《数学分析选论》习题全解 模拟试题及答案
《数学分析论》习题解答
《数学分析选论》习题解答第 四 章 积 分 学1.设∈f R ],[b a ,f g 与仅在有限个点取值不同.试用可积定义证明∈g R ],[b a ,且=⎰bax x g d )(⎰bax x f d )(.证 显然,只要对g 与f 只有一点处取值不同的情形作出证明即可.为叙述方便起见,不妨设)()(b f b g ≠,而当),[b a x ∈时)()(x f x g =.因∈f R ],[b a ,故11||||,0,0δ<>δ∃>ε∀T 当时,对一切{}ni 1ξ,恒有,2)(1ε<-∆ξ∑=ni i i J x f 其中 x x f J b a⎰=d )(. 令⎭⎬⎫⎩⎨⎧-εδ=δ|)()(|2,m in 1b f b g ,则当δ<||||T 时,有,2)()()()()()(1111ε+∆ξ-ξ<-∆ξ+∆ξ-∆ξ≤-∆ξ∑∑∑∑====n n n ni i i n i ni i i i i ni i i x f g Jx f x f x g Jx g而上式最末第二项又为⎪⎩⎪⎨⎧=ξε<-≤≠ξ=∆ξ-ξ..b T b f b g b x f g n n n n n ,2||||)()(,,0)()(所以,无论b n =ξ或b n ≠ξ,只要δ<||||T ,便有ε=ε+ε<-∆ξ∑=22)(1ni i i J x g . 这就证得∈g R ],[b a ,且x x f J x x g bab a⎰⎰==d d )()(. □2.通过化为定积分求下列极限: (1)∑-=∞→+1222limn k n kn n ; (2)nn n n n n)12()1(1lim-+∞→Λ.解 (1)由于∑∑-=-=⎪⎭⎫ ⎝⎛+=+=1210221122n k n k n n n k k n n I ., 因此2arctan 212lim 01102π==+=⎰∞→xx x I n n d . (2)记nnn n n n n n n nJ ⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫⎝⎛+=-+=11111)12()1(1ΛΛ.,∑-=⎪⎭⎫⎝⎛+==111n k n n n k nJ I n l n l . 则有122)()lim 12211-=-==+=⎰⎰∞→n l n l d n l d 1n(l x x x x x x x I n n ,ee e4lim 12ln 2lim ===-∞→∞→nn I n n J . □ 3.证明:若∈f R ],[b a ,则],[],[b a ⊂βα∀,∈f R ],[βα. 证 由条件,],[,0b a T ∃>ε∀,使ε<∆ω∑)(T ii x .T 中添加βα,两点作为新的分点后,得到新的分割],[b a T ',并记T '落在],[βα上的部分为T ''],[βα.则对上述],[,0βα''∃>εT ,使得ε<∆ω≤∆ω≤∆ω∑∑∑''''''''')()()(T ii T i i T i i x x x ,所以证得∈f R ],[βα. □ *4.用可积第二充要条件重新证明第1题中的∈g R ],[b a .证 设g 与f 仅有一点处的值不同,记此点为],[b a ∈τ. 由条件,],[,0b a T ∃>ε∀,使得2)(ε<∆ω∑T i i fx . 若τ落在T 的第k 个小区间中,则有k k gk k gT i ki ifT i i g x x x x ∆ω+ε<∆ω+∆ω=∆ω∑∑≠2)()(. 由于∈f R ],[b a ,因此f 在],[b a 上有界,而g 与f 仅有)()(τ≠τf g ,故g 在],[b a 上亦有界,设∈≤x M x g ,|)(|],[b a .于是,只要MT 4||||ε<,便能使 2||||2ε<≤∆ωT M x k k g.这样就可证得 ε=ε+ε<∆ω∑22)(T i igx , 即∈g R ],[βα.( 注:如果原来的分割T 尚不能满足MT 4||||ε<的要求,那么只需将此分割足够加细,直到能满足如上要求 .) □5.设f 在],[b a 上有界,{}],[b a a n ⊂,且有c a n n =∞→lim .证明:若f 在],[b a 上只有),2,1(Λ=n a n 为其间断点,则∈f R ],[b a .证 设∈≤x M x f ,|)(|],[b a .为叙述方便起见,不妨设a c =.于是,0>ε∀,0>∃N ,当Ma a a N n n 4,ε+<≤>时. 由于f 在⎥⎦⎤⎢⎣⎡ε+b M a ,4上至多只有N 个间断点,因此可积.故对上述0>ε,存在1T ⎥⎦⎤⎢⎣⎡ε+b M a ,4,使得2)(1ε<∆ω∑T i i x . 而f 在⎥⎦⎤⎢⎣⎡ε+M a a 4,上的振幅M 20≤ω,所以把1T 与⎥⎦⎤⎢⎣⎡ε+M a a 4,合并成],[b a T 后,必使ε=ε+ε<∆ω+εω≤∆ω∑∑224)(0)(1T i i T i i x M x ..故证得∈f R ],[b a . □*6.设∈g f ,R ],[b a .证明:],[b a T ∀,若在T 所属的每个小区间i ∆上任取两点),,2,1(,n i i i Λ=ηξ,则有=∆ηξ∑=→ni i i i T x g f 10||||)()(limx x g x f ba⎰d )()(.证 由条件易知∈)(g f .R ],[b a ,记x x g x f I ba⎰=d )()(.故0,01>δ∃>ε∀, 当1||||δ<T 时,对一切{}ni 1ξ,有2)()(1ε<-∆ξξ∑=ni i i i I x g f . 因∈f R ],[b a ,故f 有界,设∈≤x M x f ,|)(|],[b a .又由∈g R ],[b a ,22||||,0δ<>δ∃T 当时,有Mx T i ig2)(ε<∆ω∑. 记{}21,m in δδ=δ,则当δ<||||T 时,有...22|)()(||)(|)()()()()()()()(ε=ε<∆ω≤∆ξ-ηξ≤∆ξξ-∆ηξ∑∑∑∑MM x M x g g f x g f x g f T i i gT ii i i T i i i T i i i所以证得δ<||||T 时满足.ε=ε+ε<-∆ξξ+∆ξξ-∆ηξ≤-∆ηξ∑∑∑∑==22)()()()()()()()(1)()(1ni i i i T ii i T i i i ni i i i I x g f x g f x g f I x g f此即==∆ηξ∑=→I x g f ni i i i T 10||||)()(limx x g x f ba⎰d )()( 成立. □7.证明:若∈f R ],[b a ,且0)(≥x f ,则必有∈f R ],[b a .证 根据复合可积性命题(教材p.99例5),外函数u 在),0[∞+上连续,内函数)(x f u =在],[b a 上可积,则复合函数)(x f 在],[b a 上可积. □8.设∈f R ],[b a .证明:若任给∈g R ],[b a ,总有0)()(=⎰x x g x f b ad ,则f在其连续点处的值恒为零.证 由g 的任意性,特别当取f g =时,同样有0)()()(2==⎰⎰x x f x x g x f babad d .把教材 p.103 例1(3)中的)(x f 换成)(2x f ,则得)(2x f 在其连续点处恒为零,亦即)(x f 在其连续点处恒为零. □*9.证明:若f 在],[b a 上连续,且0)()(==⎰⎰x x f x x x f babad d ,则至少存在两点),(,21b a x x ∈,使得0)()(21==x f x f .证 若在),(b a 内0)(≠x f ,则由f 连续,恒使0)(0)(<>x f x f 或.于是又使)0(0)(<>⎰或x x f bad ,这与)(=⎰x x f ba d 相矛盾.所以),(1b a x ∈∃,使得0)(1=x f .倘若f 在),(b a 内只有一个零点1x ,不妨设⎩⎨⎧∈<∈>.),(,0,),(,0)(11a x x x a x x f( 若除1x 外)(x f 恒正或恒负,则将导致与上面相同的矛盾.)现令],[,)()()(1b a x x f x x x g ∈-=.易知)(x g 在),(b a 内除1x 外处处为负,从而>00)()()(1=-=⎰⎰⎰x x f x x x f x x x g bababad d d ,又得矛盾.所以f 在),(b a 内除1x 外至少另有一个零点2x . □10.证明以下不等式:(1)π+π<⎰π22sin 0x x x d ; (2)144sin 20320π<-π<⎰πx x x d ; (3)6ln 3<<⎰e4ed e x xx .证 (1)设⎪⎩⎪⎨⎧π∈==,],0(,sin ,0,1)(x xxx x f它在],0[π上连续.由于],0(π∈x 时⎪⎭⎫⎝⎛=-='22)()sin cos (1)(x x g x x x x x f , x x x x g sin cos )(-=在],0[π上连续,且0sin )sin cos ()(<-='-='x x x x x x g ,因此)(0)(,0)0()(x f x f g x g ⇒<'=< 递减.于是.π+π≤ξ+π=ξ+<⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡ππ∈ξ∃+=⎰⎰⎰⎰⎰πππππππ2212sin 1,2sin sin sin 220220x x x x xx x x xx xxd d d d d(2)由(1)已知2sin 20π<⎰πx x x d ,于是 0sin 220>-π⎰πx x xd ; 再由⎥⎦⎤⎢⎣⎡π∈-≥2,0,!31sin 3x x x x ,又可推得 144261sin 320220π-π=⎪⎪⎭⎫ ⎝⎛->⎰⎰ππx x x xxd d . (3)设]4e ,e [,ln )(∈=x xxx f .由于)4e ,e e 2(02ln 2)(∈=⇒=-='x xx x x f ,且e1e)ee ]4e ,e 2]4e ,e ====∈∈()(min ,2)()(max [[f x f f x f x x ,因此有62ln 13=<<=⎰⎰⎰e4ee4ee4ed ed d ee x x xx x . □ 11.设f 在]1,0[上连续可微,1)0()1(=-f f .证明:1)(102≥'⎰x x f d .证 应用施瓦茨不等式,容易证得[]1)0()1()()(221012=-=⎥⎦⎤⎢⎣⎡'≥'⎰⎰f f x x f x x f d d . □ 12. 设f 在],[b a 上连续,且0)(>x f .证明:⎪⎪⎭⎫⎝⎛-≤-⎰⎰x x f ab x x f ab babad d )(1ln )(ln 1.证 应用复合平均不等式( 参见教材 p .105 例3及其注(ⅱ),(ⅳ)),注意到这里的外函数u ln 是个可微的凹函数(01)ln (2<-=''uu ),立即可得本题结论. □13.借助定积分证明: (1)n nn ln 11211)1ln(+<+++<+Λ; (2)11211ln 1lim=⎪⎭⎫⎝⎛+++∞→n n n Λ. 证 (1)利用x1的递减性,有 kk kkx xxk x k k kk kk k ln )1ln(||1111111-+=<<+=+⎰⎰⎰+++.d d d依此对),(1,,2,1n n k -=Λ所得)(1n n -个不等式进行相加,即得本题所要证明的不等式.(2)由以上不等式(1),当∞→n 时,有11ln 1ln ln 11211ln 1ln )1ln(1→+=+<⎪⎭⎫ ⎝⎛+++<+←nn n n n n n Λ,于是结论11211ln 1lim=⎪⎭⎫⎝⎛+++∞→n nn Λ 成立.□ 14.设f 在],[b a 上有0)(≥''x f .证明:2)()()(12b f a f x x f a b b a f ba+≤-≤⎪⎭⎫⎝⎛+⎰d . (F)证 因0)(≥''x f ,故f 为一凸函数.取切点为⎪⎪⎭⎫⎝⎛⎪⎭⎫⎝⎛++2,2ba fb a 则必有 ⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+'+⎪⎭⎫ ⎝⎛+≥222)(b a x b a f b a f x f .对上式两边各取],[b a 上的定积分,利用积分不等式性质即得.0)(222)(2)(+-⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+'+-⎪⎭⎫ ⎝⎛+≥⎰⎰a b b a f xb a x b a f a b b a f x x f b a bad d这时证得(F)的左部不等式成立.再由凸函数的一般充要条件,有.;;)(2)()()()()())(()(],[,)()()()()(],(,)()()()(a b b f a f xa x ab a f b f a b a f x x f b a x a x ab a f b f a f x f b a x ab a f b f a x a f x f ba ba-+=---+-≤⇒∈---+≤⇒∈--≤--⎰⎰d d这时证得(F)的右部不等式也成立.后者还可由凸函数的性质与分部积分而得:;;;x x f a b b f a b a f xa x x f ab a f x x f b a x a x x f a f x f b a x x a x f x f a f b ab aba⎰⎰⎰--+-=-'+-≤⇒∈-'+≤⇒∈-'+≥d d d )())(())(()()())(()(],[,))(()()(],[,))(()()(这就得到)]()()([)(2a b b f a f x x f b a-+≤⎰d . □15. 应用施瓦茨不等式证明: (1)若∈f R ],[b a ,则x x f a b x x f b a b a ⎰⎰-≤⎥⎦⎤⎢⎣⎡d d )()()(22;(2)若∈f R ],[b a ,0)(>≥m x f ,则2)()(1)(a b x x f x x f b aba-≥⎰⎰d d ; (3)若∈g f ,R ],[b a ,则[]x x g x x f x x g x f b a b a ba ⎰⎰⎰+≤+d d d )()()()(222; (4)若f 在],[b a 上非负、连续,且1)(=⎰x x f b ad ,则1sin )(cos )(22≤⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎰⎰x kx x f x kx x f b a b a d d . 证 (1)x x f a b x x f xx x f b abababa ⎰⎰⎰⎰-=≤⎥⎦⎤⎢⎣⎡d d d d )()()(1)(2222.(2)条件∈f R ],[b a ,0)(>≥m x f ,保证了∈f1R ],[b a ,于是有 ()..2222)()(1)()(1)()(1)(a b x x f x f x x f x x f x x f xx f b a bab ababa-=⎥⎥⎦⎤⎢⎢⎣⎡≥⎪⎪⎭⎫ ⎝⎛=⎰⎰⎰⎰⎰d d d d d(3)[]..2222222222)()()()(2)()()()(2)()()()(⎥⎦⎤⎢⎣⎡+=++≤++=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰x x g x x f xx g x x f x x g x x f xx g x f x x g x x f x x g x f babababababab ab a b a ba d d d d d d d d d d (4)由于,cos )()(cos )()(cos )(222x kx x f x x f x kx x f x f x kx x f b ababab a ⎰⎰⎰⎰≤⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡d d d d .和1)(=⎰x x f bad ,便得x kx x f x kx x f bab a ⎰⎰≤⎥⎦⎤⎢⎣⎡d d 22cos )(cos )(,同理又有x kx x f x kx x f bab a ⎰⎰≤⎥⎦⎤⎢⎣⎡d d 22sin )(sin )(,因此两式相加后得到1)(sin )(cos )(22=≤⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎰⎰⎰x x f x kx x f x kx x f bab a b a d d d . □16.用积分中值定理证明:若f 为]1,0[上的递减函数,则)1,0(∈∀a ,恒有x x f x x f a a⎰⎰≤010)()(d d ; (F1)并说明其几何意义.证 把欲证的不等式(F1)改写为)2()(1)(11)()()()(011010F .x x f ax x f axx f x x f a x x f a x x f a aaaaa ⎰⎰⎰⎰⎰⎰≤-⇔≤+=d d d d d d由积分中值定理,))0()((11f a f ≤μ≤μ∃,使1101)(1μ=μ=⎰a ax x f aa.d ; 又))()1((22a f f ≤μ≤μ∃,使221)1(11)(11μ=-μ-=-⎰a ax x f aa.d .由于12)(μ≤≤μa f ,因此(F2)成立,(F1)亦随之成立.此结论的几何意义是:如图所示,当f 为]1,0[上的递减函数时,(F2)表示)(x f 在区间],0[a 上的平均值)(1μ必定大于或等于它 在]1,[a 上的平均值)(2μ;而(F1)又表示上述1μ亦必大于或等于)(x f 在整个区间]1,0[上的平均值 (x x f ⎰=μ10)(d ). □*17.设f 在]1,0[上为严格递减函数.证明(并说明其几何意义):(1))1,0(∈ξ∃,使)1()1()0()(1f f x x f ξ-+ξ=⎰d ;(2))1,0(,)0(∈η∃>∀f c ,使)1()1()(1f c x x f η-+η=⎰d .证(1)直接利用积分第二中值定理,当f 为单调函数时,)1,0(∈ξ∃,使)1()1()0()1()0()(11f f x f x f x x f ξ-+ξ=+=⎰⎰⎰ξξd d d .(2)设⎩⎨⎧∈==.]1,0(,)(,0,)(x x f x c x gg 在]1,0[上亦为严格递减函数,类似于题(1),)1,0(∈η∃,使 .)1()1()1()1()0()1()0()()(111f cg g xg x g x x g x x f η-+η=η-+η=+==⎰⎰⎰⎰ηηd d d d本题结论的几何意义如以上二图所示:表现为每图中两个阴影部分的面积相等. □*18.设f 在],[ππ-上为递减函数.证明:(1)02sin )(≥⎰ππ-xnx x f d ;(2)0)12sin()(≤+⎰ππ-xx n x f d .x 1 Oy)0(f c η )2(O y )0(f x 1 ξ )1( )1(f)1(f证 令)()()(π-=f x f x g ,则g 在],[ππ-上为非负、递减函数.利用积分第二中值定理,∈ξ∃],[ππ-,使.0)2cos 1(2)(02sin )(2sin )(2sin )(2sin )(≥ξ-π-=+π-=π+=⎰⎰⎰⎰ξπ-ππ-ππ-ππ-n n g x nx g xnx f x nx x g x nx x f d d d d又∈η∃],[ππ-,使.0])12cos(1[12)(0)12sin()()12sin()()12sin()()12sin()(≤η+--+π-=++π-=+π++=+⎰⎰⎰⎰ηπ-ππ-ππ-ππ-n n g x nx g xx n f x x n x g x x n x f d d d d□19.设f 在],[ππ-上为可微的凸函数,且有界.证明:0)12cos()(≤+⎰ππ-xx n x f d .证 利用分部积分法得到x x n x f n x x n x f ⎰⎰ππ-ππ-+'+-=+d d )12sin()(121)12cos()(.由于f 为凸函数,因此f '为递增函数.用f '代替上题(2)中的f ,即证得结论成立. (注意上题中的f 为递减函数,当改为递增函数时,不等号反向.) □*20.设f 是]1,0[上的连续函数,且满足)1,,1,0(0)(,1)(1010-===⎰⎰n k x x f xx x f x knΛd d .证明:)1(2|)(|max 10+≥≤≤n x f nx .证 由于)1(212121211212101+=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=-⎰⎰⎰n x x x x x x nn nnd d d , 因此由条件可得,)10()1(21)(21)()(21)(211101010≤ξ≤+ξ=-ξ=-≤⎪⎭⎫ ⎝⎛-=⎰⎰⎰n f x x f x x f x x x f x nnnn ...d d d)1(2|)(|+≥ξ⇒n f n ,)1(2|)(||)(|max 10+≥ξ≥⇒≤≤n f x f n x . □21.设f 在],[b a 上有连续的二阶导函数,0)()(==b f a f .证明:(1)若41)()(,1)(2222≥'=⎰⎰⎰x x f x x x f x x f bababad d d .则; (2)x x f b x a x x x f ba ba ⎰⎰''--=d d )()()(21)(;*(3))(max )(121)(],[3x f a b x x f b a x ba''-≤∈⎰.d . 证 (1)利用施瓦茨不等式和分部积分可得()..41)()(41)(21)()()()(222222222=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡'≥'⎰⎰⎰⎰⎰x x f x f x x f x x x f x f x x x f x x x f ba b ab a bab a bad d d d d(2)多次应用分部积分及已知条件可得[][],)()()()()()()()()()()()()()()()()()()()()()()(x x f x x f b x a x xx f b x x x f b x a x x x f a x x f b x b x x f a x xx f a x x f a x a x x f x x f bab abababababab aba ba⎰⎰⎰⎰⎰⎰⎰⎰⎰-''--='-+''--=''-+'-=-'--='---=-=d d d d d d d d d移项后便有x x f b x a x x x f ba ba⎰⎰''--=d d )()()(21)(.(3)设M x f b a x =''∈)(max],[.利用(2)可得.3)(12)()(2)()()(21)())((21)(a b Mx x b a x M xx f x b a x x x f b x a x x x f ba ba baba-=--≤''--≤''--=⎰⎰⎰⎰d d d d□*22.设f 在),(B A 上连续,⊂],[b a ),(B A .证明:)()()()(lima fb f x hx f h x f bah -=-+⎰→d .证 设t t f x F xa⎰=d )()(.由于)()()(,0)(a F b F x x f a F ba-==⎰d ,,)()()()()()(h a F h b F tt f t t f t t f x h x f h a ahb ah b ha ba+-+=-==+⎰⎰⎰⎰++++d d d d因此有[])()()()(1lim )()(lim00a Fb F h a F h b F h x hx f h x f h bah +-+-+=-+→→⎰d .再由f 连续,从而F 可导,便可证得.)()()()()()(lim)()(lim )()(lim000a fb f a F b F ha F h a F hb F h b F x h x f h x f h h bah -='-'=-+--+=-+→→→⎰d□ 23.设f 在],[b a 上连续、递增.证明:x x f b a x x f x baba⎰⎰+≥d d )(2)(.证 作辅助函数x x f t a x x f x t F tata⎰⎰+-=d d )(2)()(.由于0)(=a F ,因此若能证明)(t F 递增,则0)()(=≥a F b F 即为需证之不等式.为此证明0)(≥'t F 如下:.0)(2)(2)()(2)(21)()(2)(21)()(=+---=+--≥+--='⎰⎰t f ta t f a t t f t t f ta x t f t f t t f ta x x f t f t t F t a t a d d □24.设f 在),0[∞+上为递增函数.证明:t t f xx F x⎰=0)(1)(d 在),0(∞+上亦为递增函数.证 x x x x ''<'∞+∈'''∀,),0(,,考察,0)()()(11)(1)(11)(1)(1)()(1)(1)(1)()(000000=''''-''-''''-''='⎪⎪⎭⎫ ⎝⎛''-'-'''≥⎪⎪⎭⎫ ⎝⎛''-'-''='-⎪⎭⎫ ⎝⎛+''='-''='-''⎰⎰⎰⎰⎰⎰⎰⎰⎰''''''''''''''''x f xx x x f x x x t x f x x t x f x t t f x x t t f x tt f x t t f t t f x t t f x t t f x x F x F x x x x x x x x x x x x d d d d d d d d d故)(x F 在),0(∞+上为递增函数. □*25.设f 在],[b a 上为递增函数.证明:),(b a c ∈∀,t t f x g xc⎰=d )()(在],[b a 上为凸函数.分析 如果f 在],[b a 上更为连续函数,则由)()(x f x g ='为递增函数,立即推知g 为凸函数.但因本题条件只假设f 为递增函数,不能保证g 的可导性,所以只能用凸函数的定义或凸函数的基本充要条件来证明本题结论.证 321321,],[,,x x x b a x x x <<∈∀,由条件)()()(321x f x f x f ≤≤.考察)())((1)(1)()(21221212121221x f x x x f x x t t f x x x x x g x g x x =--≤-=--⎰d ,)())((1)(1)()(22322323232332x f x x x f x x t t f x x x x x g x g x x =--≥-=--⎰d ,232321212)()()()()(x x x g x g x f x x x g x g --≤≤--⇒.所以满足g 为凸函数的充要条件. □26.设f 在),(∞+∞-上为连续函数.证明:f 是周期函数(周期为π2)的充要条件为积分⎰π+20)(x y x f d 与y 无关..证 令u y x =+,得⎰⎰⎰⎰-==+=+π+ππyy y yu f u f u f x y x f y F 020220)()()()()(du du du d ,)()2()(y f y f y F -+π='⇒.)(y F 与y 无关,即C y F ≡)(,当F 可导时其充要条件为0)(≡'y F ,亦即)()2(y f y f =+π,故f 是以π2为周期的周期函数. □27.证明:若f 在),[∞+a 上可导,且x x f a⎰∞+d )(与x x f a⎰∞+'d )(都收敛,则必有0)(lim=∞+→x f x .证 因x x f a⎰∞+'d )(收敛,故极限)()(lim )(lima f u f x x f u uau -='∞+→∞+→⎰d存在.