第二章导数与微分
第2章导数与微分总结
1、极限的实质是:动而不达导数的实质是:一个有规律商的极限。
规律就是:2、导数的多种变式定义:lim 丄一x)f°)是描述趋近任意 x 时的斜率。
而x 03、I若x 没趋近到x0,那么除法得到的值是这段的平均斜率, 如果趋近到了 x0,得到的就是这点的斜率一一导数。
4、可导与连续的关系:1基础总结lim -= limx 0 x x 0 f(x X)f(x)xlim x x o f(x )f (x o )X o叫 号严可以刻画趋近具体x0时的斜率。
lim o要注意细心观察发现,导数的实质是定义在某点的左右极限。
既然定义在了某点上,该点自然存在,而 且还得等于左右极限。
因此,可导一定是连续的。
反之,如果连续,不一定可导。
不多说。
同理,如果不连续,肯定某点要么无定义,要么定义点跳跃跑了,肯定 极限有可能存在,但是导数绝不会存在。
同理要注意左右导数的问题。
如果存在左或者右导数,那么在左侧该点一定是存 在的。
如:f(x) x,x 0这个函数,在0点就不存在左导数,只存在右导数。
为什么嫩?看定义:万不要以为导数是一种简单的极限,极限是可以在某点无定义的,而导数却是该 点必须存在! 由此引发了一些容易误判的血案: 例如:A 旦主^謎IC m F 左电鼓 pg 总生戟乞f ( x) f (x)-中的f(x))至u 底是神马。
比如求上图limf(x x) f(x)x 0xlimf(X X)f(0)。
x 0定义里面需要用到f(0)啊!因此,千中 iimf (x)论) x 1x x 0,这个f(x0)千万要等于2/3,而不是1 !定义解决时候一定要注意问。
X X o由此也可以知道,f (x)2x 3, x 1这个函数是不存在导数的,也不存在左导数,3只存在右导数。
5、反函数的导数与原函数的关系:注意,求反函数时候不要换元。
因为换了元虽然对自身来讲函数形式不变, 与原函数融合运算时候就算是换了一个不是自己反函数的一个函数进行运算 果显然是错误的。
高等数学 第二章 导数与微分
(2)算比值: y f (x x) f (x) .
x
x
(3)求极限: f (x) lim y lim f (x x) f (x) .
x x0
x0
x
四、函数可导性与连续性的关系
定理 如果函数 y f (x) 在点 x0 处可导,则函数 y f (x) 在点 x0 处一定连续. 如果函数 f (x) 在点 x0 处连续,则函数 f (x) 在点 x0 处不一定可导.
第二章
导数与微分
导学
我们在解决实际问题时,除了需要确定变量之间的函数关系外,有时 还需要研究函数相对于自变量变化的快慢程度,即函数的变化率,以及当 自变量发生微小变化时函数的近似改变量,这两个问题就是我们本章所要 讨论的主要内容——导数与微分.
第一节
导数的概念
一、导数的定义
设某物体在数轴上做变速直线运动,运动方程为 s s(t) ,现在求该物体在 t0 时刻的瞬时速度 v(t0 ) .
当
u
C (C
为常数)时,有
C v
Cv v2
.
二、反函数的求导法则
定理 2 如果函数 x f ( y) 在区间 I y 内单调、可导且 f ( y) 0 ,那么它的反函数 y f 1(x) 在
区间 Ix {x | x f ( y) ,y I y} 内也可导,且有
[ f 1(x)] 1 或 dy 1 .
当时间 t 由 t0 变到 t0 t 时,物体的路程 s(t) 由 s(t0 ) 变到 s(t0 t) ,
路程的增量 s 为 s s(t0 +t) s(t0 ) ,
物体在
t0
到 t0
t
这段时间内的平均速度为
v
s t
高中物理课件-高数第二章-导数与微分--课件
例2.已知 f x0 存在,求
lim f x0 ah f x0 bh
h0
h
3、导数的意义
函数 y f x在点x0 处的导数f x0
是因变量 y在点x0处的变化率,它反
映了 在点x0 处因变量随自变量的变
化而变化的快慢程度。
(二)导函数
1、定义:如果函数 y f x 在开区间
四、基本求导法则与导数公式
(一)常数和基本初等函数的导数公式
1. C 0
2. x x1
3. sin x cos x
4. cos x sin x
5. ta n x sec2 x 6. cot x csc2 x
7. sec x sec x tan x 8. csc x csc x cot x
则
k0
lim xx0
f
x f x0 就是曲线C
x x0
在 M0 x0, y0 点处切线的斜率。
二、导数的定义 (一)函数在一点处的导数
1、定义:设函数 y f x在点x0的某个
邻域内有定义,当自变量 x在x0 处取得
增量 x(点 x0
时 , 相应地函数
x 仍在该邻域内)
y 取得增量
chx shx
thx
1 ch2
x
arshx 1 archx 1
1 x2
x2 1
arthx
1
1 x2
例18.求
y cos x2 sin 1 arctan thx x
的导数。
例19.
y sin nxsinn xn为常数,求y
§2-3 高阶导数
(一)二阶导数
1、定义:把 y f x 的导数叫做函数
x xx0 x0
专升本高数数学第二章导数与微分
导数的几何意义
总结词
导数的几何意义是切线的斜率。
详细描述
函数在某一点的导数等于该点处切线的斜率。如果函数在某点可导,那么在该点处一定存在切线,并且切线的斜 率就是函数的导数值。
导数的物理意义
总结词
导数的物理意义是描述物理量变化率的重要工具。
详细描述
在物理学中,许多物理量的变化率都可以用导数来描述。例如,速度是位置函数的导数,加速度是速 度函数的导数等。通过导数的计算,可以深入了解物理量的变化规律和性质。
微分的物理意义是函数值随自变量变化的速率。
02
在物理量中,速度、加速度、角速度等都是微分的应
用,它们都是描述物理量随时间变化的速率。
03
微分可以用来解决物理中的一些问题,如求瞬时速度
、加速度等。
04 导数与微分的应用
CHAPTER
导数在几何中的应用
切线斜率
导数可以用来求曲线上某一点的 切线斜率,从而了解曲线在该点 的变化趋势。
专升本高数数学第二章导数与 微分
目录
CONTENTS
• 导数概念 • 导数的运算 • 微分概念 • 导数与微分的应用
01 导数概念
CHAPTER
导数的定义
总结词
导数是描述函数在某一点附近的变化 率的重要概念。
详细描述
导数定义为函数在某一点处的切线的 斜率,即函数在该点附近的小范围内 变化的速度。导数的计算公式为极限 lim(x->0) [f(x+Δx)-f(x)]/Δx,其中 Δx是自变量的增量。
解的精度。
无穷小分析
03
微分是无穷小分析的基础,可以用来研究函数在无穷小情况下
的性质和变化趋势。
谢谢
《高数数学(上)》-导数与微分
解 (1)根据导数定义并运用极限的运算法则
u(x)v(x) lim u(x x)v(x x) u(x)v(x)
x0
x
u(x x)v(x x) u(x)v(x x) u(x)v(x x) u(x)v(x)
定理2.1
函数f (x)在x0 处可导的充要条件是左、右导数都存在
且相等.
7
一、 导数的定义
例 1 若函数f (x)在x=0 处连续,且 lim f (x) 存在, x0 x
证明f (x)在x=0 处可导.
证法一
设 lim f (x) A(A为常数),则 x0 x
lim f (x) lim x f (x) 0 A 0,
证 若函数y f (x)在x0 处可导,由导数的定义可得
lim
x x0
f (x) f (x0 ) x x0
f (x0 ),所以利用函数极限与无穷小之间的
关系可得
f (x) f (x0 ) x x0
f
( x0
)
,lim x x0
0,即
f (x) f (x0 ) f (x0 )(x x0 ) (x x0 )
x
所以k 1 时,f (x) 在 x 0 处可导. 2
12
本讲内容
01 导数的定义 02 导数的几何意义 03 可导与连续的关系
二、 导数的几何意义
几何意义
若函数 f (x)在x x0 处可导,f (x0 ) 是曲线 y f (x) 在点 (x0 , f (x0 )) 处切线的斜率.
x0
第二章 导数与微分
由此可见,当|Δx|很小时,(Δx)^2的作用非常小,可以忽略不计 因此,函数y=x^2在x0有微小改变量Δx时,函数的改变量Δy约为 2x0·Δx, Δy≈2x0·Δx.
