2014年江苏省苏州市中考数学试卷(解析版)
2014年苏州市初中中考数学试卷含答案解析.docx
2014 年苏州市初中毕业暨升学考试试卷数学本试卷由选择题、填空题和解答题三大题组成.共29 小题,满分130 分.考试时间120分钟.一、选择题:本大题共10 小题,每小题 3 分,共 30 分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔涂在答题卡相应位置上.1. (- 3)× 3 的结果是A .- 9B. 0C. 9D.- 62.已知∠ α和∠ β是对顶角,若∠α=30°,则∠ β的度数为A . 30°B. 60°C. 70°D. 150°3.有一组数据:1,3.3, 4,5,这组数据的众数为A . 1B. 3C. 4D. 54.若式子x 4 可在实数范围内有意义,则x 的取值范围是A . x≤- 4B. x≥- 4C. x≤ 4D. x≥ 45.如图,一个圆形转盘被分成6 个圆心角都为60°的扇形,任意转动这个转盘1 次,当转盘停止转动时,指针指向阴影区域的概率是1B.112A .C.D.43236.如图,在△ABC 中,点 D 在 BC 上, AB = AD = DC ,∠ B= 80°,则∠ C 的度数为A . 30°B. 40°C. 45°D. 60°7.下列关于 x 的方程有实数根的是A . x2-x+ 1= 0B. x2+ x+ 1= 0C. (x- 1)(x + 2)=0D. (x- 1)2+ l= 08.一次函数y= ax2+ bx- 1(a≠ 0)的图象经过点 (1, 1).则代数式1- a- b 的值为A .- 3B.- 1C. 2D. 59.如图,港口 A 在观测站 O 的正东方向, OA = 4km.某船从港口 A 出发,沿北偏东15°方向航行一段距离后到达 B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船航行的距离(即AB 的长)为A . 4km B. 2 3 km C. 2 2 km D.( 3 +1)km10.如图,△ AOB 为等腰三角形,顶点 A 的坐标为( 2,5),底边 OB 在 x 轴上.将△AOB 绕点 B 按顺时针方向旋转一定角度后得△A'O'B ,点 A 的对应点 A' 在 x 轴上,则点 O'的坐标为A .(20,10)B.(16,45 )C.(20,45 )D.(16, 43 )3333333二、填空题:本大题共8 小题,每小题 3 分,共 24 分.把答案直接填在答题卡相应位置上.11.3的倒数是▲.212 已知地球的表而积约为510000000km 2.数 510000000 用科学记数法可以表示为▲.13.已知正方形ABCD 的对角线 AC = 2 ,则正方形ABCD的周长为▲ .14.某学校计划开设 A , B, C, D 四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门.为了了解各门课程的选修人数,现从全体学牛中随机抽取了部分学牛进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200 名,由此可以估计选修 C 课程的学生有▲ 人.15.如图,在△ ABC 中,AB = AC = 5,BC = 8.若∠ BPC=1∠ BAC ,则 tan∠ BPC =▲.216.某地准备对一段长120m 的河道进行清淤疏通,若甲工程队先用 4 天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9 天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要 3 天,设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym ,则( x+ y)的值为▲ .17.如图,在矩形 ABCD 中,AB3,以点 B 为圆心, BC 长为半径画弧,交边AD 于点BC5E,若 AE ·ED =4,则矩形 ABCD 的面积为▲ .318.如图,直线 l 与半径为 4 的⊙ O 相切于点 A ,P 是⊙ O 上的一个动点(不与点 A 重合),过点 P 作 PB ⊥l ,垂足为 B,连接 PA.设 PA= x, PB= y,则( x- y)的最大值是▲ .三、解答题:本大题共11 小题,共 76 分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B 铅笔或黑色墨水签字笔.19.(本题满分 5 分)计算:221 4 .20.(本题满分5 分)x12解不等式组:x .2 2 x 1 21.(本题满分5 分)先化简,再求值:x112 1 .21,其中 x=x x122.(本题满分6 分)x 2 解分式方程:3.x 1 1 x23.(本题满分 6 分)如图,在 Rt△ ABC 中,∠ ACB = 90°,点 D, F 分别在 AB ,AC 上,CF =CB .连接 CD ,将线段 CD 绕点 C 按顺时针方向旋转 90°后得 CE,连接 EF.(1)求证:△ BCD ≌△ FCE;(2)若 EF ∥CD .求∠ BDC 的度数.24.(本题满分7 分)如图,已知函数y=-1x+ b 的图象与x 轴、 y轴分别交于点 A , B,2与函数y= x的图象交于点M ,点M的横坐标为2.在x 轴上有一点P (a, 0)(其中a>2),过点P 作 x轴的垂线,分别交函数y=-1x+ b 和y=x的图象于点C, D .2(1) 求点 A 的坐标;(2) 若 OB = CD ,求 a 的值.25.(本题满分7 分)如图,用红、蓝两种颜色随机地对 A ,B, C 三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求 A ,C两个区域所涂颜色不相同的概率.26(本题满分8 分)如图,已知函数y=k( x>0 )的图象经过点 A , B,点 A 的坐标为x(1,2).过点 A 作 AC∥ y 轴, AC = 1(点 C 位于点 A 的下方),过点数的图象交于点 D,过点 B 作 BE⊥CD ,垂足 E 在线段 CD 上,连接C作 CD ∥ x 轴,与函OC, OD.(1)求△ OCD 的面积;1(2)当 BE = AC 时,求 CE 的长.227.(本题满分8分)如图,已知⊙O 上依次有 A ,B,C,D 四个点,AD BC ,连接AB,AD , BD ,弦 AB 不经过圆心 O.延长 AB 到 E,使 BE = AB ,连接 EC, F 是 EC 的中点,连接BF.(1)若⊙ O 的半径为 3,∠ DAB = 120°,求劣弧BD的长;(2)求证: BF =1BD ;2(3)设 G 是 BD 的中点探索:在⊙ O 上是否存在点 P(小同于点 B ),使得 PG= PF?并说明PB 与 AE 的位置关系.28.(本题满分9分)如图,已知 l 1⊥ l2,⊙O 与 l 1,l2都相切,⊙ O 的半径为2cm.矩形 ABCD 的边AD ,AB分别与l ,l 重合, AB =4123cm ,AD = 4cm.若⊙O 与矩形ABCD沿 l 同1.时向右移动,⊙O .的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s).(1)如图①,连接 OA , AC ,则∠ OAC 的度数为▲ °;(2) 如图②,两个图形移动一段时间后,⊙ O到达⊙ O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1, A 1,C1恰好在同一直线上,求圆心O 移动的距离 (即 OO 1的长);(3)在移动过程中,圆心O 到矩形对角线 AC 所在直线的距离在不断变化,设该距离为d(cm) .当 d<2 时,求 t 的取值范围.(解答时可以利用备用图画出相关示意图)29.(本题满分 10 分)如图,一次函数 y= a(x2- 2mx - 3m2)(其中 a, m 是常数,且 a>0,m>0)的图象与 x 轴分别交于点 A , B(点 A 位于点 B 的左侧),与 y 轴交于点 C(0 ,- 3),点 D 在二次函数的图象上, CD ∥ AB ,连接 AD .过点 A 作射线 AE 交二次函数的图象于点E, AB 平分∠ DAE .(1)用含 m 的代数式表示 a;(2)求证:AD为定值;AE(3) 设该二次函数图象的顶点为F.探索:在x 轴的负半轴上是否存在点G,连接 CF,以线段 GF、 AD 、AE 的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点 G 即可,并用含m 的代数式表示该点的横坐标;如果不存在,请说明理由.。
