zemax自聚焦透镜设计

合集下载

zemax自聚焦透镜设计学习资料

zemax自聚焦透镜设计学习资料

目录摘要Abstract (I)绪论 01 自聚焦透镜简介 (1)1.1自聚焦透镜 (1)1.2 自聚焦透镜的特点 (1)1.3 自聚焦透镜的主要参数 (2)2 自聚焦透镜的应用 (3)2.1 聚焦和准直 (3)2.2 光耦合 (4)2.3 单透镜成像 (5)2.4 自聚焦透镜阵列成像 (5)3 球面自聚焦透镜设计仿真 (7)3.1 确定透镜模型 (7)3.2 设置波长 (7)3.3数值孔径设定 (8)3.4 自聚焦透镜光路 (8)4 优化参数 (9)4.1光线相差分析 (9)4.2聚焦光斑分析 (11)4.3 3D模型 (11)结束语 (12)致谢 (13)参考文献 (14)摘要本文主要说明应用梯度折射率对光传播的影响分析设计自聚焦透镜(GRIN lens),自聚焦透镜主要应用于光纤传输系统中。

自聚焦透镜同普通透镜的区别在于,自聚焦透镜材料能够使沿轴向传输的光产生折射,并使折射率的分布沿径向逐渐减小,从而实现出射光线被平滑且连续的汇聚到一点。

利用此特性,G-lens 在光纤传输系统中是构成准直、耦合、成像系统的主要部分。

而它结构简单,体积小的特点更适用于小型光学器材中,例如窥镜系统。

关键词:梯度折射率,自聚焦,光耦合,准直AbstractThis article main showing the impact analysis designs the self-focusing lens using the gradient refractive index to the light emission (GRIN lens), the self-focusing lens mainly apply in the optical fiber transmission system. The self-focusing lens lie in with the ordinary lens' difference, the self-focusing lens material can cause along the axial transmission light to have the refraction, and causes the refractive index the distribution to reduce gradually along the radial direction, thus realizes the exit ray by smooth and the continual gathering to a spot. Using this characteristic, G-lens in the optical fiber transmission system is the constitution collimation, the coupling, imaging system's main part. But its structure is simple, the volume small characteristic is suitable in the small optics equipment, for example looking glass system.Keywords:Gradient index, GRIN lens, Light coupling,Collimation绪论自聚焦透镜体积小,重量轻,具有准直和聚焦作用,且耦合效率高。

ZEMAX单透镜设计例子详细多图

ZEMAX单透镜设计例子详细多图

ZEMAX单透镜设计例子详细(多图)ZEMAX单透镜设计例子,单透镜是最简单的透镜系统了,这个例子基本是很多ZEMAX教程开头都会讲的。

1-1单透镜这个例子是学习如何在ZEMAX里键入资料,包括设置系统孔径(System Aperture)、透镜单位(Lens Units)、以及波长范围(Wavelength Range),并且进行优化。

你也将使用到光线扇形图(Ray Fan Plots)、弥散斑(Spot Diagrams)以及其它的分析工具来评估系统性能。

这例子是一个焦距100 mm、F/4的单透镜镜头,材料为BK7,并且使用轴上(On-Axis)的可见光进行分析。

首先在运行系统中开启ZEMAX,默认的xx视窗为透镜资料xx器(Lens Data Editor, LDE),在LDE可键入大多数的透镜参数,这些设置的参数包括:表面类型(Surf:Type)如标准球面、非球面、衍射光栅… 等曲率半径(Radius of Curvature)表面厚度(Thickness):与下一个表面之间的距离材料类型(Glass)如玻璃、空气、塑胶…等:与下一个表面之间的材料表面半高(Semi-Diameter):决定透镜表面的尺寸大小上面几项是较常使用的参数,而在LDE后面的参数将搭配特殊的表面类型有不同的参数涵义。

1-2设置系统孔径首先设置系统孔径以及透镜单位,这两者的设置皆在按钮列中的「GEN」按钮里。

点击r GEN」或透过菜单的System->General 来开启 General 的对话框。

点击孔径标签(Aperture Tab)。

因为我们要建立一个焦距100 mm、F/4的单透镜。

所以需要直径为25 mm的入瞳(Entrance Pupil),因此设置:Aperture Type : Entrance Pupil Diameter Aperture Value: 25 mm点击单位标签(Units Tab),并确认透镜单位为Millimeters。

ZEMAX单透镜设计例子详细(多图)

ZEMAX单透镜设计例子详细(多图)

ZEMAX单透镜设计例子,单透镜是最简单的透镜系统了,这个例子基本是很多ZEMAX教程开头都会讲的。

1-1 单透镜这个例子是学习如何在ZEMAX里键入资料,包括设罝系统孔径(System Aperture)、透镜单位(Lens Units)、以及波长范围(Wavelength Range),并且进行优化。

你也将使用到光线扇形图(Ray Fan Plots)、弥散斑(Spot Diagrams)以及其它的分析工具来评估系统性能。

这例子是一个焦距100 mm、F/4的单透镜镜头,材料为BK7,并且使用轴上(On-Axis)的可见光进行分析。

首先在运行系统中开启ZEMAX,默认的编辑视窗为透镜资料编辑器(Lens Data Editor, LDE),在LDE可键入大多数的透镜参数,这些设罝的参数包括:∙表面类型(Surf:Type)如标准球面、非球面、衍射光栅…等∙曲率半径(Radius of Curvature)∙表面厚度(Thickness):与下一个表面之间的距离∙材料类型(Glass)如玻璃、空气、塑胶…等:与下一个表面之间的材料∙表面半高(Semi-Diameter):决定透镜表面的尺寸大小上面几项是较常使用的参数,而在LDE后面的参数将搭配特殊的表面类型有不同的参数涵义。