再由x x f a⎰∞+d )(收敛,根据 p.119 例1(5),知道0)(lim =∞+→x f x . □28.证明:设x x f a⎰∞+d )(为条件收敛.证明:(1)[][]x x f x f x x f x f a a ⎰⎰∞+∞+-+d d )()()()(与都发散;(2)[][]1)()()()(lim=-+⎰⎰∞+→uu f u f u u f u f xa xa x d d .证 (1)倘若[]x x f x f a ⎰∞+±d )()(收敛,则 []{}x x f x x f x f x f aa ⎰⎰∞+∞+=+d d )()()()(μ也收敛,这与x x f a⎰∞+d )(为条件收敛的假设相矛盾.(2)由于[][][]uu f u f uu f uu f u f u u f u f xa xax a xa ⎰⎰⎰⎰-+=-+d d d d )()()(21)()()()(, (F)而由(1)知[]∞+=-⎰∞+→u u f u f xax d )()(lim,又由条件知A u u f xax =⎰∞+→d )(lim,因此当∞+→x 时,式(F)右边第二项的极限等于0,故左边的极限等于1. □29.设h g f ,,在任何有限区间⊂],[b a ),[∞+a 上都可积,且满足)()()(x h x g x f ≤≤.证明:(1)若x x f a⎰∞+d )(与x x h a⎰∞+d )(都收敛,则x x g a⎰∞+d )(也收敛;(2)又若=⎰∞+x x f ad )(J x x h a=⎰∞+d )(,则J x x g a=⎰∞+d )(.证 (1)由条件知)()()()(0x f x h x f x g -≤-≤,并[]x x f x h a ⎰∞+-d )()(收敛,故由比较法则推知[]xx f x g a⎰∞+-d )()(收敛.再由x x f a⎰∞+d )(收敛,证得x x g a⎰∞+d )([]{}x x f x f x g a ⎰∞++-=d )()()(也收敛.(2)又因xx h x x g x x f ua uaua⎰⎰⎰≤≤d d d )()()(,J x x h x x f ua u uau ==⎰⎰∞+→∞+→d d )(lim)(lim, 所以由极限的迫敛性,证得J x x g x x g uau a==⎰⎰∞+→∞+d d )(lim)(. □30.证明:若f 在),0[∞+上为单调有界的连续可微函数,则x x x f ⎰∞+'0sin )(d 必定绝对收敛;证 因f 单调(不妨设为递增),故0)(≥'x f ;又f 有界,故A x f x =∞+→)(lim 存在.由比较法则,因),0[,)(sin )(∞+∈'≤'x x f x x f ,而f '连续,故)0()0()(lim )(0f A f x f x x f x -=-='∞+→∞+⎰d ( 收敛 ), 所以x x x f ⎰∞+'0sin )(d 绝对收敛. □31.讨论下列反常积分的敛、散性: (1)x xx x⎰∞++022cos 1d ; (2)x xxx ⎰∞++0100cos d ;(3)⎰1ln xx xd ; (4)x xx ⎰121cos d 1.解 (1)由于2221cos 1x xx x x +≥+,而∞+=+=+∞+→∞+→⎰)1(ln lim 211lim202u x x x u uu d , 故由比较法则推知x xx x⎰∞++022cos 1d 发散. (2)由于),0[,2cos 0∞+∈≤⎰u x x ud ,而当∞+→x 时xx+100单调趋于0,因此根据狄利克雷判别法推知x xxx ⎰∞++0100cos d 收敛.又因100,2cos 1412cos 100cos 2≥⎪⎪⎭⎫⎝⎛+=≥+x x xxx x x xxx , 而x x⎰∞+1001d 发散,x xx⎰∞+1002cos d 收敛,故x x x x ⎰∞+⎪⎪⎭⎫⎝⎛+1002cos 141d 发散,于是导致x xxx ⎰∞++0100cos d 也发散.所以,x xxx ⎰∞++0100cos d 为条件收敛.(3)因为∞==-→+→xx xx x x ln 1limln 1lim 10,所以有1,0=x 两个瑕点.为此需化为两个瑕积分:J I xx xx x xx x x+=+=⎰⎰⎰1012121ln ln ln d d d .对于I ,由于)0,121(0ln 1lim0=λ<==+→p xx x x ., 因此为收敛;对于J ,则因)1,1(1ln 1)1(lim 1=λ==--→p xx x x .,故为发散.所以瑕积分⎰1ln xx xd 为发散.(4)作变换21xu =,把瑕积分化为无穷积分:u u u x xx d ⎰⎰∞+=112cos 211cos d 1, 此前已知它是一个条件收敛的反常积分. □32.证明下列不等式:(1)212214π<-<π⎰x x d ; (2)ee e 211)11(2102+<<-⎰∞+-x x d . 证 (1)由于)1,0[∈x 时,有2421111121xxx-≤-≤-,而20arcsin arcsin lim 1112π=-=--→⎰x x x x d ,因此所证不等式 212214π<-<π⎰x xd 成立.(2)由于,1111011222222x x x x x x x x x x x x x x ⎰⎰⎰⎰⎰⎰∞+-∞+--∞+---+<+=<≤d d d d d d ee e e e e而eee e21,)11(211122=-=⎰⎰∞+--x x x x x x d d , 因此所证不等式ee e 211)11(2102+<<-⎰∞+-x x d 成立. □。
数学分析选论习题解答
《数学分析选论》习题解答第 一 章 实 数 理 论1.把§1.3例4改为关于下确界的相应命题,并加以证明. 证 设数集S 有下确界,且S S ∉=ξinf ,试证: (1)存在数列ξ=⊂∞→n n n a S a lim ,}{使;(2)存在严格递减数列ξ=⊂∞→n n n a S a lim ,}{使.证明如下:(1) 据假设,ξ>∈∀a S a 有,;且ε+ξ<'<ξ∈'∃>ε∀a S a 使得,,0.现依 次取,,2,1,1==εn nn 相应地S a n ∈∃,使得 ,2,1,=ε+ξ<<ξn a n n .因)(0∞→→εn n ,由迫敛性易知ξ=∞→n n a lim .(2) 为使上面得到的}{n a 是严格递减的,只要从2=n 起,改取,3,2,,1min 1=⎭⎬⎫⎩⎨⎧+ξ=ε-n a n n n ,就能保证,3,2,)(11=>ε+ξ≥ξ-+ξ=--n a a a n n n n . □2.证明§1.3例6的(ⅱ).证 设B A ,为非空有界数集,B A S ⋃=,试证:{}B A S inf ,inf mininf =.现证明如下.由假设,B A S ⋃=显然也是非空有界数集,因而它的下确界存在.故对任何B x A x S x ∈∈∈或有,,由此推知B x A x inf inf ≥≥或,从而又有{}{}B A S B A x inf ,inf min inf inf ,inf min≥⇒≥.另一方面,对任何,A x ∈ 有S x ∈,于是有S A S x inf inf inf ≥⇒≥;同理又有S B inf inf ≥.由此推得{}B A S inf ,inf mininf ≤.综上,证得结论 {}B A S inf ,inf mininf =成立. □3.设B A ,为有界数集,且∅≠⋂B A .证明: (1){}B A B A sup ,sup min )sup(≤⋂; (2){}B A B A inf ,inf max)(inf ≥⋂.并举出等号不成立的例子.证 这里只证(2),类似地可证(1).设B A inf ,inf =β=α.则应满足:β≥α≥∈∈∀y x B y A x ,,,有.于是,B A z ⋂∈∀,必有{}βα≥⇒⎭⎬⎫β≥α≥,max z z z , 这说明{}βα,max 是B A ⋂的一个下界.由于B A ⋂亦为有界数集,故其下确界存在,且因下确界为其最大下界,从而证得结论{}{}B A B A inf ,inf max inf≥⋂成立.上式中等号不成立的例子确实是存在的.例如:设)4,3(,)5,3()1,0(,)4,2(=⋂⋃==B A B A 则,这时3)(inf ,0inf ,2inf =⋂==B A B A 而,故得{}{}B A B A i n f ,i n f m a x i n f >⋂. □ 4.设B A ,为非空有界数集.定义数集{}B b A a b a c B A ∈∈+==+,,证明:(1)B A B A sup sup )sup(+=+; (2)B A B A inf inf )(inf +=+.证 这里只证(2),类似地可证(1).由假设,B A inf ,inf =β=α都存在,现欲证β+α=+)(inf B A .依据下确界定义,分两步证明如下:1)因为,,,,β≥α≥∈∈∀y x B y A x 有所以B A z +∈∀,必有β+α≥+=y x z .这说明B A +β+α是的一个下界.2)B y A x ∈∈∃>ε∀00,,0,使得2,200ε+β>ε+α>y x . 从而ε+β+α>+∈+=∃)(,0000z B A y x z 使得,故B A +β+α是的最大下界.于是结论 B A B A inf inf )(inf +=+ 得证. □5.设B A ,为非空有界数集,且它们所含元素皆非负.定义数集{}B b A a ab c AB ∈∈==,,证明:(1)B A AB sup sup )sup(⋅=; (2)B A AB inf inf )(inf ⋅=. 证 这里只证(1),类似地可证(2).⎪⎩⎪⎨⎧⋅≤≤≤=≥≥∈∈∃∈∀,sup sup ,sup ,sup ,,)0,0(,,)(B A c B b A a ab c b a B b A a AB c 且使由于因此B A sup sup ⋅是AB 的一个上界.另一方面,B b A a ∈∈∃>ε∀00,,0,满足ε->ε->B b A a sup ,sup 00,故)(000AB b a c ∈=∃,使得εε-+-⋅>])sup sup ([sup sup 0B A B A c .由条件,不妨设0sup sup >+B A ,故当ε足够小时,εε-+=ε'])sup sup ([B A 仍为一任意小正数.这就证得B A sup sup ⋅是AB 的最小上界,即 B A AB inf inf )(inf ⋅= 得证. □*6.证明:一个有序域如果具有完备性,则必定具有阿基米德性.证 用反证法.倘若有某个完备有序域F 不具有阿基米德性,则必存在两个正元素F ∈βα,,使序列}{αn 中没有一项大于β.于是,}{αn 有上界(β就是一个),从而由完备性假设,存在上确界λ=α}sup{n .由上确界定义,对一切正整数n ,有α≥λn ;同时存在某个正整数0n ,使α-λ>α0n .由此得出α+<λ≤α+)1()2(00n n ,这导致与0>α相矛盾.所以,具有完备性的有序域必定具有阿基米德性. □7.试用确界原理证明区间套定理. 证 设{}],[n n b a 为一区间套,即满足:0)(lim ,1221=-≤≤≤≤≤≤≤≤∞→n n n n n a b b b b a a a .由于{}n a 有上界k b ,{}n b 有下界k a (+∈N k ),因此根据确界原理,存在{}{}β≤α=β=α且,inf,sup n n b a .倘若β<α,则有,2,1,0=>λ=α-β≥-n a b n n ,而这与0)(lim =-∞→n n n a b 相矛盾,故ξ=β=α.又因 ,2,1,=≤β=α≤n b a n n ,所以ξ是一切],[n n b a 的公共点.对于其他任一公共点 ,2,1,],[=∈ηn b a n n ,由于∞→→-≤η-ξn a b n n ,0 ,因此只能是η=ξ,这就证得区间套{}],[n n b a 存在惟一公共点. □8.试用区间套定理证明确界原理.证 设S 为一非空有上界的数集,欲证S 存在上确界.为此构造区间套如下:令],[],[011M x b a =,其中M S S x ,)(0∅≠∈ 为S 的上界.记2111b a c +=,若1c 是S 的上界,则令],[],[1122c a b a =;否则,若1c 不是S 的上界,则令],[],[1122b c b a =.一般地,若记2nn n b a c +=,则令,2,1,,,],[,,],[],[11=⎩⎨⎧=++n S c b c S c c a b a n n n n n n n n 的上界不是的上界当是.如此得到的{}],[n n b a 显然为一区间套,接下来证明这个区间套的惟一公共点ξ即为S 的上确界.由于上述区间套的特征是:对任何+∈Νn ,n b 恒为S的上界,而n a 则不为S 的上界,故S x ∈∀,有n b x ≤,再由ξ=∞→n n b lim ,便得ξ≤x ,这说明ξ是S 的一个上界;又因ξ=∞→n n a lim ,故ε-ξ>∃>ε∀n a ,0,由于n a 不是S 的上界,因此ε-ξ更加不是S 的上界.根据上确界的定义,证得S sup =ξ.同理可证,若S 为非空有下界的数集,则S 必有下确界. □ 9.试用区间套定理证明单调有界定理.证 设{}n x 为递增且有上界M 的数列,欲证{}n x 收敛.为此构造区间套如下:令],[],[111M x b a =;类似于上题那样,采用逐次二等分法构造区间套{}],[n n b a ,使n a 不是{}n x 的上界,n b 恒为{}n x 的上界.由区间套定理,],[n n b a ∈ξ∃,且使ξ==∞→∞→n n n n b a lim lim .下面进一步证明 ξ=∞→n n x lim .一方面,由∞→≤k b x k n 取,的极限,得到,2,1,lim =ξ=≤∞→n b x k k n .另一方面,ε-ξ>∈∃>ε∀+K a K 使,,0Ν;由于K a 不是{}n x 的上界,故K N a x >∃;又因{}n x 递增,故当N n >时,满足N n x x ≥.于是有N n x x a n N K >ξ≤<<<ε-ξ,,这就证得ξ=∞→n n x lim .同理可证{}n x 为递减而有下界的情形. □ 10*.试用区间套定理证明聚点定理.证 设S 为实轴上的一个有界无限点集,欲证S 必定存在聚点.因S 有界,故0>∃M ,使得M x ≤,S x ∈∀.现设],[],[11M M b a -=,则],[11b a S ⊂.然后用逐次二等分法构造一区间套{}],[n n b a ,使得每次所选择的],[n n b a 都包含了S 中的无限多个点.由区间套定理,],[n n b a ∈ξ∃,n ∀.最后应用区间套定理的推论,,0>ε∀当n 充分大时,使得],[n n b a );εξ⊂(U ;由于],[n n b a 中包含了S 的无限多个点,因此);(εξU 中也包含了S 的无限多个点,根据聚点定义,上述ξ即为点集S 的一个聚点. □ 11*.试用有限覆盖定理证明区间套定理.证 设{}],[n n b a 为一区间套,欲证存在惟一的点 ,2,1,],[=∈ξn b a n n . 下面用反证法来构造],[11b a 的一个无限覆盖.倘若{}],[n n b a 不存在公共点ξ,则],[11b a 中任一点都不是区间套的公共点.于是,∈∀x ],[11b a ,使,],[n n b a ∃],[n n b a x ∉.即);(x x U δ∃与某个],[n n b a 不相交( 注:这里用到了],[n n b a 为一闭区间 ).当x 取遍],[11b a 时,这无限多个邻域构成],[11b a 的一个无限开覆盖:{}],[);(11b a x x U H x ∈δ=.依据有限覆盖定理,存在],[11b a 的一个有限覆盖:{}HNi x U U H ix i i ⊂=δ==,,2,1);(~,其中每个邻域N i b a U i i n n i ,,2,1,],[ =∅=⋂.若令{}Nn n n K ,,,max 21 =,则N i b a b a i i n n K K ,,2,1,],[],[ =⊂,从而N i U b a i K K ,,2,1,],[ =∅=⋂. (Ж)但是Ni iU 1=覆盖了],[11b a ,也就覆盖了],[K K b a ,这与关系式(Ж)相矛盾.所以必定存在 ,2,1,],[=∈ξn b a n n .(有关ξ惟一性的证明,与一般方法相同.) □12.设S 为非空有界数集.证明:S S y x Sy x inf sup ||sup ,-=-∈.证 设η<ξ=η=ξ且,sup ,inf S S ( 若η=ξ,则S 为单元素集,结论显然成立 ).记{}Sy x y x E ∈-=,||,欲证ξ-η=Esup .首先,S y x ∈∀,,有ξ-η≤-⇒η≤ξ≥||,y x y x ,这说明ξ-η是E 的一个上界.又因2,0ε-η>ε∀ ⎪⎭⎫⎝⎛ε+ξ2不再S 的上()下界,故S y x ∈∃00,,使ε-ξ-η≥-⇒⎪⎭⎪⎬⎫ε+ξ<ε-η>)(||220000y x y x , 所以ξ-η是E 的最小上界,于是所证结论成立. □13.证明:若数集S 存在聚点ξ,则必能找出一个各项互异的数列{}S x n ⊂,使ξ=∞→n n x l i m.证 依据聚点定义,对S U x ⋂εξ∈∃=ε);(,1111 .一般地,对于⎭⎬⎫⎩⎨⎧-ξ=ε-1,1min n n x n ,,3,2,);(=⋂εξ∈∃n S Ux n n .如此得到的数列{}S x n ⊂必定满足:,3,2,||||11=≠⇒ξ-<ξ---n x x x x n n n n ;ξ=⇒∞→→<ξ-∞→n n n x n nx lim )(01||. □41*.设S 为实轴上的一个无限点集.试证:若S 的任一无限子集必有属于S 的聚点,则(1)S 为有界集;(2)S 的所有聚点都属于S .证 (1)倘若S 无上界,则对1111,,1M x S x M >∈∃=使;一般地,对于{},3,2,,,,max 1=>∈∃=-n Mx S x x n Mnn n n n使.这就得到一个各项互异的点列{}∞=⊂∞→n n n x S x lim,使.S 的这个无限子集没有聚点,与题设条件相矛盾,所以S 必有上界.同理可证S 必有下界,故S 为有界集.(2)因S 为有界无限点集,故必有聚点.倘若S 的某一聚点S ∉ξ0,则由聚点的性质,必定存在各项互异的数列{}0lim,ξ=⊂∞→n n n x S x 使.据题设条件,{}nx 的惟一聚点0ξ应属于S ,故又导致矛盾.所以S 的所有聚点都属于S . □51*.证明:{}{}nn a a ∉ξ=sup,则必有ξ=∞→n n a lim .举例说明,当上述ξ属于{}n a 时,结论不一定成立.证 利用§1.3 例4,{}{}n na a k⊂∃,使ξ=∞→knn a lim ,这说明ξ是{}na 的一个聚点.又因ξ又是{}n a 的上界,故{}n a 不可能再有比ξ更大的聚点.所以ξ是{}n a 的上极限.当{}n a ∈ξ时,结论不一定成立.例如,1,111sup ⎭⎬⎫⎩⎨⎧∈=⎭⎬⎫⎩⎨⎧n n 显然不是⎭⎬⎫⎩⎨⎧n 1的上极限. □61*.指出下列数列的上、下极限:(1){}n)1(1-+; (2)⎭⎬⎫⎩⎨⎧+-12)1(n nn; (3)⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧πnn 3cos; (4)⎭⎬⎫⎩⎨⎧π+4sin 12n n n ; (5)⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧π+n n n sin12. 解(1)0lim ,2lim ,0,2122==≡≡∞→∞→-n n n n k k a a a a 故.(2))(211412,21142122∞→-→---=→+=-k k k a k k a k k ,故21lim ,21lim -==∞→∞→n n n n a a .(3))(13cos211∞→≤π≤←n n nn, 故1lim lim lim ===∞→∞→∞→n n n n n n a a a .(4)⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧--=+⋅--=+-=+=+++=+⋅=π+=.38,18,12222,8,12,4,0,28,12,38,18,12224sin 12k k n n nk n n nk n k n n n k k n n n n n n a n故2lim ,2lim -==∞→∞→n n n n a a .(5))(sin )1(sin 1222∞→π→ππ⋅+π=π+=n n nnn n n na n ,故π===∞→∞→∞→n n n n n n a a a lim lim lim . □71*.设{}n a 为有界数列,证明:(1)1lim )(lim =-=-∞→∞→n n n n a a ; (2)n n n n a a ∞→∞→-=-lim )(lim .证 由)(sup )(inf ,)(inf )(sup k nk k nk k nk k nk a a a a ≥≥≥≥-=--=-,令∞→n 取极限,即得结论(1)与(2). □81*.设0lim >∞→n n a ,证明:(1)nn n n a a ∞→∞→=lim 11lim; (2)nn nn a a ∞→∞→=lim 11lim;(3)若11limlim =⋅∞→∞→n n n n a a ,或11lim lim =⋅∞→∞→n n n n a a ,则{}n a 必定收敛.证 由)(sup 11inf ,)(inf 11sup k nk k n k k nk k n k a a a a ≥≥≥≥=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛,令∞→n 取极限,即得结论(1)与(2).若11limlim =⋅∞→∞→nn n n a a ,则由(1)立即得到 n n n n a a ∞→∞→=lim lim ,因此极限n n a ∞→lim 存在,即得结论(3). 类似地,若11limlim =⋅∞→∞→nn n n a a ,则由(2)同样可证。
数学分析专题研究试题及参考答案
数学分析专题研究试题及参考答案一、填空题(每小题3分,共18分)1.集合X 中的关系R 同时为反身的,对称的,传递的,则该关系R 为 . 2.设E 是非空数集,若存在实数β,满足1)E x ∈∀,有β≥x ;2) ,则称β是数集E 的下确界。
3.函数)(x f y =在点0x 的某个邻域内有定义,若 存在,则称函数)(x f 在点0x 可导。
4.若)(x f y =是对数函数,则)(x f 满足函数方程=)(xy f 。
5.若非零连续函数)(x f 满足方程)()()(y f x f y x f +=+,则函数)(x f 是 函数。
6.设函数)(x f 定义在区间),(b a 上,对于任意的),(,21b a x x ∈,)1,0(∈∀α,有 成立,则称)(x f 在),(b a 上为下凸函数。
二、单项选择题(每小题3分,共18分)1.设f :Y X →,X A ⊂∀,则A ( )))((1A f f-A. =B. ≠C. ⊃D. ⊂2.已知函数)(x f y =在区间),(b a 上可导,),(b a x ∈∀,有1)(0<<x f ,则( )。
A. )(x f '有界 B. )(x f '无界 C. )(x f 可积 D. )(x f 不可积3.已知函数)(x f 与)(x ϕ在[a,b]上可导,且)(x f < )(x ϕ,则( )。
A. )(x f '≠)(x ϕ' B. )(x f '<)(x ϕ' C )(x f '>)(x ϕ' D. 前三个结论都不对4.已知⎩⎨⎧∈∈=]2,1(2]1,0[1)(t t t f ,对于]2,0[∈x ,定义⎰=xtt f x F 0d )()(,则)(x F 在区间[0,2]上( )。
A. 连续B. 不连续C. 可导D. 前三个结论都不对 5.已知)(x f 是区间],[b a 上的严格下凸函数,则( )。
)数学分析专题研究模拟试题及参考答案
数学分析专题研究模拟试题及参考答案一、单项选择题1.A ,B ,C 是三个集合,C B A ⊂,则有( )成立。
A. 若A x ∈,则B x ∈B. 若A x ∈,则C x ∈C. 若A x ∈,则C B x ∈D. 若C B x ∈,则A x ∈答案:D2. 设12)(2-+-=x x x f 则R R f →:是( )A. 双射B. 既非单射也非满射C.单射而非满射D. 满射而非单射答案:B3.下列数集( )不是可列集.A .自然数集B .整数集C .有理数集D .实数集答案:D4.已知函数)(x f y =在)1,0(内可导,且)(x f '在)1,0(内连续,则)(x f 在)1,0(内( ).A .连续B .间断C .有界D .无界答案:A5.有界闭凸集S 上的下凸函数)(x f 的最大值必在S 的( )达到.A .内部B .外部C .边界S ∂D .可能是内部也可能在边界S ∂答案:C二、填空题1.已知},{},,{d c B b a A ==,则________________=⨯A B . 答案:)},(),,(),,(),,{(b d a d b c a c2.设R 为X 中的关系,若R 是反身的、对称的、传递的,则称关系R 是 . 答案:等价关系3.若集合A 能与其任意真子集1A 之间建立一个双射,则集合A 是 .答案:无限集4.=ix e .答案:x i x sin cos +5.设n n n x n x f ∑∞=--=11)1()(,则ln(_____))(=x f . 答案:x +1三、计算题1.已知函数)(x f 满足34)1(2+-=+x x x f ,求)(x f .解:34)1(2+-=+x x x f8)1(6)1(2++-+=x x故86)(2+-=x x x f2.求函数x x x f 1)(+=的极值. 解 令 011)(2=-='x x f 解得 1±=x 312)(xx f ⋅='',,02)1(>=''f 故1=x 是极小值点,2)1(=f 是极小值 ; ,02)1(<-=-''f 故1-=x 是极大值点,2)1(-=-f 是极大值。
福师1203考试批次《数学分析选讲》复习题及参考答案
福师1203考试批次《数学分析选讲》复习题及参考答案本课程复习题所提供的答案仅供学员在复习过程中参考之用,有问题请到课程论坛提问。
本复习题页码标注所用教材为:教材名称 单价 作者版本 出版社 数学分析41华东师范大学数学系第三版高等教育出版社如学员使用其他版本教材,请参考相关知识点福师1203考试批次《数学分析选讲》复习题及参考答案一一、(12分)选择题(将符合要求的结论题号,填在题末的括号内,每题至多选两个题号): 1. 与lim n n x a →∞=的定义等价的是:( )A 、0,ε∀> 总有n x a ε-<;B 、0,ε∀> 至多只有{}n x 的有限项落在(,)a a εε-+之外;C 、存在自然数N ,对0,ε∀>当n N >,有n x a ε-<;D 、0(01),εε∀><<存在自然数N ,对,n N ∀>有n x a ε-<; 答案:B,D2.下列命题中正确的是:( )A 、若函数()f x 在[,]a b 内无界,则()f x 在[,]a b 上不可积;B 、若函数()f x 在[,]a b 上不连续,则()f x 在[,]a b 上不可积;C 、若函数()f x 在[,]a b 上可积,则[()]()xaf t dt f x '=⎰;D 、若函数()f x 在[,]a b 上可积,则()f x 在[,]a b 上也可积,反之不然. 答案:AD3.函数()f x 在[a,b]上可积的必要条件是( )A 、有界B 、连续C 、单调D 、存在原函数 答案:A二、填空题:(共10分,每题2分)1.设21(1)nn x∞=-∑收敛,则lim n n x →∞= 。
