高分子表面材料改性论文
高分子材料的表面改性与性能
高分子材料的表面改性与性能在当今科技飞速发展的时代,高分子材料凭借其优异的性能和广泛的应用领域,已经成为材料科学领域的重要组成部分。
然而,高分子材料的表面性能往往限制了其在某些特定场合的应用。
为了拓展高分子材料的应用范围,提高其性能,表面改性技术应运而生。
高分子材料的表面改性是指在不改变材料本体性能的前提下,通过物理、化学或生物等方法对材料表面的化学组成、微观结构和物理性能进行调整和优化。
其目的是改善高分子材料的表面润湿性、黏附性、耐磨性、耐腐蚀性、生物相容性等性能,以满足不同领域的应用需求。
物理改性方法是表面改性中较为常见的一类。
其中,等离子体处理是一种高效的技术手段。
等离子体中的高能粒子能够与高分子材料表面发生碰撞和反应,引入新的官能团,增加表面粗糙度,从而改善表面的亲水性和黏附性。
例如,经过等离子体处理的聚乙烯薄膜,其表面能显著提高,与油墨、涂料的结合力增强,印刷和涂装效果得到明显改善。
另一种物理改性方法是离子束注入。
通过将高能离子注入到高分子材料表面,可以改变表面的化学组成和结构,进而改善其性能。
比如,将氮离子注入到聚四氟乙烯表面,可以显著提高其耐磨性和耐腐蚀性。
化学改性方法在高分子材料表面改性中也具有重要地位。
化学接枝是一种常用的化学改性手段。
通过在高分子材料表面引入活性基团,然后与其他单体进行接枝反应,可以在表面形成一层具有特定性能的接枝聚合物层。
例如,将丙烯酸接枝到聚丙烯表面,可以使其具有良好的亲水性和生物相容性。
表面涂层也是一种常见的化学改性方法。
在高分子材料表面涂覆一层具有特定性能的涂层材料,如金属涂层、陶瓷涂层或聚合物涂层,可以显著改善其表面性能。
比如,在塑料表面涂覆一层金属涂层,可以赋予其良好的导电性和电磁屏蔽性能。
除了物理和化学改性方法,生物改性方法在近年来也受到了广泛关注。
生物改性主要是通过在高分子材料表面固定生物活性分子,如蛋白质、酶、抗体等,赋予材料特定的生物功能。
高分子材料改性课程论文聚丙烯的亲水性改善研究
高分子材料改性课程论文专业:材料科学与工程学生姓名:学号:导师:聚丙烯的亲水性改善研究摘要:聚丙烯(PP)作为通用塑料,以产量大、应用面广以及物美价廉而著称,但聚丙烯具有非极性和结晶性,其与极性聚合物、无机填料及增强材料等相容性差,其染色性、粘接性、抗静电性、亲水性也较差,这些缺点制约了聚丙烯的进一步推广应用。
本文利用聚丙烯固相接枝丙烯酸(AA)、聚丙烯与乙烯-丙烯酸共聚物(EAA)共混和聚丙烯中空纤维膜的表面活性剂浸渍处理,三个途径分别对聚丙烯进行亲水改性研究。
关键词:聚丙烯;亲水性;接触角;共混改性;因为PP不含任何极性基团而难以和金属"玻璃粘结,难以和其他许多高聚物"无机填料相容; 也难于进行印刷染色等!这些缺点限制了聚丙烯在某些领域中的应用!表面接枝法可以将强极性的亲水基团引入薄膜的表面,并且由于接枝链与基体薄膜以化学键相联! 改性后的表面具有极性和亲水性,从根本上改变现有的塑料薄膜印刷技术!PP接枝改性产物还可经压膜" 磺化"碱洗等工艺制得亲水性较好的离子交换膜,与亲水性差的膜相比具有容量大"高洗脱率"高再生率的特征!聚丙烯(PP) 材料作为第三大通用塑料,具有机械性能、耐腐蚀性及电绝缘性优良,无毒性、易加工及价格低廉等优点,受到广大学者及工业领域的极大青睐。
其薄膜、纤维、非织造布、片材及各种制品在日常生活中被大量应用。