1-2 设罝系统孔径首先设罝系统孔径以及透镜单位,这两者的设罝皆在按钮列中的「GEN」按钮里(System->General)。

点击「GEN」或透过菜单的System->General 来开启General的对话框。

点击孔径标签(Aperture Tab)(默认即为孔径页)。

因为我们要建立一个焦距100 mm、F/4的单透镜。

所以需要直径为25 mm的入瞳(Entrance Pupil),因此设罝:∙Aperture Type:Entrance Pupil Diameter∙Aperture Value:25 mm点击单位标签(Units Tab),并确认透镜单位为Millimeters。

基于ZEMAX的自聚焦透镜设计

基于ZEMAX的自聚焦透镜设计

基于ZEMAX的自聚焦透镜设计作者:宋兴来源:《山东工业技术》2014年第17期摘要:自聚焦透镜主要应用于光纤传输系统中。

自聚焦透镜材料能够使沿轴向传输的光产生折射,并使折射率的分布沿径向逐渐减小,从而实现出射光线被平滑且连续的汇聚到一点。

自聚焦透镜是光纤传输系统中构成准直、耦合、成像系统的主要部分。

本文主要简要概述基于ZEMAX的自聚焦透镜设计。

关键词:自聚焦;ZEMAX;梯度折射率;透镜设计1 自聚焦透镜的特点自聚焦透镜(Grin Lens)又称为梯度变折射率透镜,是指其折射率分布是沿径向渐变的柱状光学透镜。

具有聚焦和成像功能。

自聚焦透镜体积小,重量轻,具有准直和聚焦作用,且耦合效率高。

由双透镜组成的准直聚焦耦合系统中可以有较大间隙以插入滤波片、衰减片等来构成多种体积小、结构紧凑的无源器件,所以在光纤通信系统中得到越来越多的应用。

由于自聚焦透镜内部的折射率变化可以调节,当它用于复杂的光学系统时,可以减少系统中光学元件的数量,在某些场合可以代替非球面光学元件。

此外这种光学元件的几何形状简单,容易进行光学加工,且使用这种光学元件的系统具有结构紧凑、性能稳定、成本低廉等优点。

2 ZEMAX介绍ZEMAX是美国Focus Software Inc所发展出的一套综合性的光学设计仿真软件,将实际光学系统的设计概念、优化、分析、公差以及报表整合在一起。

具有直观、功能强大、灵活、快速、容易使用等优点,还可仿真Sequential和Non-Sequential成像系统和非成像系统,具有直观、功能强大、灵活、快速、容易使用等优点。

自聚焦透镜是由梯度折射率材质构成的,在ZEMAX的表面类型中的Gradient即是梯度透镜。

在本文中也是采用梯度透镜来模拟设计。

3 基于ZEMAX的自聚焦透镜设计自聚焦透镜利用了梯度变折射率分布沿径向逐渐减小的变化特征折射率变化由公式表述。

其中表示自聚焦透镜的中心折射率;表示自聚焦透镜的直径;表示自聚焦透镜的折射率分布常数。

zemax的课程设计

zemax的课程设计

zemax的课程设计一、课程目标知识目标:1. 学生能理解Zemax软件的基本原理和光学设计概念。

2. 学生能够掌握Zemax软件的操作流程,包括建立模型、设置参数、运行仿真和结果分析。

3. 学生能够运用Zemax软件解决实际的光学问题,如透镜设计、光学系统优化等。

技能目标:1. 学生能够独立操作Zemax软件,完成基本的光学设计任务。

2. 学生能够运用Zemax软件进行光学系统的性能分析和优化。

3. 学生通过实践操作,培养解决复杂光学问题的能力。

情感态度价值观目标:1. 学生通过学习Zemax软件,培养对光学工程的兴趣和热情。

2. 学生在团队协作中,学会分享和交流,培养合作精神。

3. 学生通过光学设计实践,认识到科学技术在现实生活中的应用,增强创新意识和实践能力。

课程性质:本课程为实践性较强的学科,结合光学原理和计算机辅助设计,培养学生实际操作能力。

学生特点:学生处于高年级阶段,具备一定的光学基础和计算机操作能力。

教学要求:教师需结合学生特点,采用案例教学和任务驱动教学法,引导学生主动参与实践,培养其光学设计和分析能力。

同时,注重培养学生的团队合作意识和创新思维。

通过本课程的学习,使学生在光学设计和分析方面达到具体的学习成果,为未来的学术研究或工作实践打下坚实基础。

二、教学内容1. Zemax软件概述- 软件基本原理和功能介绍- 光学设计基本流程和概念2. Zemax软件操作基础- 软件界面及工具栏功能介绍- 建立光学系统模型的方法- 设置光学系统参数和求解器配置3. 光学系统设计实例- 透镜设计原理及方法- 光学系统优化技巧- 实际案例分析与讨论4. 光学系统性能分析- 像差分析及控制方法- 光学系统MTF曲线绘制与分析- 光学系统杂散光分析5. Zemax软件综合应用- 非序列光学系统设计- 光学系统与机械结构的协同设计- 光学系统性能评估与优化教学内容安排与进度:第一周:Zemax软件概述及光学设计基本流程第二周:Zemax软件操作基础及建立光学系统模型第三周:透镜设计实例与光学系统优化第四周:光学系统性能分析及杂散光分析第五周:非序列光学系统设计及综合应用教材章节关联:本教学内容与教材中光学设计、光学系统性能分析等相关章节紧密关联,结合实际案例,帮助学生更好地理解和掌握光学设计原理和方法。

ZEMAX单透镜设计例子详细(多图)

ZEMAX单透镜设计例子详细(多图)

ZEMAX单透镜设计例子详细(多图)ZEMAX单透镜设计例子,单透镜是最简单的透镜系统了,这个例子基本是很多ZEMAX教程开头都会讲的。

1-1 单透镜这个例子是学习如何在ZEMAX里键入资料,包括设罝系统孔径(System Aperture)、透镜单位(Lens Units)、以及波长范围(Wavelength Range),并且进行优化。

