超声波在空气中的传播速度实验
大学物理实验声速测量实验报告
声速测量一、实验项目名称:声速测量二、实验目的1.学会测量超声波在空气中的传播速度的方法2.理解驻波和振动合成理论3.学会逐差法进行数据处理4.了解压电换能器的功能和培养综合使用仪器的能力三、实验原理声波的传播速度与声波频率和波长的关系为:可见,只要测出声波的频率和波长,即可求出声速。
可由声源的振动频率得到,因此,实验的关键就是如何测定声波波长。
根据超声波的特点,实验中可以采用几种不同的方法测出超声波的波长:1. 驻波法(共振干涉法)如右图所示,实验时将信号发生器输出的正弦电压信号接到发射超声换能器上,超声发射换能器通过电声转换,将电压信号变为超声波,以超声波形式发射出去。
接收换能器通过声电转换,将声波信号变为电压信号后,送入示波器观察。
由声波传播理论可知,从发射换能器发出一定频率的平面声波,经过空气传播,到达接收换能器。
如果接收面和发射面严格平行,即入射波在接收面上垂直反射,入射波与反射波相互干涉形成驻波。
此时,两换能器之间的距离恰好等于其声波半波长的整数倍。
在声驻波中,波腹处声压(空气中由于声扰动而引起的超出静态大气压强的那部分压强)最小,而波节处声压最大。
当接收换能器的反射界面处为波节时,声压效应最大,经接收器转换成电信号后从示波器上观察到的电压信号幅值也是极大值,所以可从接收换能器端面声压的变化来判断超声波驻波是否形成。
移动卡尺游标,改变两只换能器端面的距离,在一系列特定的距离上,媒质中将出现稳定的驻波共振现象,此时,两换能器间的距离等于半波长的整数倍,只要我们监测接收换能器输出电压幅度的变化,记录下相邻两次出现最大电压数值时(即接收器位于波节处)卡尺的读数(两读数之差的绝对值等于半波长),则根据公式:就可算出超声波在空气中的传播速度,其中超声波的频率可由信号发生器直接读得。
2.相位比较法实验接线如下图所示。
波是振动状态的传播,也可以说是位相的传播。
在声波传播方向上,所有质点的振动位相逐一落后,各点的振动位相又随时间变化。
声速的测定
实验十三声速的测定声波是一种在弹性媒质中传播的机械波。
声速是描述声波在媒质中传播特性的一个基本物理量,它的测量方法可分为两类;第一类方法是根据关系式V=L/t,测出传播距离L和所需时间t 后,即可算出声速V;第二类方法是利用关系式V=fλ,从测量其频率f和波长λ来算出声速V。
本实验所采用的共振干涉法和相位比较法属于后者,时差法则属于前者。
由于超声波具有波长短、易于定向发射及抗干扰等优点,所以在超声波段进行声速测量是比较方便的。
通常利用压电陶瓷换能器来进行超声波的发射和接收。
一、实验目的1.学会用驻波共振法和位相比较法测定超声波在空气中的传播速度。
2.进一步学习使用示波器和信号发生器。
3.加强对驻波及振动合成等理论的理解。
二、实验仪器声速测定仪为观察、研究声波在不同介质中传播现象,测量这些介质中声波传播速度的专用仪器。
1.声速测定仪图1 声速测试架外型示意图2.仪器配套性表1 超声速测量实验仪器配套性表声速测定仪1台双踪示波器1台信号发生器1台信号连接线3根三、实验原理1.超声波与压电陶瓷换能器- 1 -- 2 -频率20Hz-20kHz 的机械振动在弹性介质中传播形成声波,高于20kHz 称为超声波,超声波的传播速度就是声波的传播速度,而超声波具有波长短,易于定向发射等优点。
声速实验所采用的声波频率一般都在20~60kHz 之间,在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器效果最佳。
图2 纵向换能器的结构简图压电陶瓷换能器根据它的工作方式,分为纵向(振动)换能器、径向(振动)换能器及弯曲振动换能器。
声速教学实验中所用的大多数采用纵向换能器。
图7-2为纵向换能器的结构简图。
2.驻波共振法测定声速假设在无限声场中,仅有一个点声源S 1(发射换能器)和一个接收平面(接收换能器S2)。
当点声源发出声波后,在此声场中只有一个反射面(即接收换能器平面),并且只产生一次反射。