考核知识点:级数的收敛性。
参见教材(下册)P1-5 提示:利用P3页的推论进行计算。
2.(,)limx y →= 。
考核知识点:二元函数的极限。
参见教材(下册)P93-96.提示:)(,)(,)(0,0)(,)(0,0)1limlimlim1x y x y x y xy→→→==3.设3()sin F x x '=,则()F x = 。
《数学分析选讲》作业参考答案
《数学分析选讲》作业参考答案一.填空1. 点0P 的任一邻域内都有点集E 的无穷多个点。
2.}1:),{(22≤+y x y x 3.),(),(0d c b a E ⨯=4. }1)2()1(:),{(22≥++-y x y x ;5. 点0P 为点集E 的界点是指:点0P 的任一邻域中既有E 的点又有E 的余集的点; 6. φ,2R .7. 存在0P 的一个邻域完全包含在点集E 之中 8. 曲顶柱体的体积 9. 22)()()(d b c a E d -+-=10.)()(lim 00P f P f P P =→11. (2,1); 12. 连通 二.判断题1. 对; 2. 对; 3. 对; 4. 对; 5. 错; 6. 错; 7. 对; 8. 对; 9. 对; 10. 错; 11. 对; 12.对;. 13. 对; 14. 对; 15. 对; 16. 错; 17. 对; 18. 对; 19. 对; 20. 对; 21.错 22. 对; 23. 对; 24. 对 三.计算题1. 解 视y 为x 的函数,对原方程两边关于x 求导得:022='--'+y ax ay y y x解出y '得:axy x ay y --='222. 令22),(αα+=x x f ,则函数f 在]1,1[]1,1[-⨯-上连续.从而,由定理19.1知:函数x x I d )(1122⎰-+=αα在]1,1[-上连续,特别在0=α处连续.于是1d ||)0()(lim d lim 1111220====+⎰⎰-→-→x x I I x x αααα.3. 由于}0,22:),{(2px px y px y x D ≤≤≤≤-=为x -型闭区域,所以由定理2知:002/0222/0===⎰⎰⎰⎰⎰-dx x ydy xdx xydxdy p px pxp D.4. 解 由公式计算知:().310d )12353210(d )1(4)1)1(2()1)1(2(d )(d 21231222=-+-=--+-++-=-+⎰⎰⎰x x x x x x x x x x yx y x xy L5. 解 由定理19.4知:()().d e y 22d e y -2d )(223535223522xy -2xy -2⎰⎰⎰--=-+=-+∂∂='-------x xx x x x x xx x x xxy y exee xey e x e y e xx F6. 由定义知.0 00lim )0,0()0,0(lim)0,0(00=-=-+=→→xx f x f f x x x同理可得0)0,0(=y f .7. 解 视y 为常数,关于x 求导数得:)cos(23y x xy z x ++=. 视x 为常数,关于求导数得: )cos(3322y x y x z y ++=.8. 先求f 在点)3,1(关于x 的偏导数,为此,令3=y ,得到以x 为自变量的一元函 数276)3,(23-+=x x x f ,求它在1=x 的导数,得15)123()3,(d d)3,1(121=+====x x x x x x f x f .再求f 在)3,1(关于y 的偏导数,先令1=x ,得到以y 为自变量的一元函数321),1(y y y f -+=,求它在3=y 的导数,得.25)32(),1(d d)3,(323-=-====y y y y y f y x f9. 令22),(by ax y x f +=,则ax y x f x 2),(=,by y x f y 2),(=在整个平面上连续,从而由定理17.2知:f 在),(000y x P =处可微.因此,由定理17.4知该曲面在),,(000z y x M =点有不平行于z 轴的切平面且其方程为)(2)(200000y y by x x ax z z -+-=-.再由(4.2)式知,法线方程为12200000--=-=-z z by y y ax x x .10.令x x x f ααcos ),(2=,则函数f 在]2,0[]1,1[⨯-上连续.从而,则定理19.1知:函数x x x I d cos )(202⎰=αα在]1,1[-上连续,特别在0=α处连续.于是38d )0()(lim d cos lim 22022====⎰⎰→→x x I I x x x αααα; 11.0,0;12. 由定理知:.2012)13(41)13(213)d y y 3()d xy y ()(24422231323133+=-+-=+=+∂∂='⎰⎰x x y x y x x x I13.解 由公式知πθθππ)]0()([)]([)()(2200221022022f R f d r f rdr r f d dxdy y x f R RD-=='=+'⎰⎰⎰⎰⎰14.解 由于直线段→--AB 的方程为)10(21,1≤≤+=+=t t y t x ,所以由公式(1)知: .625d )251(d ]2)21)(1[(d )(d 1021=++=+++=-+⎰⎰⎰t t t tt t t y x y x xy L四.证明题1.证明 因为),(,0+∞-∞∈≥∀y x 有22111cos xx xy +≤+ 且反常积分⎰∞++02d 11x x 收敛,所以由M-判别法知含参量积分⎰∞++02d 1cos x x xy 在区间),(+∞-∞上一致收敛.2. 由推广的链式法则知:.cos )sin (cos cos )sin (d d d d d d d d t t t e tt u ve tt t z t v v z t u u z t z t t +-=+-+=∂∂+∂∂+∂∂= 3. 证明 应用不等式:(1)000(,)||||n n n P P x x y y ρ≤-+-;(2) 0000||(,), ||(,) (1,2,)n n n n x x P P y y P P n ρρ-≤-≤=可知。
福师《数学分析选讲》模拟试题及答案(一)
《数学分析选讲》试题一一、单项选择题1.设243)(-+=x x x f ,则当0→x 时,有( ).A .)(x f 与x 是等价无穷小B .)(x f 与x 同阶但非是等价无穷小C .)(x f 是比x 高阶的无穷小D .)(x f 是比x 低阶的无穷小 答案:B 2. 设函数111()1xx e f x e -=+,则0x =是()f x 的( )A .可去间断点B .第二类间断点C .跳跃间断点D .连续点 答案:C3. 22lim (1)n nn→∞+等于( ).A . 221ln xdx ⎰B .212ln xdx ⎰C .212ln(1)x dx +⎰ D .221ln (1)x dx +⎰答案:B4. (,)z f x y =在点(,)x y 处偏导数连续是(,)f x y 在该点连续的( )条件.A .充分非必要 B.必要非充分 C.充分必要 D.既不充分也不必要 答案:A5. 如果级数1n n u ∞=∑和1n n v ∞=∑均发散,则以下说法正确的是( ).A. 1()n n n u v ∞=±∑一定都收敛B. 1()n n n u v ∞=±∑一定都发散C. 1()n n n u v ∞=-∑可能收敛,但1()n n n u v ∞=+∑一定发散D. 1()n n n u v ∞=±∑都可能收敛答案:D6. 设232)(-+=x x x f ,则当0→x 时,有( )A .)(x f 与x 是等价无穷小 B. )(x f 与x 是同阶但非等价无穷小 C. )(x f 是比x 高阶的无穷小 D. )(x f 是比x 低阶的无穷小答案;B 7. 设arctan (),xf x x=则0x =是()f x 的( ) A. 连续点 B. 可去间断点 C.跳跃间断点 D. 第二类间断点 答案:B8. 下列极限计算中,正确的是( )A .01lim(1)x x e x +→+= B. 01lim(1)1x x x +→+= C. 1lim(1)x x e x →∞-=- D. 1lim(1)x x e x -→∞+=答案:B9. 设函数)(x f 在0x 处可导,且2)(0'=x f ,则=--→hx f h x f h )()(lim000( )A. 21B. 2C. 21- D. -2答案:D10. 下列反常积分中收敛的是 ( ) A. 211x dx x +∞+⎰B. 1+∞⎰12011sin dx x x ⎰ D. 10ln xdx ⎰ 答案:D11. 函数()y f x =,若0000()(2)3,|limx x h f x f x h dy h=→--==则( )A. 32dx B.32dx - C.3dx D.3dx -答案:A12. 已知函数(,)f x y 在点(0,0)的某个邻域内连续,且224(,)(0,0)(,)lim1()x y f x y xyx y →-=+,则下述四个选项中正确的是 ( ).A .点(0,0)不是(,)f x y 的极值点 B. 点(0,0)是(,)f x y 的极小值点 C. 点(0,0)是(,)f x y 的极大值点D. 根据所给条件无法判断点(0,0)是否是(,)f x y 的极值点 答案:A13. lim ln→∞n n等于( ) A. 1ln ⎰xdx B. 0ln +∞⎰xdx C. 1⎰xdx D. 0+∞⎰xdx .答案:A14.设)(x f 在],[b a 上连续,则[()]xd f t dt dx -⎰等于( ) A. ()f x - B. ()f x - C. ()f x -- D. ()f x 答案:A二、判断题:以下各题若正确请在( )内填“√”, 若错误填“×”. 1. 若{}n x 不是无穷大量,则{}n x 必存在收敛子列. ( ) 答案:√2.)(x f 在],[b a 上连续是⎰ba dx x f )(存在的充要条件 . ( )答案:×3. 若()f x 是初等函数,其定义域为(,)a b ,0(,)x a b ∈,则00lim ()()x x f x f x →= .( )答案:√4. 若(1,2)n n u v n ≤=,级数1n n v ∞=∑收敛,则1n n u ∞=∑不一定收敛.( )答案:√5. 已知函数(,)f x y 在点(0,0)的某个邻域内连续,且224(,)(0,0)(,)lim1()x y f x y xyx y →-=+,则点(0,0)是(,)f x y 的极小值点. ( ) 答案:×6.若{}n x 不是无穷大量,则{}n x 任一子列均不是无穷大量. ( ) 答案:×7. 若函数()f x 在[,]a b 上可积,则()f x 在[,]a b 上也可积. ( )答案:×8. 当0x x →时,()f x 不以A 为极限,则存在00{},(1,2),()n n n x x x n x x n ≠=→→∞,使{()}n f x 不以A 为极限.( ) 答案:√9. 若lim 0n n u →∞=,则级数1n n u ∞=∑收敛但和不一定是0 . ( )答案:×10. 对),(y x f z =, 偏导数连续,则全微分存在. ( ) 答案:√ 三、填空题1、若20(23)0kx x dx -=⎰,则k 的值为 .答案:0或12、设21(2021)n n x ∞=-∑收敛,则lim n n x →∞= .答案:20213、级数1nn ∞=的收敛区间是 .答案:(2,4)或[2,4)4.设21(10)n n x ∞=-∑收敛,则lim n n x →∞= .答案:105.(,)limx y →= .答案:46.级数2nn ∞=_____________.答案:(1,3)7.广义积分2110k dx x π+∞=+⎰,则1k= . 答案:58.1lim 1+xx x →∞⎛⎫= ⎪⎝⎭. 答案:e9.设21,0()0,0x x f x x x e ⎧--⎪≠=⎨⎪=⎩,则(0)f '= . 答案:1 四、计算题1. 2+3200lim (sin )x x x t dtt t t dt→-⎰⎰.解 原式=++320026lim lim 12(sin )1cos x x x x x x x x x→→⋅==--2.求sin cos cos 2x x y x e π+=+ 的导数.解:cos sin ()'=-x x xe e esin sin ln sin sin ()cos n ()l ()'='=+xx x x xex x x x xcos 02'π⎛⎫= ⎪⎝⎭sin sin cos ln '()sin 所以+=-x x x xe xy x x x e . 五、综合题.1.241lim cos 1n n n n →∞-+!. (请说明理由)答: 原式=0(有界量乘以无穷小量) 2. 叙述一元函数可导,可微,连续的关系.答:一元函数可导与可微是等价的,可导推出连续,连续不一定可导。
《数学分析选论》习题全解_模拟试题及答案
《 数学分析续论 》模拟试题及答案一、 单项选择题(56⨯')(1)设{}n a 为单调数列,若存在一收敛子列{}j n a ,这时有 ............[ ] A.j n j n n a a ∞→∞→=lim lim ; B.{}n a 不一定收敛; C.{}n a 不一定有界;D.当且仅当预先假设了{}n a 为有界数列时,才有A成立.(2)设)(x f 在R 上为一连续函数,则有 ..............................[ ]A.当I 为开区间时)(I f 必为开区间; B.当)(I f 为闭区间时I 必为闭区间; C.当)(I f 为开区间时I 必为开区间; D.以上A、B、C都不一定成立. (3)设)(x f 在某去心邻域)(0x U 内可导.这时有 .....................[ ]A.若A x f x x ='→)(lim 0存在,则A x f =')(0;B.若f 在0x 连续,则A 成立;C.若A x f =')(0存在,则A x f x x ='→)(lim 0;D.以上A、B、C都不一定成立.(4)设)(x f 在],[b a 上可积,则有 ..................................[ ]A.)(x f 在],[b a 上必定连续; B.)(x f 在],[b a 上至多只有有限个间断点; C.)(x f 的间断点不能处处稠密; D.)(x f 在],[b a 上的连续点必定处处稠密.(5)设∑∞=1n nu 为一正项级数.这时有 ..................................[ ]A.若0lim =∞→n n u ,则 ∑∞=1n n u 收敛; B.若∑∞=1n n u 收敛,则1lim1<+∞→nn n u u ;C .若∑∞=1n nu 收敛,则1lim<∞→nn n u ; D.以上A、B、C都不一定成立.二、计算题(401⨯')(1)试求下列极限:①⎪⎭⎫⎝⎛-+-+++∞→n n n n 3)12(31lim ; ② ⎰⎰⎪⎭⎫⎝⎛∞+→xt x t x tt 022022lim d ed e .(2)设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=+x y u f u y x u y x arctan e )(,21,220. 试求)()(0u f u f ''与. (3)试求由曲线 12-=x y ,直线2=x ,以及二坐标轴所围曲边梯形的面积 S .(4)用条件极值方法(Lagrange 乘数法)导出从固定点),(00y x 到直线0=++C y B x A 的距离计算公式.三、证明题(301⨯')(1)设)()(x g x f 与在],[b a 上都连续.试证:若)()(,)()(b g b f a g a f ><,则必存在),(0b a x ∈,满足)()(00x g x f =.(2)证明x x x f ln )(=在其定义域上为一严格凸函数,并导出不等式:c b a cb ac b a c b a <⎪⎭⎫ ⎝⎛++++3, 其中 c b a ,,均为正数.( 提示:利用詹森不等式.)(3) 证明:∑∞=π=+-0412)1(n n n .解 答一、[答](1)A; (2)C; (3)B; (4)D; (5)D. 二、[解](1) ① 333lim 3)12(31lim -=+-=⎪⎭⎫⎝⎛-+-+++∞→∞→n n n n n n n ;②.022limd 2limd 2limd ed e lim2222222220200220====⎪⎭⎫⎝⎛∞+→∞+→∞+→∞+→⎰⎰⎰⎰xx x xx tx x xt xx xt xt x x t ttt e ee e ee e(2) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-='⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++-='++515242)(,e 2e 2)(55022222222e e u f y x xy x y y x u f y x y x .(3)所围曲边梯形如右图所示.其面积为.212)3(01)3()1()1(3312122=-+-=-+-=⎰⎰x x x x xx x x S d d(4)由题意,所求距离的平方(2d )为2020)()(y y x x -+-的最小值,其中),(y x 需满足0=++C By Ax ,故此为一条件极小值问题.依据 Lagrange 乘数法,设)()()(2020C By Ax y y x x L ++λ+-+-=,并令⎪⎩⎪⎨⎧.0,0)(2,0)(200=++==λ+-==λ+-=λC y B x A L B y y L A x x L y x (F)由方程组(F)可依次解出:.2200202022200222202022********)()(,)()(4)()(,2,)(2,2,2BA C yB x A y y x x d BA C yB x A B A y y x x BA C yB x A B A y B Ax y B x AC By y Ax x +++=-+-=⇒+++=+λ=-+-⇒+++=λ⇒+λ-+=+=-λ-=λ-=最后结果就是所求距离d 的计算公式.注 上面的求解过程是由(F)求出λ后直接得到2d ,而不再去算出y x 与的值,这是一种目标明确而又简捷的解法. 三、[证](1)只需引入辅助函数:)()()(x g x f x h -=.易知)(x h 在],[b a 上连续,满足0)(,0)(><b h a h ,故由介值性定理(或根的存在定理),必存在),(0b a x ∈,满足0)(0=x h ,即)()(00x g x f =.(2)x x x f ln )(=的定义域为),0(∞+,在其上满足:),0(,01)(,1ln )(∞+∈>=''+='x xx f x x f , 所以)(x f 为一严格凸函数.根据詹森不等式,对任何正数c b a ,,,恒有.)(ln )3(ln )ln ln ln (31)3(ln 3cb ac b a c b a c b a c c b b a a c b a c b a <++⇒++<++++++最后借助函数x ln 的严格递增性,便证得不等式c b a cb ac b a c b a <⎪⎭⎫ ⎝⎛++++3.(3)由于较难直接求出该级数的部分和,因此无法利用部分和的极限来计算级数的和.此时可以考虑把该级数的和看作幂级数=)(x S ∑∞=++-01212)1(n n n n x 在1=x 处的值,于是问题转为计算)(x S .不难知道上述幂级数的收敛域为]1,1[-,经逐项求导得到]1,1[,)1()(02-∈-='∑∞=x x x S n n n ;这已是一个几何级数,其和为]1,1[,11)()(22-∈+=-='∑∞=x xx x S n n .再通过两边求积分,还原得⎰⎰=+='=-xxx t tt t S S x S 02,arctan 11)()0()(d d由于这里的0)0(=S ,于是求得∑∞=π===+-041arctan )1(12)1(n n S n .。
《数学分析选论》习题解答
《数学分析选论》习题解答第 三 章 微 分 学1.考察||)(x x f xe =的可导性.解 写出)(x f 的分段表达式:⎩⎨⎧<-≥=.0,,0,)(x x x x x f xx e e它在0≠x 时的导数为⎩⎨⎧<+->+=';0,)1(,0,)1()(x x x x x f xx e e而当0=x 时,由于10lim )0(,10lim )0(00=-='-=--='+-→+→-x e x f x e x f x x x x ,因此f 在0=x 处不可导. □2.设⎩⎨⎧<+≥=.3,,3,)(2x b ax x x x f若要求f 在3=x 处可导,试求b a ,的值.解 首先,由f 在3=x 处必须连续,得到93=+b a ,或a b 39-=-.再由a x x a xb ax f x x =--=--+='--→→-3)3(lim 39lim)3(33,6)3(lim 39lim )3(323=+=--='++→→+x x x f x x ,又得939,6-=-==a b a . □3.设对所有x ,有)()()(x h x g x f ≤≤,且)()(,)()()(a h a f a h a g a f '='==.试证:)(x g 在a x =处可导,且)()(a f a g '='.证 由条件,有)()()()()()(a h x h a g x g a f x f -≤-≤-,从而又有)()()()()()()(a x a x a h x h a x a g x g a x a f x f >--≤--≤--,)()()()()()()(a x ax a h x h a x a g x g a x a f x f <--≥--≥--.由于)()(a h a f '=',因此)()()()()(a h a h a f a f a f -+-+'='='='=',故对以上两式分别取-+→→a x a x 与的极限,得到)()()()()()(a h a g a f a h a g a f ---+++'='=''='='与. 于是有)()(a g a g -+'=',即证得)(x g 在a x =处可导,且)()(a f a g '='. □4.证明:若)(x f 在],[b a 上连续,且0)()(,0)()(>''==-+b f a f b f a f .,则存在点),(b a ∈ξ,使0)(=ξf .证 如图所示,设0)(,0)(>'>'-+b f a f .由极限保号性,在点a 的某一右邻域)(a U +内,使0)(0)()(>'⇒>-'-'x f a x a f x f ,∈'x )(a U +;同理,在点b 的某一左邻域内,有0)(0)()(<''⇒>-''-''x f bx b f x f ,∈''x )(b U -.最后利用连续函数)(x f 在],[x x '''上的介值性,必定),(),(b a x x ⊂'''∈ξ∃,使0)(=ξf . □*5.设),(,)(b a x x f ∈,它在点),(0b a x ∈可导;{}{}n n y x 与是满足b y x x a n n <<<<0),2,1( =n ,且n n n n y x x ∞→∞→==lim lim 0的任意两个数列.证明:)()()(lim0x f x y x f y f nn n n n '=--∞→.证 先作变形:nn n n n n n n n n n n n n x x x f x f x y x x x y x f y f x y x y x y x f y f ----+----=--000000)()()()()()(...由)(0x f '存在,故δ<-<>δ∃>ε∀||0,0,00x x 当时,有ε<'---<ε-)()()(000x f x x x f x f .又由0lim lim x y x n n n n ==∞→∞→,故对上述0>δ,N n N >>∃当,0时,有δ<-<δ<-<n n x x x y 000,0.从而得到ε<'---<ε-)()()(000x f x y x f y f n n ,ε<'---<ε-)()()(000x f x x x f x f nn .分别以正数n n n x y x y --0与nn nx y x x --0乘以上两式,并相加,又得到.⎪⎪⎭⎫⎝⎛--+--ε<'⎪⎪⎭⎫⎝⎛--+-----<⎪⎪⎭⎫ ⎝⎛--+--ε-n n n n n n n n n n n n n n nn nn n n x y x x x y x y x f x y x x x y x y x y x f y f x y x x x y x y 000000000)()()(把它化简整理后,即为)()()()(0N n x f x y x f y f nn n n >ε<'---<ε-.从而证得结论:)()()(lim0x f x y x f y f nn n n n '=--∞→. □6.设)(x f 在],[b a 上连续,在),(b a 内可导,通过引入适当的辅助函数,证明: (1)存在),(b a ∈ξ,使得)()(])()([222ξ'-=-ξf a b a f b f ;(2)存在),(b a ∈η,使得)0()()ln ()()(b a f a ba fb f <<η'η=-.证 (1)在一般形式的中值定理( 定理 . )中,令2)(x x g =,即得本题结论.(2)把欲证的式子改写成)(]ln ln [1])()([η'-=η-f a b a f b f ,且令x x g ln )(=,上式即为关于)(x f 与)(x g 所满足的一般中值公式. □7.证明推广的罗尔定理:若)(x f 在),(∞+∞-上可导,且l x f x f x x ==∞+→∞-→)(lim )(lim( 包括)∞±=l ,则存在ξ,使得0)(=ξ'f .证 关键在于证明存在两点b a ,,使)(a f )(b f =.为此任取一点0x ,使l x f ≠)(0( 这样的点0x 若不存在,则0)()(≡'⇒≡x f l x f ).如图所示,设l x f <)(0.由于l x f x =∞→)(lim ,因此对于02)(0>-=εx f l ,0>∃X ,当X x >||时,满足ε+<<ε-l x f l )(.现取X x X x >''-<',,并使x x x ''<<'0.由于)()(,)()(00x f l x f x f l x f ''<ε-<>ε->',借助连续函数的介值性,必存在),(),(00x x b x x a ''∈'∈与,使得])([21)()(0x f l l b f a f +=ε-==. 于是由罗尔定理,存在),(b a ∈ξ,使得0)(=ξ'f . □8.证明:若)(x f 和)(x g 在],[b a 上连续,在),(b a 内可导,且0)(≠'x g , 则存在),(b a ∈ξ,使得)()()()()()(ξ--ξ=ξ'ξ'g b g a f f g f .证 令)()()()()()()(x g a f b g x f x g x f x --=ϕ,它在],[b a 上连续,在),(b a 内可导,且 )()()()(b g a f b a -=ϕ=ϕ.由罗尔定理,存在),(b a ∈ξ,使得0)()()()()()()()()(=ξ'-ξ'-ξ'ξ+ξξ'=ξϕ'g a f b g f g f g f ,即])()([)(])()([)(a f f g g b g f -ξξ'=ξ-ξ'.