的轨迹足够长,方便观察和测量;选择合适的时间间隔可以确保能够捕捉到物体在不同时刻的运动状态。
平抛运动常见题型
(一)平抛运动的基础知识1.定义:水平抛出的物体只在重力作用下的运动。
2.特点:(1)平抛运动是一个同时经历水平方向的匀速直线运动和竖直方向的自由落体运动的合运动。
(2)平抛运动的轨迹是一条抛物线,其一般表达式为c+=2。
axbxy+(3)平抛运动在竖直方向上是自由落体运动,加速度ga=恒定,所以竖直方向上在相等的时(43.本文主要讨论直接运用平抛运动的特点和规律来求解的问题,即有关平抛运动的常见问题。
1.从同时经历两个运动的角度求平抛运动的水平速度求解一个平抛运动的水平速度的时候,我们首先想到的方法,就应该是从竖直方向上的自由落体运动中求出时间,然后,根据水平方向做匀速直线运动,求出速度。
[例1]如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过m=的壕沟,沟面对面比Ax5处低m=,摩托车的速度至少要有多大?.1h25图1解析:在竖直方向上,摩托车越过壕沟经历的时间在水平方向上,摩托车能越过壕沟的速度至少为2.从分解速度的角度进行解题对于一个做平抛运动的物体来说,如果知道了某一时刻的速度方向,则我们常常是“从分解速度”的角度来研究问题。
[例2]如图2甲所示,以9.8m/s 的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角θ为︒30的斜面上。
可知物体完成这段飞行的时间是() A.s 33 B.332s C.s 3 D.s 2 图2解析:先将物体的末速度t v 分解为水平分速度x v 和竖直分速度y v (如图2乙所示)。
根据平抛运动的分解可知物体水平方向的初速度是始终不变的,所以0v v x =;又因为t v 与斜面垂直、y v 与水平面垂直,所以t v 与y v 做自由落体运动,那么我们根据y v gt =所以m s m v v v x y /38.9/318.930tan tan 0==︒==θ所以t =3.(如物体从已知倾角的斜面,则我们可以把位移分解成水平方向和[例3]0向斜面下方抛出一个物体,落在斜面上的Q 点,证明落在Q 解析:l ,所用时间为t ,则由“分解位移法”αcos l s =。
平抛运动常见题型归类
平抛规律应用一、 知识点稳固:1.平抛的特点:①受力特点:只受到重力作用。
②运动特点:初速度沿水平方向,加速度方向竖直向下,大小为g ,轨迹为抛物线。
③运动性质:是加速度为g 的匀变速曲线运动。
2.平抛运动的规律:①速度公式:0x v v = y v gt = 合速度:()22220t x y v v v v gt =+=+②位移公式:20,2gt x v t y ==合位移222222012s x y v t gt ⎛⎫=+=+ ⎪⎝⎭ 0tan 2y gt x v θ==③平抛运动时间:2ht g=,由h,g 决定,与0v 无关。
④水平分位移:02hx v g=,由h,g, 0v 共同决定。
⑤任何相等的时间t ∆内,速度改变量v ∆= ,方向 。
⑥平抛运动在竖直方向上是自由落体运动,加速度恒定,所以竖直方向上在相等的时间内相邻的位移的高度之比为… 竖直方向上在相等的时间内相邻的位移之差是一个恒量(T 表示相等的时间间隔〕。
Vy xS O x x 2/V y V 0V x =V 0P ()x y ,θαtan y xv gt v v α==V 1V 0V 2V 3V △V△V △⑦速度v的方向始终与重力方向成一夹角,故其始终为曲线运动,随着时间的增加,tanα变大,α↑,速度v与重力的方向越来越靠近,但永远不能到达。
⑧以不同的初速度,从倾角为θ的斜面上沿水平方向抛出的物体,再次落到斜面上时速度与斜面的夹角a〔一样、不一样〕,与初速度〔有关、无关〕,飞行的时间与有关。
二、平抛运动的常见问题及求解思路:1、根本规律应用采用运动的分解再合成思想,从同时经历两个运动的角度处理平抛运动。
例1、如下图,某人骑摩托车在水平道路上行驶,要在A处越过的壕沟,沟面对面比A处低,摩托车的速度至少要有多大?g取10m/s2。
例2、平抛物体落地时速度大小为50m/s,方向与水平方向成53o求:1)抛出点离水平地面的高度和水平射程2〕抛出3s末的速度2、飞机投弹问题例3、一架飞机水平匀速飞行,从飞机上每隔1s释放一个炮弹,不计空气阻力,在它们落地之前,对炮弹的描述正确的选项是〔〕A、在空中任何时刻总排成抛物线,落地点等间距B、在空中任何时刻总排成抛物线,落地点不等间距C、在空中任何时刻总在飞机正下方排成竖直线,落地点不等间距D、在空中任何时刻总在飞机正下方排成竖直线,落地点等间距x102km/h速度水平匀速飞行,为使飞机上投下的炮弹落在指定的目标上,应在何处投弹?例5、飞机离海面高H=500m,水平飞行速度V1=100m/s,追击一艘速度V2=20m/s同方向逃跑的敌舰,欲使投下的炸弹击中敌舰,那么飞机应在距离敌舰水平距离多远处投弹?3、平抛与斜面相结合的问题例6、如图甲所示,以10m/s的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角为的斜面上。