其中,聚丙烯微孔膜主要用于锂离子电池隔离膜[1]、废水处理、气体分离等领域。
但是由于聚丙烯表面没有极性基团,其表面能很小,临界表面张力只有( 31 ~34) ×10–5 N/ cm,所以它的表面润湿性和亲水性很差,这不仅导致聚丙烯微孔膜的水通量小,而且导致其表面和溶质:之间存在憎水性相互作用,进一步导致膜污染现象。
膜污染将导致在水处理过程中膜清洗的次数和维护费用增加,甚至会产生不可逆的破坏,降低膜的使用寿命,从而限制了其在工业中的应用。
高分子材料的表面修饰和性能控制
高分子材料的表面修饰和性能控制高分子材料是一类重要的材料,在各个领域都有广泛的应用。
然而,由于其特殊的结构和性质,高分子材料的表面往往具有一定的缺陷和不稳定性,这限制了其在某些领域的应用。
为了改善高分子材料的性能,科学家们进行了大量的研究,发展了各种表面修饰和性能控制的方法。
一种常见的表面修饰方法是物理方法,如等离子体处理和激光刻蚀。
等离子体处理是利用等离子体的化学反应和能量转移来改变高分子材料表面的化学组成和形貌。
通过等离子体处理,可以在高分子材料表面形成一层致密的氧化层,从而提高其耐热性和耐腐蚀性。
激光刻蚀则是利用激光的高能量和高浓度来刻蚀高分子材料表面,从而改变其形貌和表面粗糙度。
这种方法可以用于制备具有特殊形貌和表面结构的高分子材料,如微纳米结构和光学薄膜。
另一种常见的表面修饰方法是化学方法,如表面改性和涂覆。
表面改性是通过在高分子材料表面引入新的化学基团,改变其表面性质和化学活性。
常用的表面改性方法包括化学修饰、原子层沉积和化学吸附等。
化学修饰是在高分子材料表面引入新的官能团,从而改变其表面化学性质和亲水性。
原子层沉积是利用化学气相沉积技术在高分子材料表面沉积一层原子尺度的薄膜,从而改变其表面结构和电学性能。
化学吸附是利用高分子材料表面的化学反应活性吸附特定的分子,从而改变其表面性质和分子识别能力。
涂覆是将一层特定的材料涂覆在高分子材料表面,从而改变其表面性质和功能。
常用的涂覆材料包括聚合物、金属和陶瓷等。
通过涂覆,可以在高分子材料表面形成一层致密的保护层,从而提高其耐磨性和耐腐蚀性。
除了表面修饰,高分子材料的性能控制也是一个重要的研究方向。
高分子材料的性能主要包括力学性能、热学性能和电学性能等。
力学性能是指高分子材料的强度、韧性和硬度等。
热学性能是指高分子材料的热稳定性、导热性和热膨胀系数等。
电学性能是指高分子材料的导电性、介电性和电化学性能等。
为了控制高分子材料的性能,科学家们采用了多种方法,如添加剂改性、共聚物合成和纳米填料增强等。
高分子材料的表面性质与应用研究
高分子材料的表面性质与应用研究在当今的材料科学领域,高分子材料凭借其独特的性能和广泛的应用,已经成为了不可或缺的一部分。
高分子材料的表面性质,作为决定其性能和应用的关键因素之一,一直以来都是研究的热点。
高分子材料的表面性质主要包括表面能、表面粗糙度、表面化学组成以及表面的物理形态等方面。
这些性质相互作用,共同影响着高分子材料与外界环境的相互作用和性能表现。
首先,表面能是衡量高分子材料表面活性的重要指标。
表面能较低的高分子材料,如聚四氟乙烯(PTFE),往往具有良好的自润滑性和抗粘性,在不粘锅涂层、管道内衬等领域得到了广泛应用。
而表面能较高的高分子材料,则更容易与其他物质发生相互作用,例如,一些表面能较高的聚合物在胶粘剂和涂层领域表现出色。
表面粗糙度对高分子材料的性能也有着显著的影响。