2014年苏州市初中毕业暨升学考试数学试卷
2014年苏州市初中毕业暨升学考试数学试卷(满分120分考试时间120分钟)一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.........1.(-3)×3的结果是()A.-9B.0C.9D.-62.已知∠α和∠β是对顶角,若∠α=30°,则∠β的度数为()A.30°B.60°C.70°D.150°3.有一组数据:1,3,3,4,5,这组数据的众数为()A.1B.3C.4D.54.若式子-在实数范围内有意义,则x的取值范围是()A.x≤-4B.x≥-4C.x≤4D.x≥45.如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是()A.B.C.D.6.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°(第5题图)(第6题图)7.下列关于x的方程有实数根的是()A.x2-x+1=0B.x2+x+1=0C.(x-1)(x+2)=0D.(x-1)2+1=08.二次函数y=ax2+bx-1(a≠0)的图象经过点(1,1),则代数式1-a-b的值为()A.-3B.-1C.2D.59.如图,港口A在观测站O的正东方向,OA=4km.某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4kmB.2kmC.2kmD.(+1)km10.如图,△AOB为等腰三角形,顶点A的坐标为(2,底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A'O'B,点A的对应点A'在x轴上,则点O'的坐标为()A.B.C.D.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上..........11.的倒数是.12.已知地球的表面积约为510000000km2,数510000000用科学记数法可以表示为.13.已知正方形ABCD的对角线AC=则正方形ABCD的周长为.14.某学校计划开设A,B,C,D四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门.为了了解各门课程的选修人数,现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C课程的学生有人.15.如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=∠BAC,则tan∠BPC=.16.某地准备对一段长120m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道x m,乙工程队平均每天疏通河道y m,则(x+y)的值为.17.如图,在矩形ABCD中,.以点B为圆心,BC长为半径画弧,交边AD于点E,若AE·ED=,则矩形ABCD的面积为.18.如图,直线l与半径为4的☉O相切于点A,P是☉O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x-y)的最大值是.(第17题图)(第18题图)三、解答题:本大题共11小题,共76分.把解答过程写在答题卡相应位置上........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.(本题满分5分)计算:22+|-1|-.20.(本题满分5分)解不等式组:--21.(本题满分5分)先化简,再求值:--,其中x=-1.22.(本题满分6分)解分式方程:--=3.23.(本题满分6分)如图,在Rt△ABC中,∠ACB=90°,点D,F分别在AB,AC上,CF=CB.连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.24.(本题满分7分)如图,已知函数y=-x+b的图象与x轴、y轴分别交于点A,B,与函数y=x的图象交于点M,点M的横坐标为2.在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=-x+b和y=x的图象于点C,D.(1)求点A的坐标;(2)若OB=CD,求a的值.25.(本题满分7分)如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色.请用列举法(画树状图或列表)求A,C两个区域所涂颜色不相同的概率.26.(本题满分8分)如图,已知函数y=(x>0)的图象经过点A,B,点A的坐标为(1,2).过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC,OD.(1)求△OCD的面积;(2)当BE=AC时,求CE的长.27.(本题满分8分)如图,已知☉O上依次有A,B,C,D四个点,,连接AB,AD,BD,弦AB不经过圆心O.延长AB到E,使BE=AB.连接EC,F是EC的中点,连接BF.(1)若☉O的半径为3,∠DAB=120°,求劣弧的长.(2)求证:BF=BD.(3)设G是BD的中点.探索:在☉O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系.28.(本题满分9分)如图,已知l1⊥l2,☉O与l1,l2都相切,☉O的半径为2cm.矩形ABCD的边AD,AB分别与l1,l2重合,AB=4cm,AD=4cm.若☉O与矩形ABCD沿l1同时..向右移动,☉O的移动速度为3 cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s).(1)如图①,连接OA,AC,则∠OAC的度数为°;(2)如图②,两个图形移动一段时间后,☉O到达☉O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm).当d<2时,求t的取值范围.(解答时可以利用备用图画出相关示意图)29.(本题满分10分)如图,二次函数y=a(x2-2mx-3m2)(其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A,B(点A位于点B的左侧),与y轴交于点C(0,-3),点D在二次函数的图象上,CD∥AB,连接AD.过点A作射线AE 交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a.(2)求证:为定值.(3)设该二次函数图象的顶点为F.探索:在x轴的负半轴上是否存在点G,连接GF,以线段GF,AD,AE 的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.2014年苏州市初中毕业暨升学考试数学试卷参考答案1.A2.A3.B4.D5.D6.B7.C8.B9.C10.C11.12.5.1×10813.414.24015.16.2017.518.219.