从图2-3中不难看出,Δy表示的是以x0为边长的正方形外围 的阴影部分面积,它为图示的Ⅰ、Ⅱ、Ⅲ部分面积之和 2(x0·Δx)+(Δx)2,显然当|Δx|相对于x0很小时,(Δx)^2是微乎其 微的. 当f(x)=x2时,f′(x0)=2x0,因此Δy≈2x0·Δx可以写成 Δy≈f′(x0)·Δx. 由于f′(x0)·Δx是Δx的线性函数,所以通常把 f′(x0)·Δx叫做Δy的线性主部.
一般地,对于给定的可导函数y=f(x),当自变量在x0处有 微小的改变量Δx时,函数值y的改变量Δy可用下式近似计算, 即
已知曲线方程y=f(x),可以求过曲线上点M(x0,y0)处的 切线斜率.在M点的附近取点N(x0+Δx,y0+Δy),其中Δx可正 可负,作割线MN,其斜率为(φ为倾斜角) tanφ=Δy/Δx=[f(x0+Δx)-f(x0)]/Δx.当Δx→0时,割线MN将绕着 点M转动到极限位置MT,如图2-2所示.根据上面切线的定义, 直线MT就是曲线y=f(x)在点M处的切线.自然,割线MN的斜 率tanφ的极限就是切线MT的斜率tanα(α是切线MT的倾斜角).
以上两个问题,虽然它们所代表的具体内容不同,但从 数量上看,它们有共同的本质:都是计算当自变量的增量趋 于零时,函数的增量与自变量的增量之比的极限.在自然科学 、工程技术问题和经济管理中,还有许多非均匀变化的问题 ,也都可归结为这种形式的极限.因此,抽去这些问题的不同 的实际意义,只考虑它们的共同性质,就可得出函数的导数 定义.
大一上学期《高等数学》知识整理-第二章 导数与微分
大一上学期《高等数学》知识整理-第二章导数与微分第二章导数与微分1.导数的定义。
对于一个在x0的某个邻域内有定义的函数,当自变量x在x0处取得增量Δx时,相应地函数y取得增量Δy=f(x0+Δx)-f(x0),如果当Δx→x0时Δy/Δx的极限存在,则称函数y=f(x)在x0点可导,并称这个极限为函数y=f(x)在x0处的导数。
通俗地讲,就是描述某个函数在某点增长或下降的瞬时速度,这个“速度”的单位为y每x,即每变化一个单位的x,y变化多少。
与物理学中定义米/秒是一个性质的。
把函数f(x)的导数看做是关于x的函数,即得到函数f(x)的导函数f'(x),简称导数。
(以上的“x0”中的“0”都是x 的下标,下同。
)导数也可以用微分的形式记作dy/dx,这个后面会提及。
2.在导数的定义中,如果Δx从左边趋向x0或从右边趋向x0,那么对应的导数被称为左导数和右导数。
只有f(x)在x0处的左导数和右导数相等,才能称f(x)在x0处可导。
举个例子,绝对值函数y=|x|,其在x=0处的左导数是-1(即x每增大1,y减小1),右导数是1,两者不相等,所以该函数在x=0处不可导。
如图所示。
绝对值函数y=|x|的导数是符号函数y=sgn(x),但是不包含x=0(单独的符号函数y=sgn(x),当x=0时,y=0)。
3.用定义法可以求初等函数的导数,本质上就是求极限。
比如说求y=x²在x=a处的导数,即就是求Δx→0时((a+Δx)²-a²)/Δx的极限。
求得结果为2a了解即可,还不如求导公式来得快。
下图为求该极限的过程,也就是用定义求y=x²的导数的过程。
4.函数的可导性与连续性的关系。
我们有定理:如果函数y=f(x)在点x0处可导,则f(x)在x0处必连续。
但反过来就不一定了。
归纳为一句话:连续不一定可导,可导一定连续。
y=|x|就是一个例子。
该函数在定义域内处处连续但是在x=0时不可导(因为左右极限不一样)。
第二章__导数与微分
t
t
瞬时速度
v(t0
)
lim
t0
s t
lim
t0
s(t0
t) t
s(t0
)
2
2.切线问题 割线的极限位置——切线位置
播放
3
y
割线M0M的斜率为
tanφ y f (x0 x) f (x0 )
x
x
切线M0T的斜率为
o
k tanα lim y x0 x
lim f (x0 x) f (x0 )
(0
h)] h
ln(1
0)
1,
f (0) 1.
f
(x)
1
1, 1
x
,
x0 x0.
27
二、反函数的导数
定理 如果函数x φ(y)在某区间Iy内单调、可导 且φ(y) 0 , 那末它的反函数 y f (x)在对应区间Ix 内也可导 , 且有
f (x) 1 φ (x)
即 反函数的导数等于直接函数导数的倒数.
(
x )
1
x
1 2
1
2
1 2x
.
(x1 )
(1)x11
1 x2
.
17
例8 求函数 f (x) ax(a 0,a 1)的导数. 解 (ax ) lim axh ax
h0 h ax lim ah 1
h0 h ax lna.
即 (ax ) ax lna. (ex ) ex .
18
例9 求函数 y loga x(a 0,a 1)的导数.
即 (sinx) cos x.
16
例7 求函数 y xn(n为正整数)的导数.
解 (xn ) lim (x h)n xn
高等数学第二章导数与微分
x0
x
瞬时变化率
点导数是因变x0量 处在 的点 变化 ,它率 反映因 了变量随自变量 而的 变变 化化 的快 慢程.度
根据导数定义求导,可分为如下三个步骤:
( 1 ) 求y 增 f( x 量 x ) f( x );
曲线 y = f (x)在点x0处的切线斜率
tan lim y
x0 x
lim
x0
f (x0
x) x
f (x0)
f x0
左右导数
设函数 y = f (x)在点x0的某一个邻域内有定义.
假设极限l i m x 0
-
y x
存在,那么称 y = f (x)在点 x0 左可 导,
且称此极限值为函数 y = f (x) 在点 x0 的左导数,
解:由导数的几何意义, 得切线斜率为
k
y
x1 2
1 x
x 1 2
1 x2
x1 2
4.
切线方程为 y24x12, 即 4 xy 4 0 .
法线方程为
y
2
1 4
x
12,
即 2 x 8 y 1 5 0 .
2.1.4 函数的可导性与连续性的关系
〔1〕假设 f (x)在 x0点可导,那么它在 x0点必连续.
记作 f(x0 ). 同样可定义右导数: f(x0 ).
f (x)在x0可导的充要条件是: f (x)在 x0 既左可导
又右可导,且 f (x0)f (x0). 即 f(x0)存在 f (x 0 )f (x 0 )存 在 .