平抛运动知识点总结材料及解题方法归类总结材料
三、平抛运动及其推论一、 知识点巩固:1.定义:①物体以一定的初速度沿水平方向抛出,②物体仅在重力作用下、加速度为重力加速度g ,这样的运动叫做平抛运动。
2.特点:①受力特点:只受到重力作用。
②运动特点:初速度沿水平方向,加速度方向竖直向下,大小为g ,轨迹为抛物线。
③运动性质:是加速度为g 的匀变速曲线运动。
3.平抛运动的规律:①速度公式:0x v v = y v gt =合速度:()22220t x y v v v v gt =+=+②位移公式:20,2gt x v t y ==合位移:222222012s x y v t gt ⎛⎫=+=+ ⎪⎝⎭tan 2y gtx v α==③轨迹方程:2202gx y v =,顶点在原点(0、0),开口向下的抛物线方程。
注:(1)平抛运动是一个同时经历水平方向的匀速直线运动和竖直方向的自由落体运动的合运动。
(2)平抛运动的轨迹是一条抛物线,其一般表达式为。
(3)平抛运动在竖直方向上是自由落体运动,加速度恒定,所以竖直方向上在相等的时间内相邻的位移的高度之比为… 竖直方向上在相等的时间内相邻的位移之差是一个恒量(T表示相等的时间间隔)。
(4)在同一时刻,平抛运动的速度(与水平方向之间的夹角为ɑ)方向和位移方向(与水平方向之间的夹角是)是不相同的,其关系式(即任意一点的速度延长线必交于此时物体位移的水平分量的中点)。
Vy x S O x x 2/V y V 0V x =V 0P ()x y ,θα0tan yxv gt vv θ==ɑ θ ɑ描绘平抛运动的物理量有、、、、、、、θ、,已知这八个物理量中的任意两个,可以求出其它六个。
运动分类 加速度 速度 位移 轨迹分运动方向 0 直线 方向直线 合运动大小抛物线与方向的夹角4.平抛运动的结论:①运行时间:2ht g =,由h,g 决定,与0v 无关。
②水平射程:02hx v g=,由h,g, 0v 共同决定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平抛运动小结(一)平抛运动的基础知识1. 定义:水平抛出的物体只在重力作用下的运动。
2. 特点:(1)平抛运动是一个同时经历水平向的匀速直线运动和竖直向的自由落体运动的合运动。
(2)平抛运动的轨迹是一条抛物线,其一般表达式为c bx ax y ++=2。
(3)平抛运动在竖直向上是自由落体运动,加速度g a =恒定,所以竖直向上在相等的时间相邻的位移的高度之比为5:3:1::321=s s s …竖直向上在相等的时间相邻的位移之差是一个恒量2gT s s s s I II II III =-=-。
(4)在同一时刻,平抛运动的速度(与水平向之间的夹角为ϕ)向和位移向(与水平向之间的夹角是θ)是不相同的,其关系式θϕtan 2tan =(即任意一点的速度延长线必交于此时物体位移的水平分量的中点)。
3. 平抛运动的规律描绘平抛运动的物理量有0v 、y v 、v 、x 、y 、s 、ϕ、t ,已知这八个物理量中的任意两个,可以求出其它六个。
(二)平抛运动的常见问题及求解思路关于平抛运动的问题,有直接运用平抛运动的特点、规律的问题,有平抛运动与圆运动组合的问题、有平抛运动与天体运动组合的问题、有平抛运动与电场(包括一些复合场)组合的问题等。
本文主要讨论直接运用平抛运动的特点和规律来求解的问题,即有关平抛运动的常见问题。
1. 从同时经历两个运动的角度求平抛运动的水平速度求解一个平抛运动的水平速度的时候,我们首先想到的法,就应该是从竖直向上的自由落体运动中求出时间,然后,根据水平向做匀速直线运动,求出速度。
[例1] 如图1所示,处低m h 25.1=解析:在竖直向上,摩托车越过壕沟经历的时间s s g ht 5.01025.122=⨯==在水平向上,摩托车能越过壕沟的速度至少为s m s m t x v /10/5.050===2. 从分解速度的角度进行解题对于一个做平抛运动的物体来说,如果知道了某一时刻的速度向,则我们常常是“从分解速度”的角度来研究问题。