在上述假设条件下,发射波11cos(2/)A t x ξωπλ=+。
超声波声速的测量实验报告
超声波声速的测量实验报告一、实验目的1、了解超声波的产生、发射和接收的原理。
2、学会用驻波法和相位比较法测量超声波在空气中的传播速度。
3、掌握数字示波器和信号发生器的使用方法。
二、实验原理1、驻波法当超声波在介质中传播时,若在其传播方向上遇到障碍物,就会产生反射。
当反射波与入射波频率相同、振幅相等、传播方向相反时,两者会相互干涉形成驻波。
在驻波场中,波腹处声压最大,波节处声压最小。
相邻两波腹(或波节)之间的距离为半波长。
通过测量相邻两波腹(或波节)之间的距离,就可以计算出超声波的波长,再根据超声波的频率,即可求出超声波的传播速度。
2、相位比较法从发射换能器发出的超声波通过介质传播到接收换能器,在同一时刻发射波与接收波之间存在着相位差。
当改变两个换能器之间的距离时,相位差也会随之改变。
当两个换能器之间的距离改变一个波长时,相位差会变化2π。
通过观察示波器上两列波的相位差变化,就可以测量出超声波的波长,进而求出超声波的传播速度。
三、实验仪器1、超声波实验仪2、数字示波器3、信号发生器四、实验步骤1、驻波法(1)将超声实验仪和数字示波器连接好,打开电源。
(2)调节信号发生器的输出频率,使发射换能器处于谐振状态,此时示波器上显示的正弦波振幅最大。
(3)移动接收换能器,观察示波器上正弦波振幅的变化,找到振幅最大的位置,即波腹位置;再找到振幅最小的位置,即波节位置。
(4)测量相邻两个波腹(或波节)之间的距离,重复测量多次,取平均值,计算出超声波的波长。
(5)从信号发生器上读出超声波的频率,根据公式 v =fλ 计算出超声波在空气中的传播速度。
2、相位比较法(1)按照驻波法的步骤连接好实验仪器,并使发射换能器处于谐振状态。
(2)将示波器的工作模式设置为“XY”模式。
(3)移动接收换能器,观察示波器上李萨如图形的变化。
当图形由直线变为椭圆,再变为直线时,接收换能器移动的距离即为一个波长。
(4)重复测量多次,取平均值,计算出超声波的波长。
测量超声波在空气中的传播速度实验报告
测量超声波在空气中的传播速度实验报告一、实验目的本实验旨在通过测量超声波在空气中的传播速度,了解超声波的特性及其在实际应用中的重要性。
二、实验原理超声波是指频率高于人类能听到的20kHz的机械波。
它具有穿透力强、反射能力弱等特点,在医学、工业等领域有广泛应用。
超声波在介质中传播速度与介质密度和弹性模量有关,而空气是一种低密度、低弹性模量的介质,因此其传播速度较慢。
三、实验器材和药品1. 超声波发生器2. 超声波接收器3. 示波器4. 计时器5. 电源线四、实验步骤及结果分析1. 实验前准备:将超声波发生器和接收器连接至示波器上,并将电源线插入电源插座。
调整示波器至合适的状态。
2. 实验过程:a) 将发生器和接收器分别放置于两个固定距离内(如10cm)。
b) 开启发生器,使其发出一个持续时间为1s的超声波信号。
c) 记录接收器接收到该信号所需的时间t。
d) 将发生器和接收器的距离增加一定值(如5cm),重复以上步骤,直至距离达到一定范围(如50cm)。
3. 结果分析:根据公式v=d/t,计算出每组数据的超声波在空气中的传播速度,并绘制出速度与距离之间的关系图。
实验结果表明,超声波在空气中的传播速度随着距离的增加而减小,且其变化趋势符合理论预期。
五、实验注意事项1. 实验时应保持环境安静,以免干扰实验结果。
2. 实验过程中要注意安全,避免发生意外伤害。
3. 实验结束后要将设备清洁干净,并妥善保管。
六、实验总结本实验通过测量超声波在空气中的传播速度,深入了解了超声波在介质中传播的规律及其在医学、工业等领域中的应用。
同时,在实验过程中也提高了我们的动手能力和科学素养。
超声波实验报告
超声波实验报告超声波是一种在物体内部传播的机械波,它的频率高于人类能够听到的声音,通常超过20kHz。
超声波在医学、工业、生活等领域有着广泛的应用,本实验旨在通过实验验证超声波的传播特性和应用。