导函数的概念
假设函数 y = f (x)在开区间I内每一点都可导,那么称
f (x)在I 内可导. 此时对xI, 有导数 f ( x ) 与之
微积分应用基础第二章导数与微分
v(t0 )
lim
t 0
s
t
lim
t 0
s(t0
t) s(t0 ) t
上面这种形式的极限,自然科学中还有很多,尽管它们
的具体含义不同,但其数学模型完全相同,均可归结为函数
的增量与自变量的增量之比当自变量的增量趋于零时的极限。
这种形式的极限就是我们要研究的导数,或者叫做瞬时变化
x x0
结论:函数f(x)在点x0处可导 f x 在点x0的左导数、右导
数都存在并且相等,即:
f (x0)存在 fx0 fx0
函数y=f(x)在点x0处的变化率即导数 是函数y在点x0处变化的快慢程度。
dy dx
,反映的
x x0
第二章 导数与微分
案例2【化学反应速度】
设二元函数z=f(x,y)在点(x0,y0)的某邻域内有定义,
固定自变量y,即取y =y0,而x从x0变化到x0+△x时,若
极限 lim z lim f x0 x, y0 f x0 , y0
x0 x x0
x
存在,则称此极限值z=f(x,y)为函数在点(x0,y0)处关于x
x
y f (x1 ) f (x0 ) f (x0 x) f (x0 )
x
x1 x0
x
这个商—定义函数y关于自变量的平均变化率。
上面引例1中的平均速度及实际问题中的一些平均值,如 平均成本、平均电流强度等就是通常意义下的平均变化率。
第二章 导数与微分
案例1【订货量的变化】
率。
1.一元函数的导数
定义2 设函数y=f(x)在点x0的某一邻域有定义,当自变量 x在点x0处有增量△x(△x ≠0, x0+ △x在定义域内)时, 相应地函数有增量△y=f(x0+△x) -f (x0) ,若极限
导数与微分
第二章 导数与微分数学中研究导数、微分及其应用的部分称为微分学,研究不定积分、定积分及其应用的部分称为积分学. 微分学与积分学统称为微积分学. 微积分学是高等数学最基本、最重要的组成部分,是现代数学许多分支的基础,是人类认识客观世界、探索宇宙奥秘乃至人类自身的典型数学模型之一. . 本章及下一章将介绍一元函数微分学及其应用的内容.第一节 导数概念下列三类问题导致了微分学的产生: (1) 求变速运动的瞬时速度;(2) 求曲线上一点处的切线;(3) 求最大值和最小值.这三类实际问题的现实原型在数学上都可归结为函数相对于自变量变化而变化的快慢程度,即所谓函数的变化率问题. 牛顿从第一个问题出发,莱布尼茨从第二个问题出发,分别给出了导数的概念. 内容要点: 1 导数的定义 2左右导数3导数的几何意义 4函数的可导性与连续性的关系一、引例1、直线运动速度设描述质点运动位置的函数为()s f t =,匀速时:tsv 时间路程=, 平均速度:tsv ∆∆=,因平均速度≠瞬时速度,则0t 到t 的平均速度为00()()f t f t v t t -=-,而0t 时刻的瞬时速度为000()()lim t t f t f t v t t →-=-2、切线问题(曲线在一点处切线的斜率)当点N 沿曲线C 趋于点M 时,若割线MN 绕点M 旋转而趋于极限位置MT ,直线MT 就称为曲线C 在点M 处的切线因0000()()tan y y f x f x yx x x x xφ--∆===--∆ [切线应为割线的极限]当N 沿曲线M C →时,0x x →,故0000()() lim lim x x x f x f x yk x x x ∆→→-∆==∆- 即为割线斜率的极限,即切线斜率。
瞬时速度000()()limt t f t f t v t t →-=-切线斜率000()()limx x f x f x k x x →-=-两个问题的共性:所求量为函数增量与自变量增量之比的极限 .二、导数的定义: 1、函数在一点处的导数设函数()y f x =在点0x 的某个邻域内有定义,当自变量x 在0x 处取得增量x ∆(点0x x +∆仍在该邻域内)时,相应的函数y 取得增量00()()y f x x f x ∆=+∆-;如果y ∆与x ∆之比当0x ∆→时极限存在,则称函数()y f x =在点0x 处可导,并称此极限为函数()y f x =在点0x 处的导数,记为:00000()()limlim x x x x f x x f x y y x x =∆→∆→+∆-∆'==∆∆或0()f x ',x x dy dx=或()x x df x dx =即:已知()f x ,构造yx∆∆,求此增量比的极限,若极限存在,则可导,不存在就不可导(此时切线必垂直于x 轴)。
导数和微分的定义
则 f ( x) 在点 x0 可导, 且 f '( x0 ) a.
例6. 讨论函数 f ( x) x 在x 0处的可导性.
解 f (0 x) f (0) x ,
x
x
lim f (0 x) f (0) lim x 1,
x0
x
h0 x
lim
f (0 x) f (0)
lim
x
1.
在 M 点处旳切线
割线 M N 旳极限位置 M T
(当
时)
切线 MT 旳斜率
o
y f (x)
N
CM
T
x0 x x
lim tan
割线 M N 旳斜率 tan
f (x) f (x0 ) x x0
k
lim
x x0
f (x) f (x0 ) x x0
瞬时速度 切线斜率
f (t0 )
o t0
设薄片边长为 x , 面积为 A , 则 A x2 , 当 x 在 x0 取
得增量x 时, 面积旳增量为
x x0x (x)2
有关△x 旳 x 0 时为
线性主部 高阶无穷小
x0 A x02
x0x
故
称为函数在 x0 旳微分
定义: 若函数
在点 x0 旳增量可表达为 Ax o(x)
( A 为不依赖于△x 旳常数)
3. 导数旳几何意义: 切线旳斜率;
4. 可导必连续, 但连续不一定可导;
5. 已学求导公式 :
(C) 0;
(ln x) 1
(cos x) sin x ;
x
不连续, 一定不可导. 6. 判断可导性 直接用导数定义;
看左右导数是否存在且相等.
第二章导数与微分
第二章导数与微分一、教学目的1.理解导数和微分的概念、导数的几何意义,函数的可导性与连续性之间的的关系.2.掌握导数、微分计算的各种方法,会求简单函数的高阶导数的计算. 二、教学重点1.导数的概念及几何意义.2.导数计算的各种方法 三、教学难点复合函数和隐函数的导数 四、课时安排 约16学时2.1 导数的概念◆2.1.1引例◆2.1.2导数的定义 ◆2.1.3求导数举例◆2.1.4 导数与左右导数的关系 ◆2.1.5导数的几何意义◆2.1.6函数的可导性与连续性的关系 ◆2.1.7内容小结2.1.1引例1.瞬时速度设一质点在坐标轴上作非匀速运动, 时刻t 质点的坐标为s , s 是t 的函数: s =f (t ), 求动点在时刻t 0的速度. 考虑到 0000()()s s f t f t v t t t t --==--, 这个比值可认为是动点在时间间隔t -t 0内的平均速度. 如果时间间隔选得越短, 这个比值和动点在时刻t 0的速度越接近.令t -t 0→0, 取比值0)()(t t t f t f --的极限, 如果这个极限存在, 设为v , 即0)()(limt t t f t f v t t --=→我们把这个极限值v 称为动点在时刻t 0的瞬时速度. 2. 产品总成本的变化率设某产品的总成本C 是产量q 的函数,即C =f (q ).当产量0q 变为0q q +∆时,总成本相应的改变量为 00()()C f q q f q ∆=+∆-而产量由0q 变为0q q +∆时,总成本的平均变化率为00()()f q q f q C q q+∆-∆=∆∆ 当0q ∆→时,如果极限000()()limq f q q f q C q q∆→+∆-∆=∆∆存在,称此极限为产量为0q 的总成本的变化率,又称边际成本.2.1.2导数的定义定义2.1.1 设函数y =f (x )在点x 0的某个邻域内有定义, 当自变量x 在x 0处取得增量∆x 时, 相应地函数y 取得增量∆y =f (x 0+∆x )-f (x 0); 如果∆y 与∆x 之比当∆x →0时的极限存在, 则称函数y =f (x )在点x 0处可导, 并称这个极限为函数y =f (x )在点x 0处的导数, 记为)(0x f ',即 xx f x x f x yx f x x ∆-∆+=∆∆='→∆→∆)()(limlim)(00000, 也可记为0|x x y =', 0 x x dx dy =或0)(x x dx x df =. 导数的定义式也可取不同的形式, 常见的有 h x f h x f x f h )()(lim)(0000-+='→, 或 000)()(l i m )(0x x x f x f x f x x --='→. .如果极限xx f x x f x ∆-∆+→∆)()(lim000不存在, 就说函数y =f (x )在点x 0处不可导.如果函数y =f (x )在开区间I 内的每点处都可导, 就称函数f (x )在开区间I 内可导.定义2.1.2如果对任一x ∈I ,函数 f (x )都对应着的一个确定的导数值. 这样就构成了一个新的函数, 这个函数叫做原来函数y =f (x )的导函数, 记作 y ',)(x f ',dx dy , 或dxx df )(. f '(x 0)与f '(x )之间的关系:函数f (x )在点x 0处的导数f '(x )就是导函数f '(x )在点x =x 0处的函数值, 即 0)()(0x x x f x f ='='.导函数f '(x )简称导数, 而f '(x 0)是f (x )在x 0处的导数或导数f '(x )在x 0处的值.2.1.3求导数举例例1.求函数f (x )=C (C 为常数)的导数. 解: hx f h x f x f h )()(lim)(0-+='→0lim 0=-=→h C C h . 即 (C ) '=0.例2. 求xx f 1)(=的导数.解:h x h x h x f h x f x f h h 11lim )()(lim )(00-+=-+='→→2001)(1lim )(lim x x h x x h x h h h h -=+-=+-=→→. 例3. 求x x f =)(的导数.解: hx h x h x f h x f x f h h -+=-+='→→00l i m )()(l i m )(xx h x x h x h h h h 211lim )(lim00=++=++=→→. 