粗糙的表面可以增加材料的表面积,从而提高其与外界的接触面积和相互作用。
在生物医学领域,具有一定粗糙度的高分子材料表面有助于细胞的附着和生长,有利于组织工程和医疗器械的研发。
例如,人工关节表面的适当粗糙度可以提高其与骨组织的结合强度,延长使用寿命。
表面化学组成则决定了高分子材料的化学稳定性、耐腐蚀性和表面反应活性。
通过对高分子材料表面进行化学修饰,可以引入特定的官能团,从而赋予材料新的性能。
例如,在塑料表面引入羟基或羧基等官能团,可以提高其亲水性和印染性能;对高分子材料进行氟化处理,可以增强其耐腐蚀性和抗污性能。
高分子材料表面的物理形态,如结晶度和取向度,同样会影响其性能。
具有较高结晶度的高分子材料表面通常具有更好的机械强度和耐磨性;而具有特定取向结构的高分子材料表面,则可能表现出各向异性的性能,如光学性能或电学性能。
在实际应用中,高分子材料的表面性质发挥着至关重要的作用。
在包装领域,要求高分子材料具有良好的阻隔性能,以防止气体、水分和溶质的渗透。
这就需要对材料的表面进行处理,降低其表面的渗透性。
通过在高分子材料表面涂覆一层阻隔性能优异的涂层,或者采用多层共挤出技术制备具有特殊结构的高分子复合材料,可以有效地提高包装材料的阻隔性能,延长食品和药品的保质期。
高分子材料表面润湿性改性研究
高分子材料表面润湿性改性研究一、引言高分子材料广泛应用于现代化工、制造、医学等领域,但其表面润湿性常常不足以满足特定需求。
因此,科学家需要改性高分子材料表面润湿性以满足特殊的应用需要。
这篇文章着重从不同角度探讨改性高分子材料表面润湿性的研究进展。
二、润湿性概述表面润湿性是润滑剂、颜料、胶粘剂、涂料、聚合物等材料应用中至关重要的性质,是基于表面形态、表面能量和液体表面张力的互作用原理。
通过表面张力的影响,液体能够黏附在具有亲和力的表面上,从而使材料表现出润湿性。
表面润湿性对于许多应用非常关键,包括生物学、生物医学、纳米技术、涂料等多个领域,因此,高分子材料表面润湿性的改性研究越来越受到重视。
三、改性方法目前,有许多途径来改性高分子材料表面润湿性,除了物理和化学方法之外,在材料平台上,活性涂层、多功能纳米材料和基于生物特征的改性方法受到越来越多的关注。
1. 物理方法物理方法是通过对高分子材料表面进行局部调整改变其润湿性。
典型的方法包括激光纹理加工、电化学阳极氧化、热处理和等离子体处理。
激光纹理加工能够形成非常细致的结构和形态,在改善高分子材料表面润湿性方面具有很大的潜力。
电化学阳极氧化是利用电化学氧化法对金属、高分子等表面进行改性。
热处理包括热压和退火是一种简单有效的方法,通过调节温度和时间来改善润湿性。
等离子体处理可通过工艺参数调节得到不同的表面化学键和化学成分,从而改变表面润湿性。
2. 化学方法化学方法是通过对高分子材料表面进行化学修饰使其具有良好的润湿性。
在化学方法中,活性涂层和多功能纳米材料是当前广受关注的领域。
活性涂层可以在材料表面上形成功能性化合物层,从而获得所需的表面润湿性、切削和摩擦性能。
活性涂层的目的是选择单一或混合高分子材料,利用活性化合物集成表面上的亲水、疏水性,太阳能吸收、电化学、光学、生物响应等。
多功能纳米材料的目标是,通过合成具有多种作用的复合材料,实现材料的优化性质。
多功能纳米材料有多种结构和形态,因此,它们有不同的性质,如增强材料的机械性能、抗氧化和防腐等。
高分子材料表面界面改性研究
高分子材料表面界面改性研究高分子材料是现代材料科学中的热门和重要研究领域之一,是指其分子量可在数十万到数百万之间的材料。