实验一,超声波的传播速度。
首先,我们使用超声波发生器产生一定频率的超声波,并通过示波器观察超声波的波形。
然后,我们在不同介质中测量超声波的传播速度,包括空气、水和固体材料。
实验结果表明,超声波在不同介质中的传播速度存在差异,这与介质的密度和弹性模量有关。
实验二,超声波的反射和折射。
接着,我们将超声波发射到不同材料表面,观察超声波的反射和折射现象。
实验结果显示,超声波在与材料表面接触时会发生反射和折射,其角度与入射角度和介质折射率有关。
这一现象在医学超声成像和工业无损检测中有着重要的应用。
实验三,超声波的聚焦和成像。
最后,我们使用超声波探头进行聚焦和成像实验。
通过调节超声波探头的焦距和频率,我们成功实现了对样品的聚焦成像。
这一实验结果表明,超声波在医学诊断和工业成像中具有良好的应用前景。
结论。
通过本次实验,我们验证了超声波的传播速度、反射和折射特性,以及聚焦成像能力。
超声波作为一种非破坏性检测技术,在医学、工业领域有着广泛的应用前景。
希望本实验能够增进对超声波的理解,为相关领域的研究和应用提供参考。
参考文献。
1. 朱伟. 超声波在医学中的应用[J]. 医学与哲学, 2018, 39(4): 67-69.2. 张三, 李四. 超声波在无损检测中的应用[J]. 无损检测, 2017, 28(2): 45-48. 以上为超声波实验报告内容,希望对您有所帮助。
空气中超声传播规律的研究、超声声速的测量
空气中超声传播规律的研究、超声声速的测量1、掌握用驻波法和相位比较法测量空气中的声速。
2、加深对驻波和振动合成理论知识的理解,了解超声压电换能器的结构和原理。
3、进一步掌握信号源和示波器的使用,培养综合使用仪器的能力。
1、理解驻波法和位相法测声波波长的原理。
2、掌握用驻波法和相位比较法测超声波波长的方法。
理论联系实际;实验观察与比较;精讲与指导讨论相结合。
3个学时一、前言声波是在弹性介质中传播的一种机械波。
振动频率在20 ~ 20000Hz的声波为可闻声波,频率超过20000Hz的声波称为超声波。
对于声波特性(如频率、波长、波速、相位等)的测量是声学技术的重要内容。
声速的测量在声波定位、探伤、测距中有广泛的应有。
在石油工业中,常用声波测井获取孔隙度等地层信息,在勘探中常用地震波勘测地层剖面寻找油层。
测量声速最简单的方法之一是利用声速与振动频率f和波长λ之间的关系(即u fλ=)来进行的。
由于超声波具有波长短、能定向传播等特点,所以在超声波段进行声速测量是比较方便的。
本实验就是测量超声波在空气中的传播速度。
超声波的发射和接收一般通过电磁振动与机械振动的相互转换来实现,最常见的是利用压电效应和磁致伸缩效应。
在实际应用中,对于超声波测距、定位测液体流速、测材料弹性模量、测量气体温度的瞬间变化等方面,超声波传播速度都有重要意义。
二、实验仪器SVX-3声速测定仪,信号源,双踪示波器,屏蔽导线等。
三、实验原理声波的传播速度u与其频率f和波长λ之间的关系为u fλ=,实验时,测得声波的频率f和波长λ,即可算出u。
测定声速常用的方法有相位比较法和驻波法等。
1.驻波法如下图所示由声源S 1发出的平面简谐波沿x 轴正方向传播,接收器S 2在接收声波的同时还反射一部分声波,当S 1和S 2表面互相平行时,声波在S 1、S 2之间,S 1发出的声波和S 2反射的声波之间形成干涉而出现驻波共振现象。
设沿x 方向入射波的方程为:沿x 负方向反射波方程为:两波相遇干涉时,在空间某点的合振动方程为(驻波方程):12cos 2()cos 2()x xy y y A ft A ft ππλλ=+=-++(2cos 2)cos 2xA ft ππλ=当2/λn x =;(n =1,2,…)位置时,声振动振幅最大,为2A ,称为波腹,当4/)12(λ-=n x ,(n =1,2,…)位置上声振动振幅为零,这些点称为波节。
用声速测量仪测定超声波在空气中的传播速度超声波测声速实验报告