解:原式=4+1-2=3.20.解:解x-1>2,得x>3.解2+x≥2(x-1),得x≤4.所以不等式组的解集是3<x≤4.21.解:原式=---=--.当x=1时,原式=-.22.解:去分母,得x-2=3x-3.解得x=.检验:当x=时,x-1≠0,所以x=是原方程的解.23.(1)证明:∵CD绕点C顺时针方向旋转90°得CE,∴CD=CE,∠DCE=90°.∵∠ACB=90°,∴∠BCD=90°-∠ACD=∠FCE.在△BCD和△FCE中,∴△BCD≌△FCE.(2)解:由△BCD≌△FCE,得∠BDC=∠E.∵EF∥CD,∴∠E=180°-∠DCE=90°.∴∠BDC=90°.24.解:(1)∵点M在函数y=x的图象上,且横坐标为2,∴点M的纵坐标为2.∵点M(2,2)在一次函数y=-x+b的图象上,∴-×2+b=2.∴b=3.∴一次函数的表达式为y=-x+3.令y=0,得x=6.∴点A的坐标为(6,0).(2)由题意得C-,D(a,a).∵OB=CD,∴a--=3.∴a=4.25.解:用树状图表示:∴P(A,C两个区域所涂颜色不相同)=.26.解:(1)∵反比例函数y=的图象经过点A(1,2),∴k=2.∵AC∥y轴,AC=1,∴点C的坐标为(1,1).∵CD∥x轴,点D在函数图象上,∴点D的坐标为(2,1).∴S△OCD=×1×1=.(2)∵BE=AC,∴BE=.∵BE⊥CD,∴点B的纵坐标为.∴点B的横坐标为.∴点E的横坐标为.∴CE=-1=.27.(1)解:连接OB,OD.∵∠DAB=120°,∴所对圆心角的度数为240°.∴∠BOD=120°.∵☉O的半径为3,∴劣弧的长为×π×3=2π.(2)证明:连接AC.∵AB=BE,∴点B为AE的中点.∵F是EC的中点,∴BF为△EAC的中位线.∴BF=AC.∵,∴,∴.∴BD=AC.∴BF=BD.(3)解:过点B作AE的垂线,与☉O的交点即为所求的点P.∵BF为△EAC的中位线,∴BF∥AC.∴∠FBE=∠CAE.∵,∴∠CAB=∠DBA.∴∠FBE=∠DBA.∵BP⊥AE,∴∠GBP=∠FBP.∵G为BD的中点,∴BG=BD.∴BG=BF.∵BP=BP,∴△PBG≌△PBF.∴PG=PF.28.解:(1)105°.(2)如图,当O1,A1,C1恰好在同一直线上时,设☉O1与l1的切点为E,连接O1E.可得O1E=2,O1E⊥l1.在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=.∴∠C1A1D1=60°.在Rt△A1O1E中,∠O1A1E=∠C1A1D1=60°,∴A1E=.∵A1E=AA1-OO1-2=t-2,∴t-2=,∴t=+2.∴OO1=3t=2+6.(3)①当直线AC与☉O第一次相切时,设移动时间为t1.如图,此时☉O移动到☉O2的位置,矩形ABCD移动到A2B2C2D2的位置.设☉O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2C2.由(2)可得∠C2A2D2=60°,∴∠GA2F=120°.∴∠O2A2F=60°.在Rt△A2O2F中,O2F=2,∴A2F=.∵OO2=3t1,AF=AA2+A2F=4t1+,∴4t1+-3t1=2,∴t1=2-.②当直线AC与☉O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时为位置二,第二次相切时为位置三.由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等.∴+2--=t2-,∴t2=2+2.综上所述,当d<2时,t的取值范围是2-<t<2+2.29.(1)解:将C(0,-3)代入函数表达式得a(0-3m2)=-3.∴a=.(2)证明:如图,过点D,E分别作x轴的垂线,垂足为M,N.由a(x2-2mx-3m2)=0,解得x1=-m,x2=3m.∴A(-m,0),B(3m,0).∵CD∥AB,∴点D的坐标为(2m,-3).∵AB平分∠DAE,∴∠DAM=∠EAN.∵∠DMA=∠ENA=90°,∴△ADM∽△AEN.∴.设点E的坐标为--,.∴----∴x=4m.∴(定值).(3)解:连接FC并延长,与x轴负半轴交于一点,此点即为所求的点G.由题意得,二次函数图象顶点F的坐标为(m,-4).过点F作FH⊥x轴于点H.∵tan∠CGO=,tan∠FGH=,∴,∴OG=3m.此时,GF==4,AD==3, ∴.由(2)得,∴AD∶GF∶AE=3∶4∶5.∴以线段GF,AD,AE的长度为三边长的三角形是直角三角形,此时G点横坐标为-3m.。
2014江苏苏州中考数学试卷
苏州市2014年中考数学试卷 (满分:130分 时间:120分钟)本试卷由选择题、填空题和解答题三大题组成。
共29小题,满分130分。
考试时间120分钟。
注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符。
2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须要0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题。
3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效。
一、 选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
请将选择题的答案用2B 铅笔涂在答题卡相应位置上。
) 1. (2014江苏省苏州市,1,3分)(-3)×3的结果是 ( )A. -9B. 0C. 9D. -6【答案】A2. (2014江苏省苏州市,2,3分)已知∠α和∠β是对顶角.∠α=30°,则∠β的度数为( )A. 30°B. 60°C. 70°D. 150°【答案】A3. (2014江苏省苏州市,3,3分)有一组数据:1,3,3,4,5,这组数据的众数为( )A. 1B. 3C. 4D. 5【答案】B4. (2014江苏省苏州市,4,3分)若式子x -4在实数范围内有意义,则x 的取值范围是( )A. x ≤-4B. x≥-4C. x≤4D. x≥4【答案】D5. (2014江苏省苏州市,5,3分)如图,一个圆形转盘被分成6个圆心角都为60°的扇形.任意转动这个转盘1次,当转盘停止转动时,指针指向阴影的概率是 ( )A. 14B. 13C. 12D. 23第5题6. (2014江苏省苏州市,6,3分)如图,在△ABC 中,点D 在BC 上,AB=AD=DC ,∠B =80°,则∠C的度数为( )A. 30°B. 40°C. 45°D. 60°第6题【答案】B7. (2014江苏省苏州市,7,3分)下列关于x 的方程有实数根的是 ( )A. x 2-x +1=0 B. x 2+x +1=0 C. (x-1)(x +2)=0 D. (x-1)2+1=0【答案】C8. (2014江苏省苏州市,8,3分)二次函数y=ax 2+bx-1(a≠0)的图象经过点(1,1),则代数式1-a-b的值为( )A. -3B. -1C. 2D. 5【答案】B9. (2014江苏省苏州市,9,3分)如图,港口A 在观测站O 的正东方向,OA=4 km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船航行的距离(即AB 的长)为( )A. 4 kmB. 2 3 kmC. 2 2 kmD. ()3+1km第9题【答案】C10. (2014江苏省苏州市,10,3分)如图,△AOB 为等腰三角形,顶点A 的坐标为()2,5,底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A ′O ′B ′,点A的对应点A′在x轴上,则点O′的坐标为( ) A. ⎝⎛⎭⎫203,103 B. ⎝ ⎛⎭⎪⎫163,453 C. ⎝ ⎛⎭⎪⎫203,453 D. ⎝⎛⎭⎫163,43第10题二、 填空题(本大题共8小题,每小题3分,共24分。