你也将使用到光线扇形图(Ray Fan Plots)、弥散斑(Spot Diagrams)以及其它的分析工具来评估系统性能。

这例子是一个焦距100 mm、F/4的单透镜镜头,材料为BK7,并且使用轴上(On-Axis)的可见光进行分析。

首先在运行系统中开启ZEMAX,默认的xx视窗为透镜资料xx器(Lens Data Editor, LDE),在LDE可键入大多数的透镜参数,这些设罝的参数包括:表面类型(Surf:Type)如标准球面、非球面、衍射光栅…等曲率半径(Radius of Curvature)表面厚度(Thickness):与下一个表面之间的距离材料类型(Glass)如玻璃、空气、塑胶…等:与下一个表面之间的材料表面半高(Semi-Diameter):决定透镜表面的尺寸大小上面几项是较常使用的参数,而在LDE后面的参数将搭配特殊的表面类型有不同的参数涵义。

1-2 设罝系统孔径首先设罝系统孔径以及透镜单位,这两者的设罝皆在按钮列中的「GEN」按钮里。

点击「GEN」或透过菜单的System->General来开启General的对话框。

点击孔径标签(Aperture Tab)。

因为我们要建立一个焦距100 mm、F/4的单透镜。

所以需要直径为25 mm的入瞳(Entrance Pupil),因此设罝:Aperture Type:Entrance Pupil Diameter Aperture Value:25 mm点击单位标签(Units Tab),并确认透镜单位为Millimeters。

ZEMAX单透镜设计例子详细多图

ZEMAX单透镜设计例子详细多图

ZEMAX单透镜设计例子,单透镜是最简单的透镜系统了,这个例子基本是很多ZEMAX教程开头都会讲的。

1-1 单透镜这个例子是学习如何在ZEMAX里键入资料,包括设罝系统孔径(System Aperture)、透镜单位(Lens Units)、以及波长围(Wavelength Range),并且进行优化。

你也将使用到光线扇形图(Ray Fan Plots)、弥散斑(Spot Diagrams)以及其它的分析工具来评估系统性能。

这例子是一个焦距100 mm、F/4的单透镜镜头,材料为BK7,并且使用轴上(On-Axis)的可见光进行分析。

首先在运行系统中开启ZEMAX,默认的编辑视窗为透镜资料编辑器(Lens Data Editor, LDE),在LDE可键入大多数的透镜参数,这些设罝的参数包括:•表面类型(Surf:Type)如标准球面、非球面、衍射光栅…等•曲率半径(Radius of Curvature)•表面厚度(Thickness):与下一个表面之间的距离•材料类型(Glass)如玻璃、空气、塑胶…等:与下一个表面之间的材料•表面半高(Semi-Diameter):决定透镜表面的尺寸大小上面几项是较常使用的参数,而在LDE后面的参数将搭配特殊的表面类型有不同的参数涵义。

1-2 设罝系统孔径首先设罝系统孔径以及透镜单位,这两者的设罝皆在按钮列中的「GEN」按钮里(System->General)。

点击「GEN」或透过菜单的System->General来开启General 的对话框。

点击孔径标签(Aperture Tab)(默认即为孔径页)。

因为我们要建立一个焦距100 mm、F/4的单透镜。

所以需要直径为25 mm的入瞳(Entrance Pupil),因此设罝:•Aperture Type:Entrance Pupil Diameter•Aperture Value:25 mm点击单位标签(Units Tab),并确认透镜单位为Millimeters。

ZEMAX单透镜设计例子详细(多图)

ZEMAX单透镜设计例子详细(多图)

ZEMAX单透镜设计例子,单透镜是最简单的透镜系统了,这个例子基本是很多ZEMAX教程开头都会讲的。

1-1 单透镜这个例子是学习如何在ZEMAX里键入资料,包括设罝系统孔径(System Aperture)、透镜单位(Lens Units)、以及波长范围(Wavelength Range),并且进行优化。

你也将使用到光线扇形图(Ray Fan Plots)、弥散斑(Spot Diagrams)以及其它的分析工具来评估系统性能。

这例子是一个焦距100 mm、F/4的单透镜镜头,材料为BK7,并且使用轴上(On-Axis)的可见光进行分析。

首先在运行系统中开启ZEMAX,默认的编辑视窗为透镜资料编辑器(Lens Data Editor, LDE),在LDE可键入大多数的透镜参数,这些设罝的参数包括:•表面类型(Surf:Type)如标准球面、非球面、衍射光栅…等•曲率半径(Radius of Curvature)•表面厚度(Thickness):与下一个表面之间的距离•材料类型(Glass)如玻璃、空气、塑胶…等:与下一个表面之间的材料•表面半高(Semi-Diameter):决定透镜表面的尺寸大小上面几项是较常使用的参数,而在LDE后面的参数将搭配特殊的表面类型有不同的参数涵义。

1-2 设罝系统孔径首先设罝系统孔径以及透镜单位,这两者的设罝皆在按钮列中的「GEN」按钮里(System->General)。

点击「GEN」或透过菜单的System->General 来开启General的对话框。

点击孔径标签(Aperture Tab)(默认即为孔径页)。

因为我们要建立一个焦距100 mm、F/4的单透镜。

所以需要直径为25 mm的入瞳(Entrance Pupil),因此设罝:•Aperture Type:Entrance Pupil Diameter•Aperture Value:25 mm点击单位标签(Units Tab),并确认透镜单位为Millimeters。

ZEMAX光学成像设计实例---ZEMAX基础实例-变焦镜头设计

ZEMAX光学成像设计实例---ZEMAX基础实例-变焦镜头设计

引言● 在我们要求具焦的能● 所谓变同范围变焦距● 由于一是使用大家通变焦镜头我们知道说一个系统大小、视场I 为像高im变焦镜头对孔径保持变焦时采取通过改变ZE 们成像镜头设具备变焦的能能力便可以应变焦,即镜头围景物的成像距来改变拍摄一个系统的焦用类似定焦镜通过举一反三头设计原道,设计好的统的接收面尺场和焦距三者mage, f 为焦头的变焦倍数持不变,但对取相对孔径(变镜片与镜片焦EMAX 设计要求中,能力,如CCT 应用于多种环头的焦距在一像。