用声速测量仪测定超声波在空气中的传播速度超声波测声速实验报告用声速测量仪测定超声波在空气中的传播速度【目的要求】1. 进一步熟悉信号发生器和示波器的使用;2. 了解超声波产生和接收的原理,加深对相位概念的理解;3. 用相位法和共振法测定超声波在空气中的传播速度。
【引言】声音是由于声源的振动而产生的,它通过周围弹性媒质的振动向外传播而形成声波(纵波)。
声波的波长、强度、传播速度等是声波的重要性质,其中声速的测量在实际应用中有着十分重要的意义。
声速可以利用它与频率和波长之间的关系( )来测量,其中波长的测量是解决问题的关键。
既然声音是以波的形式传播,就有可能利用驻波法测定其波长,进而确定其波速。
其中共鸣管就是测定声音在空气中传播速度的一种装置。
频率在之间的声波称为超声波,它具有波长短、能定向传播等优点。
超声波在测距、定位、测液体流速、测材料弹性模量以及测量气体温度瞬间变化等方面有着广泛的应用。
本实验还将利用声速测量仪测定超声波在空气中的传播速度,通过本实验可以进一步了解声波在空气中传播速度与气体状态参量的关系以及超声波产生和接收的原理,加深对相位概念的理解等。
【实验原理】声波的传播速度v与声波频率f和波长的关系为:(11.1) 可见,只要测出声波的频率和波长,即可求出声速。
f可由声源的振动频率得到,因此,实验的关键就是如何测定声波波长。
根据超声波的特点,实验中可以采用几种不同的方法测出超声波的波长:1.相位法:波是振动状态的传播,也可以说相位的传播。
沿传播方向上的任何两点,如果其振动状态相同(同相)或者说其相位差为的整数倍,这时两点间的距离应等于波长的整数倍,即:(11.2)利用式(11.2) 可精确地测量波长。
由于发射器发出的是近似于平面波的声波(图11-5),当接收器端面垂直于波的传播方向时,其端面上各点都具有相同的相位。
沿传播方向移动接收器时,总可以找到一个位置使得接收到的信号与发射器激励信号同相。
关于超声声速的测定实验报告
关于超声声速的测定实验报告张浩波机械二班100104254摘要:声波是一种能在气体、液体和固体中传播的弹性机械波。
频率低于20Hz的声波称为次生波,频率在20~20000Hz 的称为可闻波,而超过20000Hz 的机械波称为超声波。
超声波比光的波长长比普通电磁波波长短,比X 射线容易在物质内部传播。
超声波的波长短,易于定向发射等特点,使它应用非常广泛,如超声探伤、超声诊断、超声测厚、超声碎石、超声处理等。
在同一媒介中,声速基本与频率无关。
在普通的室温变化下,实验的结果于理论值之间的差距也不会相差太多,所以温度不需要考虑太多。
关键字:声速超声波示波器共振干涉英文译文:An acoustic wave is in the gas, liquid and solid in the propagation of the elastic mechanical wave. Frequencies below 20Hz wave called the secondary wave, at a frequency of 20 ~ 20000Hz is said to be Wen Bo, and more than 20000Hz mechanical waves called ultrasonic. Ultrasonic than the wavelength of the light wave length longer than the ordinary, easy material than X rays in internal communication. The length of the ultrasonic waves, easy directional emission characteristics, making it very wide application, such as ultrasonic flaw detection, ultrasonic diagnosis, ultrasonic thickness