2014年江苏省苏州市中考数学试卷(含解析)
2014年江苏省苏州市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)(2014•苏州)(﹣3)×3的结果是()A.﹣9B.0C.9D.﹣62.(3分)(2014•苏州)已知∠α和∠β是对顶角,若∠α=30°,则∠β的度数为()A.30°B.60°C.70°D.150°3.(3分)(2014•苏州)有一组数据:1,3,3,4,5,这组数据的众数为()A.1B.3C.4D.54.(3分)(2014•苏州)若式子在实数范围内有意义,则x的取值范围是()A.x≤﹣4B.x≥﹣4C.x≤4D.x≥45.(3分)(2014•苏州)如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是()A.B.C.D.6.(3分)(2014•苏州)如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C 的度数为()A.30°B.40°C.45°D.60°7.(3分)(2014•苏州)下列关于x的方程有实数根的是()A.x2﹣x+1=0B.x2+x+1=0C.(x﹣1)(x+2)=0D.(x﹣1)2+1=08.(3分)(2014•苏州)二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为()A.﹣3B.﹣1C.2D.59.(3分)(2014•苏州)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4kmB.2kmC.2kmD.(+1)km10.(3分)(2014•苏州)如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB 在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(,)B.(,)C.(,)D.(,4)二、填空题(共8小题,每小题3分,共24分)11.(3分)(2014•苏州)的倒数是.12.(3分)(2014•苏州)已知地球的表面积约为510000000km2,数510000000用科学记数法可表示为.13.(3分)(2014•苏州)已知正方形ABCD的对角线AC=,则正方形ABCD的周长为.14.(3分)(2014•苏州)某学校计划开设A、B、C、D四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门,为了了解各门课程的选修人数.现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C课程的学生有人.15.(3分)(2014•苏州)如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=∠BAC,则tan∠BPC=.16.(3分)(2014•苏州)某地准备对一段长120m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,则(x+y)的值为.17.(3分)(2014•苏州)如图,在矩形ABCD中,=,以点B为圆心,BC长为半径画弧,交边AD于点E.若AE•ED=,则矩形ABCD的面积为.18.(3分)(2014•苏州)如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是.三、解答题(共11小题,共76分)19.(5分)(2014•苏州)计算:22+|﹣1|﹣.20.(5分)(2014•苏州)解不等式组:.21.(5分)(2015•东莞)先化简,再求值:÷(1+),其中x=﹣1.22.(6分)(2014•苏州)解分式方程:+=3.23.(6分)(2014•苏州)如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.24.(7分)(2014•苏州)如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D.(1)求点A的坐标;(2)若OB=CD,求a的值.25.(7分)(2014•苏州)如图,用红、蓝两种颜色随机地对A、B、C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A、C两个区域所涂颜色不相同的概率.26.(8分)(2014•苏州)如图,已知函数y=(x>0)的图象经过点A、B,点A的坐标为(1,2),过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.(1)求△OCD的面积;(2)当BE=AC时,求CE的长.27.(8分)(2014•苏州)如图,已知⊙O上依次有A、B、C、D四个点,=,连接AB、AD、BD,弦AB不经过圆心O,延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF.(1)若⊙O的半径为3,∠DAB=120°,求劣弧的长;(2)求证:BF=BD;(3)设G是BD的中点,探索:在⊙O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系.28.(9分)(2014•苏州)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD 沿l1同时向右移动,⊙O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)(1)如图①,连接OA、AC,则∠OAC的度数为°;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d (cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).29.(10分)(2014•苏州)如图,二次函数y=a(x2﹣2mx﹣3m2)(其中a,m是常数,且a >0,m>0)的图象与x轴分别交于点A、B(点A位于点B的左侧),与y轴交于C(0,﹣3),点D在二次函数的图象上,CD∥AB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a;(2)求证:为定值;(3)设该二次函数图象的顶点为F,探索:在x轴的负半轴上是否存在点G,连接GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.2014年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2014•苏州)(﹣3)×3的结果是()A.﹣9B.0C.9D.﹣6【解答】解:原式=﹣3×3=﹣9,故选:A.2.(3分)(2014•苏州)已知∠α和∠β是对顶角,若∠α=30°,则∠β的度数为()A.30°B.60°C.70°D.150°【解答】解:∵∠α和∠β是对顶角,∠α=30°,∴根据对顶角相等可得∠β=∠α=30°.故选:A.3.(3分)(2014•苏州)有一组数据:1,3,3,4,5,这组数据的众数为()A.1B.3C.4D.5【解答】解:这组数据中3出现的次数最多,故众数为3.故选:B4.(3分)(2014•苏州)若式子在实数范围内有意义,则x的取值范围是()A.x≤﹣4B.x≥﹣4C.x≤4D.x≥4【解答】解:依题意知,x﹣4≥0,解得x≥4.故选:D.5.(3分)(2014•苏州)如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是()A.B.C.D.