福建工程学院线性代数期末试卷

合集下载

福建工程学院线性代数试卷(23)

福建工程学院线性代数试卷(23)

福建工程学院线性代数试卷(23)一、单项选择题(每题4分,共16分)1、行列式122211211-=--a a a a , 则线性方程组⎩⎨⎧-=--=-22221211212111b x a x a b x a x a 的解是( ) (A) 22111122221211,b a b a x a b a b x ==(B) 22111122221211,b a b a x a b a b x ---=--=(C) 22111122221211,b a b a x a b a b x --=----=(D) 22111122221211,b a b a x a b a b x ---=----=2、设矩阵A =⎪⎪⎭⎫ ⎝⎛3150,则A 的转置矩阵T A 是( ) (A ) ⎪⎪⎭⎫⎝⎛--3150 (B ) ⎪⎪⎭⎫ ⎝⎛3150 (C ) ⎪⎪⎭⎫⎝⎛-3150 (D ) ⎪⎪⎭⎫⎝⎛3510 3、设A 是3×4矩阵,B 是4×3矩阵,则矩阵AB 的秩为( ) (A ) 3 (B ) 4 (C ) 3≤ (D ) 4≤ 4、设A 为n 阶矩阵,且0=A ,则( ) (A ) A 的列秩等于零 (B ) R (A ) < n −1(C ) A 中必有一行向量可以由其它行向量线性表示 (D ) A 中必有一行向量可以由其它行向量唯一地线性表示二、填空题 (本大题分4小题, 每小题4分, 共16分)1. ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛z y x c c c b b b a a a 321321321等于 ___________________________.2. 若n 元齐次线性方程组A 0=x 只有零解, 且其系数矩阵的秩为r , 则r 与n 的关系必为 .3. 二次型2332223121342x x x x x x x f ++--= 写成矩阵形式为 .4. 设 ⎪⎪⎭⎫⎝⎛=3142A , 则 A -1等于 ___________________. 三、( 本题10分 )已知⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=531214,131201,545121301C B A , 求C AB 2+.四、( 本题10分 ) 计算行列式1111111111111111---=D 的值.五、( 本题10分 ) 求 ⎪⎪⎪⎭⎫⎝⎛----351345231 的逆矩阵.六、( 本题10分 ) 设 ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=7294125242733021A ,(1)求矩阵A 的秩;(2)求齐次线性方程组A 0=x 的通解.七、( 本题7分 )判别方程组⎪⎩⎪⎨⎧=+--=-++=++-05631242725432143214321x x x x x x x x x x x x 是否有解(请说明理由)?八、(本题14分) 设二次型 ()222121211283,x x x x x x f --= ,(1) 写出它的矩阵A ; (2) 求出A 的特征值和特征向量; (3) 写出正交变换x =P y , 将f 化成标准形.九、证明题( 本题7分 )设X 为n 维列向量,1=X X T,令TX X E H 2-=,证明H 是对称的正交矩阵.。

线性代数期末考试题及答案

线性代数期末考试题及答案

线性代数期末考试题及答案一、选择题1. 下列哪个不是线性代数的基本概念?A. 矩阵B. 向量C. 函数D. 行列式答案:C. 函数2. 矩阵A的转置记作A^T,则(A^T)^T等于A. AB. -AC. A^TD. 2A答案:A. A3. 对于矩阵A和B,满足AB = BA,则称A和B是A. 相似矩阵B. 对角矩阵C. 线性无关D. 对易矩阵答案:D. 对易矩阵4. 行列式的性质中,不能成立的是A. 行列式交换行B. 行列式某一行加上另一行不变C. 行列式等于数乘其中某一行对应的代数余子式的和D. 行列式的某一行的系数乘以另一行不变答案:D. 行列式的某一行的系数乘以另一行不变5. 给定矩阵A = [3, -1; 4, 2],则A的秩为A. 0B. 1C. 2D. 3答案:C. 2二、填空题1. 给定矩阵A = [2, 1; -3, 5],则A的行列式为______答案:132. 设矩阵A的逆矩阵为A^-1,若AA^-1 = I,其中I是单位矩阵,则A的逆矩阵为______答案:I3. 若矩阵的秩为r,且矩阵的阶数为n,若r < n,则该矩阵为______矩阵答案:奇异三、简答题1. 解释什么是线性相关性和线性无关性?答案:若存在不全为零的数k1, k2,...,kn,使得方程组中的向量k1v1 + k2v2 + ... + knvn = 0成立,则称向量组{v1, v2, ..., vn}线性相关;若该方程仅在k1 = k2 = ... = kn = 0时成立,则称向量组{v1, v2, ..., vn}线性无关。

2. 如何判断一个矩阵是对称矩阵?答案:若矩阵A的转置等于自身,即A^T = A,则称矩阵A是对称矩阵。

四、计算题1. 给定矩阵A = [1, 2; 3, 4],求A的逆矩阵。

答案:A的逆矩阵为1/(-2)[4, -2; -3, 1]2. 求向量v = [1, 2, 3]的模长。

经济数学《线性代数》期末试卷三(含答案解析)

经济数学《线性代数》期末试卷三(含答案解析)