由于0)(≠ξ'g ,)()(ξ≠g b g ( 根据0)(≠'x g 和导函数具有介值性,推知)(x g '恒正或恒复,故)(x g 严格单调 ),因此可把上式化为结论式)()()()()()(ξ--ξ=ξ'ξ'g b g a f f g f . □ *9.设),(,|)(|,|)(|20∞+∞-∈≤''≤x M x f M x f .证明:202|)(|M M x f ≤',),(∞+∞-∈x .证 若02=M ,则可相继推出:B Cx x f C x f x f +=⇒≡'⇒≡'')()(0)(,再由0|)(|M x f ≤,可知0)(0≡'⇒=x f C ,结论成立.同理,当00=M 时结论同样成立.现设00>M ,02>M .利用泰勒公式,⎪⎪⎭⎫⎝⎛+∈ξ∃202,M M x x ,使 )(421)(2)(222020ξ''+'+=⎪⎪⎭⎫⎝⎛+f M M x f M M x f M M x f .. 由此得到,42)(2)(2|)(|20220020202M M M M M M f M M x f M M x f x f M M =++≤ξ''--⎪⎪⎭⎫ ⎝⎛+='于是证得 200022421|)(|M M M M M x f =≤'.. □*10.设)(x f 在],[b a 上二阶可导,0)()(='='-+b f a f .证明:),(b a ∈ξ∃,使得|)()(|)(4|)(|2a fb f a b f --≥ξ''.证 将⎪⎭⎫⎝⎛+2b a f 分别在点a 与b 作泰勒展开:⎪⎭⎫ ⎝⎛+2b a f =⎪⎭⎫⎝⎛+∈ξ⎪⎭⎫ ⎝⎛-ξ''+2,,2!2)()(121b a a a b f a f ,⎪⎭⎫ ⎝⎛+2b a f =⎪⎭⎫⎝⎛+∈ξ⎪⎭⎫ ⎝⎛-ξ''+b b a a b f b f ,2,2!2)()(222, 以上两式相减后得到=-)()(a f b f [])()(221212ξ''-ξ''⎪⎭⎫ ⎝⎛-f f a b .设=ξ'')(f {})(,)(max21ξ''ξ''f f ,则有≤-)()(a f b f ())(2)()(2212212ξ''⎪⎭⎫ ⎝⎛-≤ξ''+ξ''⎪⎭⎫ ⎝⎛-f a b f f a b ,于是证得结论: |)()(|)(4|)(|2a fb f a b f --≥ξ''. □*11.设在],0[a 上有M x f ≤'')(,且)(x f 在),0(a 内存在最大值.证明: M a a f f ≤'+')()0(.证 设)(x f 在∈c ),0(a 取得最大值,则)(c f 也是一个极大值,故0)(='c f .由微分中值公式得到),0(,)()0()()()0(111c f c c f c f f ∈ξξ''-=-ξ''+'=', ),(,)()()()()()(222a c f c a c a f c f a f ∈ξξ''-=-ξ''+'=';从而又有M c a f c a a f cM f c f )()()()(,)()0(21-≤ξ''-='≤ξ''=',由此立即证得 M a a f f ≤'+')()0(. □*12.证明:若),(00y x f x '存在,),(y x f y'在点0P ),(00y x 连续,则),(y x f 在点0P 可微.证 =∆z -∆+∆+),(00y y x x f ),(00y x f =-∆+∆+),([00y y x x f ]),(00y x x f ∆+-∆++),([00y x x f ]),(00y x f .因),(y x f y'在点0P 连续,故z ∆的第一部分可表为 -∆+∆+),(00y y x x f ),(00y x x f ∆+=y y y x x f y∆∆θ+∆+'),(00 =y y y x f y ∆β+∆'),(00(其中0lim 0=β→∆→∆y x );又因),(00y x f x '存在,故z ∆的第二部分可表为-∆+),(00y x x f =),(00y x f x x y x f x ∆α+∆'),(00(其中0lim 0=α→∆x ).所以有=∆z +∆'x y x f x ),(00y x y y x f y∆β+∆α+∆'),(00, 而且由于)0,0(0||||22→∆→∆→β+α≤∆+∆∆β+∆αy x yx y x ,便证得),(y x f 在点0P 可微. □13.若二元函数f 与g 满足:f 在点0P ),(00y x 连续,g 在点0P 可微,且0)(0=P g ,则g f .在点0P 可微,且)()()(000P g P f g f P d d =..证 记g f h .=.由于g 在点0P 可微,根据定理3.4(必要性),存在向量函数[])(,)()(21P G P G P G =,它在点0P 连续,且满足.)()(,))(()()()(0000P G P g P P P G P g P g P g ='-=-=由此得到,)()()()()()()()()()()(00000P P P H P P P G P f P g P f P g P f P h P h -=-=-=-其中)()()(P G P f P H =在点0P 连续.仍由定理3.4(充分性),推知h 在点0P 可微,且因)()()()()()(000000P g P f P G P f P H P h '===,进一步证得)()()(000P g P f hg f P P d d d ==.. □14.设⎪⎩⎪⎨⎧=≠+=.)0,0(),(,0,)0,0(),(,),(222y x y x y x y x y x f证明:(1)f 在原点O )0,0(连续;(2)y x f f '',在点O 都存在; (3)y x f f '',在点O 不连续; (4)f 在点O 不可微.证 (1)若令θ=θ=sin ,cos r y r x ,则因0sin cos lim )sin ,cos (lim 20=θθ=θθ→→r r r f r r ,可知f 在0=r 处(即在点O 处)连续.(2) ⎪⎩⎪⎨⎧.0)0,0(),0(lim )0,0(,0)0,0()0,(lim)0,0(0=∆-∆='=∆-∆='→∆→∆yf y f f xf x f f y yx x(3)求出⎪⎩⎪⎨⎧≠≠+-=';)0,0(),(,0,)0,0(),(,)()(),(222222y x y x y x x y y y x f x⎪⎩⎪⎨⎧≠≠+='.)0,0(),(,0,)0,0(),(,)(2),(2223y x y x y x y x y x f y由于当0≠r 时,,sin cos 2)sin ,cos (,)cos sin (sin )sin ,cos (3222θθ=θθ'θ-θθ=θθ'r r f r r f y x它们都不随0→r 而趋于0( 随θ而异 ),因此yx f f '',在点O 都不连续. (4)倘若f 在点O 可微,则.)()0,0()0,0()0,0(),(22222y x o y x y x y f x f f y x f y x ∆+∆=∆+∆∆∆=∆'-∆'--∆∆但是当令θ=∆θ=∆sin ,cos r y r x 时,)0(0\sin cos )(22/3222→→θθ=∆+∆∆∆r y x y x ,所以f 在点O 不可微.□15.设可微函数),(y x f 在含有原点为内点的凸区域D 上满足0),(),(='+'y x f y y x f x yx . 试证:≡),(y x f 常数,D y x ∈),(.证 对于复合函数θ=θ==sin ,cos ,),(y r x y x f z ,由于,)0(0)(1sin cos ≠='+'=θ'+θ'=∂∂'+∂∂'=∂∂r f y f x rf f ry f r x f r z yx yx y x因此在极坐标系里f 与r 无关,或者说f 只是θ的函数( 除原点外 ).如图所示,2121,,OP OP D P P 与∈∀的 极角分别为21θθ与.若21θ=θ,则由上面 讨论知道)()(21P f P f =.若21θ≠θ,此时 利用f 在点O 连续,当动点P 分别沿半直线21θ=θθ=θ与趋向点O 时,f 在1θ=θ上的常值与在2θ=θ上的常值都应等于)(O f .这就证得)()(21P f P f =,即≡),(y x f 常数,D y x ∈),(. □*16.设二元函数),(y x f 在2ℜ上有连续偏导数,且)1,0()0,1(f f =.试证:在单位圆122=+y x 上至少有两点满足),(),(y x f x y x f y yx '='. 证 在单位圆1=r 上,记π≤θ≤θθ=θϕ20,)sin ,cos ()(f .由于y xf f ''与连续,故f 可微,一元函ϕ也可微. 已知)2()1,0()0,1()0(πϕ===ϕf f ,由罗尔定理,)2,0(1π∈θ∃,使得0)(1=θϕ'.同理,由)2()2(πϕ=πϕ,)2,2(2ππ∈θ∃,使得0)(2=θϕ'.而y x yx f x f y f r f r r r f '+'-='θ+'θ-=θθθ∂∂cos sin )sin ,cos (, 1)()(='+'-=θϕ'r yx f x f y ,故在1=r 上存在两点)sin ,cos ()sin ,cos (222111θθθθP P 和,满足2,1,)()(='='i P f x P f y i y i x. □ 17.证明:(1)若),(y x f 在凸开域D 上处处有0),(),(='='y x f y x f y x,则≡),(y x f 常数,D y x ∈),(;*(2)若),(y x f 在开域D 上处处有0),(),(='='y x f y x f y x ,则同样有≡),(y x f 常数,D y x ∈),(.证 (1)由于D 为凸开域,因此D y x y x ∈∀),(,),(21,联结这两点的直线段必含于D , 根据§3.5的例10知道),(y x f 与x 无关;类似地,),(y x f 又与y 无关.这样,f 在D 上各点处的值恒相等.(2)当D 为一般开域时( 如图 ),D Q P ∈∀,,必存在一条全含于D 内、联结Q P ,两点的有限折线.又因这条折线上 的点全为D 的内点,故在每一点处有一邻域含于D限个邻域所覆盖.在这每一个邻域内,由(1)已知≡),(y x f 常数,而相邻两个邻域之交非空,故经有限次推理,可知)()(Q f P f =.由Q P ,在D 内的任意性,这就证得在整个D 上≡),(y x f 常数. □ 18.证明:若),(y x f 存在连续的二阶偏导数,且令θ+θ=θ-θ=cos sin ,sin cos v u y v u x( 其中θ为常量 ),则在此坐标旋转变换之下,yy xxf f ''+''为一形式不变量,即 vv uu yy xxf f f f ''+''=''+''. 证 由条件,x y y xf f ''='',且有 ⎩⎨⎧θ'+θ'-=''+''='θ'+θ'=''+''=';cos sin ,sin cos y x v y vx v y x u y ux u f f y f x f f f f y f x f f⎪⎩⎪⎨⎧θ''+θθ''-θ''=''θ''+θθ''+θ''=θ'''+'''+θ'''+'''=''.2222cos cos sin 2sin ,sin cos sin 2cos sin )(cos )(y y y x x x vv y y y x x x u y y u x y u y x ux x u u f f f f f f f y f x f y f x f f 由此容易推至结论 vv uu yy xxf f f f ''+''=''+''成立. □ *19.设2ℜ⊂D 为一有界闭域,),(y x f 在D 上可微,且满足),(),(),(y x f y x f y x f yx ='+'. 证明:若f 在D ∂上的值恒为零,则f 在D 上的值亦恒为零.证 由于f 在D 上可微,D 为有界闭域,因此f 在D 上存在最大值和最小值,分别设为)()(21P f m P f M ==和.如果D P int 1∈,则)(1P f 为一极大值,故满足0)()(11='='P f P f y x,由条件, 0)()()(111='+'==P f P f P f M yx ; 如果D P int 2∈,则)(2P f 为一极小值,同理有0)(2==P f m ;如果M 与m 都在D 的内部取得,则有0==m M ;如果D P P ∂∈)(21或,则由条件又使M 0)(=m 或.综上,在任何情形下恒有D y x y x f m M ∈≡⇒==),(,0),(0. □20.设),(v u f 为可微函数.试证:曲面0),(=--by z ay x f 的任一切平面恒与某一直线平行.证 由于f 可微,因此该曲面在其上任一点处的法向量为()v v u u f f b f a f z f y f x f n ''-'-'=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂=,,,, .又因0=l n .,其中),1,(b a l = ,所以上述法向量n 恒与常向量l 正交.这说明以n为法向量的切平面恒与以l为方向向量的直线相互平行. □21.证明:以λ为参数的曲线族)(122b a b y a x >=λ-+λ- 是相互正交的( 当相交时 ).证 设曲线族中当21,λλ=λ时所对应的两条曲线相交,则应满足2,1,122==λ-+λ-i b y a x ii ;将此二式相减,经整理得到0))(())((221221=λ-λ-+λ-λ-y a a x b b .另一方面,此二曲线在交点),(y x 处的法向量分别为2,1,,=⎪⎪⎭⎫⎝⎛λ-λ-=i b y a x n i i i . 由于,0))()()(())(())((,,2121221221221121=λ-λ-λ-λ-λ-λ-+λ-λ-=⎪⎪⎭⎫ ⎝⎛λ-λ-⎪⎪⎭⎫ ⎝⎛λ-λ-=b b a a ya a xb b b y a x b ya x n n ..因此这两条曲线在交点),(y x 处互相垂直. □22.设nD ℜ⊂为凸集,ℜ→D f :为凸函数.证明:(1)对任何正数f αα,是D 上的凸函数;(2)若g 也是D 上的凸函数,则g f +仍是D 上的凸函数;(3)若h I D f ,)(⊂是I 上的凸函数,且递増,则f h 亦为D 上的凸函数. 证 (1)据凸函数定义,)1,0(,,∈λ∀∈∀D y x ,有)()()1())1((x f x f y x f λ+λ-≤λ+λ-.以α乘之,得)()()1())1((x f x f y x f αλ+αλ-≤λ+λ-α,此即表示f α亦满足凸函数定义.(2)由)()()1())1((x f x f y x f λ+λ-≤λ+λ-, )()()1())1((x g x g y x g λ+λ-≤λ+λ-,两式相加后得到)()()())(1())1(()(x g f x g f y x g f +λ++λ-≤λ+λ-+,此即表示g f +亦为D 上的凸函数.(3) 由)()()1())1((x f x f y x f λ+λ-≤λ+λ-,以及h 为递増凸函数,得到,))(())(()1())()()1(()))1(((y f h x f h x f x f h y x f h λ+λ-≤λ+λ-≤λ+λ-或者写成,)()()()()1()))1(()(y f h x f h y x f h λ+λ-≤λ+λ-此即表示f h 亦为D 上的凸函数. □23.设)0()()(>=x xx f x F ,其中)(x f 在),0[∞+上为非负严格凸函数,且 0)0(=f .试证:)(x F 与)(x f 都是严格递増函数.证 由条件,0)0()()()(--==x f x f x x f x F .)0(,2121x x x x <<∀,因为)(x f 为严格凸函数,根据严格凸函数的充要条件( 定理 ),有)0()(0)0()(2211--<--x f x f x f x f ,而这就是)()(21x F x F <,所以)(x F 是严格递増函数. 又因0)()()()(])()([1121122121>-=->-x F x F x x f x x f x f x f x , 所以)()(12x f x f >,即)(x f 也是严格递増函数. □24. 证明定理3.13的推论1和推论2.证 这里要证明的是:若f 在开区间I 上为凸函数,则 (1)f 在I 中每一点处都连续;(2)f 在I 中每一点处的左、右导数都存在. 现分别证明如下——(1)由定理3.13,f 在任何I ⊂βα],[上满足利普希茨条件⇒f 在],[βα上一致连续⇒f 在],[βα上连续⇒f 在I 上处处连续.(2)I x ∈∀0,设)0()()()(00>-+=h hx f h x f h F .由定理3.12,知道)(h F 为递増函数.另一方面,因I 为开区间,必存在,1I x ∈使01x x <,于是又有)()()(1010h F x x x f x f ≤--,这说明)(h F 有下界.综合起来,根据关于函数极限的单调有界定理,存在右导数)()(lim 00x f h F h ++→'=. 同理可证存在左导数)(0x f -'. □ ( 注:如果先证得)(0x f -'与)(0x f +'都存在,则立即知道f 在点0x 既是左连续,又是右连续,从而f 在点0x 连续.由0x 在I 中的任意性,便证得f 在I 中处处连续.)25. 证明定理3.14的推论1和推论2.证 这里要证明的是:(1)若f 在区间I 上二阶可导,则有f 在I 上为凸函数I x x f ∈≥''⇔,0)(;(2)若f 在区间I 上是一可微的凸函数,则有I x ∈0是f 的极小值点0)(0='⇔x f .现分别证明如下——(1)当f ''存在时,已知I x x f I x x f ∈'⇔∈≥'',)(,0)(递増.据定理3.14(ⅱ),f '在I 上递増⇔f 在I 上为凸函数,故结论得证.(2)其中“⇒”已由费马定理所保证,这里只要证明“⇐”. 由0)(0='x f ,根据定理3.14(ⅲ),对一切I x ∈恒有)()()()()(0000x f x x x f x f x f =-'+≥,因此)(0x f 是)(x f 在I 上的最小值.由)(0x f '存在,说明0x 是I 的一个内点,所以)(0x f 是)(x f 在I 上的一个极小值. □26.用凸函数方法证明如下不等式: (1)对任何,,b a 恒有 )(212b aba e e e +≤+; (2)对于b a ≤≤0,恒有b a ba arctan arctan 2arctan2+≥+. 证(1)设x x f e =)(,由于0)(>=''xx f e ,因此)(x f 为凸函数.故对=λλ-=121,有 [])()(212b f a f b a f +≤⎪⎭⎫⎝⎛+, 即)(212b aba e e e +≤+. (2)设x x f arctan )(=,由于)0(0)1(2)(,11)(222≥≤+-=''+='x x x x f xx f ,因此在),0[∞+上)(x f 为凹函数.故对=λλ-=121,有 []b a b f a f b a f ≤≤+≥⎪⎭⎫⎝⎛+0,)()(212,即 b a ba arctan arctan 2arctan2+≥+. □ 27.设ABC ∆为正三角形,各边长为a ;P 为ABC ∆内任一点,由P 向三边作垂线,垂足为F E D ,,.试求点P ,使DEF ∆的面积为最大;并求此最大面积.解 如图所示,记x PD =||,y PE =||,z PF =||.因ABC ∆为正三角形,故32π=∠=∠=∠F P D E P F D P E , 所以DEF ∆的面积为.)(43)(3sin 21x z z y y x x z z y y x S S S S PFDPEF PDE ++=++π=++=∆∆∆ 再由ABC PAB PCA PBC S S S S ∆∆∆∆=++,得约束条件为a z y x a z y x a23,43)(22=++=++即. 借助 乘数法,令,000,)23(z y x x y L z x L z y L a z y x x z z y y x L z y x ==⇒⎪⎭⎪⎬⎫=λ++='=λ++='=λ++='-++λ+++=由此求得..2216363343max 63233a a S a z y x a x z y x DEF =⎪⎪⎭⎫ ⎝⎛=⇒===⇒==++∆□(28)在平面上有一个ABC ∆,三边长分别为c AB b CA a BC ===,,.以此三E FCyABDPxz角形为底,h 为高,可作无数个三棱锥,试求其中侧面积为最小者.解 如图所示,三棱锥ABC H -的高为h HO =.在ABC ∆中,由点O 作三条边的垂线:AB OF CA OE BC OD ⊥⊥⊥,,,并记z OF y OE x OD ===||,||,||.于是三棱锥ABC H -的侧面积为 222222212121h z c h y b h x a S +++++=;而约束条件为02S S z c y b x a ABC =⨯=++∆, 其中.)2()()()(c b a p c p b p a p p S A B C++=---=∆由 乘数法,设)(0222222S z c y b x a h z ch y b h x aL -++λ-+++++=,并令⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+---='=λ-+='=λ-+='=λ-+='λ.0,0,0,00222222S z c y b x a L c hz zc L b h y y b L a hx x a L zy x由此易得λ=+=+=+222222hz z hy y hx x .根据实际意义,侧面积无最大值,有最小值.上式表示HFO HEO HDO ∠=∠=∠,这说明侧面积的最小值发生在三侧面与底面成等角的情形.由此式又可解出pc p b p a p p z y x )()()(---===,此时O 适为ABC ∆的内心,并求得BCHOAE h DFxy z,)()()()(212222min h p c p b p a p p h x c b a S +---=+++=其中 )(21c b a p ++=. □ 29.试用条件极值方法证明不等式:nn n y x y x ⎪⎭⎫⎝⎛+≥+22,其中n 为正整数,0,0≥≥y x .证 设目标函数为nn y x y x f +=),(,约束条件为a y x 2=+.用 乘数法,令.a y x a x y x y x y n L xn L a y x y x L n y n x n n ====+⇒=⇒⎪⎭⎪⎬⎫=λ+='=λ+='-+λ++=--,22,00,)2(11当动点沿直线a y x 2=+无限趋近端点)0,2(,)2,0(a a 时,≥→na y x f )2(),(n a a a f 2),(=,故n a a a f 2),(=是条件最小值.于是有不等式:nnnny x a y x y x f ⎪⎭⎫⎝⎛+=≥+=22),(,即证得 nn n y x y x ⎪⎭⎫⎝⎛+≥+22成立. □*30.设n i x b a i i i ,,2,1,0,0,0 =≥≥≥;1,1-=>p pq p ; ∑==ni i i n x a x x x f 121),,,( ,(F1)11=∑=ni pix . (F2)(1)求在条件(F2)的约束下,目标函数(F1)的最大值;(2)由以上结果,导出赫尔德不等式:pni ip q ni q i ni i i b a b a 11111⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛≤∑∑∑===. (F3)证(1)设 函数为⎪⎪⎭⎫ ⎝⎛-λ-=∑∑==111n i p i ni i i x p x a L .由n i x a x Lp i i i,,2,1,01 ==λ-=∂∂-可解出 n i a x i p i,,2,1,1=λ=-.令1-=p pq ,对上式两边取q 次幂,得 n i a x qi p i,,2,1, =⎪⎪⎭⎫ ⎝⎛λ=; 由条件(F2),又得qn i q i n i qi q ni pia a x 111111⎪⎪⎭⎫ ⎝⎛=λ⇒=λ=∑∑∑===.由此求得;.n i a a a a a a x pn i q ip i p q n i q i p i p i pq i i,,2,1,111111111111=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛λ=⎪⎪⎭⎫ ⎝⎛λ=-=---=--*∑∑并有qn i q i pni q i n i q i ni i i na a a x a x x f1111111),,(⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==∑∑∑∑=-===*** . (F4)设由(F2)所表示的集合为D ,D 的边界为(F2)与),,2,1(0n i x i ==的交线.由对称性,只需考虑0=n x 一种情形.因为qn i q i qn i q i a a 11111⎪⎪⎭⎫ ⎝⎛≤⎪⎪⎭⎫ ⎝⎛∑∑=-=,所以(F4)所示即为f 在D 上的最大值.这就得到D x x pq a x a n qni q i ni i i ∈=+⎪⎪⎭⎫ ⎝⎛≤∑∑==),,(,111,1111 . (F5) (2) 在不等式(F5)中,令n i b b b x i p n i pi i i ,,2,1,0,11 =≥⎪⎪⎭⎫⎝⎛=-=∑,这样的i x 满足条件条件(F2),代入(F5)后,即得赫尔德不等式(F3). □ 补充说明:赫尔德不等式也可以用凸函数方法(詹森不等式)来求得——考虑函数qxx f 1)(=.由于0)11(1)(,1)(2111<-=''='--q q x q q x f x q x f ,因此)(x f 在0>x 时为凹函数.根据詹森不等式,对于∑==λ>λ>ni i i i x 1)1(0,0,n i ,,2,1 =,有qn n qn n qx x x x 1111111)(λ++λ≤λ++λ .取n i a a a b x nni p i pi i pi qii ,,2,1,, ==λ=∑=,代入上式得:()()q n i p i qn i q i qp nqnpnqp qp ni pia b a b a a b a a 11111111111⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛≤⎥⎥⎦⎤⎢⎢⎣⎡++∑∑∑=== . 因111=+qp ,故1=-q p p ,于是上式左边可化为40 / 21 ∑∑=--=++=⎥⎦⎤⎢⎣⎡++n i p i n n q p pn n q pp n i pi a b a b aa ba b a 11111111 .从而证得qn i i q p n i p i q n i p i qn i i q n i p i n i i i b a a b a b a 1111111111⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛≤∑∑∑∑∑∑======..显然,此式中交换i a 与i b ,即为(F3).由于上述δ只与ε有关,因此f 在D 上一致连续. □。
数学分析选讲(0504090) 期末考试复习题及参考答案
A、JK触发器 B、RS触发器 C、D触发器 D、T触发器
答案:D
2.对于8线—3线优先编码器,下面说法正确的是()
A、有3根输入线,8根输出线 B、有8根输入线,3根输出线 C、有8根输入线,8根输出线 D、有3根输入线,3根输出线
答案:ABCD
19.