我们通常所摄范围,因此焦距在某一范镜头的分析优三的练习可掌理介绍:的一组镜头如寸大小是固定有如下关系焦距,theta 为数为长焦距和于实际的高变即F/#)也跟片之间的间隔焦距变化,视角相应改变X 基础通常分两种:TV 监控镜头,环境条件,放大定范围可调节所说的变焦镜此非常利于画面范围可变,相当优化方法,本节掌握变焦镜头在如果变化镜片定不变的(像: 为视场角度。

和短焦距比值变倍比系统,跟随变化的方隔达到设计的视场变础实例-:定焦镜头与,红外探测镜大缩小或局部节,通过改变镜头一般指摄面构图。

当于由无数多节我们将带领在ZEMAX中片与镜片之间像面:CCD 或。

如下图所不值,也称为“,由于外形尺方案。

的焦距要求,变焦镜与变焦镜头。

镜头,摄影镜部特写,这是变焦距从而改摄像镜头,即多个定焦系统领大家使用Z 中的设计优化间的空气厚度COMS 或其它不:“倍率”。

理尺寸不希望过当系统的入镜头设成像镜头在镜头,双筒望是一个定焦镜改变系统视场即在不改变拍统组成的。

我ZEMAX 来设计化方法。

度,镜头的焦它探测面),理论定义下,过大或二级光入瞳直径D 固设计在很多实际应望远镜等等,镜头所无法完场大小,达到拍摄距离的情我们在设计变计一个完整的焦距会随之变在基础光学在变焦过程光谱校正等问固定时,即系像面尺寸相同应用中通常也镜头具备变完成的。

到不同矩离不情况下通过改变焦镜头时也的变焦镜头,变化。

ZEMAX光学成像设计实例---ZEMAX基础实例-单透镜设计

ZEMAX光学成像设计实例---ZEMAX基础实例-单透镜设计

第二章 基础实例设计ZEMAX基础实例 ‐ 单透镜设计引言• 在成像光学系统设计中,主要指的是透镜系统设计,当然也有一些反射系统或棱镜系统。

• 在透镜系统设计中,最基础、最简单的便是单透镜设计。

但我们不要小看这样的单透镜系统,因为它也代表了一个光学系统设计的完整流程。

麻雀虽小,五脏俱全!• 本节中,我们通过手把手的操作,为大家展示使用 ZEMAX 进行成像光学设计的完整流程。

使初学者快速领略到ZEMAX光学设计的风采,在轻松的设计中感受到光学设计的乐趣。

• 通过单透镜设计,可以使大家学习到Z EMAX 序列编辑器建模方法,光束大小设置方法,视场设置方法,变量的设罝方法,评价函数设置方法,优化方法,像差分析方法和提髙像质的像差平衡方法等,单透镜系统参数设计任何一个镜头,我们都必须有特定的要求,比如焦距,相对口径,视场,波长,材料,分辨率,渐晕,MTF等等,根据系统的简易程度客户给的要求也各不相同。

由于单透镜最简单的系统,要求也就很少。

本例中我们设计单透镜规格参数如下:EPD = 20mmF/#=10FFOV= 10 degreeWavelength 0.587umMaterial BK7Best RMS Spot Radius首先我们需要把知道的镜头的系统参数输入软件中,系统参数包括三部分:光束孔径大小,视场类型及大小,波长。

在这个单透镜的规格参数中,入瞳直径(EPD)为20mm,全视场(FFOV)为10度,波长0.587微米,分别如下说明。

1、点击System » General或点快捷按扭Gen打开通用设置对话框:入瞳直径即到还有其它像空间F 数互转换。

物空间数值直接定义物随光阑尺寸用这种类型本例中,我2、点击打开即用来直接确它几种光束孔(Image Space 值孔径(Object 物点发光角度寸漂移(Float B 型来计算入瞳我们只需选择开视场对话框定进入系统光孔径定义类型e F/#),用于t Space NA),来约束进入系By Stop Size),瞳的大小。

ZEMAX光学设计第02讲ZEMAX实例:单透镜设计

ZEMAX光学设计第02讲ZEMAX实例:单透镜设计

球差
最小模糊圈 近轴焦点
横向像差 纵向像差 球差存在时最清楚面不在近轴焦点处!
光学像差 分类
•几何像差(单色像差)
–起源于非近轴光线的聚焦
• 球差 (spherical aberration) • 彗差 (coma) • 像散 (astigmatism) • 场曲 (field curvature) • 畸变 (distortion)
•色像差 Chromatic aberration
–起源于透镜折射率随波长改变,因此不同颜色聚焦 在不同位置
像差的起源
• 球差 (spherical aberration) • 彗差 (coma) • 像散 (astigmatism) • 场曲 (field curvature) • 畸变 (distortion)
ZEMAX光学设计 (第2讲)
Optical Design & ZEMAX
ZEMAX实例:单透镜设计
1.设计流程
系统参数输入 初始结构创建 优化变量设置 评价目标函数设置
像质分析 系统改进提高
再优化
2.单透镜设计实例
(1)LDE 透镜数据编辑
(2)孔径、视场、波长参数输入
3.球差
longitudinal aberrations
像差的起源
其他五种像差
• 统称为几何像差 • 在后面一一描述
球差
慧差
像散
场曲
畸变
H. Gross ed., Handbook of Optical Systems, Ch29.4, Wiley-VCH (2007)
像差的起源
• 另一种常见的像差表示法Zernike多项式
垂直倾斜
45°像散