《线性代数》试卷三一.选择题(每题3分,共30分)1.在四阶行列式ij a 的展开式中不会出现的项是( ).A. 24133241a a a aB. 24133241a a a a -C. 14233241a a a aD. 11223344a a a a【解答】由于A.B 选项仅相差一个符号,故答案必为A.B 其中之一.注意到24133241a a a a 的行标.列标逆序数之和为奇数,故其符号为负号,因此选A.2.设A .B 为n 阶对称阵且B 可逆,则下列矩阵中为对称阵的是( ) A. 11AB B A --- B. 11AB B A --+ C. 1B AB - D. 2()AB 【解答】显然由()()()11111111TTTT T T T AB B A AB B A B A A B B A AB --------+=+=+=+可知选项B 正确.3.设,,A B A B +以及11A B --+均为n 阶可逆矩阵,则()111A B---+=( ).A. 11A B --+ B. A B + C. ()1A AB B -+ D. ()1A B -+ 【解答】此题只须直接计算如下:()()()()()()()()()1111111111A B A A B B A B B B A A B BE B A A B B BB A A B B E----------++=+++=++=++=即可知本题选C.4.向量组()12,,,2s s ααα≥线性无关的充分条件是( ).A .存在一组数120,s k k k ====使得11220s s k k k ααα+++=成立.B .12,,,s ααα中不含零向量C .当12,,,s k k k 不全为零时,总有11220s s k k k ααα+++≠成立D .向量组12,,,s ααα中向量两两线性无关【解答】本题考察线性无关的定义.此题中向量组无论线性相关与否,选项A 均成立,故A错误;选项B 与选项D 均为必要条件但非充分条件;因此选C.5.若向量组r A ααα,,,:210 为向量组m A ααα,,,:21 的一个极大无关组,则下列说法中错误的是( )A .1α必可由向量组r A ααα,,,:210 线性表示;B .1α必可由向量组m r r ααα,,,21 ++线性表示;C .m α必可由向量组r A ααα,,,:210 线性表示;D .m α必可由向量组m r r ααα,,,21 ++线性表示.【解答】选项A.C.D 均成立,选项B 则未必.反例:令r A ααα,,,:210 为无关向量组,令m r r ααα,,,21 ++均为零向量即可.故选B.6.设A 为m n ⨯矩阵,齐次线性方程组0Ax =仅有零解的充分条件是( ) A.A 的列向量线性无关; B.A 的列向量线性相关; C.A 的行向量线性无关; D.A 的行向量线性相关.【解答】A 的列向量线性无关时,A 的秩为n ,此时方程组只有零解.故选A.7.设有非齐次线性方程组Ax b =,下列说法正确的是( ) A.导出组0Ax =只有零解时,Ax b =只有唯一解; B.导出组0Ax =有非零解时,Ax b =有无穷多解; C.若Ax b =有两个互异解,则Ax b =有无穷多解; D.以上都不对 【解答】在Ax b =有解的前提下,才可以得到:导出组0Ax =只有零解当且仅当Ax b =有唯一解,导出组0Ax =有非零解当且仅当Ax b =有无穷多解.但是去掉前提条件“Ax b =有解”时,只能得到:Ax b =有唯一解时0Ax =只有零解,Ax b =有无穷多解时0Ax =有非零解.因此选项 A.B 均不成立.选项C 是正确的,事实上,我们有如下命题:设12,,,s ααα是非齐次线性方程组Ax b =的解,则1122s s k k k ααα+++非齐次线性方程组Ax b =的解当且仅当121s k k k +++=.因此,若Ax b =有两个互异解,则其任意满足组合系数和为1的线性组合亦必为Ax b =的解,因此其必有无穷多解.故选C.8.设λ是n 阶实矩阵A 的特征值,且齐次线性方程组()0E A x λ-=的基础解系为ξ与η,则A 的属于特征值λ的全部特征向量为( ) A .ξ与η B .ξ或ηC .12k k ξη+,其中12,k k 不全为零D .12k k ξη+,其中12,k k 全不为零【解答】A 的属于特征值λ的特征向量实质为方程()0E A x λ-=的非零解.故选D.9.设TT(1,2,3,4),A ααα==,则A 的正惯性指数为( ). A.1 B.2 C.3 D.4 【解答】易知A 的秩为1,故正惯性指数最多为1.又知二次型()TT T T 0x Ax x x x x αααα==≥为半正定二次型,故正惯性指数等于秩,即为1. 故选A.10.二次型()222123123121323,,44448f x x x x x x x x x x x x =++-+-的规范形是( )A.222123z z z ++B.222123z z z --C.2212z z -D.21z【解答】直接计算知122244244A -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭的特征值为9,0,0,故标准形为219y ,规范形必为21z .故选D.二.填空题(每题3分,共18分)1.已知 (3)n n ≥阶可逆方阵A 的伴随矩阵*A ,且已知常数0k ≠,则*()kA =_______【解答】由于()()*1*n n kA kA kA E k A E kAk A -===,于是由乘法消去律(可逆矩阵满足乘法消去律)可知()*1*n kA k A -=.2.若n 阶行列式D 中有多于2-n n 个元素为0,则______=D .【解答】因行列式中有多于2n n -个元素为0,则其有少于n 个元素不为零,而n 阶行列式的值的每一项都是不同行.不同列的n 个元素的乘积再加上一个正号或负号,所以每一项中至少有一个元素为0,从而行列式的每一项都为0,故0D =.3.线性方程组123123123123332x x x x x ax x ax x +-=⎧⎪++=⎨⎪++=⎩有唯一解,则a 满足条件【解答】对于方程数与未知量个数相等的非齐次方程组,其有唯一解当且仅当系数行列式非零,于是直接计算可知3a ≠-且2a ≠。

期末线代试题及答案

期末线代试题及答案

期末线代试题及答案一、选择题(每题2分,共50分)1. 设A为3阶方阵,满足A^2 = I,则A的行列式的值是多少?A. -1B. 0C. 1D. 2答案:C2. 设向量组V1 = (1, 0, -1),V2 = (2, -1, 3),V3 = (-1, 2, 0),则V1, V2, V3是否线性相关?A. 相关B. 不相关答案:B3. 设向量组V1 = (1, 2, -1),V2 = (2, 1, 3),V3 = (-1, 4, 5),则V1, V2, V3是否线性相关?A. 相关B. 不相关答案:A4. 设A为3阶方阵,满足行列式det(A) = 3,则矩阵B = A^-1的行列式的值是多少?A. -1/3B. 3C. 1/3D. 1答案:C5. 已知矩阵A = [1 2 3, 4 5 6, 7 8 9],则A的秩是多少?A. 2B. 3C. 1D. 0答案:C二、填空题(每题2分,共20分)1. 设A为3阶方阵,满足A^T = 2A,则A的特征值之和是________。

答案:62. 设矩阵A = [1 2 3, 4 5 6, 7 8 9],则A的伴随矩阵的元素之和为________。

答案:03. 设向量组V1 = (1, 0, 1),V2 = (2, 1, 3),V3 = (-1, 0, -2),则V1, V2, V3的秩为________。

答案:24. 设三阶方阵A的特征值为λ1 = 2, λ2 = -1, λ3 = 0,则A的特征值对应的特征向量分别为________。

答案:(2, 0, 1),(0, 1, -1),(1, 1, -1)5. 设矩阵A = [1 2, 3 4],则A的迹为________。

答案:5三、解答题(每题20分,共60分)1. 设A为2阶方阵,满足det(A) = 3,求A的伴随矩阵。

答案:设A = [a b, c d],则伴随矩阵的元素为:A* = [d -b, -c a]所以伴随矩阵为:A* = [d/3 -b/3, -c/3 a/3]2. 已知矩阵A = [1 -1, 2 3],求A的特征值和特征向量。

线性代数-期末测试题及其答案

线性代数-期末测试题及其答案

线性代数期末考试题、填空题(将正确答案填在题中横线上。

每小题5分,共25分)1 -3 11.若0 5 X =°,则;t = 。

-1 2 -2| f x2 . X3 = 02. ___________________________________________________________________ 若齐次线性方程组+^X2 +x3=0只有零解,则人应满足_____________________________________ 。

x1 +x2 +x3 = 03. 已知矩阵A, B, C =(q )s n,满足AC二CB,则A与B分别是 _____________ 阶矩阵。

4•已知矩阵A为3 3的矩阵,且|A| = 3,则|2A| = ___________ 。

5. n阶方阵A满足A2 -3A - E = 0,则A A=。

二、选择题(每小题5分,共25分)6•已知二次型f • X;• 5x2 2tX i X2 -2^X3 - 4X2X3 ,当t取何值时,该二次型为正定?()4 - 4 4 4 4 1A. —— <t W0B. ——<t < —C. 0<t< —D. —一c t< 一一5 5 5 5 5 2q 4 2''1 2 3"7.已知矩阵A =0 -3 4 B = 0X6 ,且A ~ B,求x的值()<0 4<0 0 5」3」A.3B.-2C.5D.-58 •设A为n阶可逆矩阵,则下述说法不正确的是()A. A^OB. A,HOC. r(A) = nD. A的行向量组线性相关9 •过点(0, 2, 4)且与两平面x 2z =1和y -3z =2的交线平行的直线方程为()A.xy-2 z -4B.x y —2 z-4-2 _ 3-1 2_ 3 -2 C.xy 2 z 4 D.x y 2 z 4-2312 32.已知矩阵'3 1、 10 A =,其特征值为()-1A.初=2,為 =4B.人二=_2,九2C.=4D. Z_1 :=2丄2 =-4 三、解答题(每小题10分,共50分)15.证明:若A 是n 阶方阵,且 从丁=|,A = —1,证明 A+I =0。