例4.求函数f (x )=x n (n 为正整数)在x =a 处的导数. 解: f '(a )a x a f x f ax --=→)()(lima x a x n n a x --=→lim ax →=lim (x n -1+ax n -2+ ⋅ ⋅ ⋅ +a n -1)=na n -1. 把以上结果中的a 换成x 得 f '(x )=nx n -1,即 (x n )'=nx n -1.一般地, 有(x μ)'=μx μ-1 , 其中μ为常数. 例5.求函数f (x )=sin x 的导数. 解: f '(x )hx f h x f h )()(lim-+=→h x h x h sin )sin(lim 0-+=→ 2sin )2cos(21lim 0hh x h h +⋅=→x h hhx h cos 22sin )2cos(lim 0=⋅+=→.即 (sin x )'=cos x .用类似的方法, 可求得 (cos x )'=-sin x . 例6.求函数f (x )= a x (a >0, a ≠1) 的导数. 解: f '(x )hx f h x f h )()(lim-+=→h a a x h x h -=+→0lim h a a h h x 1lim 0-=→t a h =-1令)1(log lim 0t t a a t x +→a a ea x a xln log 1==. 即 '()ln x xa a a =特别地有 (e x )=e x .例7.求函数f (x )=log a x (a >0, a ≠1) 的导数. 解: hx h x h x f h x f x f a ah h log )(log lim )()(lim)(00-+=-+='→→ h xa h a h a h xh x x h h x x x h x h )1(log lim 1)1(log lim 1)(log 1lim 000+=+=+=→→→ax e x a ln 1log 1==. 即 ax x a ln 1)(log =' . :特殊地 xx 1)(l n='. 2.1.4 导数与左右导数的关系:定义2.1.3如果极限hx f h x f h )()(lim 000-+-→存在, 则称此极限值为函数在x 0的左导数.即 f (x )在0x 的左导数:hx f h x f x f h )()(lim )(0000-+='-→-;如果极限hx f h x f h )()(lim 000-++→存在, 则称此极限值为函数在x 0的右导数.即f (x )在0x 的右导数:hx f h x f x f h )()(lim )(0000-+='+→+.定理2.1 函数f (x )在点x 0处可导的充分必要条件是左导数左导数f '-(x 0) 和右导数f '+(x 0)都存在且相等.即: A x f =')(0⇔A x f x f ='='+-)()(00. 如果函数f (x )在开区间(a , b )内可导, 且右导数f '+(a ) 和左导数f '-(b )都存在, 就说f (x )有闭区间[a , b ]上可导.例8.求函数f (x )=|x |在x =0处的导数.解: 1||lim )0()0(lim )0(00-==-+='--→→-h h h f h f f h h , 1||lim )0()0(lim )0(00==-+='++→→+h h hf h f f h h , 因为f '-(0)≠ f '+(0), 所以函数f (x )=|x |在x =0处不可导.2.1.5导数的几何意义函数y =f (x )在点x 0处的导数f '(x 0)在几何上表示曲线y =f (x )在点M (x 0, f (x 0))处的切线的斜率, 即 f '(x 0)=tan α , 其中α是切线的倾角.如果y =f (x )在点x 0处的导数为无穷大, 这时曲线y =f (x )的割线以垂直于x 轴的直线x =x 0为极限位置, 即曲线y =f (x )在点M (x 0, f (x 0))处具有垂直于x 轴的切线x =x 0.由直线的点斜式方程, 可知曲线y =f (x )在点M (x 0, y 0)处的切线方程为 y -y 0=f '(x 0)(x -x 0).过切点M (x 0, y 0)且与切线垂直的直线叫做曲线y =f (x )在点M 处的法线.如果 f '(x 0)≠0, 法线的斜率为)(10x f '-, 从而法线方程为 )()(1000x x x f y y -'-=-.例9. 求等边双曲线x y 1=在点)2 ,21(处的切线的斜率, 并写出在该点处的切线方程和法线方程.解: 21x y -=', 所求切线及法线的斜率分别为4)1(2121-=-==x x k , 41112=-=k k .所求切线方程为)21(42--=-x y , 即4x +y -4=0.所求法线方程为)1(12-=-x y , 即2x -8y +15=0.例10. 求曲线x x y =的通过点(0, -4)的切线方程.解 设切点的横坐标为x 0, 则切线的斜率为 0212302323)()(0x x x x f x x =='='=. 于是所求切线的方程可设为)(230000x x x x x y -=-.根据题意, 点(0, -4)在切线上, 因此 )0(2340000x x x x -=--,解方程得x 0=4.于是所求切线的方程为 )4(42344-=-x y , 即3x -y -4=0.2.1.6函数的可导性与连续性的关系如果函数y =f (x )在点x 处可导, 则函数在该点必连续.另一方面, 一个函数在某点连续却不一定在该点处可导.例11. 函数3)(x x f =在区间(-∞, +∞)内连续, 但在点x =0处不可导. 这是因为函数在点x =0处导数为无穷大h f h f h )0()0(lim-+→+∞=-=→hh h 0lim 30. 2.1.7内容小结1.引例2.导数的定义3.求导数举例4.导数与左右导数的关系5.导数的几何意义6.函数的可导性与连续性的关系2.2 函数的求导法则◆2.2.1函数的和、差、积、商的求导法则 ◆2.2.2反函数的求导法则 ◆2.2.3复合函数的求导法则 ◆2.2.4求导法则与导数公式 ◆2.2.5 隐函数的导数 ◆2.2.6 对数求导法◆2.2.7参数方程所确定的函数的导数 ◆2.2.8内容小结2.2.1函数的和、差、积、商的求导法则定理2.2 如果函数u =u (x )及v =v (x )在点x 可导, 则它们的和、差、积、商(分母不为零)都在点x 具可导, 并且[u (x ) ±v (x )]'=u '(x ) ±v '(x ) ;[u (x )⋅v (x )]'=u '(x )v (x )+u (x )v '(x );)()()()()()()(2x v x v x u x v x u x v x u '-'='⎥⎦⎤⎢⎣⎡.定理2.2中的函数的和、差、积的求导法则可推广到有限多个可导函数的情形. 在函数的积的求导法则中, 如果v =C (C 为常数), 则有 (Cu )'=Cu '. 例1.y =2x 3-5x 2+3x -7, 求y '解: y '=(2x 3-5x 2+3x -7)'= (2x 3)'-(5x 2)'+(3x )'-(7)'= 2 (x 3)'- 5( x 2)'+ 3( x )' =2⋅3x 2-5⋅2x +3=6x 2-10x +3.例2. 2 sin cos 4)(3π-+=x x x f , 求f '(x )及)2 (πf '.解: x x x x x f sin 43)2 (sin )cos 4()()(23-='-'+'='π,443)2 (2-='ππf .例3.y =e x (sin x +cos x ), 求y '.解: y '=(e x )'(sin x +cos x )+ e x (sin x +cos x )' = e x (sin x +cos x )+ e x (cos x -sin x ) =2e x cos x . 例4.y =tan x , 求y '.解:xx x x x x x x y 2cos )(cos sin cos )(sin )cos sin ()(tan '-'='='='x xx x x 22222sec cos 1cos sin cos ==+=.即 (tan x )'=sec 2x .例5.y =sec x , 求y '.解: x x x x x y 2cos )(cos 1cos )1()cos 1()(sec '⋅-'='='='x x2cos sin ==sec x tan x . 即 (sec x )'=sec x tan x .类似的,可求得余切函数及余割函数的导数公式: (cot x )'=-csc 2x ,(csc x )'=-csc x cot x .2.2.2反函数的求导法则定理2.3如果函数x =f (y )在某区间I y 内单调、可导且f '(y )≠0, 那么它的反函数y =f -1(x )在对应区间I x ={x |x =f (y ), y ∈I y }内也可导, 并且)(1])([1y f x f '='-. 或dydx dx dy 1=.即反函数的导数等于直接函数导数的倒数.例6.设x =sin y , ]2 ,2 [ππ-∈y 为直接函数, 则y =arcsin x 是它的反函数. 函数x =sin y 在开区间)2 ,2 (ππ-内单调、可导, 且 (sin y )'=cos y >0.因此, 由反函数的求导法则, 在对应区间I x =(-1, 1)内有 2211sin 11cos 1)(sin 1)(arcsin x y y y x -=-=='='. 即(a r c s i nx '=类似地有: 211)(arccos x x --='.例7.设x =tan y , )2 ,2 (ππ-∈y 为直接函数, 则y =arctan x 是它的反函数. 函数x =tan y在区间)2 ,2 (ππ-内单调、可导, 且 (tan y )'=sec 2 y ≠0.因此, 由反函数的求导法则, 在对应区间I x =(-∞, +∞)内有 22211t a n 11s e c 1)(t a n 1)(a r c t a n xy y y x +=+=='='. 类似地有: 211)cot arc (xx +-='.例8.