ZEMAX光学设计 - 目镜设计精选全文完整版

ZEMAX光学设计 - 目镜设计精选全文完整版

可编辑修改精选全文完整版25.5目镜的设计示例学号:*********姓名:**班级:12光电班设计一:系统基本参数:视场角2ω:60度焦距:20mm相对孔径:1:8出瞳直径:3~4mm出瞳距离:10mm系统CAD图Prescription Data1.Lens Data Editor2.系统二维结构图3.系统三维结构图4.场曲与畸变5.弥散斑弥散斑半径较小,符合系统设计要求6.MTF所有视场在40lp/mm处时MTF>0.2,且MFT的变化趋势与衍射极限基本相同,符合设计需求。

设计二:系统基本参数:视场角2ω:60度焦距:20mm相对孔径:1:8出瞳直径:3~4mm出瞳距离:10mm系统CAD图Prescription Data设计思路:1.选择初始结构选择对称型作为初始结构,初始结构系统二维图如下。

2.将两透镜之间距离增大,方便安放第三个透镜将两透镜间的距离增大到14mmLens Data Edior系统二维图3.插入第三个透镜在第4面后插入两面,形成新的第5面和第6面,第4面与第5面的距离为6mm,第5面与第6面的距离为2mm,第6面与第7面的距离为6mm。

插入的透镜的玻璃选用BAK1。

Lens Data Editor系统二维图4.将波长,视场与入瞳直径改为设计要求值入瞳直径改为4mm波长改为F,d,c[Visible]视场改为0,21.21,30将出瞳距改为10mm Lens Data Editor系统二维图5.设定优化条件,开始优化设定最小镜片厚度为0.5,边缘厚为0.1,最大镜片厚度为100设定最小空气厚度为0.5,边缘厚为0.1,最大空气厚度为100将透镜的半径与距离设为变量EFFL为20mm开始优化最终优化结构Lens Data Editor系统二维图MTF曲线:6.达不到系统设计要求,将透镜设为变量,再次优化达到设计要求时的各数值Lens Data editor系统二维图MTF7.将透镜改回固定Lens Data Editor系统二维图MTF8.再次执行优化由于尚不能达到系统要求,因此在透镜修改过后,继续执行优化系统各项参数Lens Data Editor系统结构二维图系统三维结构图MTF系统MTF较高,且变化趋势与衍射极限相同,符合设计要求弥散斑弥散斑半径较小,在视场为30度时,半径为12.607mm,符合系统设计要求。

ZEMAX光学设计讲义

ZEMAX光学设计讲义

ZEMAX光学设计讲义导言:光学设计是一门重要的工程学科,它主要研究光学系统的设计、分析和优化。

而ZEMAX是光学设计中常用的一种软件工具,它主要用于模拟和优化光学系统的性能。

本篇讲义将介绍ZEMAX的基本原理、使用方法以及一些常见的光学设计案例。

一、ZEMAX的基本原理1.光线追迹ZEMAX的核心原理是光线追迹。

它通过追踪光线在光学系统中的传播路径,并计算出光线经过每个光学元件后的参数变化,如位置、方向、光强等。

通过光线追踪,可以得到光学系统的传输特性,并进行光学系统的性能优化。

2.光学元件建模为了进行光线追踪,需要对光学元件进行建模。

在ZEMAX中,可以通过输入光学元件的参数来进行建模,如曲率半径、折射率、厚度等。

同时,ZEMAX还提供了一套丰富的光学元件库,包括透镜、棱镜、光阑等。

用户可以根据需要选择相应的光学元件进行系统设计。

3.光学系统优化ZEMAX不仅可以进行光学系统的传输特性计算,还可以进行系统的性能优化。

在ZEMAX中,可以设定一系列的优化目标,并通过调整光学系统的参数来达到这些目标。

优化过程主要包括两个阶段,即初始设计和优化迭代。

在初始设计阶段,需要根据设计要求设置光学系统的初值。

在优化迭代阶段,ZEMAX根据预设的优化目标和约束条件,自动调整光学系统的参数,并不断迭代,直到达到最佳设计。

二、ZEMAX的使用方法1.软件安装与启动2.创建新项目在ZEMAX中,每个光学系统都是一个项目。

创建新项目时,需要设定项目的名字和工作目录。

在新建项目后,可以开始进行光学系统的设计。

3.设计光学系统设计光学系统的过程是通过将光学元件拖拽至光学系统的视图中来完成的。

光学元件可以是来自库中的标准元件,也可以根据实际情况进行自定义。

在拖拽元件至视图中后,可以通过双击元件来设置其具体参数。

4.进行光线追踪设计完成后,可以进行光线追踪。

在ZEMAX中,可以选择单个或多个光线进行追踪,并观察光线的传播路径和参数变化。

ZEMAX单透镜设计例子详细(多图)

ZEMAX单透镜设计例子详细(多图)

ZEMAX单透镜设计例⼦详细(多图)ZEMAX单透镜设计例⼦,单透镜是最简单的透镜系统了,这个例⼦基本是很多ZEMAX教程开头都会讲的。

1-1 单透镜这个例⼦是学习如何在ZEMAX⾥键⼊资料,包括设罝系统孔径(System Aperture)、透镜单位(Lens Units)、以及波长范围(Wavelength Range),并且进⾏优化。

你也将使⽤到光线扇形图(Ray Fan Plots)、弥散斑(Spot Diagrams)以及其它的分析⼯具来评估系统性能。

这例⼦是⼀个焦距100 mm、F/4的单透镜镜头,材料为BK7,并且使⽤轴上(On-Axis)的可见光进⾏分析。

⾸先在运⾏系统中开启ZEMAX,默认的编辑视窗为透镜资料编辑器(Lens Data Editor, LDE),在LDE可键⼊⼤多数的透镜参数,这些设罝的参数包括:表⾯类型(Surf:Type)如标准球⾯、⾮球⾯、衍射光栅…等曲率半径(Radius of Curvature)表⾯厚度(Thickness):与下⼀个表⾯之间的距离材料类型(Glass)如玻璃、空⽓、塑胶…等:与下⼀个表⾯之间的材料表⾯半⾼(Semi-Diameter):决定透镜表⾯的尺⼨⼤⼩上⾯⼏项是较常使⽤的参数,⽽在LDE后⾯的参数将搭配特殊的表⾯类型有不同的参数涵义。