线性代数期末考试试卷+答案

线性代数期末考试试卷+答案

×××大学线性代数期末考试题、填空题(将正确答案填在题中横线上。

每小题 2分,共10分)1 -3 1P X IX 2 X 3 =02 .若齐次线性方程组 J x 1+χx 2+x 3=0只有零解,则 扎应满足X 1亠 X 2亠 X 3= 05. n 阶方阵 A 满足 A 2-3A-E = 0 ,贝U A J = _____________________ 。

、判断正误(正确的在括号内填“√”,错误的在括号内填“X” 。

每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则D 0。

()2. 零向量一定可以表示成任意一组向量的线性组合。

()3. 向量组a 1, a 2,…,a m中,如果a 1与a m对应的分量成比例,则向量组 a 1, a 2,…,a s线性相关。

■为可逆矩阵A 的特征值,贝U A J 的特征值为’。

()若三、单项选择题(每小题仅有一个正确答案,将正确答案题号填入括号内。

每小题1.设A 为n 阶矩阵,且A = 2 ,则I AA T =( )。

①2n②2n'③2n1④42. n 维向量组:∙1,:-2, , :■ S ( 3 < S < n )线性无关的充要条件是()。

-0 11 0 0 0 0 04. A =0 0 0 10 1 0①:'1, :'2 ,':'S 中任意两个向量都线性无关②>1,-::S 中存在一个向量不能用其余向量线性表示③:'1, -'2 ,-■ S中任一个向量都不能用其余向量线性表示1.若0 5 -12x =0,则= —23•已知矩阵A ,B ,C = (C ij )s n ,满足AC =CB ,则A 与B 分别是 _____________ 阶矩阵。

a124 .矩阵 A= a21a 22的行向量组线性31a32丿2分,共10分)11,贝U A A =A 。

线代期末试题及答案

线代期末试题及答案

线代期末试题及答案一、选择题(每题3分,共30分)1. 在三维向量空间中,以下向量中线性无关的是:A) (1, 0, 0)B) (0, 1, 0)C) (0, 0, 1)D) (1, 1, 1)答案:D2. 设矩阵A = [a b; c d],若行列式det(A) = 0,则以下哪个等式成立?A) ad - bc = 0B) ab - bc = 0C) ac - bd = 0D) ad - bd = 0答案:A3. 给定矩阵A = [1 2 3; 4 5 6; 7 8 9],则A的逆矩阵为:A) [-1/6 -1/3 1/6; -1/6 2/3 -1/6; 1/6 -1/3 1/6]B) [-1 -2 -3; -4 -5 -6; -7 -8 -9]C) [1/6 1/3 -1/6; 1/6 -2/3 1/6; -1/6 1/3 -1/6]D) [1 2 3; 4 5 6; 7 8 9]答案:A4. 给定矩阵A = [2 0; 0 3],B = [1 2; 3 4],则A与B的乘积为:A) [2 4; 6 8]B) [2 0; 0 3]C) [1 2; 9 12]D) [4 6; 6 12]答案:B5. 给定向量a = (1, 2, 3)和b = (4, 5, 6),则a与b的内积为:A) 32B) 22C) 14D) 6答案:C6. 若向量a = (1, 2, 3),b = (4, -2, 5),c = (3, 1, -2),则以下哪个等式成立?A) a × b = cB) b × c = aC) c × a = bD) a × c = b答案:B7. 给定矩阵A = [1 2; 3 4],则A的特征值为:A) 1, 2B) 2, 3C) 3, 4D) 4, 5答案:A8. 设向量a = (1, 2, 3),b = (4, 5, 6),c = (2, 1, 3),则向量集合{a, b, c}的维数为:A) 1B) 2C) 3D) 4答案:C9. 给定矩阵A = [1 2; 3 4],A的转置矩阵为:A) [1 3; 2 4]B) [4 3; 2 1]C) [1 2; 3 4]D) [3 4; 1 2]答案:A10. 设矩阵A = [2 1; 3 4],则A的伴随矩阵为:A) [4 -1; -3 2]B) [2 -1; 3 4]C) [-4 1; 3 -2]D) [-2 1; -3 -4]答案:A二、计算题(共70分)1. 设矩阵A = [1 2; 3 4],求A的逆矩阵。

大学数学线性代数第二学期期末复习测试试卷含答案

大学数学线性代数第二学期期末复习测试试卷含答案

线性代数第二学期期末测试试卷含答案班别_________ 姓名___________ 成绩_____________第一部分 客观题(共30分)一、单项选择题(共 10小题,每小题2分,共20分)1. 若行列式111213212223313233a a a a a a d a a a =,则212223111213313233232323a a a a a a a a a 等于 ( ) (A) 2d (B) 3d (C) 6d (D) 6d -2. 设123010111A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,ij M 是A 中元素ij a 的余子式,则313233M M M -+=( )(A) 0 (B) 1 (C) 2 (D) 3 3. 设A 为n 阶可逆矩阵,则下列各式恒成立的是( ) (A) |2|2||T A A = (B) 11(2)2A A --= (C) *1A A -= (D) 11[()][()]T T T T A A --= 4. 初等矩阵满足( )(A) 任两个之乘积仍是初等矩阵 (B) 任两个之和仍是初等矩阵 (C) 都是可逆矩阵 (D) 所对应的行列式的值为1 5. 下列不是..n 阶矩阵A 可逆的充要条件为( )(A) 0≠A (B) A 可以表示成有限个初等阵的乘积 (C) 伴随矩阵存在 (D) A 的等价标准型为单位矩阵 6. 设A 为m n ⨯矩阵,C 为n 阶可逆矩阵,B AC =,则 ( )。

(A) 秩(A )> 秩(B ) (B) 秩(A )= 秩(B )(C) 秩(A )< 秩(B ) (D) 秩(A )与秩(B )的关系依C 而定 7. 如果向量β可由向量组12,,,s ααα线性表示,则下列结论中正确的是( ) (A) 存在一组不全为零的数12,,s k k k ,使得1122s s k k k βααα=+++ 成立(B) 存在一组全为零的数12,,s k k k ,使得1122s s k k k βααα=+++ 成立(C) 存在一组数12,,s k k k ,使得1122s s k k k βααα=+++ 成立(D) 对β的线性表达式唯一8. 设12,ξξ是齐次线性方程组0AX =的解,12,ηη是非齐次线性方程组AX b =的解,则( )(A) 112ξη+为0AX =的解 (B) 12ηη+为AX b =的解 (C) 12ξξ+为0AX =的解 (D) 12ηη-为AX b =的解9. 设110101011A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则A 的特征值是( )。