A、B=C=1 B、B=C=0 C、A=1,C=0 D、A=0,B=0 答案:ACD
20.以下代码中为恒权码的为()。
A、8422BCD码 B、5422BCD码 C、余三码 D、格雷码 答案:AB
三、判断题 1.仅具有反正功能的触发器是T触发器。
A、正确 B、错误 答案:正确
8.单稳态触发器只有一个稳定状态。
A、正确 B、错误 答案:正确
9.3位二进制译码器应有3个输入端和8个输出端。
A、正确 B、错误 答案:正确
10.二进制只可以用来表示数字,不可以用来表示文字和符号等。
A、正确 B、错误 答案:错误
11.冲在提单供稳的态。和无稳态电路中,由暂稳态过渡到另一个状态,其“触发”信号是由外加触发脉
答案:
2.(分组析合1逻电)辑路写功如表能图达所式示(,分2析)该化电简路与的变逻换辑(功3能)。
答案:
4.在数字系统中为什么要采用二进制?
答案:因为数字信号有在时间和幅值上离散的特点,它正好可以用二进制的1和0来表示两种不同的状态。
5.对偶规则有什么用处?
答案:可使公式的推导和记忆减少一半,有时可利于将或与表达式化简。
五、计算题 1.1路2的状序分)),特态图析写求时性表图方状钟方示(程态方程时4式方程序()程、逻:3画驱辑:异)状动电步D计态方路时算图触程。序、、发(电(列时器
数学分析选讲参考答案
《数学分析选讲》A/B 模拟练习题参考答案一、选择题:(共18题,每题3分) 1、下列命题中正确的是( A B )A 、若'()()F x f x =,则()F x c +是()f x 的不定积分,其中c 为任意常数B 、若()f x 在[,]a b 上无界,则()f x 在[,]a b 上不可积C 、若()f x 在[,]a b 上有界,则()f x 在[,]a b 上可积D 、若()f x 在[,]a b 上可积,则()f x 在[,]a b 上可积 2、设243)(-+=x x x f ,则当0→x 时,有( B ) A .)(x f 与x 是等价无穷小 B .)(x f 与x 同阶但非是等价无穷小 C.)(x f 是比x 高阶的无穷小 D.)(x f 是比x 低阶的无穷小3、若f 为连续奇函数,则()x f sin 为( A ) A 、奇函数 B、偶函数C、非负偶函数 D、既不是非正的函数,也不是非负的函数. 4、函数()f x 在[,]a b 上连续是()f x 在[,]a b 上可积的( A )条件 A . 充分非必要 B 。
必要非充分C 。
充分必要条件D . 非充分也非必要条件。
5、若f 为连续奇函数,则()x f cos 为( B ) A 、奇函数 B、偶函数C、非负偶函数 D 、既不是非正的函数,也不是非负的函数。
6、设arctan (),xf x x=则0x =是()f x 的( B ) A 。
连续点 B. 可去间断点 C.跳跃间断点 D. 第二类间断点7、设+N ∈∃N ,当N n >时,恒有n n b a >,已知A a n n =∞→lim ,B b n n =∞→lim .则正确的选项是( A )A 、B A ≥ B 、B A ≠C 、B A > D、A 和B 的大小关系不定. 8、函数f (x,y) 在点00(,)x y 连续是它在该点偏导数都存在的( A ) A 。
数学分析选讲试题及答案
计算题1、 求求242lim(1)(1)(1)(1)(1)nn x x x x x ®¥++++< 解:12422(1)(1)(1)(1)(1)1nn x x x x x x+-++++=- ,且1x <所以,原极限所以,原极限==()1211lim 111n x x x x+®¥-=--。
2、 求250ln(1)lim 1cos x x x x ®++- 解: 2525200ln(1)1limlim 1cos 22x x x x x xx x®®+++==-(等价无穷小的代换)(等价无穷小的代换) 3 3、设、设21sin 000x x x y x ì¹ï=íï=î , , 求求y ¢解:当0x ¹时,2111sin 2sin cos y x x x x x ¢æö¢==-ç÷èø 当0x =时,使用导数定义计算:201sin 01(0)limlim sin00x x x x y x x x®®-¢===-。
故112sin cos ,00, 0x x y x x x ì-¹ï¢=íï=î 4、求cos x dx xò解:令t x =则2,2x t dx tdt ==则原积分则原积分==cos 22cos 2sin ttdt tdt t C t ==+òò=2sin x C + 5、求幂级数0(1)(1)(2)n nn xn n ¥=-++å的收敛域。
的收敛域。
解:解由0(1)(1)(2)n n n x n n ¥=-++å知(1)(1)(2)nn a n n -=++,则1(1)(2)lim lim 1(2)(3)n n n n n n a a n n r +®¥®¥++==-=++, 收敛半径11R r==,又1R =时级数0(1)(1)(2)nn n n ¥=-++å是交错级数,收敛。
数学分析选论习题解.华东师大
《数学分析选论》习题解答第 一 章 实 数 理 论1.把§1.3例4改为关于下确界的相应命题,并加以证明. 证 设数集S 有下确界,且S S ∉=ξinf ,试证: (1)存在数列ξ=⊂∞→n n n a S a lim ,}{使;(2)存在严格递减数列ξ=⊂∞→n n n a S a lim ,}{使.证明如下:(1) 据假设,ξ>∈∀a S a 有,;且ε+ξ<'<ξ∈'∃>ε∀a S a 使得,,0.现依 次取,,2,1,1Λ==εn n n 相应地S a n ∈∃,使得Λ,2,1,=ε+ξ<<ξn a n n .因)(0∞→→εn n ,由迫敛性易知ξ=∞→n n a lim .(2) 为使上面得到的}{n a 是严格递减的,只要从2=n 起,改取Λ,3,2,,1min 1=⎭⎬⎫⎩⎨⎧+ξ=ε-n a n n n ,就能保证Λ,3,2,)(11=>ε+ξ≥ξ-+ξ=--n a a a n n n n . □2.证明§1.3例6的(ⅱ).证 设B A ,为非空有界数集,B A S ⋃=,试证:{}B A S inf ,inf m in inf =.现证明如下.由假设,B A S ⋃=显然也是非空有界数集,因而它的下确界存在.故对任何B x A x S x ∈∈∈或有,,由此推知B x A x inf inf ≥≥或,从而又有{}{}B A S B A x inf ,inf m in inf inf ,inf m in ≥⇒≥.另一方面,对任何,A x ∈ 有S x ∈,于是有S A S x inf inf inf ≥⇒≥;同理又有S B inf inf ≥.由此推得{}B A S inf ,inf m in inf ≤.综上,证得结论 {}B A S inf ,inf m in inf =成立. □3.设B A ,为有界数集,且∅≠⋂B A .证明: (1){}B A B A sup ,sup m in )sup(≤⋂; (2){}B A B A inf ,inf m ax )(inf ≥⋂. 并举出等号不成立的例子.证 这里只证(2),类似地可证(1).设B A inf ,inf =β=α.则应满足:β≥α≥∈∈∀y x B y A x ,,,有.于是,B A z ⋂∈∀,必有{}βα≥⇒⎭⎬⎫β≥α≥,max z z z , 这说明{}βα,max 是B A ⋂的一个下界.由于B A ⋂亦为有界数集,故其下确界存在,且因下确界为其最大下界,从而证得结论{}{}B A B A inf ,inf m ax inf ≥⋂成立.上式中等号不成立的例子确实是存在的.例如:设)4,3(,)5,3()1,0(,)4,2(=⋂⋃==B A B A 则,这时3)(inf ,0inf ,2inf =⋂==B A B A 而,故得{}{}B A B A inf ,inf m ax inf >⋂. □ 4.设B A ,为非空有界数集.定义数集{}B b A a b a c B A ∈∈+==+,,证明:(1)B A B A sup sup )sup(+=+; (2)B A B A inf inf )(inf +=+.证 这里只证(2),类似地可证(1).由假设,B A inf ,inf =β=α都存在,现欲证β+α=+)(inf B A .依据下确界定义,分两步证明如下:1)因为,,,,β≥α≥∈∈∀y x B y A x 有所以B A z +∈∀,必有β+α≥+=y x z .这说明B A +β+α是的一个下界.2)B y A x ∈∈∃>ε∀00,,0,使得2,200ε+β>ε+α>y x .从而ε+β+α>+∈+=∃)(,0000z B A y x z 使得,故B A +β+α是的最大下界.于是结论 B A B A inf inf )(inf +=+ 得证. □5.设B A ,为非空有界数集,且它们所含元素皆非负.定义数集{}B b A a ab c AB ∈∈==,,证明:(1)B A AB sup sup )sup(⋅=; (2)B A AB inf inf )(inf ⋅=. 证 这里只证(1),类似地可证(2).⎪⎩⎪⎨⎧⋅≤≤≤=≥≥∈∈∃∈∀,sup sup ,sup ,sup ,,)0,0(,,)(B A c B b A a ab c b a B b A a AB c 且使由于因此B A sup sup ⋅是AB 的一个上界.另一方面,B b A a ∈∈∃>ε∀00,,0,满足ε->ε->B b A a sup ,sup 00,故)(000AB b a c ∈=∃,使得εε-+-⋅>])sup sup ([sup sup 0B A B A c .由条件,不妨设0sup sup >+B A ,故当ε足够小时,εε-+=ε'])sup sup ([B A 仍为一任意小正数.这就证得B A sup sup ⋅是AB 的最小上界,即 B A AB inf inf )(inf ⋅= 得证. □*6.证明:一个有序域如果具有完备性,则必定具有阿基米德性.证 用反证法.倘若有某个完备有序域F 不具有阿基米德性,则必存在两个正元素F ∈βα,,使序列}{αn 中没有一项大于β.于是,}{αn 有上界(β就是一个),从而由完备性假设,存在上确界λ=α}sup{n .由上确界定义,对一切正整数n ,有α≥λn ;同时存在某个正整数0n ,使α-λ>α0n .由此得出α+<λ≤α+)1()2(00n n ,这导致与0>α相矛盾.所以,具有完备性的有序域必定具有阿基米德性. □7.试用确界原理证明区间套定理. 证 设{}],[n n b a 为一区间套,即满足:0)(lim ,1221=-≤≤≤≤≤≤≤≤∞→n n n n n a b b b b a a a ΛΛΛ.由于{}n a 有上界k b ,{}n b 有下界k a (+∈N k ),因此根据确界原理,存在{}{}β≤α=β=α且,inf ,sup n n b a .倘若β<α,则有Λ,2,1,0=>λ=α-β≥-n a b n n ,而这与0)(lim =-∞→n n n a b 相矛盾,故ξ=β=α.又因Λ,2,1,=≤β=α≤n b a n n ,所以ξ是一切],[n n b a 的公共点.对于其他任一公共点Λ,2,1,],[=∈ηn b a n n ,由于∞→→-≤η-ξn a b n n ,0 ,因此只能是η=ξ,这就证得区间套{}],[n n b a 存在惟一公共点. □8.试用区间套定理证明确界原理.证 设S 为一非空有上界的数集,欲证S 存在上确界.为此构造区间套如下:令 ],[],[011M x b a =,其中M S S x ,)(0∅≠∈Θ为S 的上界.记2111b a c +=,若1c 是S 的上界,则令],[],[1122c a b a =;否则,若1c 不是S 的上界,则令],[],[1122b c b a =.一般地,若记2nn n b a c +=,则令 Λ,2,1,,,],[,,],[],[11=⎩⎨⎧=++n S c b c S c c a b a n n n n nn n n 的上界不是的上界当是.如此得到的{}],[n n b a 显然为一区间套,接下来证明这个区间套的惟一公共点ξ即为S 的上确界.由于上述区间套的特征是:对任何+∈Νn ,n b 恒为S的上界,而n a 则不为S 的上界,故S x ∈∀,有n b x ≤,再由ξ=∞→n n b lim ,便得ξ≤x ,这说明ξ是S 的一个上界;又因ξ=∞→n n a lim ,故ε-ξ>∃>ε∀n a ,0,由于n a 不是S 的上界,因此ε-ξ更加不是S 的上界.根据上确界的定义,证得S sup =ξ.同理可证,若S 为非空有下界的数集,则S 必有下确界. □ 9.试用区间套定理证明单调有界定理.证 设{}n x 为递增且有上界M 的数列,欲证{}n x 收敛.为此构造区间套如下:令],[],[111M x b a =;类似于上题那样,采用逐次二等分法构造区间套{}],[n n b a ,使n a 不是{}n x 的上界,n b 恒为{}n x 的上界.由区间套定理,],[n n b a ∈ξ∃,且使ξ==∞→∞→n n n n b a lim lim .下面进一步证明 ξ=∞→n n x lim .一方面,由∞→≤k b x k n 取,的极限,得到Λ,2,1,lim =ξ=≤∞→n b x k k n .另一方面,ε-ξ>∈∃>ε∀+K a K 使,,0Ν;由于K a 不是{}n x 的上界,故K N a x >∃;又因{}n x 递增,故当N n >时,满足N n x x ≥.于是有N n x x a n N K >ξ≤<<<ε-ξ,,这就证得ξ=∞→n n x lim .同理可证{}n x 为递减而有下界的情形. □ 10*.试用区间套定理证明聚点定理.证 设S 为实轴上的一个有界无限点集,欲证S 必定存在聚点.因S 有界,故0>∃M ,使得M x ≤,S x ∈∀.现设],[],[11M M b a -=,则],[11b a S ⊂.然后用逐次二等分法构造一区间套{}],[n n b a ,使得每次所选择的],[n n b a 都包含了S 中的无限多个点.由区间套定理,],[n n b a ∈ξ∃,n ∀.最后应用区间套定理的推论,,0>ε∀当n 充分大时,使得],[n n b a );εξ⊂(U ;由于],[n n b a 中包含了S 的无限多个点,因此);(εξU 中也包含了S 的无限多个点,根据聚点定义,上述ξ即为点集S 的一个聚点. □ 11*.试用有限覆盖定理证明区间套定理.证 设{}],[n n b a 为一区间套,欲证存在惟一的点Λ,2,1,],[=∈ξn b a n n . 下面用反证法来构造],[11b a 的一个无限覆盖.倘若{}],[n n b a 不存在公共点ξ,则],[11b a 中任一点都不是区间套的公共点.于是,∈∀x ],[11b a ,使,],[n n b a ∃],[n n b a x ∉.即);(x x U δ∃与某个],[n n b a 不相交( 注:这里用到了],[n n b a 为一闭区间 ).当x 取遍],[11b a 时,这无限多个邻域构成],[11b a 的一个无限开覆盖:{}],[);(11b a x x U H x ∈δ=.依据有限覆盖定理,存在],[11b a 的一个有限覆盖:{}H N i x U U H i x i i ⊂=δ==,,2,1);(~Λ,其中每个邻域N i b a U ii n n i ,,2,1,],[Λ=∅=⋂.若令{}N n n n K ,,,max 21Λ=,则N i b a b a i i n n K K ,,2,1,],[],[Λ=⊂,从而N i U b a i K K ,,2,1,],[Λ=∅=⋂. (Ж) 但是Y Ni iU 1=覆盖了],[11b a ,也就覆盖了],[K K b a ,这与关系式(Ж)相矛盾.所以必定存在Λ,2,1,],[=∈ξn b a n n .(有关ξ惟一性的证明,与一般方法相同.) □12.设S 为非空有界数集.证明:S S y x Sy x inf sup ||sup ,-=-∈.证 设η<ξ=η=ξ且,sup ,inf S S ( 若η=ξ,则S 为单元素集,结论显然成立 ).记{}Sy x y x E ∈-=,||,欲证ξ-η=E sup .首先,S y x ∈∀,,有ξ-η≤-⇒η≤ξ≥||,y x y x ,这说明ξ-η是E 的一个上界.又因2,0ε-η>ε∀ ⎪⎭⎫ ⎝⎛ε+ξ2不再是S 的上()下界,故S y x ∈∃00,,使ε-ξ-η≥-⇒⎪⎭⎪⎬⎫ε+ξ<ε-η>)(||220000y x y x , 所以ξ-η是E 的最小上界,于是所证结论成立. □13.证明:若数集S 存在聚点ξ,则必能找出一个各项互异的数列{}S x n ⊂,使ξ=∞→n n x lim .证 依据聚点定义,对S U x ⋂εξ∈∃=ε);(,1111ο.一般地,对于⎭⎬⎫⎩⎨⎧-ξ=ε-1,1m in n n x n ,Λο,3,2,);(=⋂εξ∈∃n S U x n n .如此得到的数列{}S x n ⊂必定满足:Λ,3,2,||||11=≠⇒ξ-<ξ---n x x x x n n n n ;ξ=⇒∞→→<ξ-∞→n n n x n n x lim )(01||. □ 41*.设S 为实轴上的一个无限点集.试证:若S 的任一无限子集必有属于S 的聚点,则(1)S 为有界集;(2)S 的所有聚点都属于S .证 (1)倘若S 无上界,则对1111,,1M x S x M >∈∃=使;一般地,对于{}Λ,3,2,,,,max 1=>∈∃=-n M x S x x n M n n n n n 使.这就得到一个各项互异的点列{}∞=⊂∞→n n n x S x lim ,使.S 的这个无限子集没有聚点,与题设条件相矛盾,所以S 必有上界.同理可证S 必有下界,故S 为有界集.(2)因S 为有界无限点集,故必有聚点.倘若S 的某一聚点S ∉ξ0,则由聚点的性质,必定存在各项互异的数列{}0lim ,ξ=⊂∞→n n n x S x 使.据题设条件,{}n x 的惟一聚点0ξ应属于S ,故又导致矛盾.所以S 的所有聚点都属于S . □51*.证明:{}{}n n a a ∉ξ=sup ,则必有ξ=∞→n n a lim .举例说明,当上述ξ属于{}n a 时,结论不一定成立.证 利用§1.3 例4,{}{}n n a a k ⊂∃,使ξ=∞→k n n a lim ,这说明ξ是{}n a 的一个聚点.又因ξ又是{}n a 的上界,故{}n a 不可能再有比ξ更大的聚点.所以ξ是{}n a 的上极限.当{}n a ∈ξ时,结论不一定成立.例如,1,111sup ⎭⎬⎫⎩⎨⎧∈=⎭⎬⎫⎩⎨⎧n n 显然不是⎭⎬⎫⎩⎨⎧n 1的上极限. □61*.指出下列数列的上、下极限:(1){}n)1(1-+; (2)⎭⎬⎫⎩⎨⎧+-12)1(n n n; (3)⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧πnn 3cos; (4)⎭⎬⎫⎩⎨⎧π+4sin 12n n n ;(5)⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧π+n n n sin 12. 解(1)0lim ,2lim ,0,2122==≡≡∞→∞→-n n n n k k a a a a 故.(2))(211412,21142122∞→-→---=→+=-k k k a k ka k k ,故21lim ,21lim -==∞→∞→n n n n a a . (3))(13cos211∞→≤π≤←n n nn, 故 1lim lim lim ===∞→∞→∞→n n n n n n a a a .(4)⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧--=+⋅--=+-=+=+++=+⋅=π+=.38,18,12222,8,12,4,0,28,12,38,18,12224sin 12k k n n nk n n n k n k n n n k k n n n n n n a n故2lim ,2lim -==∞→∞→n n n n a a . (5))(sin )1(sin 1222∞→π→ππ⋅+π=π+=n nn nn nn n a n ,故π===∞→∞→∞→n n n n n n a a a lim lim lim . □71*.设{}n a 为有界数列,证明:(1)1lim )(lim =-=-∞→∞→n n n n a a ; (2)n n n n a a ∞→∞→-=-lim )(lim .证 由)(sup )(inf ,)(inf )(sup k nk k nk k nk k nk a a a a ≥≥≥≥-=--=-,令∞→n 取极限,即得结论(1)与(2). □81*.设0lim >∞→n n a ,证明:(1)nn n n a a ∞→∞→=lim 11lim; (2)nn n n a a ∞→∞→=lim 11lim;(3)若11limlim =⋅∞→∞→n n n n a a ,或11lim lim =⋅∞→∞→nn n n a a ,则{}n a 必定收敛.证 由)(sup 11inf ,)(inf 11sup k nk k n k kn k k n k a a a a ≥≥≥≥=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛,令∞→n 取极限,即得结论(1)与(2).若11limlim =⋅∞→∞→n n n n a a ,则由(1)立即得到 n n n n a a ∞→∞→=lim lim ,因此极限n n a ∞→lim 存在,即得结论(3).类似地,若11limlim =⋅∞→∞→nn n n a a ,则由(2)同样可证得(3). □ 第 二 章 连 续 性1. 设ny x ℜ∈,,证明:)||||||||(2||||||||2222y x y x y x +=-++.证 由向量模的定义, ∑∑==-++=-++ni i i ni i i y x y x y x y x 121222)()(||||||||∑=+=+=ni ii y x y x 12222)||||||||(2)(2. □ 2*. 设nn x S ℜ∈ℜ⊂点,到集合S 的距离定义为),(inf ),(y x S x Sy ρ=ρ∈.证明:(1)若S 是闭集,S x ∉,则0),(>S x ρ;(2)若dS S S ⋃=( 称为S 的闭包 ),则{}0),(|=ρℜ∈=S x x S n .证 (1)倘若0),(=S x ρ,则由),(S x ρ的定义,S y n ∈∃,使得Λ,2,1,1),(=<ρn ny x n . 因 S x ∉,故x y n ≠,于是x 必为S 的聚点;又因S 是闭集,故S x ∈,这就导致矛盾.所以证得0),(>S x ρ.(2)S x ∈∀.若S x ∈,则0),(=ρS x 显然成立.若S x ∉,则dS x ∈(即x为S 的聚点),由聚点定义,∅≠⋂ε>ε∀S x U );(,0ο,因此同样有0),(),(inf =ρ=ρ∈S x y x Sy .反之,凡是满足0),(=ρS x 的点x ,不可能是S 的外点( 若为外点,则存在正数0ε,使∅=⋂εS x U );(0,这导致0),(inf 0>ε≥ρ∈y x Sy ,与0),(=ρS x 相矛盾).从而x 只能是S 的聚点或孤立点.若x 为聚点,则S S x ⊂∈d ;若x 为孤立点,则S S x ⊂∈.所以这样的点x 必定属于S .综上,证得 {}0),(|=ρℜ∈=S x x S n成立. □3.证明:对任何n S ℜ⊂,dS 必为闭集.证 如图所示,设0x 为dS的任一聚点,欲证∈0x dS ,即0x 亦为S 的聚点.这是因为由聚点定义,y ∃>ε∀,0,使得 d S x U y ⋂ε∈);(0ο.再由y 为S 的聚点,);();(0ε⊂δ∀x U y U ο,有∅≠⋂δS y U );(ο.于是又有∅≠⋂εS x U );(0ο,所以0x 为S 的聚点,即∈0x d S ,亦即dS 为闭集. □4.证明:对任何nS ℜ⊂,S ∂必为闭集.证 如图所示,设0x 为S ∂的任一聚点,欲证S x ∂∈0,即0x 亦为S 的界点. 由聚点定义,y ∃>ε∀,0,使S x U y ∂⋂ε∈);(0ο.再由y 为界点的定义,);();(0ε⊂δ∀x U y U ,0x ο);(δy U);(0εx U οοS S∂ο);(δy U);(0εx U οοSd S0x在);(δy U 内既有S 的内点,又有S 的外点.由此证得在);(0εx U 内既有S 的内点,又有S 的外点,所以0x 为S 的界点,即S ∂必为闭集. □*5.