1-2 设罝系统孔径⾸先设罝系统孔径以及透镜单位,这两者的设罝皆在按钮列中的「GEN」按钮⾥(System->General)。

点击「GEN」或透过菜单的System->General 来开启General的对话框。

点击孔径标签(Aperture Tab)(默认即为孔径页)。

因为我们要建⽴⼀个焦距100 mm、F/4的单透镜。

所以需要直径为25 mm 的⼊瞳(Entrance Pupil),因此设罝:Aperture Type:Entrance Pupil DiameterAperture Value:25 mm点击单位标签(Units Tab),并确认透镜单位为Millimeters。

基于ZEMAX的简单透镜的优化设计

基于ZEMAX的简单透镜的优化设计

实验二基于ZEMAX的简单透镜的优化设计一.实验目的学会用ZEMAX对简单单透镜和双透镜进行设计优化。

二.实验要求1.掌握使用ZEMAX实现光学优化设计的基本过程;2.学会生成光线像差(ray aberration)特性曲线、光程差(OPD)曲线和点列图(Spotdiagram)、焦点色位移图和场曲图;3.学会面厚度的求解方法,学会定义透镜的边缘厚度解和视场角,进行简单的优化;4. 初步掌握为实际生产和装配考虑的额外设计和优化。

三.实验原理(一)基本设计过程1.拟好设计草图(光路图);2.软件仿真光路图;3. 优化设计:像质分析评价—优化—再分析评价—再优化--……达到指标;4. 输出结果。

(二)优化设计仿真光路图完成以后,调用各种像质分析图进行像质分析评价,看设计是否达标,如还未达标,则恰当使用各种优化工具进行初步优化;然后再重新进行分析评价,看是否达标,如此反复,直到设计达标。

1.像质分析图。

本实验中需学会调用光线像差(ray aberration)特性曲线、光程差(OPD)曲线和点列图(Spot diagram)、焦点色位移图和场曲图来进行像质分析评价,各图可从主菜单-分析中调出。

光线像差(ray aberration)特性曲线:关于光瞳坐标函数的光线像差特征曲线,见理论课内容。

光程差(OPD)曲线:见理论课内容。

点列图(Spot diagram):焦点色位移图(Chromatic Focal Shift):不同波长(颜色)的光线对于同一个正透镜的不同焦距的曲线,可直观看出色差的大小。

视场、场曲图:见理论课内容。

2.调用优化工具进行优化。

本实验中需掌握solves功能和评价函数(Merit Function)两种优化工具。

(1)Solves功能:解(solves),能使一些函数可以自动地调整特定值,可在曲率、厚度、玻璃名称、半径、圆锥系数等参数上指定;(2)评价函数:评价函数也叫优化函数,可由直接调用系统自带默认评价函数或用户自创评价函数来创建,函数中的变量由用户自己在镜头数据编辑框中设置,函数值会实时显示在评价函数编辑框的表头上,函数值越小,说明优化的结果越好。

双光纤自聚焦透镜组件设计及光路仿真

双光纤自聚焦透镜组件设计及光路仿真

第40卷 第8期兵器装备工程学报2019年8 月 收稿日期:2019-01-09;修回日期:2019-02-15基金项目:国家自然科学基金项目(U1530135)作者简介:湛赞(1995—),男,硕士研究生,主要从事激光火工系统研究,E mail:1007164648@qq.com。

通讯作者:严楠(1960—),男,教授,主要从事新型火工品设计研究,E mail:yn@bit.edu.cn。

【光学工程与电子技术】doi:10.11809/bqzbgcxb2019.08.040双光纤自聚焦透镜组件设计及光路仿真湛 赞1,严 楠1,李朝振1,程 俊2,高广泽3,曾雅琴4,宋乾强4(1.北京理工大学爆炸科学与技术国家重点实验室,北京 100081;2.中国科学院国家天文台,北京 100101;3.兵器装备研究院,北京 102202;4.北京宇航系统工程研究所,北京 100076)摘要:采用ZEMAX软件对双光纤在线自检系统进行光路仿真,设计了双光纤自聚焦透镜组件。

对双光纤自聚焦透镜组件的光能传输性能进行仿真测试及菲涅尔反射定理计算,差别在1%以内,说明在正常光路下,能量损耗来源主要是菲涅尔反射。

对双光纤自聚焦透镜组件进行测试,仿真结果和试验结果差别在10%以内,证明了仿真结果的正确性。

关键词:激光点火;在线自检;ZEMAX软件;自聚焦透镜;菲涅尔反射本文引用格式:湛赞,严楠,李朝振,等.双光纤自聚焦透镜组件设计及光路仿真[J].兵器装备工程学报,2019,40(8):203-206,236.Citationformat:ZHANZan,YANNan,LIChaozhen,etal.SimulationandDesignoftheDual FiberGRINLensAssembly[J].JournalofOrdnanceEquipmentEngineering,2019,40(8):203-206,236.中图分类号:TJ45文献标识码:A文章编号:2096-2304(2019)08-0203-04SimulationandDesignoftheDual FiberGRINLensAssemblyZHANZan1,YANNan1,LIChaozhen1,CHENGJun2,GAOGuangze3,ZENGYaqin4,SONGQianqiang4(1.StateKeyLaboratoryofExplosionScienceandTechnology,BeijingInstituteofTechnology,Beijing100081,China;2.TheNationalAstronomicalObservatoriesoftheChineseAcademyofSciences,Beijing100101,China;3.OrdnanceEquipmentResearchInstitute,Beijing102202,China;4.BeijingAerospaceSystemsEngineeringInstitute,Beijing10076,China)Abstract:TheZEMAXsoftwarewasusedtosimulatetheopticalpathofthedual fiberbuilt in testsystem,andadual fiberGRINlensassemblywasdesigned.Theopticalenergytransmissionperformanceofthedual fiberGRINlensassemblywassimulatedandtheFresnelreflectiontheoremwascalculated.Thedifferenceiswithin1%,indicatingthattheenergylossismainlyFresnelreflectionundernormallightpath.Thetestofthedual fiberGRINlensassemblywascarriedout.Thesimulationandtestresultsarewithin10%,whichprovesthecorrectnessofthesimulationresults.Keywords:laserignition;built in test;ZEMAXsoftware;GRINlens;Fresnelreflection 随着战场电磁环境不断恶化,常规的金属桥丝电火工品越来越显露出其弊端,造成了大量的意外发火事故[1]。