【解答】解:设圆的面积为6,∵圆被分成6个相同扇形,∴每个扇形的面积为1,∴阴影区域的面积为4,∴指针指向阴影区域的概率==.故选:D.6.(3分)(2014•苏州)如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C 的度数为()A.30°B.40°C.45°D.60°【解答】解:∵△ABD中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD,∴∠C===40°.故选:B.7.(3分)(2014•苏州)下列关于x的方程有实数根的是()A.x2﹣x+1=0B.x2+x+1=0C.(x﹣1)(x+2)=0D.(x﹣1)2+1=0【解答】解:A、△=(﹣1)2﹣4×1×1=﹣3<0,方程没有实数根,所以A选项错误;B、△=12﹣4×1×1=﹣3<0,方程没有实数根,所以B选项错误;C、x﹣1=0或x+2=0,则x1=1,x2=﹣2,所以C选项正确;D、(x﹣1)2=﹣1,方程左边为非负数,方程右边为0,所以方程没有实数根,所以D选项错误.故选:C.8.(3分)(2014•苏州)二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为()A.﹣3B.﹣1C.2D.5【解答】解:∵二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),∴a+b﹣1=1,∴a+b=2,∴1﹣a﹣b=1﹣(a+b)=1﹣2=﹣1.故选:B.9.(3分)(2014•苏州)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4kmB.2kmC.2kmD.(+1)km【解答】解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=2.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°,∴BD=AD=2,∴AB=AD=2.即该船航行的距离(即AB的长)为2km.故选:C.10.(3分)(2014•苏州)如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB 在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(,)B.(,)C.(,)D.(,4)【解答】解:如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,∵A(2,),∴OC=2,AC=,由勾股定理得,OA===3,∵△AOB为等腰三角形,OB是底边,∴OB=2OC=2×2=4,由旋转的性质得,BO′=OB=4,∠A′BO′=∠ABO,∴O′D=4×=,BD=4×=,∴OD=OB+BD=4+=,∴点O′的坐标为(,).故选:C.二、填空题(共8小题,每小题3分,共24分)11.(3分)(2014•苏州)的倒数是.【解答】解:的倒数是,故答案为:.12.(3分)(2014•苏州)已知地球的表面积约为510000000km2,数510000000用科学记数法可表示为 5.1×108.【解答】解:510 000 000=5.1×108.故答案为:5.1×108.13.(3分)(2014•苏州)已知正方形ABCD的对角线AC=,则正方形ABCD的周长为4.【解答】解:∵正方形ABCD的对角线AC=,∴边长AB=÷=1,∴正方形ABCD的周长=4×1=4.故答案为:4.14.(3分)(2014•苏州)某学校计划开设A、B、C、D四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门,为了了解各门课程的选修人数.现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C课程的学生有240人.【解答】解:C占样本的比例,C占总体的比例是,选修C课程的学生有1200×=240(人),故答案为:240.15.(3分)(2014•苏州)如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=∠BAC,则tan∠BPC=.【解答】解:过点A作AE⊥BC于点E,∵AB=AC=5,∴BE=BC=×8=4,∠BAE=∠BAC,∵∠BPC=∠BAC,∴∠BPC=∠BAE.在Rt△BAE中,由勾股定理得AE=,∴tan∠BPC=tan∠BAE=.故答案为:.16.(3分)(2014•苏州)某地准备对一段长120m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,则(x+y)的值为20.【解答】解:设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,由题意,得,解得:.∴x+y=20.故答案为:20.17.(3分)(2014•苏州)如图,在矩形ABCD中,=,以点B为圆心,BC长为半径画弧,交边AD于点E.若AE•ED=,则矩形ABCD的面积为5.【解答】解:如图,连接BE,则BE=BC.设AB=3x,BC=5x,∵四边形ABCD是矩形,∴AB=CD=3x,AD=BC=5x,∠A=90°,由勾股定理得:AE=4x,则DE=5x﹣4x=x,∵AE•ED=,∴4x•x=,解得:x=(负数舍去),则AB=3x=,BC=5x=,∴矩形ABCD的面积是AB×BC=×=5,故答案为:5.18.(3分)(2014•苏州)如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是2.【解答】解:如图,作直径AC,连接CP,∴∠CPA=90°,∵AB是切线,∴CA⊥AB,∵PB⊥l,∴AC∥PB,∴∠CAP=∠APB,∴△APC∽△PBA,∴,∵PA=x,PB=y,半径为4,∴=,∴y=x2,∴x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2,故答案为:2.三、解答题(共11小题,共76分)19.(5分)(2014•苏州)计算:22+|﹣1|﹣.【解答】解:原式=4+1﹣2=3.20.(5分)(2014•苏州)解不等式组:.【解答】解:,由①得:x>3;由②得:x≤4,则不等式组的解集为3<x≤4.21.(5分)(2015•东莞)先化简,再求值:÷(1+),其中x=﹣1.【解答】解:=÷(+)=÷=×=,把,代入原式====.22.(6分)(2014•苏州)解分式方程:+=3.【解答】解:去分母得:x﹣2=3x﹣3,解得:x=,经检验x=是分式方程的解.23.(6分)(2014•苏州)如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.【解答】(1)证明:∵将线段CD绕点C按顺时针方向旋转90°后得CE,∴CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠BCD=90°﹣∠ACD=∠FCE,在△BCD和△FCE中,,∴△BCD≌△FCE(SAS).(2)解:由(1)可知△BCD≌△FCE,∴∠BDC=∠E,∠BCD=∠FCE,∴∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,∵EF∥CD,∴∠E=180°﹣∠DCE=90°,∴∠BDC=90°.24.(7分)(2014•苏州)如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D.(1)求点A的坐标;(2)若OB=CD,求a的值.