设nS ℜ⊂,0x 为S 的任一内点,1x 为S 的任一外点.证明:联结0x 与1x 的直线段必与S ∂至少有一交点.证 如图所示,把直线段10x x 置于一实轴上,并 为叙述方便起见,约定此实轴上的点与其坐标用同一字 母表示.下面用区间套方法来证明∅≠∂⋂S x x 10.记2,],[],[1111011b a c x x b a +==.若S c ∂∈1,则结论成立;若1c 为S 的内点,则取],[],[1122b c b a =;若1c 为S 的外点,则取],[],[1122c a b a =.一般地,用逐次二等分法构造区间套:记2nn n b a c +=( 不妨设S c n ∂∉),并取Λ,2,1,,],[,,],[],[11=⎩⎨⎧=++n S c c a S c b c b a n nn n n n n n 的外点为的内点为.此区间套的特征是:其中每个闭区间的左端点n a 恒为S 的内点,右端点n b 恒为S 的外点.现设y b a n n n n ==∞→∞→lim lim ,下面证明S y ∂∈.由区间套定理的推论,0>ε∀,当n 足够大时,);(],[ε⊂y U b a n n ,因此在);(εy U 中既含有S 的内点(例如n a ),又含有S 的外点(例如n b ),所以10x x 上的点y 必是S 的界点. □ 6.证明聚点定理的推论2和推论3.(1) 推论2 nℜ中的无限点集S 为有界集的充要条件是:S 的任一无限子集必有聚点.证 [必要性] 当S 为有界集时,S 的任一无限子集亦为有界集,由聚点定理直接 推知结论成立.[充分性] 用反证法来证明.倘若S 为无界集,则必能求得一个点列{}S P k ⊂, 使得+∞=∞→||||lim k k P .这个{}k P 作为S 的一个无限子集不存在聚点,与条件矛盾.故S为有界集. □(2)推论3 nℜ中的无限点集S 为有界闭集的充要条件是:S 为列紧集,即S的任一无限子集必有属于S 的聚点.证 [必要性] 因S 有界,故S 的任一无限子集亦有界,由聚点定理,这种无限子集必有聚点.又因子集的聚点也是S 的聚点,而S 为闭集,故子集的聚点必属于S .[充分性] 由上面(1)的充分性证明,已知S 必为有界集.下面用反证法再来证明S 为闭集.倘若S 的某一聚点S P ∉,则由聚点性质,存在各项互异的点列{}S P k ⊂,使 P P k k =∞→lim .据题设条件,{}k P 的惟一聚点P 应属于S ,故又导致矛盾.所以S 的所有聚点都属于S ,即S 为闭集. □7.设X B A X f X mn ⊂ℜ→ℜ⊂,,,:.证明:(1))()()(B f A f B A f ⋃=⋃; (2))()()(B f A f B A f ⋂⊂⋂;(3)若f 为一一映射,则)()()(B f A f B A f ⋂=⋂.证 (1))(,,)(x f y B A x B A f y =⋃∈∃⋃∈∀使.若)(,A f y A x ∈∈则; 若)(,B f y B x ∈∈则.所以,当)()()(,B f A f x f y B A x ⋃∈=⋃∈时.这表示)()()(B f A f B A f ⋃⊂⋃.反之,)(,,)()(x f y X x B f A f y =∈∃⋃∈∀使.若A x A f y ∈∈则,)(;若B x B f y ∈∈则,)(,于是B A x ⋃∈.这表示)()(B A f x f y ⋃∈=,亦即)()()(B f A f B A f ⋃⊃⋃.综上,结论)()()(B f A f B A f ⋃=⋃得证.(2)y x f B A x B A f y =⋂∈∃⋂∈∀)(,,)(使.因A x ∈且B x ∈,故)()()()(B f x f A f x f ∈∈且,即 )()()(B f A f x f y ⋂∈=,亦即 )()()(B f A f B A f ⋂⊂⋂.然而此式反过来不一定成立.例如]2,1[,]1,2[,)(2-=-==B A x x f ,则有]4,0[)()()()(=⋂==B f A f B f A f ; ]1,0[)(,]1,1[=⋂-=⋂B A f B A .可见在一般情形下,)()()(B A f B f A f ⋂⊄⋂.(3))()(B f A f y ⋂∈∀,B x A x ∈∈∃21,,使)()(21x f x f y ==.当f 为 一一映射时,只能是B A x x ⋂∈=21,于是)(B A f y ⋂∈,故得)()()(B A f B f A f ⋂⊂⋂.联系(2),便证得当f 为一一映射时,等式)()()(B A f B f A f ⋂=⋂成立. □8.设mn m n c b a g f ℜ∈ℜ∈ℜ→ℜ,,,,:,且c x g b x f ax ax ==→→)(lim ,)(lim .证明:(1)0||||,||||||)(||lim ==→b b x f ax 当且时可逆;(2)c b x g x f ax T])()([lim =T →.证 设[][]T T ==)(,,)()(,)(,,)()(11x g x g x g x f x f x f m m ΛΛ,T T T ===],,[,],,[,],,[111m m n c c c b b b a a a ΛΛΛ.利用向量函数极限与其分量函数极限的等价形式,知道m i c x g b x f i i ax i i ax ,,2,1,)(lim ,)(lim Λ===→→.(1)||||)()(lim||)(||lim 221221b b b x f x f x f m m ax ax =++=++=→→ΛΛ.当0||||=b 时,由于||)(||||||||)(||x f b x f =-,因此由0||)(||lim =→x f ax ,推知m i x f i ax ,,2,1,0)(lim 2Λ==→,即得0)(lim =→x f ax .(2)类似地有cb c b c b x g x f x g x f x g x f m m m m ax ax T→T →=+=++=ΛΛ1111])()()()([lim ])()([lim .□9.设mn D f D ℜ→ℜ⊂:,.试证:若存在证数r k ,,对任何D y x ∈,满足r y x k y f x f ||||||)()(||-≤-,则f 在D 上连续,且一致连续.证 这里只需直接证明f 在D 上一致连续即可.0,01>⎪⎭⎫ ⎝⎛ε=δ∃>ε∀rk ,对任何D y x ∈,,只要满足δ<-||||y x ,便有ε<-≤-r y x k y f x f ||||||)()(||.由于这里的δ只与ε有关,故由一致连续的柯西准则(充分性),证得f 在D 上一致连续. □10.设mn D f D ℜ→ℜ⊂:,.试证:若f 在点D x ∈0连续,则f 在0x 近旁局部有界.证 由f 在点0x 连续的定义,对于1=ε,0>δ∃,当)(0δ∈;x U x 时,满足||)(||1||)(||1||)()(||||)(||||)(||000x f x f x f x f x f x f +≤⇒<-≤-,所以f 在0x 近旁局部有界. □11.设m n f ℜ→ℜ:为连续函数,n A ℜ⊂为任一开集,nB ℜ⊂为任一闭集.试问)(A f 是否必为开集?)(B f 是否必为闭集?为什么?解 )(A f 不一定为开集.例如),(,sin )(ππ-∈=x x x f .这里),(ππ-=A 为开集,但]1,1[)(-=A f 却为闭集.当B 为有界闭集时,由连续函数的性质知道)(B f 必为闭集且有界.但当B 为无界 闭集时,)(B f 就不一定为闭集,例如),(,arctan )(∞+-∞∈=x x x f . 这里),(∞+-∞=B 可看作一闭集,而⎪⎭⎫ ⎝⎛ππ-=2,2)(B f 却为一开集. □ 12.设nn D D ℜ→ϕℜ⊂:,.试举例说明:(1)仅有D D ⊂ϕ)(,ϕ不一定为一压缩映射;(2)仅有存在)10(<<q q ,使对任何D x x ∈''',,满足||||||)()(||x x q x x ''-'≤''ϕ-'ϕ,此时ϕ也不一定为一压缩映射.解 (1)例如),0[,1)(∞+∈+=ϕx x x .这里),0[∞+=D 为一闭域,它虽然满足D D ⊂∞+=ϕ),1[)(,但因|||)()(|x x x x ''-'=''ϕ-'ϕ,所以ϕ不是压缩映射.(注:这也可根据压缩映射原理来说明,由x x =+1无解,即ϕ没有不动点,故ϕ不是压缩映射.)(2) 例如]1,1[,12)(-=∈+=ϕD x xx .它虽然满足 )50(||21|)()(|.=''-'=''ϕ-'ϕq x x x x ,但因D D ⊄⎥⎦⎤⎢⎣⎡=ϕ23,21)(,故此ϕ仍不是一个压缩映射. □ 13.讨论b a ,取怎样的值时,能使下列函数在指定的区间上成为一个压缩映射:(1)],[,)(1b a x x x ∈=ϕ; (2)],[,)(22a a x x x -∈=ϕ;(3)],[,)(3b a x x x ∈=ϕ; (4)],0[,)(4a x b ax x ∈+=ϕ.解 (1)由|||)()(|11x x x x ''-'=''ϕ-'ϕ,可知对任何b a ,,1ϕ在],[b a 上都不可能是压缩映射.(2)首先,只有当10≤≤a 时,才能使],[],0[)],[(22a a a a a -⊂=-ϕ.其次,由于对任何],[,a a x x -∈'''都有||2|||||)()(|22x x a x x x x x x ''-'<''-'⋅''+'=''ϕ-'ϕ,因此只要取120<=<a q ,即210<<a ,就能保证2ϕ在],[a a -上为一压缩映射. (3) 由],[],[)],[(3b a b a b a ⊂=ϕ,可知b a ≤≤≤10.再由||21||||x x ax x x x x x ''-'<''+'''-'=''-',又可求得21>a ,即41>a .所以,当取b a ≤≤<141时,就能保证3ϕ在],[b a 上为一压缩映射.(4) 由于0>a ,因此可由a b a b ax b ≤+≤+≤≤20,解出a a ≤2( 即10≤<a ),0≥b .再由||||x x a b x a b x a ''-'=-''-+',可见只要0,10≥<<b a ,就能保证4ϕ在],0[a 上为一压缩映射. □14.试用不动点方法证明方程0ln =+x x 在区间[]3/2,2/1上有惟一解;并用迭代法求出这个解(精确到四位有效数字).解 若直接取x x x x x ln )ln ()(-=+-=ϕ,则因∈>≥=ϕ'x x x ,1231|)(|[]3/2,2/1, 可知ϕ在[]3/2,2/1上不是压缩映射.为此把方程改写成x x -=e ,并设x x x x x --=--=ϕe e )()(.由于在[]3/2,2/1上 11|||)(|<≤-=ϕ'-ee x x ,且[][]3/2,2/1],[)3/2,2/1(2/13/2⊂=ϕ--e e ,所以x x -=ϕe )(在[]3/2,2/1上为一压缩映射,且在[]3/2,2/1上有惟一不动点.取2/10=x ,按kx k x -+=e1迭代计算如下:k k x k k x k k x0 1 2 30.5 0.6065 0.5452 0.57974 5 6 70.5601 0.5712 0.5649 0.5684M M 15 16 170.5672 0.5671 0.5671所以,方程x x -=e 即0ln =+x x 的解(精确到四位有效数字)为17650.=*x . □15.设 nB f ℜ→:,其中{}r x x x B n ≤ρℜ∈=),(|0为一个n 维闭球(球心为0x ).试证:若存在正数)10(<<q q ,使对一切B x x ∈''',,都有||||||)()(||x x q x f x f ''-'≤''-', r q x x f )1(||)(||00-≤-,则f 在B 中有惟一的不动点.证 显然,只需证得了B B f ⊂)(,连同条件便知f 在B 上为一压缩映射,从而有惟一的不动点.现证明如下:)(,x f y B x =∈∀.由r x x ≤-||||0,以及题设条件的两个不等式,得到.r r q r q r q x x q x x f x f x f x y =-+≤-+-≤-+-≤-)1()1(||||||)(||||)()(||||||00000这表示B x f y ∈=)(,即B B f ⊂)(. □第 三 章 微 分 学1.考察||)(x x f xe =的可导性.解 写出)(x f 的分段表达式:⎩⎨⎧<-≥=.0,,0,)(x x x x x f xx e e它在0≠x 时的导数为⎩⎨⎧<+->+=';0,)1(,0,)1()(x x x x x f xx e e而当0=x 时,由于10lim )0(,10lim )0(00=-='-=--='+-→+→-x e x f x e x f x x x x ,因此f 在0=x 处不可导. □2.设⎩⎨⎧<+≥=.3,,3,)(2x b ax x x x f若要求f 在3=x 处可导,试求b a ,的值.解 首先,由f 在3=x 处必须连续,得到93=+b a ,或a b 39-=-.再由a x x a xb ax f x x =--=--+='--→→-3)3(lim 39lim)3(33,6)3(lim 39lim )3(323=+=--='++→→+x x x f x x ,又得939,6-=-==a b a . □3.设对所有x ,有)()()(x h x g x f ≤≤,且)()(,)()()(a h a f a h a g a f '='==.试证:)(x g 在a x =处可导,且)()(a f a g '='.证 由条件,有)()()()()()(a h x h a g x g a f x f -≤-≤-,从而又有)()()()()()()(a x a x a h x h a x a g x g a x a f x f >--≤--≤--, )()()()()()()(a x ax a h x h a x a g x g a x a f x f <--≥--≥--.由于)()(a h a f '=',因此)()()()()(a h a h a f a f a f -+-+'='='='=',故对以上两式分别取-+→→a x a x 与的极限,得到)()()()()()(a h a g a f a h a g a f ---+++'='=''='='与. 于是有)()(a g a g -+'=',即证得)(x g 在a x =处可导,且)()(a f a g '='. □4.证明:若)(x f 在],[b a 上连续,且0)()(,0)()(>''==-+b f a f b f a f .,则存在点),(b a ∈ξ,使0)(=ξf .证 如图所示,设0)(,0)(>'>'-+b f a f .由极限保号性,在点a 的某一右邻域)(a U +ο 内,使0)(0)()(>'⇒>-'-'x f a x a f x f ,∈'x )(a U +ο;同理,在点b 的某一左邻域内,有0)(0)()(<''⇒>-''-''x f bx b f x f ,∈''x )(b U -ο.最后利用连续函数)(x f 在],[x x '''上的介值性,必定),(),(b a x x ⊂'''∈ξ∃,使0)(=ξf . □*5.设),(,)(b a x x f ∈,它在点),(0b a x ∈可导;{}{}n n y x 与是满足b y x x a n n <<<<0),2,1(Λ=n ,且n n n n y x x ∞→∞→==lim lim 0的任意两个数列.证明:)()()(lim0x f x y x f y f nn n n n '=--∞→.证 先作变形:nn n n n n n n n n n n n n x x x f x f x y x x x y x f y f x y x y x y x f y f ----+----=--000000)()()()()()(...由)(0x f '存在,故δ<-<>δ∃>ε∀||0,0,00x x 当时,有ε<'---<ε-)()()(000x f x x x f x f .又由0lim lim x y x n n n n ==∞→∞→,故对上述0>δ,N n N >>∃当,0时,有δ<-<δ<-<n n x x x y 000,0.从而得到ε<'---<ε-)()()(000x f x y x f y f n n ,ε<'---<ε-)()()(000x f x x x f x f nn .分别以正数n n n x y x y --0与nn nx y x x --0乘以上两式,并相加,又得到.⎪⎪⎭⎫⎝⎛--+--ε<'⎪⎪⎭⎫⎝⎛--+-----<⎪⎪⎭⎫ ⎝⎛--+--ε-n n n n n n n n n n n n n n nn nn n n x y x x x y x y x f x y x x x y x y x y x f y f x y x x x y x y 000000000)()()(把它化简整理后,即为)()()()(0N n x f x y x f y f nn n n >ε<'---<ε-.从而证得结论:)()()(lim0x f x y x f y f nn n n n '=--∞→. □6.设)(x f 在],[b a 上连续,在),(b a 内可导,通过引入适当的辅助函数,证明: (1)存在),(b a ∈ξ,使得)()(])()([222ξ'-=-ξf a b a f b f ;(2)存在),(b a ∈η,使得)0()()ln ()()(b a f a ba fb f <<η'η=-.证 (1)在一般形式的中值定理( 定理3 . 8 )中,令2)(x x g =,即得本题结论.(2)把欲证的式子改写成)(]ln ln [1])()([η'-=η-f a b a f b f ,且令x x g ln )(=,上式即为关于)(x f 与)(x g 所满足的一般中值公式. □7.证明推广的罗尔定理:若)(x f 在),(∞+∞-上可导,且l x f x f x x ==∞+→∞-→)(lim )(lim( 包括)∞±=l ,则存在ξ,使得0)(=ξ'f .证 关键在于证明存在两点b a ,,使)(a f )(b f =.为此任取一点0x ,使l x f ≠)(0( 这样的点0x 若不存在,则0)()(≡'⇒≡x f l x f ).如图所示,设l x f <)(0.由于l x f x =∞→)(lim ,因此对于02)(0>-=εx f l ,0>∃X ,当X x >||时,满足ε+<<ε-l x f l )(.现取X x X x >''-<',,并使x x x ''<<'0.由于)()(,)()(00x f l x f x f l x f ''<ε-<>ε->',借助连续函数的介值性,必存在),(),(00x x b x x a ''∈'∈与,使得])([21)()(0x f l l b f a f +=ε-==. 于是由罗尔定理,存在),(b a ∈ξ,使得0)(=ξ'f . □8.证明:若)(x f 和)(x g 在],[b a 上连续,在),(b a 内可导,且0)(≠'x g , 则存在),(b a ∈ξ,使得)()()()()()(ξ--ξ=ξ'ξ'g b g a f f g f .证 令)()()()()()()(x g a f b g x f x g x f x --=ϕ,它在],[b a 上连续,在),(b a 内可导,且 )()()()(b g a f b a -=ϕ=ϕ.由罗尔定理,存在),(b a ∈ξ,使得0)()()()()()()()()(=ξ'-ξ'-ξ'ξ+ξξ'=ξϕ'g a f b g f g f g f ,即])()([)(])()([)(a f f g g b g f -ξξ'=ξ-ξ'.由于0)(≠ξ'g ,)()(ξ≠g b g ( 根据0)(≠'x g 和导函数具有介值性,推知)(x g '恒正或恒复,故)(x g 严格单调 ),因此可把上式化为结论式)()()()()()(ξ--ξ=ξ'ξ'g b g a f f g f . □*9.设),(,|)(|,|)(|20∞+∞-∈≤''≤x M x f M x f .证明:202|)(|M M x f ≤',),(∞+∞-∈x .证 若02=M ,则可相继推出:B Cx x f C x f x f +=⇒≡'⇒≡'')()(0)(,再由0|)(|M x f ≤,可知0)(0≡'⇒=x f C ,结论成立.同理,当00=M 时结论同样成立.现设00>M ,02>M .利用泰勒公式,⎪⎪⎭⎫⎝⎛+∈ξ∃202,M M x x ,使 )(421)(2)(222020ξ''+'+=⎪⎪⎭⎫⎝⎛+f M M x f M M x f M M x f .. 由此得到,42)(2)(2|)(|20220020202M M M M M M f M M x f M M x f x f M M =++≤ξ''--⎪⎪⎭⎫ ⎝⎛+='于是证得 200022421|)(|M M M M M x f =≤'.. □*10.设)(x f 在],[b a 上二阶可导,0)()(='='-+b f a f .证明:),(b a ∈ξ∃,使得|)()(|)(4|)(|2a fb f a b f --≥ξ''.证 将⎪⎭⎫⎝⎛+2b a f 分别在点a 与b 作泰勒展开: ⎪⎭⎫ ⎝⎛+2b a f =⎪⎭⎫ ⎝⎛+∈ξ⎪⎭⎫ ⎝⎛-ξ''+2,,2!2)()(121b a a a b f a f ,⎪⎭⎫ ⎝⎛+2b a f =⎪⎭⎫⎝⎛+∈ξ⎪⎭⎫ ⎝⎛-ξ''+b b a a b f b f ,2,2!2)()(222, 以上两式相减后得到=-)()(a f b f [])()(221212ξ''-ξ''⎪⎭⎫ ⎝⎛-f f a b .设=ξ'')(f {})(,)(max21ξ''ξ''f f ,则有≤-)()(a f b f ())(2)()(2212212ξ''⎪⎭⎫ ⎝⎛-≤ξ''+ξ''⎪⎭⎫ ⎝⎛-f a b f f a b ,于是证得结论: |)()(|)(4|)(|2a fb f a b f --≥ξ''. □*11.设在],0[a 上有M x f ≤'')(,且)(x f 在),0(a 内存在最大值.证明: M a a f f ≤'+')()0(.证 设)(x f 在∈c ),0(a 取得最大值,则)(c f 也是一个极大值,故0)(='c f .由微分中值公式得到),0(,)()0()()()0(111c f c c f c f f ∈ξξ''-=-ξ''+'=', ),(,)()()()()()(222a c f c a c a f c f a f ∈ξξ''-=-ξ''+'=';从而又有M c a f c a a f cM f c f )()()()(,)()0(21-≤ξ''-='≤ξ''=',由此立即证得 M a a f f ≤'+')()0(. □*12.证明:若),(00y x f x '存在,),(y x f y'在点0P ),(00y x 连续,则),(y x f 在点0P 可微.证 =∆z -∆+∆+),(00y y x x f ),(00y x f =-∆+∆+),([00y y x x f ]),(00y x x f ∆+ -∆++),([00y x x f ]),(00y x f .因),(y x f y'在点0P 连续,故z ∆的第一部分可表为 -∆+∆+),(00y y x x f ),(00y x x f ∆+=y y y x x f y∆∆θ+∆+'),(00 =y y y x f y ∆β+∆'),(00(其中0lim 0=β→∆→∆y x );又因),(00y x f x '存在,故z ∆的第二部分可表为-∆+),(00y x x f =),(00y x f x x y x f x ∆α+∆'),(00(其中0lim 0=α→∆x ).所以有=∆z +∆'x y x f x ),(00y x y y x f y∆β+∆α+∆'),(00, 而且由于)0,0(0||||22→∆→∆→β+α≤∆+∆∆β+∆αy x yx y x ,便证得),(y x f 在点0P 可微. □13.若二元函数f 与g 满足:f 在点0P ),(00y x 连续,g 在点0P 可微,且0)(0=P g ,则g f .在点0P 可微,且)()()(000P g P f g f P d d =..证 记g f h .=.由于g 在点0P 可微,根据定理3.4(必要性),存在向量函数[])(,)()(21P G P G P G =,它在点0P 连续,且满足.)