线性代数期末考试试题及答案

线性代数期末考试试题及答案

线性代数期末考试试题及答案第一节:选择题1. 下列哪个向量不是矩阵A的特征向量?A. [2, 1, 0]B. [0, 1, 0]C. [1, 1, 1]D. [0, 0, 0]答案:D2. 线性变换T:R^n -> R^m 可逆的充分必要条件是?A. T是一个单射B. T是一个满射C. T是一个双射D. T是一个线性变换答案:C3. 设线性空间V的维数为n,下列哪个陈述是正确的?A. V中的任意n个线性无关的向量都可以作为V的基B. V中的任意n - 1个非零向量都可以扩充为V的基C. V中的任意n个非零向量都可以扩充为V的基D. V中的任意n - 1个非零向量都可以作为V的基答案:A4. 设A和B是n阶方阵,并且AB = 0,则下列哪个陈述是正确的?A. A = 0 或 B = 0B. A = 0 且 B = 0C. A ≠ 0 且 B = 0D. A = 0 且B ≠ 0答案:C第二节:计算题1. 计算矩阵乘法A = [1, 2; 3, 4]B = [5, 6; 7, 8]答案:AB = [19, 22; 43, 50]2. 计算矩阵的逆A = [1, 2; 3, 4]答案:A^(-1) = [-2, 1/2; 3/2, -1/2]3. 计算向量的内积u = [1, 2, 3]v = [4, 5, 6]答案:u ∙ v = 32第三节:证明题证明:对于任意向量x和y,成立下列关系式:(x + y) ∙ (x - y) = x ∙ x - y ∙ y证明:设x = [x1, x2, ..., xn],y = [y1, y2, ..., yn]。

左边:(x + y) ∙ (x - y) = [x1 + y1, x2 + y2, ..., xn + yn] ∙ [x1 - y1, x2 - y2, ..., xn - yn]= (x1 + y1)(x1 - y1) + (x2 + y2)(x2 - y2) + ... + (xn + yn)(xn - yn)= x1^2 - y1^2 + x2^2 - y2^2 + ... + xn^2 - yn^2= (x1^2 + x2^2 + ... + xn^2) - (y1^2 + y2^2 + ... + yn^2)= x ∙ x - y ∙ y右边,由向量的内积定义可得:x ∙ x - y ∙ y = x1^2 + x2^2 + ... + xn^2 - (y1^2 + y2^2 + ... + yn^2)综上,左边等于右边,证毕。

线性代数期末考试考核试卷

线性代数期末考试考核试卷
(答题括号:________)
4.以下哪个向量组构成一个基?
A. (1, 0, 0), (0, 1, 0), (0, 0, 0)
B. (1, 2, 3), (4, 5, 6), (7, 8, 9)
C. (1, 2, 3), (2, 4, 6), (1, 1, 1)
D. (1, 1, 0), (0, 1, 1), (1, 0, 1)
...
20.(根据实际题目内容填写答案)
二、多选题
1. BCD
2. ABCD
3. ABC
4. AB
5. ABC
...
20.(根据实际题目内容填写答案)
三、填题
1. 1
2.线性无关
3.主
...
10.(根据实际题目内容填写答案)
四、判断题
1. √
2. √
3. √
...
10. ×
五、主观题(参考)
1.向量组线性无关,可以通过计算行列式不为零来证明。一个可以由给定向量组线性表示的向量可以是它们的线性组合,例如\(a\vec{v}_1 + b\vec{v}_2 + c\vec{v}_3\),其中\(a, b, c\)是适当的系数。
D. (1, 1), (1, -1)
(答题括号:________)
5.在求解线性方程组时,以下哪些情况下可以使用高斯消元法?
A.系数矩阵是方阵
B.系数矩阵是非奇异的
C.方程组中方程的个数等于未知数的个数
D.方程组可能有无穷多解
(答题括号:________)
(以下题目类似,省略以节约空间)
6. ...
A.若A为m×n矩阵,则A的转置为n×m矩阵
B.若A为m×n矩阵,则A的转置为m×n矩阵

线性代数期末考试试卷+答案.pdf

线性代数期末考试试卷+答案.pdf

一、填空题
1. 5
2.
1
3. s s , n n
4. 相关
5. A 3E
二、判断正误
1. ×
2. √
3. √
4.

5. ×
三、单项选择题
1. ③
2. ③
3. ③ 4.
② 5.

四、计算题
1.
xa b
c
d
a xb c
d
a b xc d
a
b
c xd
1b
1 xb (x a b c d)
1b
1b
xabcd b
求 B。
解 . (A 2E)B A
( A 2E) 1
2 11
2 2 1,
11 1
B (A 2E) 1 A
5 22 4 32 22 3
1 10 0
3.
设B
01 00
1 0, 11
00 0 1
求 。 X (C B)' E,
2134
C
0 0
2 0
1 2
3 1
且矩阵
0002
满足关系式
4. 问 a 取 何 值 时 , 下 列 向 量 组 线 性 相 关 ?
线性代数期末考试试卷 +答案
大学生校园网— 线性代数 综合测试题
×××大学线性代数期末考试题
一、填空题(将正确答案填在题中横线上。每小题
2
分,共 10 分)
1 31
1. 若 0 5 x 0 ,则
12 2
__________。
x1 x 2 x3 0
2.若齐次线性方程组 x1 x2 x3 0 只有零解,则 应
2 11

线性代数期末考试试题

线性代数期末考试试题

线性代数期末考试试题,(32分)填空(2分16)aaaa1、设四阶行列式的展开式中有一项,此项前面应带的符号Da,21431234ij102为;又设三阶行列式,其第二行元素的代数余子式之和D,3453011AAA,,=。

2122231312,,,2、当=时,矩阵的秩=2,此时若令矩阵=,,A,1321ArAt,,,,,,262t,,,则的列向量组的一个极大无关组为。

A,,,,,,12343,1*1,*AA,3、设为四阶方阵,且=2,则= ,= ,(其中,AAAA,,2为矩阵的伴随矩阵). AT200,,4、设,,则==,=。

AA,,,386,,321,,,,n5、阶矩阵为可逆矩阵的充要条件是的列向量组线性关;又为正交AAA矩阵的充要条件是的行向量组是向量组。

A1011101021100,,,,,,10,,,,,,10031,0106、= ,=。

,,21,,,,,,00142,201,,,,,,12,,17、设二阶矩阵,矩阵,则矩阵的对角标准形A,BCAC,B,,,32,1为,= . BI,8、为三阶实对称矩阵,且,不可逆,=1,则的三个特征值AAI,2AI,AAT为 ;以为系数矩阵的二次型的规范形AfxxxXAX,,,123为。

6 2二、(21分)计算(要求写出计算过程)(6分+7分+8分)111a111a1、计算四阶行列式: D,111aa11101101,,,,,1**2、设矩阵与满足(其中为矩阵的,,,,A,,341B,212AXABX,,AA,,,,111,10,,,,伴随矩阵),化简此矩阵方程并求矩阵. X6 3TTT3、设,,为线性方程组,,,2101,,,1110,,,,1211AXB,,,,,,,123的三个解, rA,2,,求:此方程组的导出组的一个基础解系,使它构成一个标准正交向量组。