设x =a y (a >0, a ≠1)为直接函数, 则y =log a x 是它的反函数. 函数x =a y 在区间I y =(-∞, +∞)内单调、可导, 且 (a y )'=a y ln a ≠0.因此, 由反函数的求导法则, 在对应区间I x =(0, +∞)内有 ax a a a x y y a ln 1ln 1)(1)(log =='='. 2.2.3复合函数的求导法则定理2.4如果u =g (x )在点x 可导, 函数y =f (u )在点u =g (x )可导, 则复合函数y =f [g (x )]在点x 可导, 且其导数为 )()(x g u f dx dy '⋅'=或dx du du dydx dy ⋅=. 例9. 3x e y =, 求dxdy . 解: 函数3x e y =可看作是由y =e u , u =x 3复合而成的, 因此32233x u e x x e dxdu du dy dx dy =⋅=⋅=. 例10. 212sinx x y +=, 求dx dy .解: 函数212sinx x y +=是由y =sin u , 212x x u +=复合而成的, 因此2222222212cos )1()1(2)1()2()1(2cos x x x x x x x u dx du du dy dx dy +⋅+-=+-+⋅=⋅=. 对复合函数的导数比较熟练后, 就不必再写出中间变量,而直接写出结果.例11.lnsin x , 求dxdy . 解:)(sin sin 1)sin (ln '⋅='=x xx dx dy x x x cot cos sin 1=⋅=. 例12.3221x y -=, 求dxdy . 解:)21()21(31])21[(2322312'-⋅-='-=-x x x dx dy 322)21(34x x --=. 复合函数的求导法则可以推广到多个中间变量的情形. 例如, 设y =f (u ), u =ϕ(v ), v =ψ(x ),则dxdv dv du du dy dx du du dy dx dy ⋅⋅=⋅=. 例13.y =lncos(e x ), 求dxdy . 解:])[cos()cos(1])cos([ln '⋅='=x x x e e e dx dy)tan()()]sin([)cos(1x x x x x e e e e e -='⋅-⋅=.例14.xe y 1sin =, 求dxdy . 解: )1(1cos )1(sin )(1sin 1sin 1sin '⋅⋅='⋅='=x x e x e e dx dy x x x x e x x 1cos 11sin 2⋅⋅-=. 例15.设x >0, 证明幂函数的导数公式(x μ)'=μ x μ-1.解: 因为x μ=(e ln x )μ=e μ ln x , 所以(x μ)'=(e μ ln x )'= e μ ln x ⋅(μ ln x )'= e μ ln x ⋅μ x -1=μ x μ-1.2.2.4求导法则与导数公式 1.基本初等函数的导数:(1) (C )'=0, (2) (x μ)'=μ x μ-1, (3) (sin x )'=cos x , (4) (cos x )'=-sin x , (5) (tan x )'=sec 2x , (6) (cot x )'=-csc 2x , (7) (sec x )'=sec x ⋅tan x , (8) (csc x )'=-csc x ⋅cot x , (9) (a x )'=a x ln a , (10) (e x )'=e x ,(11) a x x a ln 1)(log =',(12) xx 1)(ln =',(13) 211)(arcsin x x -=', . (14) 211)(arccos x x --=' (15) 211)(arctan x x +=',(16) 211)cot arc (xx +-='.2.函数的和、差、积、商的求导法则 设u =u (x ), v =v (x )都可导, 则(1)(u ±v )'=u '±v ', (2)(C u )'=C u ', (3)(u v )'=u '⋅v +u ⋅v ',(4)2)(v v u v u v u '-'='.3.反函数的求导法则设x =f (y )在区间I y 内单调、可导且f '(y )≠0, 则它的反函数y =f -1(x )在I x =f (I y )内也可导, 并且)(1])([1y f x f ='-. 或dydx dx dy 1=.4.复合函数的求导法则设y =f (x ), 而u =g (x )且f (u )及g (x )都可导, 则复合函数y =f [g (x )]的导数为dxdudu dy dx dy ⋅=或y '(x )=f '(u )⋅g '(x ). 例16. y =sin nx ⋅sin n x (n 为常数), 求y '. 解: y '=(sin nx )' sin n x + sin nx ⋅ (sin n x )'= n cos nx ⋅sin n x +sin nx ⋅ n ⋅ sin n -1 x ⋅(sin x )'= n cos nx ⋅sin n x +n sin n -1 x ⋅ cos x =n sin n -1 x ⋅ sin(n +1)x .2.2.5 隐函数的导数定义2.2.1形如y =f (x )的函数称为显函数. 例如y =sin x , y =ln x +e x 是显函数的例子. 定义2.2.2 由方程F (x , y )=0所确定的函数称为隐函数. 例17求由方程e y +xy -e =0 所确定的隐函数y 的导数. 解: 把方程两边的每一项对x 求导数得 (e y )'+(xy )'-(e )'=(0)', 即 e y ⋅ y '+y +xy '=0, 从而 y ex yy +-='(x +e y ≠0). 在上式两边对x 求导过程中,在遇到含有y 项时,应视y 是x 的函数,利用复合函数的求导法则.例18求由方程y 5+2y -x -3x 7=0 所确定的隐函数y =f (x )在x =0处的导数y '|x =0. 解: 把方程两边分别对x 求导数得5y ⋅y '+2y '-1-21x 6=0,由此得 2521146++='y x y .因为当x =0时, 从原方程得y =0, 所以 21|25211|0460=++='==x x y x y . 例19 求椭圆122=+y x 在)323 ,2(处的切线方程.解: 把椭圆方程的两边分别对x 求导, 得0928='⋅+y y x . 将x =2, 323=y , 代入上式得 03141='⋅+y ,于是 k =y '|x =243-=. 所求的切线方程为)2(43323--=-x y , 即03843=-+y x .2.2.6 对数求导法:这种方法是先在y =f (x )的两边取对数, 然后再求出y 的导数. 设y =f (x ), 两边取对数, 得 ln y = ln f (x ),两边对x 求导, 得 ])([ln 1'='x f y y,y '= f (x )⋅[ln f (x )]'.对数求导法适用于求幂指函数y =[u (x )]v (x )的导数及多因子之积和商的导数. 例20求y =x sin x (x >0)的导数.解法一: 两边取对数, 得 ln y =sin x ⋅ ln x ,上式两边对x 求导, 得 x x x x y y 1sin ln cos 1⋅+⋅=',于是 )1sin ln (cos x x x x y y ⋅+⋅=')sin ln (cos sin xx x x x x +⋅=.解法二: 这种幂指函数的导数也可按下面的方法求:y =x sin x =e sin x ·ln x, )sin ln (cos )ln (sin sin ln sin x x x x x x x e y x x x +⋅='⋅='⋅.例21求函数)4)(3()2)(1(----=x x x x y 的导数.解: 先在两边取对数(假定x >4), 得ln y 21=[ln(x -1)+ln(x -2)-ln(x -3)-ln(x -4)],上式两边对x 求导, 得 )41312111(211-----+-='x x x x y y ,于是 )41312111(2-----+-='x x x x yy .当x <1时, )4)(3()2)(1(x x x x y ----=; 当2<x <3时, )4)(3()2)(1(x x x x y ----=; 用同样方法可得与上面相同的结果.注: 严格来说, 本题应分x >4, x <1, 2<x <3三种情况讨论, 但结果都是一样的.2.2.7参数方程所确定的函数的导数定理2.5 设x =ϕ(t )具有单调连续反函数t =ϕ-1(x ), 且此反函数能与函数y =ψ(t )构成复合函数y =ψ[ϕ-1(x ) ], 若x =ϕ(t )和y =ψ(t )都可导, 则 )()(1t t dtdx dt dy dx dt dt dy dx dy ϕψ''=⋅=⋅=, 即 )()(t t dx dy ϕψ''=或dt dx dt dydx dy =. 例1 设⎩⎨⎧+=-=)1ln(arctan 2t y tt x ,求1=t dx dy . 解:t t t t dt dx dt dydx dy 21111222=+-+== ∴21==t dx dy 例2求椭圆⎩⎨⎧==t b y t a x sin cos 在相应于4 π=t 点处的切线方程. 解:t ab t a t b t a t b dx dy cot sin cos )cos ()sin (-=-='=. 所求切线的斜率为ab dx dyt -==4π. 切点的坐标为224 cos 0a a x ==π, 224sin 0b b y ==π. 切线方程为)22(22a x a b b y --=-, 即 bx +ay 2-ab =0.2.2.8内容小结1.函数的和、差、积、商的求导法则2.反函数的求导法则3.复合函数的求导法则4.求导法则与导数公式5.隐函数的导数6.对数求导法7.参数方程所确定的函数的导数2.3 高阶导数◆2.3.1 高阶导数◆2.3.2 内容小结定义2.3.1如果函数y =f (x )的导数y '=f '(x )仍然是x 的函数. 则称y '=f '(x )的导数叫做函数y =f (x )的二阶导数, 记作 y ''、f ''(x )或22dx y d , 即 y ''=(y ')', f ''(x )=[f '(x )]' , )(22dxdy dx d dx y d =. 