zemax自聚焦透镜设计

zemax自聚焦透镜设计

zemax自聚焦透镜设计目录摘要........................................................................ I .. Abstract ............................................................... II 绪论 (1)1自聚焦透镜简介 (2)1.1自聚焦透镜 (2)1.2自聚焦透镜的特点 (2)1.3自聚焦透镜的主要参数 (3)2自聚焦透镜的应用 (4)2.1聚焦和准直 (4)2.2光耦合 (5)2.3单透镜成像 (6)2.4自聚焦透镜阵列成像 (6)3球面自聚焦透镜设计仿真 (8)3.1确定透镜模型 (8)3.2设置波长 (8)3.3数值孔径设定 (9)3.4自聚焦透镜光路 (9)4优化参数................................................................ 1..04.1光线相差分析..................................................... 1..04.2聚焦光斑分析..................................................... 1..24.33D 模型.......................................................... 1..2结束语.................................................................... 1..3致谢..................................................................... 1..4参考文献.................................................................. 1..5摘要本文主要说明应用梯度折射率对光传播的影响分析设计自聚焦透镜( GRIN lens ),自聚焦透镜主要应用于光纤传输系统中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录摘要 (I)Abstract .......................................................................................................................................... I I 绪论 . (1)1 自聚焦透镜简介 (2)1.1自聚焦透镜 (2)1.2 自聚焦透镜的特点 (2)1.3 自聚焦透镜的主要参数 (3)2 自聚焦透镜的应用 (4)2.1 聚焦和准直 (4)2.2 光耦合 (5)2.3 单透镜成像 (6)2.4 自聚焦透镜阵列成像 (6)3 球面自聚焦透镜设计仿真 (8)3.1 确定透镜模型 (8)3.2 设置波长 (8)3.3数值孔径设定 (9)3.4 自聚焦透镜光路 (9)4 优化参数 (10)4.1光线相差分析 (10)4.2聚焦光斑分析 (12)4.3 3D模型 (12)结束语 (13)致 (14)参考文献 (15)摘要本文主要说明应用梯度折射率对光传播的影响分析设计自聚焦透镜(GRIN lens),自聚焦透镜主要应用于光纤传输系统中。

自聚焦透镜同普通透镜的区别在于,自聚焦透镜材料能够使沿轴向传输的光产生折射,并使折射率的分布沿径向逐渐减小,从而实现出射光线被平滑且连续的汇聚到一点。

利用此特性,G-lens 在光纤传输系统中是构成准直、耦合、成像系统的主要部分。

而它结构简单,体积小的特点更适用于小型光学器材中,例如窥镜系统。

关键词:梯度折射率,自聚焦,光耦合,准直AbstractThis article main showing the impact analysis designs the self-focusing lens using the gradient refractive index to the light emission (GRIN lens), the self-focusing lens mainly apply in the optical fiber transmission system. The self-focusing lens lie in with the ordinary lens' difference, the self-focusing lens material can cause along the axial transmission light to have the refraction, and causes the refractive index the distribution to reduce gradually along the radial direction, thus realizes the exit ray by smooth and the continual gathering to a spot. Using this characteristic, G-lens in the optical fiber transmission system is the constitution collimation, the coupling, imaging system's main part. But its structure is simple, the volume small characteristic is suitable in the small optics equipment, for example looking glass system.Keywords:Gradient index, GRIN lens, Light coupling,Collimation绪论自聚焦透镜体积小,重量轻,具有准直和聚焦作用,且耦合效率高。

由双透镜组成的准直聚焦耦合系统中可以有较大间隙以插入滤波片、衰减片等来构成多种体积小、结构紧凑的无源器件,所以在光纤通信系统中得到越来越多的应用。

由于这种GRIN棒内部的折射率变化可以调节,当它用于复杂的光学系统时,可以减少系统中光学元件的数量,在某些场合可以代替非球面光学元件。

此外这种光学元件的几何形状简单,容易进行光学加工,且使用这种光学元件的系统具有结构紧凑、性能稳定、成本低廉等优点。

因此GRIN棒透镜已经被越来越多地应用于光学系统,尤其是在光纤通信领域中。

其中自聚焦透镜用于光纤之间的连接、隔离、定向耦合,波分复用、解复用器件以及光开关等显示出独特的优势。

ZEMAX是美国Focus Software Inc.所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算Seqential及Non-Seqential的软件。

ZEMAX 是一套综合性的光学设计仿真软件,它将实际光学系统的设计概念、优化、分析、公差以及报表整合在一起。

ZEMAX 不只是透镜设计软件而已,更是全功能的光学设计分析软件,具有直观、功能强大、灵活、快速、容易使用等优点。

1 自聚焦透镜简介1.1自聚焦透镜渐变折射率材料有径向渐变和轴向渐变折射率材料,自聚焦透镜是使用径向渐变折射率材料制成的透镜,其折射率分布式沿径向渐变的柱状光学透镜。

具有准直、聚焦和成像功能[1]。

随着人们对于信息需求量的日益增加,光纤通信系统正以日新月异的速度迅速发展,有两类光纤通信系统备受人们青睐,一类是长途干线光纤通信系统;另一类是局域网和用户回路光纤通信系统。