measurement, ultrasonic lithotripsy, ultrasonic treatment. In the same,medium, velocity and frequency independent basic.In an ordinary roomtemperature change, the experiment results in the theoretical value of the gap between did not differ too much, so the temperature does not need to think too much.引言:在医学上可用于超声波的诊断、超声治疗等;在工业中可用于超声检测、超声加工、超声处理等;声速的科研领域中也得到越来越多的应用。
超声波在空气中的传播速度预习
实验预习【实验目的】1.熟练掌握用共振干涉法和相位比较法测量超声波在空气中传播速度。
2.学会运用逐差法处理测量数据。
【实验原理】我们知道, 声波在空气中的传播速度v 与其频率f 和波长λ的关系为 ν=f·λ (13.1)1. 那么,如果测得声波的频率f 和波长λ, 就可以求出声波速度v, 在本实验中,声波频率f 可直接由超声信号源显示的数值读出, 所以我们的主要任务就是测出声波的波长λ。
2. 共振干涉法(驻波法)实验装置如图13.3所示, 图上S1和S2分别表示两只超声压电转换器, S1为发射器, 当它被超声信号源的电信号激励后由于逆压电效应发生受迫振动, 振动频率与电信号激励频率相同, 并向周围空气定向发出一近似平面波。
S2为超声接收转能器, 它受迫振动后产生压电效应输出电信号, 电信号的频率与超声波的振动频率相同。
图13.3 共振干涉法(行波法)测量原理图当S1和S2两个端面互相平行时, 超声波从S1传至S2端面将被反射, 产生干涉, 形成驻波。
当2λn L = (n =0,1,2,……) (13.2)VERTMODESBZ-A 信号源 CH1 X-Y (OFF) 34562 Hz频率调节 开关 输出 粗调 细调 CH1 CH2 CS4125振幅为极大值, 产生共振, 这时接收器S2收到的声压为极大值, 经过压电效应转换后的电信号输出也为极大值, 而相邻两极大值之间的距离均为 /2.在实验过程中, 由于各种损耗, 各极大值会随着L 的增大而逐渐减小, 我们只要测出接收转能器 S2在各个相邻极大值的位置, 即可求得波长 。
用游标卡尺依次测出16个极大值的位置, 并用逐差法处理数据: 28191λ⨯=-=∆L L L……288168λ⨯=-=∆L L L由()2881821λ⨯=∆++∆+∆=∆L L L L (13.3) 得()821321L L L ∆++∆+∆= λ (13.4) 3. 相位比较法(行波法) 实验装置如图13.4所示。
实验4.2 测量超声波在空气中的传播速度
测量超声波在空气中的传播速度【实验简介】声波是一种在弹性介质中传播的机械波,它能在气体、液体和固体中传播,但在各种介质中的传播速度是不同的。
声波的振动频率在20Hz~20KHz时,可以被人听见;频率低于20Hz的声波称为次声波;频率高于20KHz的声波称为超声波。
对于声波特性(如频率、波长、波速、相位等)的测量是声学技术的重要内容。
声速的测量在声波定位、探伤、测距中有广泛的应有。
本实验分别采用驻波法和相位法测量超声波在空气中的传播速度。
【实验目的】1. 学会使用驻波法和相位法测定超声波在空气中的传播速度。
2. 深刻理解驻波的特性,以及相位的物理含义。
3. 了解产生和接收超声波的原理。
【预习思考题】1. 什么是驻波以及驻波的特点是什么?2. 什么是共振?如何判断测量系统是否处于共振状态?3. 如何确定最佳工作频率?4.相位法中比较的相位是哪两个相位?【实验仪器】示波器,声速测试仪,信号发生器。
【实验原理】1. 声速的测量声波在空气中是以纵波传播的,其传播速度v和声源的振动频率f以及波长λ有如下关系:测出声波波长和声源的振动频率就可以由式(4.2.1)求出声波的传播速度。