【解答】解:(1)∵点M在直线y=x的图象上,且点M的横坐标为2,∴点M的坐标为(2,2),把M(2,2)代入y=﹣x+b得﹣1+b=2,解得b=3,∴一次函数的解析式为y=﹣x+3,把y=0代入y=﹣x+3得﹣x+3=0,解得x=6,∴A点坐标为(6,0);(2)把x=0代入y=﹣x+3得y=3,∴B点坐标为(0,3),∵CD=OB,∴CD=3,∵PC⊥x轴,∴C点坐标为(a,﹣a+3),D点坐标为(a,a)∴a﹣(﹣a+3)=3,∴a=4.25.(7分)(2014•苏州)如图,用红、蓝两种颜色随机地对A、B、C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A、C两个区域所涂颜色不相同的概率.【解答】解:画树状图,如图所示:所有等可能的情况8种,其中A、C两个区域所涂颜色不相同的有4种,则P=.26.(8分)(2014•苏州)如图,已知函数y=(x>0)的图象经过点A、B,点A的坐标为(1,2),过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.(1)求△OCD的面积;(2)当BE=AC时,求CE的长.【解答】解;(1)y=(x>0)的图象经过点A(1,2),∴k=2.∵AC∥y轴,AC=1,∴点C的坐标为(1,1).∵CD∥x轴,点D在函数图象上,∴点D的坐标为(2,1).∴.(2)∵BE=,∴.∵BE⊥CD,点B的纵坐标=2﹣=,由反比例函数y=,点B的横坐标x=2÷=,∴点B的横坐标是,纵坐标是.∴CE=.27.(8分)(2014•苏州)如图,已知⊙O上依次有A、B、C、D四个点,=,连接AB、AD、BD,弦AB不经过圆心O,延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF.(1)若⊙O的半径为3,∠DAB=120°,求劣弧的长;(2)求证:BF=BD;(3)设G是BD的中点,探索:在⊙O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系.【解答】(1)解:连接OB,OD,∵∠DAB=120°,∴所对圆心角的度数为240°,∴∠BOD=360°﹣240°=120°,∵⊙O的半径为3,∴劣弧的长为:×π×3=2π;(2)证明:连接AC,∵AB=BE,∴点B为AE的中点,∵F是EC的中点,∴BF为△EAC的中位线,∴BF=AC,∵=,∴+=+,∴=,∴BD=AC,∴BF=BD;(3)解:过点B作AE的垂线,与⊙O的交点即为所求的点P,∵BF为△EAC的中位线,∴BF∥AC,∴∠FBE=∠CAE,∵=,∴∠CAB=∠DBA,∵由作法可知BP⊥AE,∴∠GBP=∠FBP,∵G为BD的中点,∴BG=BD,∴BG=BF,在△PBG和△PBF中,,∴△PBG≌△PBF(SAS),∴PG=PF.28.(9分)(2014•苏州)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD 沿l1同时向右移动,⊙O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)(1)如图①,连接OA、AC,则∠OAC的度数为105°;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d (cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).【解答】解:(1)∵l1⊥l2,⊙O与l1,l2都相切,∴∠OAD=45°,∵AB=4cm,AD=4cm,∴CD=4cm,∴tan∠DAC===,∴∠DAC=60°,∴∠OAC的度数为:∠OAD+∠DAC=105°,故答案为:105;(2)如图位置二,当O1,A1,C1恰好在同一直线上时,设⊙O1与l1的切点为E,连接O1E,可得O1E=2,O1E⊥l1,在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=,∴∠C1A1D1=60°,在Rt△A1O1E中,∠O1A1E=∠C1A1D1=60°,∴A1E==,∵A1E=AA1﹣OO1﹣2=t﹣2,∴t﹣2=,∴t=+2,∴OO1=3t=2+6;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,如图位置一,此时⊙O移动到⊙O2的位置,矩形ABCD移动到A2B2C2D2的位置,设⊙O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2C2,由(2)得,∠C2A2D2=60°,∴∠GA2F=120°,∴∠O2A2F=60°,在Rt△A2O2F中,O2F=2,∴A2F=,∵OO2=3t1,AF=AA2+A2F=4t1+,∴4t1+﹣3t1=2,∴t1=2﹣,②当直线AC与⊙O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时位置二,第二次相切时为位置三,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,∴+2﹣(2﹣)=t2﹣(+2),解得:t2=2+2,综上所述,当d<2时,t的取值范围是:2﹣<t<2+2.29.(10分)(2014•苏州)如图,二次函数y=a(x2﹣2mx﹣3m2)(其中a,m是常数,且a >0,m>0)的图象与x轴分别交于点A、B(点A位于点B的左侧),与y轴交于C(0,﹣3),点D在二次函数的图象上,CD∥AB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a;(2)求证:为定值;(3)设该二次函数图象的顶点为F,探索:在x轴的负半轴上是否存在点G,连接GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.【解答】(1)解:将C(0,﹣3)代入二次函数y=a(x2﹣2mx﹣3m2),则﹣3=a(0﹣0﹣3m2),解得a=.(2)方法一:证明:如图1,过点D、E分别作x轴的垂线,垂足为M、N.由a(x2﹣2mx﹣3m2)=0,解得x1=﹣m,x2=3m,则A(﹣m,0),B(3m,0).∵CD∥AB,∴D点的纵坐标为﹣3,又∵D点在抛物线上,∴将D点纵坐标代入抛物线方程得D点的坐标为(2m,﹣3).∵AB平分∠DAE,∴∠DAM=∠EAN,∵∠DMA=∠ENA=90°,∴△ADM∽△AEN.∴==.设E坐标为(x,),∴=,∴x=4m,∴E(4m,5),∵AM=AO+OM=m+2m=3m,AN=AO+ON=m+4m=5m,∴==,即为定值.方法二:过点D、E分别作x轴的垂线,垂足为M、N,∵a(x2﹣2mx﹣3m2)=0,∴x1=﹣m,x2=3m,则A(﹣m,0),B(3m,0),∵CD∥AB,∴D点的纵坐标为﹣3,∴D(2m,﹣3),∵AB平分∠DAE,∴K AD+K AE=0,∵A(﹣m,0),D(2m,﹣3),∴K AD==﹣,∴K AE=,∴⇒x2﹣3mx﹣4m2=0,∴x1=﹣m(舍),x2=4m,∴E(4m,5),∵∠DAM=∠EAN=90°∴△ADM∽△AEN,∴,∵DM=3,EN=5,∴.(3)解:如图2,记二次函数图象顶点为F,则F的坐标为(m,﹣4),过点F作FH⊥x 轴于点H.连接FC并延长,与x轴负半轴交于一点,此点即为所求的点G.∵tan∠CGO=,tan∠FGH=,∴=,∴,∵OC=3,HF=4,OH=m,∴OG=3m.∵GF===4,AD===3,∴=.∵=,∴AD:GF:AE=3:4:5,∴以线段GF,AD,AE的长度为三边长的三角形是直角三角形,此时G点的横坐标为﹣3m.参与本试卷答题和审题的老师有:2300680618;wdzyzlhx;caicl;dbz1018;sjzx;CJX;gsls;星期八;HJJ;hdq123;zjx111;wkd;sks;gbl210;wd1899;sd2011;SPIDER(排名不分先后)菁优网2016年7月19日。
江苏省苏州市中考数学试题(word版)
A.
B.
C.
D.