在光纤局域网和用户回路通信系统中,需要用到大量的光无源及有源器件,例如:光耦合器、波分复用器、光开关和光收发器件等等。

这些器件无一例外使用了自聚焦透镜。

1.2 自聚焦透镜的特点光线在空气中传播当遇到不同介质时,由于介质的折射率不同会改变其传播方向。

传统的透镜成像是通过控制透镜表面的曲率,从而完成聚焦和成像功能的。

自聚焦透镜同普通透镜的区别在于,自聚焦透镜材料不仅能够使沿径向传输的光产生折射,而且其沿径向逐渐减小的折射率分布,能够实现出射光线被平滑且连续的汇聚到一点[2]。

它们的光路如图1.1所示。

图1.1 普通透镜和自聚焦透镜光路自聚焦透镜利用了梯度变折射率分布沿径向逐渐减小的变化特征[3],其折射率变化由公式1表述。

其折射率分布曲线见图1.2。

)21()(2r A N r N O -= (1) 公式(1)中:O N ——表示自聚焦透镜的中心折射率D ——表示自聚焦透镜的直径A ——表示自聚焦透镜的折射率分布常数 图1.2 自聚焦透镜折射率分布曲线1.3 自聚焦透镜的主要参数截距P ——在自聚焦透镜中光束是沿正弦轨迹传播,完成一个正弦波周期的长度即成为一个截距P 。

长度Z ——自聚焦透镜的长度为透镜两端面轴心间的距离。

折射率分布常数——自聚焦透镜的折射率沿径向分布常数。

在此可以是A 或A 。

数值孔径——孔径NA 有两种表示方式,如公式(2)所示。

22N N nSin NA O m m -==αα (2) 公式(2)中:O N ——表示自聚焦透镜的中心折射率N ——表示入射光所在介质的折射率m α ——表示入射光线的最大孔径角2 自聚焦透镜的应用由于自聚焦透镜具有端面聚焦及成像特性,以及圆柱状的外形特点,因而可以应用在多种不同的微型光学系统中,自聚焦透镜的主要功能有聚焦、准直和成像。

2.1 聚焦和准直穿透透镜在聚焦时存在着结构尺寸大,结构复杂,聚焦光斑大,不能再端面聚焦的缺点(如图1.2.1所示),但自聚焦透镜在聚焦时克服了这些缺点。

根据自聚焦透镜的传光原理,对于Z=1/4P 截距的自聚焦透镜,当从一端面输入是一束平行光时,经过自聚焦透镜后光线汇聚在另一端面上,由球差理论可得自聚焦透镜聚焦点光斑的尺寸公式为:)(1220NA f N R π= (3)公式(3)中:R ——为焦点处光斑的半径NA ——为数值孔径f ——为焦距0N ——为轴上的折射率准直是聚焦功能的逆向运用。

根据自聚焦透镜的传光原理,对于Z=1/4P 截距的自聚焦透镜,当汇聚光从自聚焦透镜一端面输入时,经过自聚焦透镜后会转变成平行光线,自聚焦透镜的这一准直功能如图2.1所示。

图2.1 自聚焦透镜准直应用2.2 光耦合由于自聚焦透镜可以通过水平端面完成聚焦功能,加之其简单圆柱外形,使得其在进行光能量链接及转换中有着很广泛的用途,自聚焦透镜的这种聚焦功能使其能够应用于多种光耦合场所,例如:光纤和光源(如图2.2所示)、光纤和光电探测器一级光纤和光纤之间的耦合等等。

图2.2 平面自聚焦透镜耦合为了达到更好的聚焦效果,会在平端面自聚焦透镜一端面加工一个1mm~3mm的曲面,此曲面与平端面自聚焦透镜弥散斑小如图2.3所示。

因此球面自聚焦透镜可减小聚焦光斑尺寸[4]。

图2.3球面自聚焦透镜聚焦光斑图2.4中表示L1为光源或光纤到自聚焦透镜端面的距离,Z为自聚焦透镜的长度,L2为自聚焦透镜端面到光纤的距离。

为了使光源或光纤发出的光经过自聚焦透镜聚焦后能够有效地耦合进光纤,需要调节L1 和L2的距离来达到最佳耦合效率。

但是,在实际耦合过程中,耦合效率要小于其理论值,其原因是耦合效率与器件的结构和使用方法有直接的关系。

图2.4 光纤传输耦合聚焦光轨迹图2.3 单透镜成像自聚焦透镜除了具备一般曲面透镜的成像功能还具备端面成像的特性。

对于P/2及1P截距的自聚焦透镜其端面成像机理如图2.5所示。

P/2截距的自聚焦透镜其端面成等大倒像,而1P截距的自聚焦透镜其端面成等大正像。

对于P/4截距的自聚焦透镜物在无穷远处时象在其后端面(只要物距远远大于透镜长度时可理解为无穷远)。

图2.5自聚焦透镜端面成像示意图2.4 自聚焦透镜阵列成像自聚焦透镜阵列(如图2.6所示)成像:当采用球面透镜组合传送大幅图象时,目的是为了得到的1∶1的像,但是其共轭距一般是焦距的4倍。

通过使用自聚焦透镜阵列,可大大缩短共轭距,使整个器件尺寸小型化;另一方面成直线排列的自聚焦透镜阵列在整条直线上的成像分辨率相同,而整个视场的传递函数值比较均匀,大大提高成像质量,同时克服了普通球面透镜在透镜外围成像的分辨率和清晰度比中心低,以及组合装配工作复杂的缺点[5]。

因此自聚焦透镜阵列成为复印机、传真机、扫描仪等仪器设备的重要器件。

图2.6 自聚焦透镜阵列成像示意图3 球面自聚焦透镜设计仿真自聚焦透镜是由梯度折射率材质构成的,在zemax的表面类型中的Gradient 即是梯度透镜。

库中有10种类型,在此选用Gradient9 符合前面原理分析中的折射率分布函数公式(1)。

相关文档
最新文档