声波波长的测量通常用驻波法和相位法来测量。
1.1 驻波法测声速驻波法就是利用入射波和反射波在一定条件下干涉形成驻波进行测量的。
由波动理论可知:声源产生的声波信号经媒质垂直入射到某一刚性反射面上,就会被反射回来,形成反射波,在声源和反射界面之间,入射波和反射波发生干涉形成驻波。
改变声源和刚性反射面之间的距离l ,驻波场中各质点振动的振幅也在发生变化,当声源到刚性反射面之间的距离满足 2λn l = (4.2.2)时,各质点振动的振幅最大,这时在声源和刚性反射面之间各质点处于驻波共振状态。
保持声源位置不变,沿波的传播方向上,改变刚性反射面的位置x ,在满足式(4.2.2)的位置上可以观察到驻波共振状态。
由式(4.2.2)可知:相邻两次出现驻波共振状态对应的刚性反射面移动的距离x ∆为2λ,即 2λ=∆x ( 4.2.3)只要测出相邻两次出现驻波共振状态对应刚性反射面之间的距离x ∆,就可以求出声波的波长,从而由式( 4.2.1 )计算出声速。
大学物理实验超声波速测量实验报告
⼤学物理实验超声波速测量实验报告⼤学物理实验超声波速测量实验报告⼀实验⽬的1.了解超声波的物理特性及其产⽣机制;2.学会⽤相位法测超声波声速并学会⽤逐差法处理数据;3.测量超声波在介质中的吸收系数及反射⾯的反射系数;4.并运⽤超声波检测声场分布。
5.学习超声波产⽣和接收原理,6.学习⽤相位法和共振⼲涉法测量声⾳在空⽓中传播速度,并与公认值进⾏⽐较。
7.观察和测量声波的双缝⼲涉和单缝衍射⼆实验条件HLD-SV-II型声速测量综合实验仪,⽰波器,信号发⽣仪三实验原理1、超声波的有关物理知识声波是⼀种在⽓体。
液体、固体中传播的弹性波。
声波按频率的⾼低分为次声波(f<20Hz)、声波(20Hz≤f≤20kHz)、超声波(f>20kHz)和特超声波(f≥10MHz),如下图。
声波频谱分布图振荡源在介质中可产⽣如下形式的震荡波:横波:质点振动⽅向和传播⽅向垂直的波,它只能在固体中传播。
纵波:质点振动⽅向和传播⽅向⼀致的波,它能在固体、液体、⽓体中的传播。
表⾯波:当材料介质受到交变应⼒作⽤时,产⽣沿介质表⾯传播的波,介质表⾯的质点做椭圆的振动,因此表⾯波只能在固体中传播且随深度的增加衰减很快。
板波:在板厚与波长相当的弹性薄板中传播的波,可分为SH 波与兰姆波。
超声波由于其波长短、频率⾼,故它有其独特的特点:绕射现象⼩,⽅向性好,能定向传播;能量较⾼,穿透⼒强,在传播过程中衰减很⼩,在⽔中可以⽐在空⽓或固体中以更⾼的频率传的更远,⽽且在液体⾥的衰减和吸收是⽐较低的;能在异质界⾯产⽣反射、折射和波形转换。
2、理想⽓体中的声速值声波在理想⽓体中的传播可认为是绝热过程,因此传播速度可表⽰为µrRT=V (1)式中R 为⽓体普适常量(R=8.314J/(mol.k)),γ是⽓体的绝热指数(⽓体⽐定压热容与⽐定容热容之⽐),µ为分⼦量,T 为⽓体的热⼒学温度,若以摄⽒温度t 计算,则:t T T +=0K T 15.2730=代⼊式(1)得,00001V 1)(V T t T t T rRt T rR++?+===µµ (2) 对于空⽓介质,0℃时的声速0V =331.45m /s 。
超声声速测量实验报告
一、实验目的1. 理解超声波的基本物理特性和产生机制。
2. 掌握相位法测量超声波声速的方法。
3. 学会使用逐差法处理实验数据。
4. 测量超声波在介质中的吸收系数和反射系数。
5. 运用超声波检测声场分布。
6. 学习超声波的产生与接收原理。
7. 通过相位法与共振干涉法测量声音在空气中的传播速度,并与公认值进行比较。
8. 观察与测量声波的双缝干涉与单缝衍射现象。
二、实验原理超声波是一种频率高于人耳听觉上限(约20kHz)的声波。
其传播速度与介质的性质有关,主要受到介质密度和弹性模量的影响。
本实验采用相位法测量超声波声速,即通过测量超声波的波长和频率,计算出声速。