考点: 几何概率. 分析: 设圆的面积为 6,易得到阴影区域的面积为 4,然后根据概率的概念计算即可. 解答: 解:设圆的面积为 6, ∵圆被分成 6 个相同扇形, ∴每个扇形的面积为 1, ∴阴影区域的面积为 4, ∴指针指向阴影区域的概率= = . 故选 D. 点评: 本题考查了求几何概率的方法:先利用几何性质求出整个几何图形的面积 n,再计算 出其中某个区域的几何图形的面积 m, 然后根据概率的定义计算出落在这个几何区域 的事件的概率= . 6. (2014•苏州)如图,在△ABC 中,点 D 在 BC 上,AB=AD=DC,∠B=80°,则∠C 的度 数为( )
故选 B. 点评: 本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键. 7. (2014•苏州)下列关于 x 的方程有实数根的是( ) A. 2 B.x2+x+1=0 C. D. x ﹣x+1=0 (x﹣1) (x+2)=0 (x﹣1)2+1=0 考点: 根的判别式. 专题: 计算题. 分析: 分别计算 A、B 中的判别式的值;根据判别式的意义进行判断;利用因式分解法对 C 进行判断;根据非负数的性质对 D 进行判断. 解答: 解:A、△=(﹣1)2﹣4×1×1=﹣3<0,方程没有实数根,所以 A 选项错误;
3
点评: 本题考查了二次函数图象上点的坐标特征,整体思想的利用是解题的关键. 9. (2014•苏州)如图,港口 A 在观测站 O 的正东方向,OA=4km,某船从港口 A 出发,沿 北偏东 15°方向航行一段距离后到达 B 处,此时从观测站 O 处测得该船位于北偏东 60°的方 向,则该船航行的距离(即 AB 的长)为( )
江苏省13市2014年中考数学试题分类汇编专题09平面几何基础(解析版)
江苏省13市2014年中考数学试题分类解析汇编(20专题)专题9:平面几何基础江苏泰州锦元数学工作室编辑1. (2014年江苏徐州3分)点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于【】A.3B.2C.3或5D.2或62. (2014年江苏无锡3分)如图,AB∥CD,则根据图中标注的角,下列关系中成立的是【】A. ∠1=∠3B. ∠2+∠3=180°C. ∠2+∠4<180°D. ∠3+∠5=180°【答案】D.3. (2014年江苏苏州3分)已知∠α和∠β是对顶角,若∠α=30°,则∠β的度数为【】A.30°B.60°C.70°D.150°【答案】A.【考点】对顶角的性质.【分析】∵∠α和∠β是对顶角,∴∠α=∠β.∵∠α=300,∴∠β=300.故选A.4. (2014年江苏南通3分)如图,∠1=40°,如果CD∥BE,那么∠B的度数为【】A. 160°B. 140°C. 60°D. 50°【答案】B.【考点】1.平角的定义;2.平行线的性质.【分析】根据平角的定义和平行线同位角相等的性质即可得:如答图,∵∠1=40°,∴∠2=180°﹣40°=140°.∵CD∥BE,∴∠B=∠2=140°.故选B.5. (2014年江苏淮安3分)如图,直解三角板的直角顶点落在直尺边上,若∠1=56°,则∠2的度数为【】A. 56°B. 44°C.34°D.28°【答案】C.【考点】1.平角定义;2.平行线的性质.【分析】由平角的定义得到∠3=34°;然后根据“两直线平行,内错角相等”求出∠2的度数:如答图,依题意知∠1+∠3=90°.∵∠1=56°,∴∠3=34°.∵直尺的两边互相平行,∴∠2=∠3=34°复.故选C.1. (2014年江苏镇江2分)如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°,若∠1=25º,∠2=70º.则∠B= ▲ °.∠1▲ º.2. (2014年江苏扬州3分)如图,若该图案是由8个全等的等腰梯形拼成的,则图中的=【答案】67.5.【考点】1.多边形内角和定理;2. 等腰梯形的性质.【分析】∵正八边形的每个内角为()82180?135?8-⋅=,且该图案由8个全等的等腰梯形拼成,∴11135?67.5?2∠=⨯=.3. (2014年江苏盐城3分)如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2= ▲ °.[【答案】70.【考点】平行线的性质.【分析】∵DE∥AC,∠1=70°,∴∠C=∠1=70°.∵AF∥BC,∴∠2=∠C=70°.4. (2014年江苏泰州3分)任意五边形的内角和为▲ .5. (2014年江苏泰州3分)如图,直线a、b与直线c相交,且a∥b,∠α=55°,则∠β= ▲ .6.(2014年江苏连云港3分)一个正多边形的一个外角等于30°,则这个正多边形的边数为 ▲.7. (2014年江苏连云港3分)如图,AB ∥CD ,∠1=62°,FG 平分∠EFD ,则∠2= ▲.8. (2014年江苏连云港3分)如图1,折线段AOB 将面积为S 的⊙O 分成两个扇形,大扇形、小扇形的面积分别为1S 、2S ,若121S S S S ==0.618,则称分成的小扇形为“黄金扇形”,生活中的折扇(如图2),大致是“黄金扇形”,则“黄金扇形”的圆心角约为 ▲ °.(精确到0.1)【答案】137.5 【考点】黄金分割. 【分析】∵1S 0.618S=,∴1S 的圆心角为003600.618222.48⨯= ∵21S 0.618S =,∴1S 的圆心角即“黄金扇形”的圆心角约为00222.480.618137.5⨯≈. 9. (2014年江苏淮安3分)若一个三角形三边长分别为2,3,x ,则x 的值可以为 ▲ (只需填一个整数) 【答案】4(答案不唯一).【考点】1.开放型;2. 三角形三边关系.【分析】根据三角形的三边关系:三角形两边之和大于第三边,三角形的两边差小于第三边可得:3﹣2<x<3+2,即:1<x<5.∴x的值可以为2,3,4(答案不唯一).10. (2014年江苏常州2分)若∠α=30°,则∠α的余角等于▲ 度,sinα的值为▲ .1. (2014年江苏宿迁6分)如图是两个全等的含30°角的直角三角形.(1)将其相等边拼在一起,组成一个没有重叠部分的平面图形,请你画出所有不同的拼接平面图形的示意图;(2)若将(1)中平面图形分别印制在质地、形状、大小完全相同的卡片上,洗匀后从中随机抽取一张,求抽取的卡片上平面图形为轴对称图形的概率.2. (2014年江苏无锡8分)(1)如图1,Rt △ABC 中,∠B =90°,AB =2BC ,现以C 为圆心、CB 长为半径画弧交边AC 于D ,再以A 为圆心、AD 为半径画弧交边AB 于E .求证:AE AB = 叫做AE 与AB 的黄金比.)(2)如果一等腰三角形的底边与腰的比等于黄金比,那么这个等腰三角形就叫做黄金三角形.请你以图2中的线段AB 为腰,用直尺和圆规,作一个黄金三角形ABC .(注:直尺没有刻度!作图不要求写作法,但要求保留作图痕迹,并对作图中涉及到的点用字母进行标注)3. (2014年江苏南京11分)【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据▲ ,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若▲ ,则△ABC≌△DEF.4. (2014年江苏常州7分)在平面直角坐标系xOy中,如图,已知Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5.∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求画图(保留作图痕迹):(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E的对应点为点N),画出△OMN;(2)将△ABC沿x轴向右平移得到△A′B′C′(其中点A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中的△OMN的边NM重合;(3)求OE的长.【答案】解:(1)△OMN如图所示.(2)△A′B′C′如图所示.- 11 -。
2014年江苏省苏州市中考数学试卷-答案
江苏省苏州市2014年中考数学试卷数学答案解析第Ⅰ卷∴2BD AD ==,∴222AB AD ==,故选C.12AC OB A B O D ''=, 53OB A B ='3,∴的坐标为(,3【考点】勾股定理,等腰三角形的性质,等积变化思想,转化思想第Ⅱ卷111143AE ED =,即43x x =,则可得315m m m =【解析】用树状图表示413233∵O的半径为2)证明:连接F是EC的中点,∴的垂线,与O 的交点即为所求的点AC ,∴∠,∵由作法可知与O 的交点即为所求的点,可证得同弧所对自的圆心角与圆周之间的数量关系,弧长公式,恰好在同一直线上时,设1O 与1l 的切点为13=,∴23与O 第一次相切时,设移动时间为如图,此时O 移动到2O 的位置,矩形设2O 与直线1l ,22A C 分别相切于点21O F l ⊥,222O G A G ⊥,由(2)得,60C A D ∠=︒,∴Rt A O F △与O 第二次相切时,设移动时间为记第一次相切时为位置一,点由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,23)t -=)设此时1O 与1l 的切点为解之即可求得t .由1O O =)分别求出两种特殊位置的与O 第一次、第二次相切时的与O 第一次相切时,设移动时间为1t ,结合(长,再由AF OO O -=的半径,得到关于1t 的方程,解之可得与O 第设移动时间为,由第一次相切到1O ,1A ,C 二次相切时间,可得关于的方程,解之可得解直角三角形,直线与圆的位置关系,-. ∴以线段GF,AD,AE的长度为三边长的三角形是直角三角形,此时G点的横坐标为3m11 / 11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省苏州市2014年中考数学试卷
一、选择题(共10小题,每小题3分,共30分)
1.(3分)(2014•苏州)(﹣3)×3的结果是()
2.(3分)(2014•苏州)已知∠α和∠β是对顶角,若∠α=30°,则∠β的度数为()
3.(3分)(2014•苏州)有一组数据:1,3,3,4,5,这组数据的众数为()
4.(3分)(2014•苏州)若式子在实数范围内有意义,则x的取值范围是()
考查了二次根式的意义和性质.概念:式子(
5.(3分)(2014•苏州)如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是()
B
=.