()(,))(()()()(0000P G P g P P P G P g P g P g ='-=-=由此得到,)()()()()()()()()()()(00000P P P H P P P G P f P g P f P g P f P h P h -=-=-=-其中)()()(P G P f P H =在点0P 连续.仍由定理3.4(充分性),推知h 在点0P 可微,且因)()()()()()(000000P g P f P G P f P H P h '===,进一步证得 )()()(000P g P f hg f P P d d d ==.. □14.设⎪⎩⎪⎨⎧=≠+=.)0,0(),(,0,)0,0(),(,),(222y x y x y x y x y x f证明:(1)f 在原点O )0,0(连续;(2)y x f f '',在点O 都存在; (3)y x f f '',在点O 不连续; (4)f 在点O 不可微.证 (1)若令θ=θ=sin ,cos r y r x ,则因0sin cos lim )sin ,cos (lim 20=θθ=θθ→→r r r f r r ,可知f 在0=r 处(即在点O 处)连续.(2) ⎪⎩⎪⎨⎧.0)0,0(),0(lim )0,0(,0)0,0()0,(lim)0,0(0=∆-∆='=∆-∆='→∆→∆yf y f f xf x f f y yx x(3)求出⎪⎩⎪⎨⎧≠≠+-=';)0,0(),(,0,)0,0(),(,)()(),(222222y x y x y x x y y y x f x⎪⎩⎪⎨⎧≠≠+='.)0,0(),(,0,)0,0(),(,)(2),(2223y x y x y x y x y x f y由于当0≠r 时,,sin cos 2)sin ,cos (,)cos sin (sin )sin ,cos (3222θθ=θθ'θ-θθ=θθ'r r f r r f y x它们都不随0→r 而趋于0( 随θ而异 ),因此yx f f '',在点O 都不连续. (4)倘若f 在点O 可微,则.)()0,0()0,0()0,0(),(22222y x o y x y x y f x f f y x f y x ∆+∆=∆+∆∆∆=∆'-∆'--∆∆但是当令θ=∆θ=∆sin ,cos r y r x 时,)0(0\sin cos )(22/3222→→θθ=∆+∆∆∆r y x y x ,所以f 在点O 不可微.□15.设可微函数),(y x f 在含有原点为内点的凸区域D 上满足0),(),(='+'y x f y y x f x yx . 试证:≡),(y x f 常数,D y x ∈),(.证 对于复合函数θ=θ==sin ,cos ,),(y r x y x f z ,由于,)0(0)(1sin cos ≠='+'=θ'+θ'=∂∂'+∂∂'=∂∂r f y f x rf f ryf r x f r z yx yx y x因此在极坐标系里f 与r 无关,或者说f 只是θ的函数( 除原点外 ).如图所示,2121,,OP OP D P P 与∈∀的 极角分别为21θθ与.若21θ=θ,则由上面 讨论知道)()(21P f P f =.若21θ≠θ,此时 利用f 在点O 连续,当动点P 分别沿半直线21θ=θθ=θ与趋向点O 时,f 在1θ=θ上的常值与在2θ=θ上的常值都应等于)(O f .这就证得)()(21P f P f =,即≡),(y x f 常数,D y x ∈),(. □*16.设二元函数),(y x f 在2ℜ上有连续偏导数,且)1,0()0,1(f f =.试证:在单位圆122=+y x 上至少有两点满足),(),(y x f x y x f y yx '='. 证 在单位圆1=r 上,记π≤θ≤θθ=θϕ20,)sin ,cos ()(f .由于y xf f ''与连续,故f 可微,一元函ϕ也可微. 已知)2()1,0()0,1()0(πϕ===ϕf f ,由罗尔定理,)2,0(1π∈θ∃,使得0)(1=θϕ'.同理,由)2()2(πϕ=πϕ,)2,2(2ππ∈θ∃,使得0)(2=θϕ'.而y x yx f x f y f r f r r r f '+'-='θ+'θ-=θθθ∂∂cos sin )sin ,cos (, 1)()(='+'-=θϕ'r yx f x f y ,故在1=r 上存在两点)sin ,cos ()sin ,cos (222111θθθθP P 和,满足2,1,)()(='='i P f x P f y i y i x. □ 17.证明:(1)若),(y x f 在凸开域D 上处处有0),(),(='='y x f y x f y x,则≡),(y x f 常数,D y x ∈),(;*(2)若),(y x f 在开域D 上处处有0),(),(='='y x f y x f y x ,则同样有≡),(y x f 常数,D y x ∈),(.证 (1)由于D 为凸开域,因此D y x y x ∈∀),(,),(21,联结这两点的直线段必含于D , 根据§3.5的例10知道),(y x f 与x 无关;类似地,),(y x f 又与y 无关.这样,f 在D 上各点处的值恒相等.(2)当D 为一般开域时( 如图 ),D Q P ∈∀,,必存在一条全含于D 内、联结Q P ,两点的有限折线.又因这条折线上 的点全为D 的内点,故在每一点处有一邻域含于D 限个邻域所覆盖.在这每一个邻域内,由(1)已知≡),(y x f 常数,而相邻两个邻域之交非空,故经有限次推理,可知)()(Q f P f =.由Q P ,在D 内的任意性,这就证得在整个D 上≡),(y x f 常数. □ 18.证明:若),(y x f 存在连续的二阶偏导数,且令θ+θ=θ-θ=cos sin ,sin cos v u y v u x( 其中θ为常量 ),则在此坐标旋转变换之下,yy xxf f ''+''为一形式不变量,即 vv uu yy xxf f f f ''+''=''+''. 证 由条件,x y y xf f ''='',且有 xOy• D•QP⎩⎨⎧θ'+θ'-=''+''='θ'+θ'=''+''=';cos sin ,sin cos y x v y vx v y x u y ux u f f y f x f f f f y f x f f⎪⎩⎪⎨⎧θ''+θθ''-θ''=''θ''+θθ''+θ''=θ'''+'''+θ'''+'''=''.2222cos cos sin 2sin ,sin cos sin 2cos sin )(cos )(y y y x x x vv y y y x x x u y y u x y u y x ux x u u f f f f f f f y f x f y f x f f 由此容易推至结论 vv uu yy xxf f f f ''+''=''+''成立. □ *19.设2ℜ⊂D 为一有界闭域,),(y x f 在D 上可微,且满足),(),(),(y x f y x f y x f yx ='+'. 证明:若f 在D ∂上的值恒为零,则f 在D 上的值亦恒为零.证 由于f 在D 上可微,D 为有界闭域,因此f 在D 上存在最大值和最小值,分别设为)()(21P f m P f M ==和.如果D P int 1∈,则)(1P f 为一极大值,故满足0)()(11='='P f P f y x,由条件, 0)()()(111='+'==P f P f P f M yx ; 如果D P int 2∈,则)(2P f 为一极小值,同理有0)(2==P f m ;如果M 与m 都在D 的内部取得,则有0==m M ;如果D P P ∂∈)(21或,则由条件又使M 0)(=m 或.综上,在任何情形下恒有D y x y x f m M ∈≡⇒==),(,0),(0. □ 20.设),(v u f 为可微函数.试证:曲面0),(=--by z ay x f 的任一切平面恒与某一直线平行.证 由于f 可微,因此该曲面在其上任一点处的法向量为()v v u u f f b f a f z f y f x f n ''-'-'=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂=,,,,ρ.又因0=l n ρρ.,其中),1,(b a l =ρ,所以上述法向量n ρ恒与常向量l ρ正交.这说明以n ρ为法向量的切平面恒与以l ρ为方向向量的直线相互平行. □21.证明:以λ为参数的曲线族。
《数学分析选论》习题解答
/ 10'. (2))(211412,21142122kkkakkakk,故 21lim,21limnnnnaa. (3))(13cos211nnnn, 故 1limlimlimnnnnnnaaa. (4).38,18,12222,8,12,4,0,28,12,38,18,12224sin12kknnnknnnknknnnkknnnnnnan 故2lim,2limnnnnaa. (5))(sin)1(sin1222nnnnnnnnan,故 nnnnnnaaalimlimlim. □ 71.设na为有界数列,证明: (1)1lim)(limnnnnaa; (2)nnnnaalim)(lim. 证 由 )(sup)(inf,)(inf)(supknkknkknkknkaaaa, 令n取极限,即得结论(1)与(2). □ 81.设0limnna,证明: (1)nnnnaalim11lim; (2)nnnnaalim11lim; (3)若11limlimnnnnaa,或11limlimnnnnaa,则na必定收敛.
/ 10'. (1)S为有界集; (2)S的所有聚点都属于S. 证 (1)倘若S无上界,则对1111,,1MxSxM使;一般地,对于,3,2,,,,max1nMxSxxnMnnnnn使.这就得到一个各项互异的点列nnnxSxlim,使.S的这个无限子集没有聚点,与题设条件相矛盾,所以S必有上界.同理可证S必有下界,故S为有界集. (2)因S为有界无限点集,故必有聚点.倘若S的某一聚点S0,则由聚点的性质,必定存在各项互异的数列0lim,nnnxSx使.据题设条件,nx的惟一聚点0应属于S,故又导致矛盾.所以S的所有聚点都属于S. □ 51.证明:nnaasup,则必有nnalim.举例说明,当上述属于na时,结论不一定成立. 证 利用§1.3 例4,nnaak,使knnalim,这说明是na的一个聚点.又因又是na的上界,故na不可能再有比更大的聚点.所以是na的上极限. 当na时,结论不一定成立.例如,1,111supnn显然不是n1的上极限. □ 61.指出下列数列的上、下极限: (1)n)1(1; (2)12)1(nnn; (3)nn3cos; (4)4sin12nnn; (5)nnnsin12. 解(1)0lim,2lim,0,2122nnnnkkaaaa故.
2016华师数学分析选论练习
1.第1题标准答案:2.第2题标准答案:3.第3题标准答案:6.第6题标准答案:1.第1题标准答案:2.第2题标准答案:3.第3题标准答案:5.第5题标准答案:6.第6题标准答案:1.第1题标准答案:2.第2题标准答案:3.第3题标准答案:4.第4题标准答案:6.第6题标准答案:1.第1题标准答案:3.第3题标准答案:6.第6题标准答案:1.第1题标准答案:2.第2题标准答案:3.第3题标准答案:4.第4题标准答案:1.第1题标准答案:2.第2题标准答案:3.第3题标准答案:5.第5题标准答案:6.第6题标准答案:1.第1题标准答案:3.第3题标准答案:4.第4题标准答案:1.第1题标准答案:3.第3题标准答案:5.第5题标准答案:1.第1题标准答案:2.第2题标准答案:3.第3题标准答案:4.第4题标准答案:5.第5题标准答案:6.第6题标准答案:1.第1题标准答案:2.第2题标准答案:4.第4题标准答案:5.第5题标准答案:6.第6题标准答案:1.第1题标准答案:2.第2题标准答案:3.第3题标准答案:6.第6题标准答案:2.第2题标准答案:4.第4题标准答案:6.第6题标准答案:。
奥鹏福建师范大学21年8月《数学分析选讲》网考复习题答案.doc
单选题1.设,则当时,有( ).A.与是等价无穷小B.与同阶但非是等价无穷小C.是比高阶的无穷小D.是比低阶的无穷小答案: B2.设函数,则是的( )A.可去间断点B.第二类间断点C.跳跃间断点D.连续点答案: C3.等于( ).A.B.C.D.答案: B4.在点处偏导数连续是在该点连续的( )条件.A.充分非必要B.必要非充分C.充分必要D.既不充分也不必要答案: A5.如果级数和均发散,则以下说法正确的是( ).A.一定都收敛B.一定都发散C.可能收敛,但一定发散D.都可能收敛答案: D6.设,则当时,有( )A.与是等价无穷小B.与是同阶但非等价无穷小C.是比高阶的无穷小D.是比低阶的无穷小答案: B7.设函数在处可导,且,则( ) A.B.C.D.答案: A8.等于( )A.B.C.D..答案: A9.设在上连续,则等于( )A.B.C.D.答案: A10.下列结论正确的是( ).A.若和均发散,则一定发散;B.若发散,发散,则一定发散;C.若发散,发散,则一定发散; D.若收敛,发散,则一定发散.答案: A11.等于( )A.B.C.D..答案: A12.函数单调增加且图形为凹的区间是( ).B.C.D.答案: C13.设二元函数存在偏导数,则(A.0B.C.D.答案: A14.若,则=( )A.B.C.D.答案: C15.部分和数列有界是正项级数收敛的( )条件,则( )A.充分非必要B.必要非充分C.充分必要D.非充分非必要答案: C16.当时,与比较是( ).A.等价无穷小B.高阶无穷小C.低阶无穷小D.同阶无穷小答案: B17.设,则方程( ).A.在内没有实根B.在内没有实根C.在内有两个不同的实根D.在内有两个不同的实根答案: C18.设,则在处的( ).A.左右导数都存在B.左导数存在,右导数不存在C.左右导数都不存在D.左导数不存在,右导数存在答案: B19.设和均为区间内的可导函数,则在内,下列结论正确的是A.若, 则B.若,则C.若,则D.若,则答案: A20.在有界是在可积的( ).A.充分非必要条件B.必要非充分条件C.充分且必要条件D.既非充分又非必要条件答案: B21.设为可导函数,且满足, 那么曲线在点处的切线斜率为 ( )A.B.C.D.答案: A判断题1.若不是无穷大量,则必存在收敛子列. ( )T.对F.错答案: T2.在上连续是存在的充要条件 . ( )T.对F.错答案: F3.若是初等函数,其定义域为,,则.( )T.对F.错答案: T4.若,级数收敛,则不一定收敛.( )T.对F.错答案: T5.已知函数在点的某个邻域内连续,且,则点是的极小值点. ( )F.错答案: F6.若不是无穷大量,则任一子列均不是无穷大量. ( )T.对F.错答案: F7.若函数在上可积,则在上也可积. ( )T.对F.错答案: F8.当时,不以A为极限,则存在,使不以A为极限.( )T.对F.错答案: T9.若,则级数收敛但和不一定是0 . ( )T.对F.错答案: F10.对, 偏导数连续,则全微分存在. ( )T.对F.错答案: T11.若不是无穷大量,则必存在有界子列. ( )F.错答案: T12.若在点连续,则在既是右连续,又是左连续. ( )T.对F.错答案: F13.函数展开成x的幂级数为. ( )T.对F.错答案: T14.二元函数,在点处连续,偏导数存在.T.对F.错答案: T填空题1.若,则的值为##答案: 0或12.设收敛,则=##答案: 20213.级数的收敛区间是##答案: (2,4)或[2,4)4.设收敛,则= ##答案: 105.##.答案: 46.级数的收敛区间是##答案: (1,3)7.广义积分,则## 答案: 58.##答案: e9.设,则##. 答案: 1计算题1..答案: 解原式=2.求的导数.答案: 解:3.求积分.答案: 解:===4.将函数展成的幂级数.答案:收敛域为.综合题1.. (请说明理由)答案: 答: 原式=0(有界量乘以无穷小量)2.叙述一元函数可导,可微,连续的关系.答案: 答:一元函数可导与可微是等价的,可导推出连续,连续不一定可导.。
(完整版)数学分析选讲参考答案
《数学分析选讲》A/B 模拟练习题参考答案1、选择题:(共18题,每题3分)1、下列命题中正确的是( A B )A 、若,则是的不定积分,其中为任意常数'()()F x f x =()F x c +()f x c B 、若在上无界,则在上不可积()f x [,]a b ()f x [,]a b C 、若在上有界,则在上可积()f x [,]a b ()f x [,]a b D 、若在上可积,则在上可积()f x [,]a b ()f x [,]a b 2、设,则当时,有( B )243)(-+=x x x f 0→x A .与是等价无穷小)(x f x B .与同阶但非是等价无穷小)(x f x C .是比高阶的无穷小)(x f x D .是比低阶的无穷小)(x f x 3、若为连续奇函数,则为( A )f ()x f sin A 、奇函数 B 、偶函数C 、非负偶函数D 、既不是非正的函数,也不是非负的函数.4、函数在上连续是在上可积的( A )条件()f x [,]a b ()f x [,]a b A. 充分非必要 B. 必要非充分C. 充分必要条件D. 非充分也非必要条件.5、若为连续奇函数,则为( B )f ()x f cos A 、奇函数 B 、偶函数C 、非负偶函数D 、既不是非正的函数,也不是非负的函数.6、设 则是的( B )arctan (),xf x x=0x =()f x A. 连续点 B. 可去间断点 C.跳跃间断点 D. 第二类间断点7、设,当时,恒有,已知,.则正确的+N ∈∃N N n >n n b a >A a n n =∞→lim B b n n =∞→lim 选项是( A )A 、B 、C 、D 、A 和B 的大小关系不定.B A ≥B A ≠B A >8、函数f(x,y) 在点连续是它在该点偏导数都存在的( A )00(,)x y A.既非充分也非必要条件 B 充分条件C.必要条件 D.充要条件9、极限( D )=+-∞→3321213limx x x A 、B 、C 、D 、不存在.323323-323±10、部分和数列有界是正项级数收敛的( C )条件}{n S ∑∞=1n n u A. 充分非必要 B. 必要非充分 C.充分必要 D.非充分非必要11、极限( A )=⎪⎭⎫ ⎝⎛-→210sin lim x x x x A 、 B 、 C 、 D 、不存在.13e -13e 3e -12、与的定义等价的是( B D )lim n n x a →∞=A 、 总有0,ε∀>n x a ε-<B 、 至多只有的有限项落在之外0,ε∀>{}n x (,)a a εε-+C 、存在自然数N ,对当,有0,ε∀>n N >n x a ε-<D 、存在自然数N ,对有0(01),εε∀><<,n N ∀>n x a ε-<13、曲线( D )2211x x ee y ---+=A 、没有渐近线B 、仅有水平渐近线C 、仅有垂直渐近线D 、既有水平渐近线, 也有垂直渐近线14、下列命题中,错误的是( A D )A 、若在点连续,则在既是右连续,又是左连续 ()f x 0x ()f x 0xB 、若对在上连续,则在上连续0,()f x ε∀>[,]a b εε+-()f x (,)a bC 、若是初等函数,其定义域为,,则()f x (,)a b 0(,)x a b ∈00lim ()()x x f x f x →=D 、函数在点连续的充要条件是在点的左、右极限存在且相()y f x =0x ()f x 0x 等15、设 为单调数列,若存在一收敛子列,这时有( A ){}n a {}j n aA 、 j n j n n a a ∞→∞→=lim lim B 、不一定收敛 {}n a C 、不一定有界{}n a D 、当且仅当预先假设了为有界数列时,才有A 成立{}n a 16、设在R 上为一连续函数,则有( C ) )(x f A 、当为开区间时必为开区间 I )(I f B 、当为闭区间时必为闭区间)(I f I C 、当为开区间时必为开区间 )(I f I D 、以上A,B,C 都不一定成立17、下列命题中错误的是( A C )A 、若,级数收敛,则收敛;lim 1nn nu v →∞=1n n v ∞=∑1n n u ∞=∑B 、若,级数收敛,则不一定收敛;(1,2)n n u v n ≤= 1n n v ∞=∑1n n u ∞=∑C 、若是正项级数,且有则收敛;1n n u ∞=∑,,N n N ∃∀>11,n n u u +<1n n u ∞=∑D 、若,则发散lim 0n n u →∞≠1n n u ∞=∑18、设 为一正项级数,这时有( D )∑∞=1n n uA 、若,则 收敛 0lim =∞→n n u ∑∞=1n n u B 、若 收敛,则∑∞=1n n u 1lim1<+∞→nn n u u C 、若 收敛,则 ∑∞=1n n u 1lim <∞→n n n u D 、以上A,B,C 都不一定成立2、填空题:(共15题,每题2分)1、设,则2或-22sin cos cos 20x y y y -+=='=2πy y 2、=n n n )11(lim -∞→e 13、=111(lim +∞→+n n n e 4、= 2 221lim 220---→x x x x 5、设收敛,则= 1021(10)n n x ∞=-∑lim n n x →∞6、= 121lim 221---→x x x x 327、2(,)limx y →=8、8 =-+→114sin limx xx9、设,则3()cos F x x '==)(x F C xx +-3sin sin 310、设,则 x y e =(2016)y =x e 11、幂级数的收敛半径为 11n ∞=12、积分的值为 0321421sin 21x xdx x x -++⎰13、曲线与轴所围成部分的面积为 36228y x x =--x 14、lim 1xx x x →∞⎛⎫= ⎪+⎝⎭1e -15、= 02222)0,0(),(lim y x y x y x +→三、计算题:(共15题,每题8分)1、求.⎰222,2sin 2cos 2cos 4cos t t tdt t d t t t t tdt===-=-+⎰⎰⎰⎰222cos 4sin 2cos 4sin 4sin t t td t t t t t tdt=-+=-+-⎰⎰=2x C-+2、将展开成的幂级数,并指出其收敛域。
华东师大数学分析习题解答5