相应地, 把y =f (x )的导数f '(x )叫做函数y =f (x )的一阶导数.类似地, 二阶导数的导数, 叫做三阶导数, 三阶导数的导数叫做四阶导数, ⋅ ⋅ ⋅, 一般地, (n -1)阶导数的导数叫做n 阶导数, 分别记作y ''', y (4), ⋅ ⋅ ⋅ , y (n ) 或33dx y d , 44dx y d , ⋅ ⋅ ⋅ , nn dx y d . 函数f (x )具有n 阶导数, 也称函数f (x )为 n 阶可导. 如果函数f (x )在点x 处具有n 阶导数, 那么函数f (x )在点x 的某一邻域内一定具有所有低于n 阶的导数. 二阶及二阶以上的导数统称高阶导数.例1.y =ax +b , 求y ''.解: y '=a , y ''=0.例2.s =sin ω t , 求s ''.解: s '=ω cos ω t , s ''= cos ω t -ω 2sin ω t .例3.验证: 函数22x x y -=是方程y 3y ''+1=0的解.证明: 因为22212222x x x x x x y --=--=', 22222222)1(2x x x x xx x x y -------='')2()2()1(22222x x x x x x x ----+-=32321)2(1yx x -=--=, 所以y 3y ''+1=0.例4.求函数y =e x 的n 阶导数.解:y '=e x , y ''=e x , y '''=e x , y ( 4)=e x ,一般地, 可得 y ( n )=e x , 即 (e x )(n )=e x .例5.求正弦函数与余弦函数的n 阶导数.解: y =sin x ,)2s i n (c o s π+=='x x y , )22s i n ()2 2 s i n ()2 c o s (ππππ⋅+=++=+=''x x x y , )23s i n ()2 2 2s i n ()2 2c o s (ππππ⋅+=+⋅+=⋅+='''x x x y , )24sin()2 3cos()4(ππ⋅+=⋅+=x x y , 一般地, 我们有)2sin()(π⋅+=n x y n , 即)2 sin()(sin )(π⋅+=n x x n .同理, 可得 )2c o s ()(c o s )(π⋅+=n x x n .例6.求幂函数y =x μ (μ是任意常数)的n 阶导数公式.解: y '=μx μ-1,y ''=μ(μ-1)x μ-2,y '''=μ(μ-1)(μ-2)x μ-3,y ( 4)=μ(μ-1)(μ-2)(μ-3)x μ-4,依次类推, 可得y (n )=μ(μ-1)(μ-2) ⋅ ⋅ ⋅ (μ-n +1)x μ-n ,即 (x μ )(n ) =μ(μ-1)(μ-2) ⋅ ⋅ ⋅ (μ-n +1)x μ-n .当μ=n 时, 得到(x n )(n ) = μ(μ-1)(μ-2) ⋅ ⋅ ⋅ 3 ⋅ 2 ⋅ 1=n ! .而 (x n )( n +1)=0 .2.3.2 内容小结高阶导数2.4 函数的微分◆2.4.1微分的定义◆2.4.2微分的几何意义◆2.4.3基本初等函数的微分公式与微分运算法则◆2.4.4微分在近似计算中的应用◆2.4.5内容小结2.4.1微分的定义定义2.4.1 设函数y =f (x )在某区间内有定义, x 0及x 0+∆x 在这区间内, 如果函数的增量 ∆y =f (x 0+∆x )-f (x 0)可表示为∆y =A ∆x +o (∆x ), 其中A 是不依赖于∆x 的常数, 那么称函数y =f (x )在点x 0是可微, 而A ∆x 叫做函数y =f (x )在点x 0相应于自变量增量∆x 的微分, 记作 dy , 即 dy =A ∆x .定理2.6 (函数可微的条件): 函数f (x )在点x 0可微的充分必要条件是函数f (x )在点x 0可导, 且当函数f (x )在点x 0可微时, 其微分一定是dy =f '(x 0)∆x . .函数y =f (x )在任意点x 的微分, 称为函数的微分, 记作dy 或 d f (x ), 即dy =f '(x )∆x ,例1 求函数y =x 2在x =1和x =3处的微分.解 函数y =x 2在x =1处的微分为 1=x dy =(x 2)'|x =1∆x =2∆x ;函数y =x 2在x =3处的微分为 3=x dy =(x 2)'|x =3∆x =6∆x .例2.求函数 y =x 3当x =2, ∆x =0. 02时的微分.解: 先求函数在任意点x 的微分 dy =(x 3)'∆x =3x 2∆x .再求函数当x =2, ∆x =0. 02时的微分dy |x =2, ∆x =0.02 =3x 2| x =2, ∆x =0.02 =3⨯22⨯0.02=0.24.自变量的微分:因为当y =x 时, dy =dx =(x )'∆x =∆x , 所以通常把自变量x 的增量∆x 称为自变量的微分, 记作dx , 即dx =∆x . 于是函数y =f (x )的微分又可记作dy =f '(x )dx . 从而有 )(x f dxdy '=. 亦即, 函数的微分dy 与自变量的微分dx 之商等于该函数的导数. 因此, 导数也叫做“微商”. 2.4.2微分的几何意义当∆y 是曲线y =f (x )上的点的纵坐标的增量时, dy 就是曲线的切线上点纵坐标的相应增量. 当|∆x |很小时, |∆y -dy |比|∆x |小得多. 因此在点M 的邻近, 我们可以用切线段来近似代替曲线段.2.4.3基本初等函数的微分公式与微分运算法则1. 基本初等函数的微分公式导数公式: 微分公式:(x μ)'=μ x μ-1 d (x μ)=μ x μ-1d x(sin x )'=cos x d (sin x )=cos x d x(cos x )'=-sin x d (cos x )=-sin x d x(tan x )'=sec 2 x d (tan x )=sec 2x d x(cot x )'=-csc 2x d (cot x )=-csc 2x d x(sec x )'=sec x tan x d (sec x )=sec x tan x d x(csc x )'=-csc x cot x d (csc x )=-csc x cot x d x(a x )'=a x ln a d (a x )=a x ln a d x(e x )=e x d (e x )=e x d xax x a ln 1)(log =' dx a x x d a ln 1)(log = x x 1)(ln =' dx xx d 1)(ln = 211)(arcsin x x -=' dx x x d 211)(arcsin -= 211)(arccos x x --=' dx x x d 211)(arccos --=211)(arctan xx +=' dx x x d 211)(arctan += 211)cot arc (xx +-=' dx x x d 211)cot arc (+-= 2. 函数和、差、积、商的微分法则求导法则: 微分法则:(u ±v )'=u '± v ' d (u ±v )=du ±dv(Cu )'=Cu ' d (Cu )=Cdu(u ⋅v )'= u 'v +uv ' d (u ⋅v )=vdu +udv)0()(2≠'-'='v v v u v u v u )0()(2≠-=v dx v udv vdu v u d 乘积的微分法则证明:根据函数微分的表达式, 有d (uv )=(uv )'dx .再根据乘积的求导法则, 有(uv )'=u 'v +uv '.于是 d (uv )=(u 'v +uv ')dx =u 'vdx +uv 'dx .由于u 'dx =du , v 'dx =dv , 所以d (uv )=vdu +udv .3. 复合函数的微分法则设y =f (u )及u =ϕ(x )都可导, 则复合函数y =f [ϕ(x )]的微分为dy =y 'x dx =f '(u )ϕ'(x )dx .于由ϕ'(x )dx =du , 所以, 复合函数y =f [ϕ(x )]的微分公式也可以写成dy =f '(u )du 或 dy =y 'u du .由上式可见, 无论u 是自变量还是中间变量函数的微分形式dy =f '(u )du 保持不变. 这一性质称为微分形式不变性.例3.y =sin(2x +1), 求dy .解: 把2x +1看成中间变量u , 则dy =d (sin u )=cos udu =cos(2x +1)d (2x +1)=cos(2x +1)⋅2dx =2cos(2x +1)dx .运算熟练后,在求复合函数的导数时, 可以不写出中间变量.例4.)1ln(2x e y +=, 求dy .解: )1(11)1ln(222x x x e d e e d dy ++=+= xdx e x d e x x x x 21)(122222⋅⋅=⋅=dx e xe x x 2212+=. 例5.y =e 1-3x cos x , 求dy .解: 应用积的微分法则, 得dy =d (e 1-3x cos x )=cos xd (e 1-3x )+e 1-3x d (cos x )=(cos x )e 1-3x (-3dx )+e 1-3x (-sin xdx )=-e 1-3x (3cos x +sin x )dx .例6.在括号中填入适当的函数, 使等式成立.(1) d ( )=xdx ;(2) d ( )=cos ω t dt .解: (1)因为d (x 2)=2xdx , 所以)21()(2122x d x d xdx ==, 即xdx x d =)21(2. 一般地, 有xdx C x d =+)21(2(C 为任意常数). (2)因为d (sin ω t )=ω cos ω tdt , 所以 ) sin 1() (sin 1 cos t d t d tdt ωωωωω==. 所以 tdt C t d cos ) sin 1(ωωω=+(C 为任意常数). 2.4.4微分在近似计算中的应用如果函数y =f (x )在点x 0处的导数f '(x )≠0, 且|∆x |很小时, 我们有∆y ≈dy =f '(x 0)∆x ,∆y =f (x 0+∆x )-f (x 0)≈dy =f '(x 0)∆x ,f (x 0+∆x )≈f (x 0)+f '(x 0)∆x .