.
6.(3分)(2014•苏州)如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C 的度数为()
==40°
7.(3分)(2014•苏州)下列关于x的方程有实数根的是()
8.(3分)(2014•苏州)二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为()
9.(3分)(2014•苏州)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()
km km +1
=2
=.
km
10.(3分)(2014•苏州)如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB 在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B′,点A的对应点A′在x 轴上,则点O′的坐标为()
(,,),,)
,
,
=
=4×=
=4×=
=4+,
的坐标为(,)
二、填空题(共8小题,每小题3分,共24分)
11.(3分)(2014•苏州)的倒数是.
解:的倒数是
故答案为:
12.(3分)(2014•苏州)已知地球的表面积约为510000000km2,数510000000用科学记数法可表示为 5.1×108.
13.(3分)(2014•苏州)已知正方形ABCD的对角线AC=,则正方形ABCD的周长为4.
根据正方形的对角线等于边长的
,
÷
本题考查了正方形的性质,比较简单,熟记正方形的对角线等于边长的
14.(3分)(2014•苏州)某学校计划开设A、B、C、D四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门,为了了解个门课程的选修人数.现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C课程的学生有240人.江南汇教育网
占样本的比例
占总体的比例是
1200×
15.(3分)(2014•苏州)如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=∠BAC,则tan∠BPC=
.
=
=×∠
∠
=
故答案为:
16.(3分)(2014•苏州)某地准备对一段长120m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲
工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,则(x+y)的值为20.
解得:.江南汇教育网
17.(3分)(2014•苏州)如图,在矩形ABCD中,=,以点B为圆心,BC长为半径画弧,交边AD于点E.若AE•ED=,则矩形ABCD的面积为5.
,
,
(负数舍去)
×
18.(3分)(2014•苏州)如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接P A.设P A=x,PB=y,则(x﹣y)的最大值是2.
,利用,得出x ﹣﹣﹣
∴=
∴=
x x(
三、解答题(共11小题,共76分)
19.(5分)(2014•苏州)计算:22+|﹣1|﹣.
20.(5分)(2014•苏州)解不等式组:.
解:
21.(5分)(2014•苏州)先化简,再求值:,其中.
统一为乘法运算,注意化简后,将
解:
=+
=÷
=×
=
把==
22.(6分)(2014•苏州)解分式方程:+=3.
,
是分式方程的解.
23.(6分)(2014•苏州)如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.
(1)求证:△BCD≌△FCE;江南汇教育网
(2)若EF∥CD,求∠BDC的度数.
24.(7分)(2014•苏州)如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D.
(1)求点A的坐标;
(2)若OB=CD,求a的值.
x﹣
﹣
﹣(﹣
﹣
x
x x
﹣
,﹣a
﹣(﹣
25.(7分)(2014•苏州)如图,用红、蓝两种颜色随机地对A、B、C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A、C两个区域所涂颜色不相同的概率.江南汇教育网
=.
26.(8分)(2014•苏州)如图,已知函数y=(x>0)的图象经过点A、B,点A的坐标为(1,2),过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.
(1)求△OCD的面积;
(2)当BE=AC时,求CE的长.
=
∴
,
∴
的横坐标是,纵坐标是
=
27.(8分)(2014•苏州)如图,已知⊙O上依次有A、B、C、D四个点,=,连接AB、AD、BD,弦AB不经过圆心O,延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF.
(1)若⊙O的半径为3,∠DAB=120°,求劣弧的长;
(2)求证:BF=BD;
(3)设G是BD的中点,探索:在⊙O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系.江南汇教育网
,再利用弧长公式求出劣弧
AC,再利用圆心角定理得出,进而BD
,∴所对圆心角的度数为
∴劣弧的长为:
=
∵=
∴++,∴=
=
∵=
28.(9分)(2014•苏州)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)江南汇教育网
(1)如图①,连接OA、AC,则∠OAC的度数为105°;
(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d (cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).
=4
cm
==
=4
=
=
2=
=
=2
=
+
﹣
﹣
∴+2
,
﹣2+2
29.(10分)(2014•苏州)如图,二次函数y=a(x2﹣2mx﹣3m2)(其中a,m是常数,且a >0,m>0)的图象与x轴分别交于点A、B(点A位于点B的左侧),与y轴交于C(0,﹣3),点D在二次函数的图象上,CD∥AB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.江南汇教育网
(1)用含m的代数式表示a;
(2)求证:为定值;
(3)设该二次函数图象的顶点为F,探索:在x轴的负半轴上是否存在点G,连接GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.
)求证
=,.
∴=.
,
∴,∴=,即为定值.江南汇教育网
=
∴=
==4
==3
∴=
∵=。