AX,0xxxx,,,,,223,1234,三、(13分)设线性方程组,348xxxxt,,,,,12344484xxx,,,,,124,求:当取何值时,方程组有解;有解时求出方程组的通解。

线性代数 期末测试题及其答案

线性代数 期末测试题及其答案

线性代数期末考试题之杨若古兰创作一、填空题(将准确答案填在题中横线上.每小题5分,共25分)1.2足.3是阶矩阵.45二、选择题(每小题5分,共25分)6当t 取何值时,该二次型为正定?( )7.已知矩阵,求的值( )8.设A 为n 阶可逆矩阵,则下述说法不准确的是( )A的行向量组线性相干9.过点(0,2,4行的直线方程为()10其特征值为()三、解答题(每小题10分,共50分)11.矩足关系式12.问取何值时,以下向量组线性相干?解和有没有量多解?当方程组有没有量多解时求其通解.14.求此向量组的秩和一个极大有关组,并将其余向量用该极大有关组线性暗示. 15.证实其中线性代数期末考试题答案一、填空题1. 5.解析:采取对角线法则,考查常识点:行列式的计算.难度系数:解析:要使该现行方程组只要零解,考查常识点:线性方程组的求解难度系数:解析;,,,阶矩阵.考查常识点:n 阶矩阵的性质难度系数: 4. 24解析:由题可知3考查常识点:矩阵的运算 难度系数: 解析:考查常识点:求解矩阵的逆矩阵 难度系数:二、选择题 6. A解析:由题可知,该二次型矩阵为,而此时,该二次型正定.考查常识点:二次型正定的判断难度系数7. C解析:由矩阵特征值性质有1-3+3=1+x+5,可解得x=-5. 考查常识点:n 阶矩阵特征值的性质 难度系数:8. D解析:由题可知,A 为n 阶可逆矩阵,则A 的行向量组线性有关.考查常识点:n 阶可逆矩阵的性质 难度系数:9. A.解析:由题可知,两平面法向量分别为,则所求直线的方向向量为考查常识点:求空间平面交线平行的直线方程 难度系数:10. C.考查常识点:求解矩阵的特征值三、解答题11.解:考查常识点:矩阵方程的运算求解难度系数:12.解:.考查常识点:向量组的线性相干性难度系数:13.解:③当时,有没有量多组解,通解为考查常识点:线性方程组的求解14.解:由题可知,且线性关系为考查常识点:向量组的秩与最大有关组难度系数:15.证实:由题可知,考查常识点:n 阶方阵的性质难度系数:。

福建工程学院线性代数试卷(3)

福建工程学院线性代数试卷(3)

福建工程学院线性代数试卷(3)一、 是非题 (共 12 分 ,每题 3 分 )1.两个同阶的非零方阵相乘时,其结果一定不为零矩阵。

( ) 2.设 A 是正交矩阵,若A2E ,则 A 是对称矩阵。

()3.若1,, r r2 是线性相关的,则其中任何一个向量都可以由其余向量线性表示。

( )4 . 如 果向 量 组 1 ,,s的 秩 为 r , 那 么 其 中任 意 r 个 向 量 都 可 以 构 成 它 的 一 个 最 大 线 性 无 关组 。

( )二、选择题(共 15 分,每题 3 分)1.设 A 为 n 阶可逆矩阵,是 A 的一个特征值,则A* 的特征值之一是()( A )1An( B )1A( C )A( D )An2.设 A 为 m n 矩阵,则齐次线性方程组 A x = 0 仅有零解的充分条件是()( A ) A 的列向量组线性无关 (B ) A 的列向量组线性相关 ( C ) A 的行向量组线性无关( D ) A 的行向量组线性相关1 1 0 0 00 1 1 0 03.矩阵0 0 1 1 0 的秩为()0 0 0 1 10 00 0 1( A ) 2 ( B ) 3(C ) 4 ( D ) 54.设 n 阶方阵 A , B ,C 满足关系式 ABC=E ,其中 E 是 n 阶单位矩阵,则必有()( A ) ACB=E ( B ) CBA=E( C ) BAC=E( D ) BCA=E5. n 阶方阵 A 具有 n 个不同的特征值是A 与对角阵相似的( )( A )充要条件( B )充分而非必要条件( C ) 必要而非充分条件 ( D ) 既非充分也非必要条件三、 填空题(共 24 分,每题 4 分)2 01.已知1 ,2 , 则 T,T312.设 4 4 矩阵 A234 ,B234行列式 A4, B1 ,则行列式AB5 03.设 A0 31 ,则 A 1.0 21.,其中,, 2 , 3 , 4 均为 4 维列向量,且已知.4.已知向量组1(1,2,3,4),2(2,3,4,5), 3 (3,4,5,6),4(4,5,6,7) ,则该向量组的秩是,最大线性无关组是.2101005.已知A0x2与 B020相似,则 x=.0010036.当 t 取值在范围内时,二次型 f ( x1, x2 , x3 )x122tx1 x2 x22tx32为正定的。

线性代数期末考试试卷合集(共十一套)

线性代数期末考试试卷合集(共十一套)