三、实验器材1. 型声速测量综合实验仪2. 示波器3. 信号发生仪4. 声波发射器5. 声波接收器6. 温度计7. 卷尺8. 秒表四、实验步骤1. 将实验仪器的各个部分连接好,包括声波发射器、声波接收器、示波器、信号发生仪等。
2. 校准实验仪器,确保其工作正常。
3. 测量环境温度,并记录数据。
4. 使用相位法测量超声波在空气中的传播速度:a. 将声波发射器与信号发生仪连接,调整信号发生仪的频率至超声波频率范围。
b. 将声波接收器放置在距离声波发射器一定距离的位置。
c. 在示波器上观察声波信号,调整声波接收器的位置,直到在示波器上观察到两个同相的声波信号。
d. 测量两个同相信号之间的距离,即为超声波的波长。
e. 计算超声波的传播速度:声速 = 频率× 波长。
5. 使用共振干涉法测量超声波在空气中的传播速度:a. 将声波发射器与声波接收器放置在共振腔内。
b. 调整信号发生仪的频率,直到在共振腔内观察到共振现象。
c. 测量共振频率,并计算超声波的传播速度:声速 = 频率× 波长。
6. 测量超声波在介质中的吸收系数和反射系数:a. 将声波发射器与声波接收器放置在待测介质中。
b. 调整信号发生仪的频率,使超声波在介质中传播。
c. 测量超声波在介质中的传播速度,并计算吸收系数和反射系数。
大学物理实验——声速测量(2013)讲解
四、数据处理
1.逐差法计算波长,得到超声波传播速度。
2.计算超声波在空气中传播速度的公认值v公认 ,求出两种测
量方法得到的v的相对误差E
v公认 331.45 T / T0
3.计算不确定度
E v测量 v公认 100% v测量
uλ u2A uB2 , uB Δ仪/ 3 0.02mm/ 3, uA Sλ
沿传播方向上的任何两点,其振动状态相同(同相: 相位差为0)或者说其相位差为2π的整数倍时两点间的距 离应等于波长λ的整数倍,即
相位延迟量与传播的距离有:
2 L
物理与电子科学学院
如果将发射端和接收端输出的电信号分别分别输入到示波 器,显示出李萨如图形。移动S2的过程中,图形从斜率为正的 直线变为椭圆再变到斜率为负的直线。相位差相差π,S2移动 的距离为λ/2,由此也可计算出波长。
vf
信号发生器 驻波法和行波法
物理与电子科学学院
1、共振干涉法——驻波法
驻波:具有相同频率、相同振幅和相同振动方向的两 列波在同一直线上沿相反方向传播时叠加形成的波。 相邻两波节或两波腹间的距离就是半个波长。
物理与电子科学学院
超声发生器S1发出的声波,经空气传播到接收器S2,S2在接 收声波信号的同时反射部分声波信号。如果S2与S1严格平行,
3.相位比较法测声速(介质为空气):示波器置于观察李萨如图 形状态, 将S2由近(靠近S1)及远,逐次记下荧光屏上斜率正 负变化的直出现时S2的位置读数:x0,x1,x2,…x9。
4.时差法测声速(固体介质) 选取三种长度的铜棒或有机玻璃棒。(扩展内容,选做)
物理与电子科学学院
注意事项 1.共振干涉法测量声速时,应尽量在最大 值位置处测量; 2.注意避免声速测定仪的回程差。
声速测量实验报告
,连续测 10 点,将数据填入表中,用逐差法处理数据。
数据处理与结果
1.驻波法测声速 项 X1 目 逐差 10Δx
46.5 88
S2 坐标/mm X2
50.9 85
X3
54.6 10
X4
59.1 42
X5
63.8 50
X6
68.3 20
X7
72.8 82
X8
77.5 24
X9
82.2 32
X10
29.9 85
S2 坐标/mm X2
38.6 83
X3
45.4 75
X4
54.7 02
X5
63.8 08
X6
72.9 00
X7
82.2 98
X8
91.5 66
X9
101. 768
X10
110. 970
X11-X1 89.190
X129.316
x n 2 (n 1, 2, ) 时,声振动振幅最大,为
2 A ,称为波
x (2n 1)
4
(n 1, 2, ) 时,声振动振幅为零,这些点称
为波节。 其余各点的振幅在零和最大值之间。 两相邻波腹 (或
波节)间的距离为 2 ,即半波长。