由于高分子材料的优良特性,其广泛应用于医药、食品、电子、建筑、汽车等方面。
但高分子材料表面的性质和特性限制了其应用的范围和效果。
因此,人们对高分子材料表面界面改性的研究日益引起了关注。
高分子材料的表面性质与其它材料不同。
它的表面能较低,比如对于聚合物材料,它的表面能通常只有25-40mJ/m2,比水和玻璃低得多。
这使得其表面易於被污染和附着不易去除的污垢,从而影响材料的物化状态。
通过改善材料表面的可湿性和润湿性,可以提高材料的性能和降低使用过程中的故障率。
高分子材料表面界面改性涉及很多方面。
其中一种方法是物理方法,如可高能离子轰击和激光辐照。
这些方法可提高表面能,增加表面活性,改变材料表面形貌以及介电性和机械性能。
另一种比较重要的方法是应用化学方法,包括化学沉积、电沉积、离子交换以及化学修饰等。
化学修饰是一种采用化学方法改变材料表面的化学性质的方法。
通过表面处理或修饰,可以形成新的化学键,改变其表面化学性质,从而实现高分子材料的表面性能的控制和调整。
这些表面修饰分为随机修饰和定向修饰两种。
随机修饰方法是改变表面化学性质的最基本方法之一。
他们通过改变材料表面的化学特性,来自地址材料的特殊要求。
通常采用的方法包括辐射接枝、等离子体聚合、交联及改性等技术,这些技术可形成随即的化学功能分子,本质上是将化学功能分子或聚合物链接到基体材料表面。
一种比较典型的随机修饰方法是离子交换。
离子交换材料(IEM)是具有正离子交换组分的高分子材料,其中的正离子置换了材料的原子基。
离子交换的机理是通过离子与基体中的离子进行交换,从而改变表面性质。
例如,切尔西蓝(chelseablue)离子能够与聚乙烯亚胺(PEI)的氮原子进行电荷转移,产生基础上的化学反应,并与PEI交换,从而改变了材料的表面性质。
定向修饰方法是一种更为高级的表面修饰方法,通过修饰材料表面的化学键制备定向功能材料。
高分子材料的界面改性及应用研究
高分子材料的界面改性及应用研究一、介绍高分子材料是一种重要的工程材料,在工业生产、医疗卫生、能源领域等方面都有广泛的应用。
然而,由于高分子材料表面的缺陷和自由基等缺陷,使其在使用过程中容易出现劣化、老化以及化学反应等问题。
所以界面改性技术的应用升级已变得越发重要。
二、高分子材料界面改性的方法界面改性技术是通过在高分子材料表面附加一种或多种化学物质的方式,改变高分子材料表面的化学和物理性质以及结构,从而达到优化物体性能的目的。
界面改性主要有以下几种方法:1.表面包覆法表面包覆法是在高分子粒子表面生成一层包裹。
主要应用于高分子材料的稳定性和物理力学性能的提高以及抗氧化性能的改善。
常见的包覆材料有硅酸盐、钛酸盐等。
2.气相沉积法气相沉积法是把目标材料的气体原子或分子通过蒸发、溅射等方式冲击到高分子材料表面上去。
它可用于制备高分子涂层、表面修饰。
3.表面活性改性法表面活性改性法是通过在高分子材料表面改变表面活性基团的方式,从而改变其物理和化学性质的方法。
常见的表面活性基团有羟基、胺基、羰基等。
4.离子注入法离子注入法是利用加速器将目标离子加速到高速度,在高分子材料表面形成一层薄层,从而实现界面改性的方法。
常见的离子有氮、氩等。
三、高分子材料界面改性的应用研究界面改性技术对高分子材料性质的改善,使其在各种领域得到广泛应用。