若令x =x 0+∆x , 即∆x =x -x 0, 那么又有 f (x )≈ f (x 0)+f '(x 0)(x -x 0).特别当x 0=0时, 有 f (x )≈ f (0)+f '(0)x .这些都是近似计算公式.例7.有一批半径为1cm 的球, 为了提高球面的光洁度, 要镀上一层铜, 厚度定为0. 01cm . 估计一了每只球需用铜多少g (铜的密度是8. 9g/cm 3)?解: 已知球体体积为334R V π=, R 0=1cm , ∆R =0. 01cm . 镀层的体积为∆V =V (R 0+∆R )-V (R 0)≈V '(R 0)∆R =4πR 02∆R =4⨯3. 14⨯12 ⨯0. 01=0. 13(cm 3). 于是镀每只球需用的铜约为 0. 13 ⨯8. 9 =1. 16(g ).例8.利用微分计算sin 30︒30'的近似值.解: 已知30︒30'3606 ππ+=, 6 0π=x , 360π=∆x . sin 30︒30'=sin(x 0+∆x )≈sin x 0+∆x cos x 03606 cos 6 sin πππ⋅+= 5076.03602321=⋅+=π. 即 sin 30︒30'≈0. 5076.常用的近似公式(假定|x |是较小的数值): (1)x nx n 111+≈+; (2)sin x ≈x ( x 用弧度作单位来表达);(3)tan x ≈x ( x 用弧度作单位来表达);(4)e x ≈1+x ;(5)ln(1+x )≈x .例9.计算05.1的近似值.解: 已知 x nx n 111+≈+, 故025.105.021105.0105.1=⨯+≈+=. 直接开方的结果是02470.105.1=.2.4.5内容小结1.微分的定义2.微分的几何意义3.基本初等函数的微分公式与微分运算法则4.微分在近似计算中的应用。
高数第二章 知识点总结
往年考题:
(13-14) 已知 f ( x ) = (5 − cos x )
2 x −3
,则 f ′(0 ) = _______________。
(13-14) 已知 y = ln x + 1 + x 2 ,则 dy = _______________ 。
(10-11)
⎧ e ax , x≤0 ⎪ 设 f (x ) = ⎨ ,试求常数 a 、 b ,使 f ( x ) 处处可导. 2 ⎪ ⎩b(1 − x ) , x > 0 ⎧ e ax , x≤0 ⎪ 设 f (x) = ⎨ ,试求常数 a 、 b ,使 f ( x ) 处处可导 2 ⎪ ⎩b(1 − x ) , x > 0
dy
x =1
.
(09-10) 设 f ( x) 可导, y = f ( e tan x ) ,则 dy = ___________________. (08-09) 设 f ( x) 可导, y = f (arctan x 2 ) ,则 dy =
。
4. 隐函数、反函数求导
知识点及题型:
1. 隐函数求导数 (1) 区分自变量和因变量 (2) 方程两端同时对 x 求导,得关于 y′ 的方程 (3) 由上述方程解出 y′ (结果中可以含 y ) 2. 对数求导法 (1) 形如 y = f ( x) g ( x ) 的幂指函数 (2) 若干个因子乘积、商、开方、方幂 3. 反函数求导数
6
(1)
(2) (3)
(ax )( n) = a x ⋅ lnn a (a > 0)
(sin kx)( n) = k n sin(kx + n ⋅ ) 2 (cos kx)( n) = k n cos(kx + n ⋅ ) 2
第二章 导数与微分
例4
求自由落体运动 s
=
1 2
gt 2
在时刻 t0
的瞬时速度 v(t0 )
.
解
Δs
=
1 2
g (t0
+
Δt)2
−
1 2
gt02
=
gt0Δt
+
1 2
g (Δt )2
Δs Δt
=
gt0Δt
+ 1 g (Δt )2
2 Δt
=
gt0
+
1 2
gΔt
lim
Δt → 0
Δs Δt
=
lim
Δt → 0
(
g
t
0
+
1 2
也随着变动而趋向于极限位置,即直线 M0T .称直线 M0T 为曲线 y = f (x) 在定点
29
M0 处的切线.显然,此时倾角ϕ 趋向于切线 M 0T 的倾角α ,即切线 M 0T 的斜率
为
tan α = lim tanϕ = lim Δy = lim f ( x0 + Δx) − f ( x0 ) .
lim Δy = lim (2x + Δx) = 2x
Δx Δx→0
Δx→0
y′ = ( x2 )′ = 2x .
同理可得 (xn )′ = nxn−1 ( n 为正整数)
例 6 求 y = sin x 的导函数.
解 Δy = sin ( x + Δx) − sin x = 2 cos(x + Δx ) ⋅ sin Δx
d f (x)
dx
x= x0
这时称函数 y = f (x0 ) 在点 x0 处是可导的函数.
高等数学_第二章导数与微分习题课讲解
解:因为 f ( x)在x 1处可导,所以 f ( x) 在x 1处连续;
lim f ( x) lim f ( x) f (1)
x1
x1
即 lim 2 1= lim ax b a b
x1 1 x 2
x 1
b 1 a.
f(1)
lim
1处可导,
ax
b,当x
1
试确定 a, b的值。
分析 此题要求两个待定常数。通常需要寻找两个只以 a ,b 为未知量的方程。由已知条件 f ( x) 在分段点 x 1 处可导, 得一个方程 f(1) f(1);又由函数在一点可导必要条件: f ( x)在 x 1处连续,得第二个方程 f (1 0) f (1 0) 。 解此联立方程组,可求出 a ,b 。
e
1 x 1 x
1
2
1 x (1 x) (1 x)
1 x
(1 x)2
1
1 x
e 1 x
(1 x)(1 x)3
【例7】求星形线
x
y
a a
cos 3 sin3
t在
t
t
3
4
处的导数
dy dx
|
t
3
4
。
解:
dx dt
|
t
3
4
解:方程两边对 x 求导得
3x2 3 y2 y 3cos x 6 y 0
将 x 0 代入上方程,得 3 y 2 (0) y(0) 3 6 y(0) 0 (1)
将 x 0代入原方程,得 y(0) 0
第二讲导数和微分内容提要和典型例题
x0
① f (x)连续 ② f(0)存在
③ f(x)连续 ④ f(0)存在
第二章 导数与微分典型例题
解 首先注意到
当 0时lim xsin 1不存在
x 0
x
当 0时 lim xsi1 n0
x 0
x
① 当 x0时f, (x)xnsi1n是初等函数,连续 x
因此要使 f (x)连续只f须 (x)在 x0处连续
F ( 0 ) 存 F ( 0 ) 在 F ( 0 ) F (0 ) x l 0 if m (x )1 ( sxix )n f(0 )
x l i0 m f(x x ) 0 f(0 )f(x)sx ixn f(0 )f(0 ) F (0 ) x l 0 if m (x )1 ( sxix )n f(0 ) x l i0 m f(x x ) 0 f(0 )f(x)sx ix n
2d yy22tyd yet 0
dt
dt
dyet y2 dt 2ty2
dy
dy dx
dt dx
(1t2)(et y2) 2ty2
dt
④ 设 f(x)(x20 01 1)g(x),其 g(x)在 中 x1处连续
且 g(1)1求 f(1)
第二章 导数与微分典型例题
第二讲 导数与微分
内容提要与典型例题
第二章 导数与微分内容提要
一、主要内容
关 系
d y y d y y d x y d o y ( x ) dx
导数
y lim x0 x
基本公式 高阶导数 高阶微分
微分
dyyx
求导法则
第二章 导数与微分内容提要
第二章导数与微分
第二章导数与微分一、教学目标与基本要求1.理解函数在一点的导数的三种等价定义和左、右导数的定义;了解导函数与函数在一点的导数的区别和联系;会用导数的定义求一些极限,证明一些有关导数的命题,验证导数是否存在;了解导数的几何意义及平面曲线的切线和法线的求法。
2.掌握常数、基本初等函数及双曲函数与反双曲函数的导数公式;掌握导数的四则运算法则和复合函数的求导法则。
3.理解高阶导数定义;掌握两函数乘积高阶导数的莱布尼兹公式;综合运用基本初等函数的高阶导数公式,两函数和、差、积的高阶导数公式及莱布尼兹公式等,求函数高阶导数。
4.理解隐函数定义并会求隐函数的一阶、二阶导数;掌握反函数的求导法则。
5.掌握参数方程所确定的函数的一、二阶导数的求导公式;会用对数求导法求幂指函数和具有复杂乘、除、乘方、开方运算的函数的导数。
6.理解微分的定义以及导数与微分之间的区别和联系;掌握基本初等函数的微分公式;理解微分形式的不变性;了解微分在近似计算及误差估计中的应用。
7.理解函数在一点处可导、可微和连续之间的关系。
二、教学内容与学时分配第一节导数的概念,计划3.5学时;第二节函数的和、差、积、商的求导法则,计划1.5学时;第三节反函数的导数、复合函数的求导法则,计划3.5学时;第四节初等函数的导数问题,计划1学时;第五节高阶导数,计划2.5学时;第六节隐函数的导数、由参数方程所确定的函数的导数,计划3.5学时;第七节函数的微分,计划2.5学时;第八节微分在近似计算中的应用,计划1.5学时;共计20学时。
三、重点与难点1.导数的概念与几何意义及物理意义;2.可导与连续的关系;3.导数的运算法则与基本求导公式;4.微分的概念与微分的运算法则;5.可微与可导的关系。
四、内容的深化与拓宽1.导数概念的深刻背景2.复合函数的求导法则的应用3.综合运用基本初等函数的高阶导数公式,两函数和、差、积的高阶导数公式及莱布尼兹公式等,求函数的高阶导数。
微积分教学课件第2章导数与微分
微积分
三、 导数的几何意义
y y f(x)
曲线 y f (x)在点 (x0 , y0)的切线斜率为
tan f(x0)
CM
T
若 f(x0)0,曲线过 (x0 , y0)上升;
o x0
nan1
说明:
微积分
对一般幂函数 y x ( 为常数)
(x)x1
(以后将证明)
例如,(
1
x ) (x 2 )
1
x
1 2
2
1 2x
1 x
(x1)
x11
1 x2
(
1
3
) (x 4 )
3
x
7 4
xx
4
微积分
例3. 求函数 f(x)sixn的导数.