[例2] 如图2甲所示,以9.8m/s 的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角θ为︒30的斜面上。
可知物体完成这段飞行的时间是( )A.s 33解析:t x y 抛运动的分解可知物体水平向的初速度是始终不变的,所以0v v x =;又因为t v 与斜面垂直、y v 与水平面垂直,所以t v 与y v 间的夹角等于斜面的倾角θ。
再根据平抛运动的分解可知物体在竖直向做自由落体运动,那么我们根据y v gt =就可以求出时间t 了。
则yxv v =θtan 所以s m s m v v v x y /38.9/318.930tan tan 0==︒==θ,根据平抛运动竖直向是自由落体运动可以写出:gt v y =,所以s gv t y 38.938.9===,所以答案为C 。
3. 从分解位移的角度进行解题对于一个做平抛运动的物体来说,如果知道了某一时刻的位移向(如物体从已知倾角的斜面上水平抛出,这个倾角也等于位移与水平向之间的夹角),则我们可以把位移分解成水平向和竖直向,然后运用平抛运动的运动规律来进行研究问题(这种法,暂且叫做“分解位移法”)[例3] 在倾角为α的斜面上的P 点,以水平速度0v 向斜面下抛出一个物体,落在斜面上的Q 点,证明落在Q 点物体速度α20tan 41+=v v 。
解析:设物体由抛出点P 运动到斜面上的Q 点的位移是l ,所用时间为t ,则由“分解位移法”可得,竖直向上的位移为αsin l h =;水平向上的位移为αcos l s =。
又根据运动学的规律可得 竖直向上221gt h =,gt v y = 水平向上t v s 0=则002221tan v v t v gt s h y ===α,αtan 20v v y =所以Q 点的速度α20220tan 41+=+=v v v v y[例4] 如图3所示,小球A 和B ,两侧斜坡的倾角分别为︒37和︒53两小球的运动时间之比为多少?图3解析:︒37和︒53都是物体落在斜面上后,位移与水平向的夹角,则运用分解位移的法可以得到002221tan v gtt v gtx y ===α 所以有01237tan v gt =︒同理02253tan v gt =︒ 则16:9:21=t t 4. 从竖直向是自由落体运动的角度出发求解在研究平抛运动的实验中,由于实验的不规,有多同学作出的平抛运动的轨迹,常常不能直接找到运动的起点(这种轨迹,我们暂且叫做“残缺轨迹”),这给求平抛运动的初速度带来了很大的困难。
为此,我们可以运用竖直向是自由落体的规律来进行分析。
[例5] 某一平抛的部分轨迹如图4所示,已知x =1解析:A 与B 、B 与C 的水平距离相等,且平抛运动的水平向是匀速直线运动,可设A 到B 、B到C 的时间为T ,则T v x x 021==,又竖直向是自由落体运动, 则212gT y y y =-=∆代入已知量,联立可得:g b c T -=bc ga v -=0 5. 从平抛运动的轨迹入手求解问题[例6] 从高为H 的A 点平抛一物体,其水平射程为s 2,在A 点正上高为2H 的B 点,向同一向平抛另一物体,其水平射程为s 。
两物体轨迹在同一竖直平面且都恰好从同一屏的顶端擦过,求屏的高度。
解析:本题如果用常规的“分解运动法”比较麻烦,如果我们换一个角度,即从运动轨迹入手进行思考和分析,问题的求解会很容易,如图5所示,物体从A 、B 两点抛出后的运动的轨迹都是顶点在y 轴上的抛物线,即可设A 、B 两程分别为c bx ax y ++=2,c x b x a y '+'+'=2则把顶点坐标A (0,H )、B (0,2H )、E (2s ,0)、F (s ,0)分别代入可得程组⎪⎪⎩⎪⎪⎨⎧+-=+-=Hx s H y H x s H y 2242222,这个程组的解的纵坐标H y 76=,即为屏的高。
6. 灵活分解求解平抛运动的最值问题[例7] 如图6所示,在倾角为θ的斜面上以速度0v 水平抛出一小球,该斜面足够长,则从抛出开始解析:易将物体离斜面距离达到最大的物理本质凸显出来。
取沿斜面向下为x 轴的正向,垂直斜面向上为y 轴的正向,如图6所示,在y 轴上,小球做初速度为θsin 0v 、加速度为θcos g -的匀变速直线运动,所以有θθcos 2)sin (202gy v v y -=- ①t g v v y θθcos sin 0-=- ②当0=y v 时,小球在y 轴上运动到最高点,即小球离开斜面的距离达到最大。
由①式可得小球离开斜面的最大距离θθcos 2)sin (20g v y H ==当0=y v 时,小球在y 轴上运动到最高点,它所用的时间就是小球从抛出运动到离开斜面最大距离的时间。