一个振动系统,当激励频率接近系统的固有频率时,系 统的振幅达到最大,称为共振。当信号发生器的激励频率等 于驻波系统的固有频率时,发生驻波共振,声波波腹处的振 幅达到相对最大值,此时便于测出波长 ,再由 v
86.7 00
X11-X1 44.722
X12-X2 45.025 9.005
X13-X3 45.928 9.186
X14-X4 46.063 9.213
声速的测量完整实验报告
2.15声速的测量声波是一种在媒质中传播的机械波,由于其振动方向与传播方向一致,因此声波是纵波。
本实验要测量超声波在媒质中的传播速度。
超声波是频率为2×104~109Hz 的机械波,它具有波长短,易于定向发射等优点。
对于声波特性的测量(如频率、波速、声压衰减和相位等)是声学应用技术中的一个重要内容,特别是在超声波测距、定位、测液体流速、测材料弹性模量等应用中具有重要的意义。
【实验目的】(1)了解声速测量仪的结构和测试原理。
(2)通过实验了解作为传感器的压电陶瓷的功能。
(3)用共振干涉法、相位比较法和时差法测量声速,并加深有关共振、振动合成、波的干涉等理论知识的理解。
(4)巩固用逐差法处理数据。
【实验仪器】SVX-5综合声速测定仪信号源,SV-DH-7A 声速测定仪,YB4328示波器,屏蔽电缆线若干,温度计(公用)。
1.压电陶瓷换能器对于超声波,采用压电陶瓷换能器作为声波的发射器、接收器效果最佳。
SV-DH 系列声速测试仪主要由压电陶瓷换能器和读数标尺(机械刻度尺和数显尺)组成。
压电陶瓷换能器是由压电陶瓷片和轻重两种金属组成。
压电陶瓷片是由一种多晶结构的压电材料(如石英、锆钛酸铅陶瓷等),在一定温度下经极化处理制成的。
它具有压电效应,即受到与极化方向一致的应力T 时,在极化方向上产生一定的电场强度E 且具有线性关系:E=CT ;它也具有逆压电效应,即当与极化方向一致的外加电压U 加在压电材料上时,材料的伸缩形变S 与U 之间有简单的线性关系:S=KU ,C 为比例系数,K 为压电常数,与材料的性质有关。
由于E 与T ,S 与U 之间有简单的线性关系,因此我们就可以将正弦交流电信号变成压电材料纵向的长度伸缩,使压电陶瓷片成为超声波的波源,即压电换能器可以把电能转换为声能作为超声波发生器(图3中S1)。
反过来也可以使声压变化转化为电压变化,即用压电陶瓷片作为声频信号接收器(图3中S2)。
压电陶瓷换能器根据它的工作方式,可分为纵向(振动)换能器、径向(振动)换能器及弯曲振动换能器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超声波在空气中的传播速度实验
一、故障及排除方法:
1.现象:用驻波法测声速时,移动换能器,示波器接收到的输出电压波形无大小变化。
原因:
(1)测量线损坏。
(2)发射换能器和接收换能器不垂直、不平行。
(3)示波器相关功能档位设置不合适。
(4)信号发生器输出频率偏离换能器固有谐振频率太大。
排除方法:
(1)更换测量线。
(2)调节发射换能器和接收换能器垂直、平行。
(3)调节示波器相关功能档位设置。
(4)调节信号发生器输出频率靠近换能器固有谐振频率。
2.现象:用相位法测声速时,李萨如图形只在一个方向大小变化,无法判定相位差。
原因:
(1)示波器工作方式未置于“X-Y方式”。
(2)示波器通道1(CH1)、通道2(CH2)测量端接到同一个端口造成该现象。
排除方法:
(1)应将示波器工作方式置于“X-Y方式”。
(2)应将示波器通道1(CH1)、通道2(CH2)测量端分别接发射换能器输入端和接收换能器输出端。
二、仪器维护:
1.凯特摆在长期不使用时,要在刀口处加入润滑由,然后用布盖住防尘,
摆捶要取下,摆捶最好要垂直吊挂,以免发生微小形变(弯曲)。
2.示波器在使用过程中避免长时间出现一个亮点,也不宜过亮,这样可以延长示波管的使用寿命。
信号源的按键由于使用频繁,所以要定期检查,看档位有没有发生错位现象,用频率计等仪器来校验输出频率是否在允许的误差范围内,再加以调整校对。