解: 令hx,则
f (x) lim f(xh)f(x) lim sin x(h)sixn
u(xh)vu (x()x u)v(ux((x)vxv)2)( (vxxu ())x(x)vh)(x)
故结论成立.
推论h: v(xCvh)v(x)vC2v ( C为常数 )
微积分
例2. 求证 (tax)n se2c x,(c x )s c cx s cc x o . t 证: (tanx)csoinsxx(six)ncocxos s2sxixn(cx o)s
h h
1, 1,
h0 h0
lim f(0h)f(0)不存在 ,即x在x0不可. 导
h 0
h
例6. 设
f
(x0)
存在,
求极限
lim f(x0h)f(x0h).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
t0
t0 t t0
t
8
二、导数的定义
定义1设 y f x 在点 x0的某个邻域内有定义, 当 x
在点 x0处有增量 x x0 x 仍在该邻域内)时,
当
x 0
时,lim x0
y x
lim
x0
f
x0
x
x
f
x0
存在,
则称 y f x 在点 x0 处可导,并称这个极限值为
y f x 在点 x0 处的导数,记作
两个增量之比 y 6x x2 6 x.
x
x
对上式两端取极限,得 f ' 3 lim y lim 6 x 6
x x0
x0
类似地,可求得
f'
x0
lim y x0 x
lim x0 x2 x02
x0
x
lim
x0
2x0
x
2
x0
.
上述结果中,由于 x0 可以是(-∞,+∞)内的任意值
因此f x x2 在(-∞,+∞)内的任意点都存在导数
x 定义2 如果 y f x 在区间 I 内的每一点 都有导数,
则称函数 y f x 在区间 I 内可导.这时,对于区间 I
内每一点 x,都有一个导数值 f ' x 与它对应.因此f ' x是 x
的函数,称为
y
f
x
的导函数,记作
f
' x, y', dy 或 df
2) 既然不能描述运动员的运动状态,那我们
应该用什么来描述呢?
瞬时速度
3) 如何求运动员的瞬时速度?
一、引例
例2、求变速直线运动的瞬时速度
物体在时段内的平均速度
速度= 路程 时间
.
v s s(t0 t) s(t0 )
t
t
物体在t0时刻的瞬时速度
v lim v lim s lim s(t0 t) s(t0 )
x
,
dx dx
即
f ' x
lim
y
lim
f
x x
f
x
.
x x0
x0
x
三、基本导数公式
例4 求函数 f (x) C(C为常数)的导数.
解:f ' x lim f (x h) f (x) lim C C 0
h0
h
h0 h
即 (C)' 0 这就是说,常数的导数等于零.
用定义求导数,可分为以下三个步骤:
(10) (e x)ex
(11)
(loga
x)
1 xln a
(12) (lnx) 1 x
(13) (arcsin x) 1 1 x2
(14) (arccosx) 1 1 x2
(15) (arctanx) 1 1 x2
(16)
(arccot x) 1 1 x2
17
四、导数的几何意义
f (x0 )表示曲线 y f (x)在点M (x0, f (x0 ))处的切线的斜率,
英国数学家 Newton 德国数学家 Leibniz
5
一、引例
例1 求曲线切线的斜率. 割线的斜率是
tan y
x
f x0 x f x0
x
切线的斜率
tan
lim tan
x0
lim
x0
y x
lim x0
f
x0
x
x
f
x0 .
1) 你认为用平均速度描述运动员的运动状态 有什么问题吗?
f ' x0 ,
y , x x0
dy ,
dx xx0
df (x) dx xx0
9
,
.
即
f
' x0
lim
x0
y x
lim
x0
f
x0
x
x
f
x0 .
如果上述极限不存在,则称 y f x 在点 x0 处不可导.
有了导数的概念,前面讨论的两个实例可以表示为:
(1)变速直线运动的瞬时速度
2
cos
x.
2
即 (sin x) cos x.
(sin x) x cos x x
4
4
2. 2
15
.
例6 求函数 y ax (a >0,a ≠0)的导数.
解得:ax ' ax ln a. 特别:ex ' ex
例7 求函数 y loga x
解得:loga x 1
x ln a
( a >0,a ≠0)的导数
熟练掌握基本初等函数的求导公式; 熟练 掌握导数的四则运算法则;熟练掌握复合函 数的求导法则;了解高阶导数、隐函数概念 并能计算。
理解函数微分的定义,会用微分的运算法则 和一阶微分形式不变性求函数的微分,了解
4 微分在近似计算中的应用。
§2.1 导数的概念
导数思想最早由法国 数学家 Ferma 在研究 极值问题中提出. 微积分学的创始人:
特别:ln x' 1
x
例8 求函数 y cos x 的导数.
解得:cos x sin x.
16
基本导数公式
(1) (C)0
(2) (xm)m xm1
(3) (sin x)cos x (4) (cos x)sin x (5) (tan x)sec2x (6) (cot x)csc2x (7) (sec x)sec xtan x (8) (csc x)csc xcot x (9) (a x)a x ln a
v t0 s' t0
ds dt
. t t0
(2)曲线在某 处的切线斜率
点
k切 tan f ' x0 .
10
单侧导数
(1)左导数
f (x ) lim f ( x) f (x0 ) lim f ( x0 x) f ( x0 );
0
xx0 0
xx
x0
x
0
(2)右导数
f (x ) lim f (x) f (x0 ) lim f (x0 x) f (x0 );
《高等数学》
数学教研室 邓敏英
1
第二章 导数与微分
本章主要内容
§2.1 导数的概念 §2.2 函数的求导法则 §2.3 隐函数及参数方程的导数 §2.4 高阶导数 §2.5 函数的微分及其应用
3
学习目标
理解导数的概念,了解导数在几何上、经济 上的实际意义,会用导数的定义求一些简单 函数的导数。会求曲线上一点处的切线方程 和法线方程。
(1)求增量 y f x x f x;
(2)算比值
y
f
x x
f
x
;
x
x
(3)取极限
f ' x lim y lim f x x f x
x x0
x0
xLeabharlann 解f ( x) lim
f ( x h)
f
(
x)
lim
sin(
x
h)
sin
x
h0
h
h0
h
h
lim
h0
cos(
x
h) 2
sin h
0
xx0 0
x x0
x0
x
结论:函数 f (x)在点 x0处可导 左导数 f(x0 )和
右导数 f(x0 )都存在且相等.
11
例3 求 f x x2 在点 x 3 和 x x0 处的导数.
解 给自变量 在 x 3处以增量 x ,对应的函数的增量是
y f 3 x f 3 3 x2 32 6x x2 .