下面以几个示例介绍其应用研究:1.在医疗方面,通过界面改性技术,增加了不同颜色的荧光纳米包被物质的吸附能力,使比色比荧光更具选择性信号,有望在癌症早期筛查和诊断中得到广泛应用。
2.在电力行业,通过界面改性技术,制备出耐高温、防辐照的电线、电缆等,提升了电线电缆的使用寿命。
3.在机械工程方面,通过界面改性技术,可以制备出具有耐磨、耐冲击、抗静电等特性的高分子材料,从而提高机械设备的使用寿命和安全性。
四、结论高分子材料界面改性技术作为先进的表面改性技术,在材料科学与技术领域具有重要的应用前景。
高分子材料的表面性质与性能优化研究探讨
高分子材料的表面性质与性能优化研究探讨在现代材料科学的领域中,高分子材料凭借其独特的性能和广泛的应用,已经成为了不可或缺的一部分。
高分子材料的表面性质对于其在实际应用中的性能表现有着至关重要的影响。
因此,深入研究高分子材料的表面性质,并探索有效的性能优化方法,具有重要的科学意义和实际应用价值。
高分子材料的表面性质是一个复杂而多样的概念,它涵盖了多个方面的特性。
首先,表面能是一个关键因素。
表面能的大小决定了材料表面与其他物质之间的相互作用强度,例如粘附性、润湿性等。
低表面能的高分子材料通常表现出良好的防水、防油性能,而高表面能的材料则更容易与其他物质发生相互作用。
表面粗糙度也是影响高分子材料表面性质的重要因素之一。
粗糙的表面往往会增加材料的表面积,从而影响其与外界环境的接触和相互作用。
在某些应用中,如需要增强摩擦力的场合,较高的表面粗糙度是有益的;而在需要减少阻力或提高光洁度的情况下,则需要降低表面粗糙度。
此外,表面化学组成同样对高分子材料的性能有着显著影响。
通过在材料表面引入特定的官能团,可以改变其化学性质,从而赋予材料新的功能。
例如,引入亲水官能团可以提高材料的亲水性,使其在生物医学领域有更好的应用前景;引入抗菌官能团则可以使材料具有抗菌性能。
了解了高分子材料的表面性质后,我们来探讨一下如何对其性能进行优化。
表面改性是一种常用的方法。
物理改性包括等离子体处理、激光处理等。
等离子体处理可以在材料表面引入极性基团,从而改变其表面能和化学性质。
激光处理则可以通过精确控制激光的能量和作用区域,实现对表面粗糙度的调控。
化学改性也是优化高分子材料表面性能的重要手段。
例如,通过表面接枝反应,可以在材料表面引入特定的聚合物链,从而改变其表面性质。
这种方法具有较高的改性效率和针对性,可以根据实际需求精确地调整材料的性能。
除了表面改性,表面涂层技术也是一种有效的性能优化方法。
在高分子材料表面涂覆一层具有特定性能的涂层,可以显著改善其表面性能。
高分子材料加工及表面改性技术
高分子材料加工及表面改性技术高分子材料,其实就是具有很高分子量的化合物。
这种材料具有比较高的强度和韧性,可以应用在很多领域中,例如工业、医学、电子等等方面,而高分子材料加工及表面改性技术,则是围绕着这种材料的处理技术而展开的研究和实践。
在这篇文章中,我将针对高分子材料的加工和表面改性技术进行探讨。
一、高分子材料加工技术高分子材料的加工技术,主要包括成型加工、加工工艺以及加工装备等三个方面。
1. 成型加工成型加工,是指将高分子材料加工成所需形状和尺寸的工艺过程。
其中,最常见的成型加工方法,便是注塑成型。
注塑成型是一种通过芯棒将熔化的高分子塑料注入模具中冷却成型的方法。
该方法在整个加工处理过程中,需要用到注塑机、机械手等设备。
此外,还有挤出成型、吹塑成型、压缩成型等不同的成型加工方法。
这些方法,适用于不同的高分子材料以及不同的加工需求。