线性代数期末考试试卷合集(共十一套)目录线性代数期末试卷及参考答案(第一套) .............................................................................. 1 线性代数期末试卷及参考答案(第二套) .............................................................................. 9 南京工程学院期末试卷(第一套) ........................................................................................ 17 南京工程学院期末试卷(第二套) ........................................................................................ 24 南京工程学院期末试卷(第三套) ........................................................................................ 30 线性代数 期末试卷(A 卷) .................................................................................................. 36 线性代数 期末试卷(B 卷) .................................................................................................. 41 线性代数 期末试卷(C 卷) .................................................................................................. 46 线性代数 期末试卷(D 卷) .................................................................................................. 51 线性代数 期末试卷(E 卷) .................................................................................................. 57 线性代数 期末试卷(F 卷) (62)线性代数期末试卷及参考答案(第一套)一、单项选择题(本大题共5小题,每小题3分,共15分)1、设矩阵⎪⎪⎭⎫ ⎝⎛=3223A 满足B AB =,则矩阵=B ( )(A ) ⎪⎪⎭⎫⎝⎛21k k ; (B )⎪⎪⎭⎫ ⎝⎛11; (C ) ⎪⎪⎭⎫ ⎝⎛--2121k k k k ; (D ) ⎪⎪⎭⎫ ⎝⎛-2111k k .(21k k ,为任意常数) 2、设n 阶方阵A ,B 满足E AB =,则下列一定成立的是 ( ) (A )E B A == ; (B )E B A =+ ; (C )1=A 或1=B ; (D )1=⋅B A .3、设矩阵,⎪⎪⎪⎭⎫ ⎝⎛=001010100A 则 =-++)()(E A R E A R ( )(A ) 2; (B ) 3; (C ) 4; (D ) 5 .4、设向量组A :r a a a,,,21可由向量组B :s b b b ,,,21线性表示,则正确的是 ( )(A )当s r >时,向量组A 必线性相关; (B ) 当s r <时,向量组A 必线性相关; (C )当s r >时,向量组B 必线性相关; (D ) 当s r <时,向量组B 必线性相关.5、设A 为n m ⨯的矩阵,0=x A 是非齐次线性方程组b x A =所对应的齐次线性方程组,则下列结论正确的是( )(A ) 若0=x A 仅有零解,则b x A =有唯一解;(B ) 若b x A =有无穷多解,则0=x A 有非零解;(C ) 若n m =,则b x A=有唯一解;(D ) 若A 的秩m A R <)(,则b x A=有无穷多解.二、填空题(本大题共5小题,每小题3分,共15分)1、设方阵⎪⎪⎪⎭⎫⎝⎛=010002cb a A ,当c b a ,,满足 时,A 为可逆方阵.2、若可逆方阵A 的有一个特征值3,则13-)(A 必有一个特征值为 .3、设A 为54⨯的矩阵,且秩2=)(A R ,则齐次方程组0=x A 的基础解系所含向量个数是 .4、若三阶行列式222023z y x =1,则行列式1117110111------z y x = . 5、设向量组⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛13232121,,x 线性相关,则常数x= .三、计算题(本题共6小题,共50分)1、(6分)设矩阵⎪⎪⎪⎭⎫ ⎝⎛-=b a a A 140132121的秩2=)(A R , 求常数b a ,及一个最高阶非零子式.2、(8分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛--=314020112A 的特征值和特征向量. 3、(8分)设3阶方阵A 与B 满足BA A BA A 22+=*, 其中,⎪⎪⎪⎭⎫⎝⎛=400030001A 求B .4、(10分)设向量组A :.,,,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=77103 1301 3192 01414321αααα 求: (1) 向量组A 的秩; (2) 向量组A 的一个最大线性无关组; (3) 将此最大无关组之外的其它向量用最大无关组线性表示.5、(8分)计算行列式aa a a D ++++=4321432143214321,其中0≠a .6、(10分)设线性方程组⎪⎩⎪⎨⎧=+-=--=--532403321321321x x x b ax x x x x x , 问:当参数b a ,取何值时,(1)此方程组有唯一解? (2)此方程组无解? (3)此方程组有无穷多解? 并求出通解.四、判断题(本大题共5小题,每小题2分,共10分) 1、设矩阵B A ,为3阶方阵,且42==B A ,,则121=-AB.( )2、由3维向量构成的向量组4321a a a a,,,中必有一个可由其余向量线性表示. ( ) 3、对任意n 阶方阵C B A ,,,若AC AB =,且O A ≠,则一定有C B =.( )4、设向量21ηη ,是线性方程组b x A =的解,则212ηη -也是此方程组的一个解.( ) 5、正交向量组321a a a ,,线性无关.( )五、证明题(本题共2小题,每小题5分,共10分) 1、设n 阶对称矩阵A 满足关系式O E A A =++862,证明:(1)E A 3+是可逆矩阵,并写出逆矩阵; (2) E A 3+是正交矩阵.2、若3210a a a a,,,是n 元非齐次线性方程组b x A =的线性无关解,且,)(3-=n A R证明:030201a a a a a a---,,是其对应的齐次线性方程组0 =x A 的基础解系.参考答案一、选择题(本题5小题, 每小题3分, 共15分)1. C ;2. D ;3. B ;4. A ;5. B .二、填空题(本题5小题, 每小题3分, 共15分)1. c ab 2≠;2.91; 3. 3; 4. 23- ; 5. 5. 三、计算题(本题6小题, 共50分)1. 解: A →⎪⎪⎪⎭⎫ ⎝⎛------210022170121b a a a (2分), 由R (A ) = 2知,⎩⎨⎧=-=--0201b a , ⎩⎨⎧=-=∴21b a ,一个最高阶非零子式3221-. 2.解: 由λλλλ-----=-314020112E A (),)(0212=-+-=λλ 得A 的特征值为.,21321==-=λλλ当11-=λ时, 解 ().0=+x E A,⎪⎪⎪⎭⎫ ⎝⎛-−→−⎪⎪⎪⎭⎫ ⎝⎛--=+000010101414030111r E A得基础解系:,⎪⎪⎪⎭⎫⎝⎛=1011p 对应11-=λ的全部特征向量为)(0111≠k p k当232==λλ时, 解().02=-x E A,⎪⎪⎪⎪⎪⎭⎫⎝⎛--−→−⎪⎪⎪⎭⎫⎝⎛--=-000000414111140001142r E A 得基础解系:,⎪⎪⎪⎭⎫ ⎝⎛=401 2p ,⎪⎪⎪⎭⎫ ⎝⎛=041 3p对应232==λλ的特征向量为)0,(323322不全为k k p k p k+ 3. 解: B= 2(|A |E -2A ) -1 A |A |=12(|A |E -2A ) -1 =⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛4100061000101, B=2⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛410061000101⎪⎪⎪⎭⎫⎝⎛400030001 =⎪⎪⎪⎪⎪⎭⎫⎝⎛20001000514. 解: ),,,(4321αααα=A=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------71307311100943121→⎪⎪⎪⎪⎪⎭⎫⎝⎛--0000110024103121 → ⎪⎪⎪⎪⎪⎭⎫⎝⎛-0000110020102001 所以,秩3=A R , (1分)一个最大线性无关组为,,,321ααα(2分)且321422αααα++-=5. 解:aa a a D ++++=43214321432143214321c c c c +++aa a a a a a +++++++432104321043210432101r r i -aa a a 00000000043210+=)(103+a a 6. 解: 增广矩阵⎪⎪⎪⎭⎫⎝⎛-----==5312410131b ab A B ),( →⎪⎪⎪⎭⎫⎝⎛+---120011100131b a(1) 当12-≠=b a ,时, 32=<=)()(B R A R ,此时方程组无解. (2) 当b a ,2≠取任意数时, 3==)()(B R A R ,此时方程组有唯一解. (3) 当12-==b a ,时, 32<==)()(B R A R ,此时方程组有无穷多解.B →⎪⎪⎪⎭⎫ ⎝⎛--000011100131 →⎪⎪⎪⎭⎫ ⎝⎛000011103201即⎩⎨⎧+-=+-=1323231x x x x 原方程组的通解为)(R c c ∈⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛--013112.四、判断题(本题5小题, 每小题2分, 共10分)1. ×;2. √;3. ×;4. √;5. √.五、证明题(本题2小题, 每小题5分, 共10分)1.证明: (1)由O E A A =++862得E E A A =++962,即E E A E A =++))((33 所以E A 3+可逆,且E A E A 331+=+-)(.(2)由A 为n 阶对称矩阵知,E A E A E A TT T 333+=+=+)()(,故()()()E E A E A E A E A T=++=++333)3(,所以E A 3+是正交矩阵.2. 证明: 3210a a a a,,,是n 元非齐次线性方程组b x A =的解,030201a a a a a a---∴,,是对应齐次方程组0 =x A 的解;又,)(3-=n A R 所以0 =x A 的基础解系中含向量个数为3)(=-A R n 个; 下证 030201a a a a a a---,,线性无关即可.