由②式可得小球运动的时间为θtan 0gv t = 7. 利用平抛运动的推论求解推论1:任意时刻的两个分速度与合速度构成一个矢量直角三角形。
[例8]解析:设两小球抛出后经过时间t ,它们速度之间的夹角为︒90,与竖直向的夹角分别为α和β,对两小球分别构建速度矢量直角三角形如图7所示,由图可得1cot v gt=α和gtv 2tan =β 又因为︒=+90βα,所以βαtan cot =,由以上各式可得gtv v gt 21=,解得211v v g t = 推论2:任意时刻的两个分位移与合位移构成一个矢量直角三角形 推论3:平抛运动的末速度的反向延长线交平抛运动水平位移的中点。
证明:设平抛运动的初速度为0v ,经时间t 后的水平位移为x ,如图10所示,D 为末速度反向延长线与水平分位移的交点。
根据平抛运动规律有水平向位移t v x 0= 竖直向gt v y =和221gt y =由图可知,ABC ∆与ADE ∆相似,则yDE v v y =0,联立以上各式可得2xDE = 该式表明平抛运动的末速度的反向延长线交平抛运动水平位移的中点。
解析:与初速度向成θ角。
如图12所示,图中A 为末速度的反向延长线与水平位移的交点,AB 即为所求的最远距离。
根据平抛运动规律有:gt v y =,t v x 0=和θtan 0=v v y由上述推论OA AO AB 推论4t 为β,则有βαtan 2tan =证明:如图13,设平抛运动的初速度为0v ,经时间t 后到达A 点的水平位移为x 、速度为t v ,如图所示,根据平抛运动规律和几关系:在速度三角形中00tan v gt v v y==α,在位移三角形中00222tan v gtt v gt x y ===β 由上面两式可得αtan =[例11] 一质量为m B 点时的动能为35J 解析:由题意作出图14由三角知识可得213cos =α,又因为αcos 0v t =,所以初动能J E mv E kB kA 1521220=== [例12] 如图15所示,从倾角为θ斜面足够长的顶点A ,先后将同一小球以不同的初速度水平向右抛出,第一次初速度为1v ,球落到斜面上前一瞬间的速度向与斜面的夹角为1α,第二次初速度2v ,球落在斜面上前一瞬间的速度向与斜面间的夹角为2α,若12v v >,试比较1α和2α的大小。
AB1v1v2Cαα2θθ解析:根据上述关系式结合图中的几关系可得θθαtan2)tan(=+所以θθα-=)tan2arctan(此式表明α仅与θ有关,而与初速度无关,因此21αα=,即以不同初速度平抛的物体落在斜面上各点的速度向是互相平行的。
推论5:平抛运动的物体经时间t后,位移s与水平向的夹角为β,则此时的动能与初动能的关系为)tan41(2β+=kktEE证明:设质量为m的小球以v的水平初速度从A点抛出,经时间t到达B点,其速度tv与水平向的夹角为α,根据平抛运动规律可作出位移和速度的合成图,如图16所示。
图16由上面推论4可知βαtan2tan=,从图16中看出βαtan2tanvvvy==小球到达B点的速度为β222tan41+=+=vvvvyt所以B点的动能为)tan41(2121222β+==mvmvEtkB)tan41(2β+=kE[例13] 如图17所示,从倾角为︒30的斜面顶端平抛一个物体,阻力不计,物体的初动能为9J。
当物体与斜面距离最远时,重力势能减少了多少焦耳?与初速度向成︒30角,如图17所示由βαtan 2tan =可得αβtan 21tan = 所以当物体距斜面的距离最远时的动能为J J E E k kt 12)30tan 1(9)tan 41(220=︒+⨯=+=β根据物体在做平抛运动时机械能守恒有J J E E k p 3)912(=-=∆=∆即重力势能减少了3J【模拟试题】1. 关于曲线运动,下列叙述正确的是( )A. 物体之所以做曲线运动,是由于物体受到垂直于速度向的力(或者分力)的作用B. 物体只有受到一个向不断改变的力,才可能做曲线运动C. 物体受到不平行于初速度向的外力作用时,物体做曲线运动D. 平抛运动是一种匀变速曲线运动2. 关于运动的合成,下列说法中正确的是( )A. 合速度的大小一定比每个分速度的大小都大B. 合运动的时间等于两个分运动经历的时间C. 两个匀速直线运动的合运动一定也是匀速直线运动D. 只要两个分运动是直线运动,合运动一定也是直线运动3. 游泳运动员以恒定的速率垂直河岸横渡,当水速突然增大时,对运动员横渡经历的路程、时间发生的影响是( )A. 路程增加、时间增加B. 路程增加、时间缩短C. 路程增加、时间不变D. 路程、时间均与水速无关4. 从同一高度、同时水平抛出五个质量不同的小球,它们初速度分别为v 、v 2、v 3、v 4、v 5。