《数学分析选论》习题解答第 五 章 级 数1.下列命题中有些是真命题,有些是伪命题.对真命题简述理由;对假命题举出反例(题中“∑n a ”是“∑∞=1n n a ”的简写): (1)∑n a ,∑n b 发散⇒∑±)(n n b a 发散; (2)∑n a ,∑n b 收敛⇒∑nn b a 收敛; (3)∑∑n nb a 22,收敛⇒∑nn b a 收敛; (4)∑n a ,∑n b 绝对收敛⇒∑nn b a 绝对收敛;(5)∑n a 收敛,∑n b 绝对收敛⇒∑nn b a 绝对收敛;(6)∑n a 收敛,1lim=∞→n n b ⇒∑nn b a 收敛;(7)∑||n a 收敛,1lim =∞→n n b ⇒∑||n n b a 收敛;(8)0lim =∞→n n a ⇒ -+-+-+-332211a a a a a a 收敛; (9)∑n a 收敛⇒∑na n收敛; (10)∑n a 收敛⇒0lim =∞→n n a n ;(11)∑||n a 收敛⇒∑++)(1n n a a a 收敛;(12)∑na 收敛⇒∑+-||1n n a a 收敛;(13){}n a 与∑++)(1n n a a 收敛⇒∑n a 收敛;(14)∑+||1n n a a 收敛⇒∑n a 收敛;(15)1||≥n a n ⇒∑n a 发散;(16)∑na 2收敛⇒∑na 3收敛;(17)0lim =∞→n n a ⇒∑+-||1n n a a 收敛;*(18)∑+-||1n n a a 收敛⇒{}n a 收敛;(19)||n a ~)(∞→n n c p⇒∑||n a 与∑pn 1同敛态; *(20)∑n a 收敛⇒0)2(1lim21=+++∞→n n a n a a n . 解 其中有十二个真命题:(3),(4),(5),(7),(8),(9),(11), (13),(16),(18),(19),(20);其余八个是伪命题.现依此简述如下:(1)反例:0)(,,=+-==∑n n n n b a n b n a 为收敛.(2)反例:∑-nn)1(收敛,∑∑=⎪⎪⎭⎫⎝⎛-n n n 1)1(2为发散. (3)因nn n n b a b a 22||+≤. (4),(5) 因∑n a 收敛⇒)(1||0lim N n a a n n n >≤⇒=∞→∑∑⇒⎭⎬⎫≤⇒||||||||n n n n n n b a b b b a 收敛收敛.(6)反例:nb na nn nn )1(1,)1(-+=-=,∑∑⎪⎪⎭⎫⎝⎛+-=n n b a n n n 1)1(为发散.(7)因 1lim =∞→n n b ⇒)(2||N n b n >≤,∑∑⇒⎭⎬⎫≤⇒||||||2||n n n n n n b a a a b a 收敛收敛.(8)因0lim )(0,0122=⇒∞→→==∞→-n n n n n S n a S S . (9)据阿贝尔判别法,∑n a 收敛,⎭⎬⎫⎩⎨⎧n 1单调有界,故∑na n收敛. (10)反例:=∑n a ∑-nn)1(收敛,而{}{}n n a n )1(-=不存在极限.(11)由∑||n a 收敛,∑++⇒≤++⇒≤++≤++⇒.绝对收敛)(||)(||||1111n n n n n n n a a a a M a a a M a a a a(12)反例:=∑n a ∑-n n )1(收敛,∑∑++=-+)1(12||1n n n a a n n 发散. (13){}.收敛收敛已知收敛收敛∑∑∑⇒-⎭⎬⎫+-⇒++n n n n n n a a a a a a 2)()()(11(14)反例:=∑n a ++++=-+∑10102)1(1n发散,但因01≡+n n a a ,故0||1=∑+n n a a 为收敛.(15)反例:=∑n a ∑-nn)1(收敛,满足1||≥=n a n n .(16)∑∑⇒>≤⇒>≤⇒.绝对收敛收敛3232)(||)(1||n nn n n a N n a a N n a a (17)反例:同(12)题.(18)∑+-||1n n a a 收敛N n N >∈∃>ε∀⇔+当,,0N 时,+∈∀N p ,有.ε<-++-≤-⇒ε<-++-+-++++++++++pn p n n n p n n p n p n n n a a a a a a a a a a 1211121,所以{}n a 满足柯西条件,从而收敛.(19)||n a ~)(∞→n nc p∞+<=⇔∞→c a n n p n ||lim .可见∑||n a 与∑pn 1同时收敛,或同时发散. (20)设∑na 的前n 项部分和为 ,2,1,=n S n ,且S S n n =∞→lim .则有()..011lim 21lim )(,)()(2212121121112121=-=⎥⎦⎤⎢⎣⎡--+++-=+++⇒+++-=-++-+=+++-∞→∞→--S S n n n S S S S a n a a n S S S S n S S n S S S a n a a n n n n n n n n n n □2.设∑∞=1n n a 为证项级数,试证对数判别法:(1)若存在0>ε和+∈N N ,使得当N n > 时,有ε+≥11ln ln 1n a n., 则∑∞=1n n a 收敛;(2)若存在+∈N N ,使得当N n > 时,有11ln ln 1≤n a n .,则∑∞=1n n a 发散. 证 把不等式分别改写成: (1)ε+ε+≤≥111,ln 1lnn a n a n n 即; (2)na n a n n 1,ln 1ln≥≤即.根据比较法则,(1)时∑∞=1n n a 收敛;(2)时∑∞=1n n a 发散. □3.利用对数判别法鉴别下列正项级数的敛、散性: (1)∑∞=1ln 31n n; (2)∑∞=1ln ln )ln (1n nn ; (3))0(1ln >∑∞=x n n x.解 (1)n n a ln 31=,050109813ln 1ln ln 1...+>≈=n a n,故收敛. (2)nn n a ln ln )ln (1=,)16(0101ln ln 1ln ln 1≥+>=n n a nn ..,故收敛. (3)x n n a ln =,由于x n n x a nn 1ln ln ln ln 1ln ln 1=-=., 故当)0(e 101>ε∀≤<ε+x 时收敛;e1≥x 时发散. □ 4.证明:(1)若∑∞=1n n a n 收敛,则∑∞=1n n a 收敛;(2)若∑∞=1n p n n a 收敛,则p x >时∑∞=1n x nn a 也收敛. 证 (1)∑∑∞=∞=⎪⎪⎭⎫ ⎝⎛=111n n n n n a n a ..由阿贝尔判别法,已知∑∞=1n n a n 收敛,而⎭⎬⎫⎩⎨⎧n 1 单调有界,故∑∞=1n n a 收敛.(2)同理,由∑∑∞=-∞=⎪⎪⎭⎫ ⎝⎛=111n px p n n x n n n a n a .,∑∞=1n p n n a 收敛,⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-p x n 1当p x >时单调有界,故∑∞=1n xnn a 收敛. □ 5.证明:若{})(x f n 与{})(x g n 都在E 上一致收敛,则{})()(x g x f n n ±在E 上也一致收敛.证 设)(x f n →→)(x f ,)(x g n →→)(x g ,E x ∈.依据定义,+∈∃>ε∀N N ,0,当N n >时,对一切E x ∈,恒有2)()(ε<-x f x f n , 2)()(ε<-x g x g n ; 于是又有[][]ε<-+-≤±-±)()()()()()()()(x g x g x f x f x g x f x g x f n n n n .所以)()(x g x f n n ±→→)()(x g x f ±,E x ∈.注:本题也可用确界逼近准则( p .138 定理5.2 )来证明. □6.设f 在区间I 上一致连续,)(x n ϕ→→)(x ϕ,E x ∈,且)(,)(E I E n ϕ⊂ϕ,,2,1=n .试证:))((x f n ϕ→→))((x f ϕ,E x ∈.证 因f 在I 上一致连续,故0,0>δ∃>ε∀,只要δ<''-'u u ),(I u u ∈''', 便有ε<''-')()(u f u f .对上述δ,由)(x n ϕ→→)(x ϕ,E x ∈,必定+∈∃N N ,当N n >时,对一切E x ∈,均有δ<ϕ-ϕ)()(x x n .记I x u I x u n ∈ϕ=''∈ϕ=')(,)(,则有ε<ϕ-ϕ=''-'))(())(()()(x f x f u f u f n .这就证得 ))((x f n ϕ→→))((x f ϕ,E x ∈. □ 7.证明:∑∞=1)(n n x f 在E 上一致收敛的必要条件是)(x f n →→E x ∈,0.证 设,)()(1∑==nk k n x f x S )(x S n →→E x x S ∈,)(,则=)(x f n )(x S n )(1x S n --.由题5易知)(x f n →→E x x S x S ∈=-,0)()(. □8.设∑∞=1n n a 收敛,试证),0[e 1∞+-∞=∑在x n n n a 上一致收敛.证 由一致收敛的阿贝尔判别法,数项级数∑∞=1n na 收敛即一致收敛;对每个0≥x ,xn -e 对n 单调(减),且一致有界,),),0[,1e (+-∈∞+∈≤N n x x n 故xn n n a -∞=∑e 1在),0[∞+上一致收敛. □9.判别下列函数序列或函数项级数在指定的区间上是否一致收敛:(1)⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧n nxsin ,),(∞+∞-∈x ; (2)∑∞=+-1sin )1(n n x n ,),(∞+∞-∈x ; )3(*]1,0[,,)()(,,)()(,)(1121∈===-x x f x x f x f x x f x x f n n ;(4)⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+1nn x x ,(ⅰ)]1,0[∈x ,(ⅱ))10(]1,0[<δ<δ-∈x ; (5)]1,0[,)(12∈+∑∞=+x nn x x n nn .解 (1)由于0sin lim=∞→nnx n ,且 )(010sin sup),(∞→→=-∞+∞-∈n nnnx x ,因此nnx sin →→0,),(∞+∞-∈x . (2)由函数项级数一致收敛的狄利克雷判别法,1)1(1≤-∑=nk k为一致有界;),(∞+∞-∈∀x ,xn sin 1+关于n 单调(减);且0sin 1lim=+∞→x n n , )(0110sin 1sup),(∞→→-=-+∞+∞-∈n n x n x ,从而x n sin 1+→→0,),(∞+∞-∈x .所以,∑∞=+-1sin )1(n nxn 在),(∞+∞-上为一致收敛.(3)事实上,)()()(211∞→=→=-n x x f xx f nn .记]1,0[,)()()(211∈-=-=-x x xx f x f x g nn n ,由 01211)(21=-⎪⎪⎭⎫⎝⎛-='-nx x g n n,求出)(x g n 的最大值点nn n x 2211⎪⎪⎭⎫⎝⎛-=,和最大值nn nn n x g 2211121)(⎪⎪⎭⎫ ⎝⎛--=.由于 )(0e 0)()(m ax )(sup 1-]1,0[]1,0[∞→=→==∈∈n x g x g x g n n n x n x .,因此)(x f n →→]1,0[,∈x x .(4)设1111)(+-=+=nnn n x x x x f ,则有⎪⎩⎪⎨⎧=∈==∞→.1,21,)1,0[,0)()(lim x x x f x f n n (ⅰ)由于)(0\21111sup )()(sup)1,0[)1,0[∞→→=⎪⎪⎭⎫⎝⎛+-=-∈∈n x x f x f nx n x ,因此{})(x f n 在)1,0[上不一致收敛,从而在]1,0[上更不一致收敛.(ⅱ)当)10(]1,0[<δ<δ-∈x 时,由于)(01)1(11)()(sup]1,0[∞→→+δ--=-δ-∈n x f x f nn x ,因此)(x f n →→)(x f ,)10(]1,0[<δ<δ-∈x .(5)设nn n nn x x x f ++=2)()(.由于]1,0[,0])1([)()(21∈>+++='+-x nn x n n x x f nn n ,因此有2223)11(1)1()1()(0nn n n n f x f nnn n n <+=+=≤≤+.根据优级数判别法,由∑∞=123n n收敛,可知∑∞=++12)(n nn nn x x 在]1,0[上一致收敛. □10.证明:∑∞=+-122)1(n n nn x 在任何闭区间],[b a 上一致收敛;但对任何x 不绝对收敛. 证 由于1)1(1≤-∑=nk k为一致有界,],[b a x ∈∀,22nn x +关于n 单调(减),0lim22=+∞→nn x n ,,(00sup2222],[∞→→+=-+∈n nn b nn x b a x 设)||||a b ≥,因此根据狄利克雷判别法,该级数在任何],[b a 上一致收敛.又因对任何x ,n n n x n1)1(22≥+-,所以∑∞=+-122)1(n n n n x 发散. □11*.设)(0x u 在],[b a 上可积,,2,1,d )()(1==⎰-n t t u x u xan n .试证∑∞=1)(n n x u 在],[b a 上一致收敛.证 设M x u ≤)(0,],[b a x ∈.则可依次估计得:)(d )(d )()(001a x M t t u t t u x u x axa-≤≤=⎰⎰,.........................,)(!2d )(d )()(212a x Mt a t M t t u x u xax a-=-≤≤⎰⎰n n x an n a b n Ma x n M t a t n M x u )(!)(!d )(!)1()(1-≤-=--≤⎰-.而∑∞=-1)(!n n a b n M易用比式判别法得知它收敛,故级数∑∞=1)(n n x u 在],[b a 上一致收敛. □12.已知∑∞=1)(n n x f 在E 上一致收敛.试讨论:当)(x g 在E 上满足何种条件时,就能保证∑∞=1)()(n n x f x g 在E 上一致收敛?解 这里可用一致收敛的柯西准则来讨论.由于∑∞=1)(n n x f 在E 上一致收敛,故+∈∃>ε∀N N ,01,当N n >时,对一切E x ∈和+∈N p ,恒使11)(ε<∑++=p n n i i x f .而∑∑++=++==p n n i i pn n i i x f x g x f x g 11)()()()(.,因此当设)(x g 在E 上有界,即E x M x g ∈≤,)(时,就有ε=ε<≤∑∑++=++=111)()()(M x f Mx f x g p n n i i pn n i i .此即表示∑∞=1)()(n n x f x g 在E 上一致收敛. □31*.证明:若对每个,n )(x f n 是],[b a 上的单调函数,且∑∞=1,)(n n a f ∑∞=1)(n n b f 都绝对收敛,则∑∞=1)(n n x f 在],[b a 上为绝对一致收敛.证 由假设条件,对每一个,n 有{})(,)(max )(a f a f x f n n n ≤[]nn n n n M b f a f b f a f ==-++=def )()()()(21. 由于∑∞=1)(n n a f 与∑∞=1)(n n b f 都收敛,因此[]∑∞=+1)()(n n n b f a f 与[]∑∞=-1)()(n n n b f a f也都收敛,从而∑∞=1n nM 收敛.依据优级数判别法,证得∑∞=1)(n n x f 在],[b a 上为一致收敛. □14.设]2,0[,)10(cos )(0π∈<<=∑∞=x r nx r x S n n .试求⎰π20d )(x x S .解 由于nnr nx r ≤cos ,而r r n n-=∑∞=110为收敛,因此∑∞=0cos n nnx r 为一致收敛,于是可以逐项求积.据此便可求得⎰π20d )(x x S π=+π==∑∑⎰∞=∞=π20.2d cos 120n n n nr x nx r. □51*.设函数f 在)1,(+b a 内连续可微)(b a <,记,2,1,),(,)()1()(=∈⎥⎦⎤⎢⎣⎡-+=n b a x x f n x f n x f n .试证:(1){})(x f n 在任何],[βα),(b a ⊂上一致收敛于)(x f ';(2))()(d )(limα-β=⎰βα∞→f f x x f n n .证 (1)由于)(x f '在],[βα上连续,从而一致连续.故0,0>δ∃>ε∀,只要∈'''u u ,],[βα 且δ<''-'u u , 便有ε<'''-'')()(u f u f .而由假设,..],[,)1,(,)(1)()()1()(βα∈+∈ξξ'=ξ'=⎥⎦⎤⎢⎣⎡-+=x n x x f nf n x f n x f n x f n n n n所以⎥⎦⎤⎢⎣⎡δ=∃1N ,当)1(δ<>n N n 时,对任何∈x ],[βα,恒有ε<'-ξ'='-)()()()(x f f x f x f n n .这就证得)(x f n →→)(x f ',∈x ],[βα),(b a ⊂.(2)利用逐项积分定理,易得)()(d )(d )(lim d )(lim α-β='==⎰⎰⎰βαβα∞→βα∞→f f x x f x x f x x f n n n n . □ 16.证明:函数∑∞==13sin )(n nnx x S 在),(∞+∞-上连续,且有连续的导数)(x S '. 证 由于331sin nn nx ≤,∑∞=131n n 收敛,因此∑∞=13sin n nnx 在),(∞+∞-上一致收敛.又 2231cos sin n n nx n nx ≤='⎪⎪⎭⎫ ⎝⎛,∑∞=121n n 收敛, 故∑∞='⎪⎪⎭⎫ ⎝⎛13sin n n nx 在),(∞+∞-上也一致收敛. 因为∑∞=13sin n nnx 在),(∞+∞-上满足定理45'.和定理65'.的条件,所以)(x S 在),(∞+∞-上连续,且有∑∞=='12cos )(n nnx x S ,),(∞+∞-∈x . 又因为∑∞=12cos n n nx 在),(∞+∞-上也满足定理45'.的条件,所以)(x S '在),(∞+∞-上同样也连续. □17.试求以下各级数的和函数:(1))1,1(,11-∈∑∞=+x nx n n ; (2)0,e 1>∑∞=-x n n x n .解(1)设)()(211211x T x nx x nx x S n n n n ===∑∑∞=-∞=+.由于 21111)1(11)()(x x x x x nx x T n n n n n n -='⎪⎪⎭⎫ ⎝⎛-='⎪⎪⎭⎫ ⎝⎛='==∑∑∑∞=∞=∞=-, 因此求得)1,1(,1)()(22-∈⎪⎪⎭⎫ ⎝⎛-==x x x x T x x S .(2)设0,e )(1>=∑∞=-x n x S n x n .类似地得到 .0,)1e (e1e 1e 1e )e (e )e ()(2111>-='⎪⎪⎭⎫ ⎝⎛--='⎪⎪⎭⎫⎝⎛--='⎪⎪⎭⎫ ⎝⎛-='⎪⎪⎭⎫ ⎝⎛-='-=--∞=-∞=-∞=-∑∑∑x x S x xx x x n n x n x n n x n □ 上必定不一致收敛;并可知道定理5.6的条件和结论都不成立. □。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《 数学分析续论 》模拟试题及答案一、 单项选择题(56⨯')(1)设{}n a 为单调数列,若存在一收敛子列{}j n a ,这时有 ............[ ] A.jn j n n a a ∞→∞→=lim lim ; B.{}n a 不一定收敛; C.{}n a 不一定有界;D.当且仅当预先假设了{}n a 为有界数列时,才有A成立.(2)设)(x f 在R 上为一连续函数,则有 ..............................[ ]A.当I 为开区间时)(I f 必为开区间; B.当)(I f 为闭区间时I 必为闭区间; C.当)(I f 为开区间时I 必为开区间; D.以上A、B、C都不一定成立. (3)设)(x f 在某去心邻域)(0x U内可导.这时有 .....................[ ]A.若A x f x x ='→)(lim存在,则A x f =')(0;B.若f 在0x 连续,则A 成立;C.若A x f =')(0存在,则A x f x x ='→)(lim;D.以上A、B、C都不一定成立.(4)设)(x f 在],[b a 上可积,则有 ..................................[ ]A.)(x f 在],[b a 上必定连续; B.)(x f 在],[b a 上至多只有有限个间断点; C.)(x f 的间断点不能处处稠密; D.)(x f 在],[b a 上的连续点必定处处稠密.(5)设∑∞=1n n u 为一正项级数.这时有 ..................................[]A.若0lim =∞→n n u ,则 ∑∞=1n n u 收敛; B.若∑∞=1n n u 收敛,则1lim1<+∞→nn n u u ;C .若∑∞=1n n u 收敛,则1lim <∞→n n n u ; D.以上A、B、C都不一定成立.二、计算题(401⨯')(1)试求下列极限:①⎪⎭⎫⎝⎛-+-+++∞→n n n n 3)12(31lim ; ② ⎰⎰⎪⎭⎫ ⎝⎛∞+→xtxtx tt 022022limd ed e .(2)设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=+x y u f uy x u y x arctan e )(,21,220. 试求)()(0u f u f ''与. (3)试求由曲线 12-=xy ,直线2=x ,以及二坐标轴所围曲边梯形的面积 S .(4)用条件极值方法(Lagrange 乘数法)导出从固定点),(00y x 到直线0=++C y B x A 的距离计算公式.三、证明题(301⨯')(1)设)()(x g x f 与在],[b a 上都连续.试证:若)()(,)()(b g b f a g a f ><,则必存在),(0b a x ∈,满足)()(00x g x f =.(2)证明x x x f ln )(=在其定义域上为一严格凸函数,并导出不等式:cbacb a cb ac b a <⎪⎭⎫ ⎝⎛++++3,其中 c b a ,,均为正数.( 提示:利用詹森不等式.)(3) 证明:∑∞=π=+-0412)1(n nn .解 答一、[答](1)A; (2)C; (3)B; (4)D; (5)D. 二、[解](1) ① 333lim 3)12(31lim -=+-=⎪⎭⎫⎝⎛-+-+++∞→∞→n n n n n n n ;②.022limd 2limd 2limd ed e lim222222222020220====⎪⎭⎫ ⎝⎛∞+→∞+→∞+→∞+→⎰⎰⎰⎰xxx xxtx xxtxx xtxt x x ttt t eeee ee e(2) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-='⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++-='++515242)(,e 2e 2)(55022222222e e u f yxx y x yy x u f yx y x .(3)所围曲边梯形如右图所示.其面积为.212)3(1)3()1()1(33102122=-+-=-+-=⎰⎰x x xx xxx x S d d(4)由题意,所求距离的平方(2d )为2020)()(y y x x -+-的最小值,其中),(y x 需满足0=++C By Ax ,故此为一条件极小值问题.依据 Lagrange 乘数法,设)()()(2020C By Ax y y x x L ++λ+-+-=,并令⎪⎩⎪⎨⎧.0,0)(2,0)(200=++==λ+-==λ+-=λC y B x A L B y y L A x x L y x (F) 由方程组(F)可依次解出:.220020202220022220202200220000)()(,)()(4)()(,2,)(2,2,2BACy B x A y y x x d B AC y B x A B Ay y x x BACy B x A B Ay B Ax y B x A C B y y A x x +++=-+-=⇒+++=+λ=-+-⇒+++=λ⇒+λ-+=+=-λ-=λ-=最后结果就是所求距离d 的计算公式.注 上面的求解过程是由(F)求出λ后直接得到2d ,而不再去算出y x 与的值,这是一种目标明确而又简捷的解法. 三、[证](1)只需引入辅助函数:)()()(x g x f x h -=.易知)(x h 在],[b a 上连续,满足0)(,0)(><b h a h ,故由介值性定理(或根的存在定理),必存在),(0b a x ∈,满足0)(0=x h ,即)()(00x g x f =.(2)x x x f ln )(=的定义域为),0(∞+,在其上满足:),0(,01)(,1ln )(∞+∈>=''+='x xx f x x f ,所以)(x f 为一严格凸函数.根据詹森不等式,对任何正数c b a ,,,恒有.)(ln )3(ln )ln ln ln (31)3(ln 3cbacb ac b a cb ac c b b a a cb a cb a <++⇒++<++++++最后借助函数x ln 的严格递增性,便证得不等式cbacb a cb ac b a <⎪⎭⎫ ⎝⎛++++3.(3)由于较难直接求出该级数的部分和,因此无法利用部分和的极限来计算级数的和.此时可以考虑把该级数的和看作幂级数=)(x S ∑∞=++-01212)1(n n n n x在1=x 处的值,于是问题转为计算)(x S .不难知道上述幂级数的收敛域为]1,1[-,经逐项求导得到]1,1[,)1()(02-∈-='∑∞=x xx S n nn;这已是一个几何级数,其和为]1,1[,11)()(22-∈+=-='∑∞=x xxx S n n.再通过两边求积分,还原得⎰⎰=+='=-xxx t tt t S S x S 02,arctan 11)()0()(d d由于这里的0)0(=S ,于是求得∑∞=π===+-041a r c t a n)1(12)1(n nS n .。