设0033022011 =-+-+-)()()(a a k a a k a a k 即00321332211=++-++a k k k a k a k a k )(又 3210a a a a ,,,线性无关, 故⎪⎪⎩⎪⎪⎨⎧=++-===0000321321)(k k k k k k 有唯一解0321===k k k所以030201a a a a a a---,, 线性无关,从而030201a a a a a a---,,是其对应的齐次方程组0 =x A 的基础解系线性代数期末试卷及参考答案(第二套)一、填空题(本大题共7小题,每小题3分,共21分)1、设向量⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=123,321βα ,则当k = 时,.正交与βαα +k2、设方阵A 满足关系式O A A =+322,则1)(-+E A = .3、若三阶行列式930021-=x xxx ,则 =x . 4、设矩阵⎪⎪⎭⎫⎝⎛-=0211A ,多项式x x x f 2)(2+=,则=)(A f . 5、设向量组⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-13,032,101λ线性相关,则常数λ= .6、n 元非齐次线性方程组b x A=有无穷多解的充要条件是 .7、设矩阵⎪⎪⎪⎭⎫ ⎝⎛---=2135212b a A 的对应特征值λ的一个特征向量为⎪⎪⎪⎭⎫ ⎝⎛-111,则 ._______________,______,===b a λ二、单项选择题(本大题共5小题,每小题3分,共15分)1、设A ,B 是任意n 阶方阵(2≥n ),则下列各式正确的是 ( )(A ) B A B A +=+; (B ) 22B A B A B A -=-⋅+; (C ) B A B A ⋅=; (D ) A B AB T⋅= .2、下列4个条件中,①A 可逆 ; ②A 为列满秩(即A 的秩等于A 的列数); ③A 的列向量组线性无关; ④ O A ≠ ;可使推理“ 若O AB =, 则O B = ”成立的条件个数是 ( )(A ) 1个 ; (B ) 2个; (C ) 3个; (D ) 4个.3、向量组s ααα,,,21)2(≥s 线性无关,且可由向量组s βββ ,,,21线性表示, 则下列结论中不成立的是( )(A ) 向量组s βββ,,,21线性无关;(B ) 对任一个j α )1(s j ≤≤,向量组s j βββα,,,,21线性相关;(C ) 存在一个j α )1(s j ≤≤,向量组s j βββα,,,,21线性无关;(D ) 向量组s ααα,,,21与向量组s βββ ,,,21等价. 4、设A ,B 均为3阶方阵, 3)(=A R ,2)(=B R , 则=)(AB R( )(A ) 1; (B ) 2; (C ) 3; (D ) 6 .5、设A 为n m ⨯的矩阵,r A R =)(,则非齐次线性方程组b x A=( )(A ) 当n r = 时有唯一解; (B ) 当n m r == 时有唯一解;(C ) 当n m = 时有唯一解; (D ) 当n r < 时有无穷多解. 三、计算题(本题共6小题,共54分)1、(7分)设矩阵⎪⎪⎪⎭⎫ ⎝⎛---=61011152121λλA 的秩2)(=A R , 求常数λ及一个最高阶非零子式.2、(9分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛=320230001A 的全部特征值和特征向量.3、(8分)设3阶方阵C B A ,,满足方程 A B A C =-)2(,试求矩阵A ,其中 ⎪⎪⎪⎭⎫ ⎝⎛=100010301B , ⎪⎪⎪⎭⎫ ⎝⎛=300020001C .4、(10分)设向量组A :.6721 ,11313 ,5652 ,21214321⎪⎪⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=αααα 求: (1) 向量组A 的秩; (2) 向量组A 的一个最大线性无关组; (3) 将此最大无关组之外的其它向量用最大无关组线性表示.5、(8分)计算行列式cc b b a a x x x x D ---=000000, 其中x c b a ,,,全不为0.6、(12分)设线性方程组⎪⎩⎪⎨⎧=++=++=++bx x x x a x x x x x 3213213214231202, 问:当参数b a ,取何值时,(1)此方程组有唯一解? (2)此方程组无解? (3)此方程组有无穷多解? 并求出通解.四、证明题(本题共2小题,每小题5分,共10分)1、若向量321,,ααα线性无关, 求证 2132αα +,324αα +,135αα + 也线性无关.2、设矩阵T E A ηη -=, 其中E 是3阶单位矩阵,⎪⎪⎪⎭⎫⎝⎛=321x x x η 是单位向量,证明:(1) A A =2; (2) A 不可逆.参考答案一、填空题(本题7小题, 每小题3分, 共21分)1. 75-; 2. E A +2; 3. 3±; 4. ⎪⎪⎭⎫ ⎝⎛--2631 ; 5. 6 ; 6. n b A R A R <=),()(; 7. -1 ,-3 ,0 .二、选择题(本题5小题, 每小题3分, 共15分)1. D ;2. C ;3. C ;4. B ;5. B .三、计算题(本题6小题, 共54分)1. 解: A →⎪⎪⎪⎭⎫⎝⎛--+---3390022110121λλλλλ(3分), 由R (A ) = 2知,⎩⎨⎧=-=-03039λλ,3=∴λ (2分), 一个最高阶非零子式5221 .2.解: 由λλλλ---=-32230001E A (),01)5(2=--=λλ得A 的特征值为.1,5321===λλλ当51=λ时, 解 ().05=-x E A,0001100012202200045⎪⎪⎪⎭⎫⎝⎛-−→−⎪⎪⎪⎭⎫ ⎝⎛---=-r E A得基础解系:,1101⎪⎪⎪⎭⎫⎝⎛=p 对应51=λ的全部特征向量为)(0111≠k p k当132==λλ时, 解().0=-x E A,000000110220220000⎪⎪⎪⎭⎫ ⎝⎛−→−⎪⎪⎪⎭⎫ ⎝⎛=-r E A 得基础解系:,001 2⎪⎪⎪⎭⎫ ⎝⎛=p ,110 3⎪⎪⎪⎭⎫ ⎝⎛-=p对应132==λλ的特征向量为)0,(323322不全为k k p k p k+.3. 解: CB A E C =-)2( ;⎪⎪⎪⎭⎫ ⎝⎛=-5000300012E C ; ⎪⎪⎪⎪⎭⎫ ⎝⎛=--51000310001)2(1E C ; ⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛=⋅-=-5300032030110001030130002000151000310001)2(1CB E C A . 4. 解: ),,,(4321αααα =A →⎪⎪⎪⎪⎪⎭⎫⎝⎛---00210045101321 → ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--000021********001 (初等变换步骤不一,请酌情给分)所以,秩3=A R , (1分) 一个最大线性无关组为,,,321ααα(2分)且32142617αααα--=5. 解:)1,2,3(1=++i c c i i Dcb a xx x x---0000000234=xabc 4- .6. 解: 增广矩阵⎪⎪⎪⎭⎫⎝⎛==b a b A B 4231120211),( →⎪⎪⎪⎭⎫⎝⎛----120014100211b a a , (1) 当b a ,2≠取任意数时, 3)()(==B R A R , 此时方程组有唯一解; (2). 当1,2≠=b a 时, 3)(2)(=<=B R A R ,此时方程组无解;(3) 当1,2==b a 时, 32)()(<==B R A R ,此时方程组有无穷多解.B →⎪⎪⎪⎭⎫ ⎝⎛-000012100211 →⎪⎪⎪⎭⎫⎝⎛-000012101001 即⎩⎨⎧--==121321x x x原方程组的通解为)(011120R c c ∈⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-.四、证明题(本题2小题, 每小题5分, 共10分)1.证明: 由题意 ⎪⎪⎪⎭⎫⎝⎛=+++540013102),,()5,4,32(321133221ααααααααα , 记 AK B = .K K ∴≠=,022 可逆, 又321,,ααα线性无关,所以)5,4,32(133221αααααα +++R 3),,(321==αααR , 即 2132αα +,324αα +,135αα+ 也线性无关.2. 证明: (1) η为单位向量,1=∴ηηT ,A E E E E A T T T T T T T =-=+--=--=∴ηηηηηηηηηηηηηη)())((2.(2) 由(1)知,A A =2, 即 O E A A =-)(,3)()(≤-+∴E A R A R ,η为单位向量,O E A T ≠-=-∴ηη , 1)(≥-E A R ,从而32)(<≤A R , 所以0=A , 故A 不可逆.另一证法: 0)(=-=-=-=ηηηηηηηηηηT T E A ,的非零解,为线性方程组0=∴ηηA所以0=A , 故A 不可逆.南京工程学院期末试卷(第一套)共6 页第1页课程所属部门:基础部课程名称:线性代数A 考试方式:闭卷(A卷)使用班级:工科本科南京工程学院试卷共 6 页第 4 页南京工程学院期末试卷(第二套)共6 页第1页课程所属部门:基础部课程名称:线性代数A 考试方式:闭卷(A卷)使用班级:工科本科南京工程学院期末试卷(第三套)共6 页第1页课程所属部门:数理部课程名称:线性代数A 考试方式:闭卷(A卷)使用班级:工科本科线性代数 期末试卷(A 卷)一、(本大题共8小题,每题3分,共24分)1. 设B A ,均为n 阶方阵,则下面各式正确的是----------------------------------( C ) (A)TTTB A AB =)( (B) 222)(B A AB = (C) || ||AB BA = (D)AB BA = 2. 下列命题正确的是--------------------------------------------------------------------( C ) (A) 若02=A ,则0=A (B) 若A A =2,则0=A 或E A = (C) 若E A =,则E A n = (D) 若E A =2,则E A ±=3. 若行列式的所有元素都变号,则--------------------------------------------------( D ) (A) 行列式一定变号 (B) 行列式一定不变号 (C) 偶阶行列式变号 (D) 奇阶行列式变号4. 设k c c c b b b a a a =321321321,则112311231123232323a a a a b b b b c c c c ++=+-------------------------------( B ) (A) k 6 (B) k 3 (C) k 2 (D) k5. 若某线性方程组的系数行列式为零,则该方程组------------------------------( D ) (A) 有唯一解 (B) 有非零解 (C) 无解 (D) 有非零解或无解6.已知TT T t ),3,1(,)3,2,1(,)1,1,1(321===ααα线性相关的,则t =-----( B )(A) 4 (B) 5 (C) 6 (D) 77. 设方阵A 相似于(1,1,1)diag -,则10A =---------------------------------------- ( A )(A) E (B) 10E (C) E - (D) 10E - 8. 设A 为n 阶方阵,则下列说法中正确的是--------------------------------------( B ) (A) 若A 可对角化,则A 为实对称阵 (B) 若A 为实对称阵,则A 可对角化 (C) 若A 可对角化,则A 必可逆 (D) 若A 可逆,则A 可对角化二、填空题(本大题共4小题,每题4分,共16分)1.设2110A ⎛⎫=⎪-⎝⎭,则*A =0112-⎛⎫ ⎪⎝⎭,1A-=0112-⎛⎫ ⎪⎝⎭。

线性代数期末考试题及答案

线性代数期末考试题及答案

线性代数期末考试题及答案一、选择题(每题4分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的逆矩阵的行列式为:A. 1/2B. 1/4C. 2D. 4答案:B2. 向量α=(1,2,3)和向量β=(4,5,6),则向量α和向量β的点积为:A. 32B. 22C. 14D. 0答案:A3. 设A为3×3矩阵,且A的秩为2,则A的行向量线性相关,下列说法正确的是:A. 正确B. 错误答案:A4. 若A为n阶方阵,且A^2=0,则A的秩为:A. nB. n-1C. 0D. 不确定答案:C5. 设A为3阶方阵,且A的特征值为1,2,3,则矩阵A的迹为:A. 6B. 1C. 2D. 3答案:A二、填空题(每题5分,共30分)1. 设矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],则矩阵A的转置为\[\begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}\]。

答案:\[\begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}\]2. 设向量α=(2,3),向量β=(4,6),则向量α和向量β共线,其比例系数为2。

答案:23. 若矩阵A=\[\begin{bmatrix}1 & 1 \\ 2 & 2\end{bmatrix}\],则矩阵A的行列式为2。

答案:24. 设矩阵B=\[\begin{bmatrix}0 & 1 \\ -1 & 0\end{bmatrix}\],则矩阵B的逆矩阵为\[\begin{bmatrix}0 & -1 \\ 1 &0\end{bmatrix}\]。

答案:\[\begin{bmatrix}0 & -1 \\ 1 & 0\end{bmatrix}\]5. 设矩阵C=\[\begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\],则矩阵C的特征值为1和2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011-2012第一学期
福建工程学院线性代数试卷(A )
一. 选择题(本大题分5小题, 每小题4分, 共20分)
1.


是阶对称矩阵,则下面结论中不正确的是( )
(A ) A +B 也是对称矩阵 (B )
AB 也是对称矩阵 (C
)+
(为正整数)也是对称矩阵 (D ) 也是对称矩
阵 2. 若向量组
的秩为,则( )
(A) 必定
(B) 向量组中任意小于个向量的部分组必线性无关 (C) 向量组中任意个向量必线性无关
(D) 向量组中任意个向量必线性相关
3. 设是阶行列式,则在行列式中的符号
为( )
(A )正 (B ) 负 (C ) (D )
4.下列矩阵中( )是正交矩阵
(A ) (B) (C )
(D )
5.要使 ,
都是线性方程组
的解,只要系数
矩阵
为( )
(A )
(B)
(C )
(D )
二. 填充题(每小题4分, 共20分) 1.
的充分必要条件是 .
2.设A 是4阶方阵,B 是5阶方阵,且,


.
3.实二次型,当
时,其秩为2 .
4.若向量组
线性相关,则向量组必 .
5. 若线性方程组有解,则它有惟一解的充分必要条件是它的导
出组
.
三. (
本题10分 ) 设


四. ( 本题10分 ) 设
, 解方程

五. (本题12分) 设, 求正交矩阵, 使为
对角矩阵.
六. ( 本题10分 ) 设
,求.
七. ( 本题10分,选做1题)
1. 对线性方程组,讨论取何值时,
方程组有唯一解,无解,有无穷多解. 在有无穷多解时,求出其解.
2. 用矩阵方法解非齐次线性方程组 .
八. ( 本题8分 , 选做1题)
1. 已知阶方阵
满足
,求证
可逆.
2. 已知546,273,169这三个数都是13的倍数,不用求出行列式的
值,
而用行列式性质证明:的值是13的倍数.。

相关文档
最新文档