2. 加工工艺加工工艺,则是指通过调节加工参数,使高分子材料达到最佳加工状态。
对于不同的高分子材料,其加工参数也会有所不同。
举例来说,在进行注塑加工处理时,需要考虑高分子材料的注塑温度、注塑压力、注塑速度、模具温度等因素。
3. 加工装备高分子材料加工中,加工装备则是重要的辅助性因素。
相应的,加工装备的维护保养,以及开展相应的技术培训,也是加工成功的关键之一。
二、高分子材料表面改性技术除了高分子材料加工技术以外,改善高分子材料表面性能的技术也受到了广泛的关注。
表面改性技术,可以通过物理、化学、生物等多种途径,将高分子材料的表面性能得到改进。
1. 物理方法物理方法,指的是通过物理手段来进行表面改性。
例如,通过使用阳极氧化、喷砂处理以及激光加工等方法,对高分子材料的表面进行改良。
在这些方法中,激光加工则属于一种比较高效的表面处理技术。
通过使用激光加工设备,可以在材料表面形成微米级别的表面结构和纳米级别的结晶区域,从而达到更好的表面改性。
2. 化学方法化学方法,指的是在高分子材料表面添加化学物质,从而起到改性的作用。
高分子材料的界面调控与改性
高分子材料的界面调控与改性高分子材料是一种重要的功能性材料,具有广泛的应用领域。
然而,传统的高分子材料在一些特定的应用中存在一些问题,比如界面性能不佳、机械性能不足等。
因此,对高分子材料进行界面调控与改性成为了一个研究的热点课题。
界面是高分子材料中不可忽视的因素之一,它直接影响了材料的性能和应用。
通过对高分子材料界面的调控,可以改善材料的耐候性、热稳定性、机械性能等。
常用的方法包括界面改性剂的添加、界面的表面修饰和界面的微观结构调控等。
界面改性剂的添加是一种简单有效的方法。
通过添加一定量的改性剂,可以改善高分子材料与其他材料的相容性,降低相间界面的张力,从而提高材料的强度和韧性。
例如,聚合物材料中添加的表面活性剂可以改善其与填料的相容性,增强材料的耐磨性和耐腐蚀性。
表面修饰是另一种常用的界面调控方法。
通过对高分子材料表面进行物理或化学处理,可以改变其表面性质,从而提高界面的粘接性和稳定性。
常用的表面修饰方法包括等离子体处理、溶胶凝胶涂覆、化学修饰等。
例如,通过等离子体处理可以增加材料表面的粗糙度,提高界面的机械锚固效果,从而增强材料的黏结强度。
界面的微观结构调控是一种较为复杂的方法。
通过控制高分子材料的分子排布、晶体结构、分子链的取向等,可以调控材料的微观结构,从而改善界面性能。
例如,通过高分子材料的取向调控,可提高材料的导电性能和热导性能。
除了界面调控外,高分子材料的改性也是提高其性能的重要手段。
材料的改性通常包括增强改性和功能改性两种方式。
增强改性主要是通过添加增强剂,如纤维增强剂、填充剂等,来提高材料的机械强度和刚性。
功能改性主要是通过添加功能性填料、有机合成改性剂等,来赋予材料特定的性能,如导电性、吸附性等。
高分子材料的界面调控与改性在实际应用中有着广泛的用途。
例如,在汽车制造行业中,通过界面的调控与改性可以提高材料与涂层的粘接性能,增加涂层的附着力,提高汽车的耐候性和抗腐蚀性。
在电子器件制造行业中,通过界面的调控与改性可以增加材料的导电性能,提高器件的稳定性和可靠性。
表面改性
纳米TiO2的制备及表面改性的研究摘要:本文通过钛盐络合物水解方法制备了纳米二氧化钛,并用KH-570对TiO2进行表面改性。
利用XRD、TEM等分析测试手段对制备的TiO2粉体的晶相组成,晶体形貌进行了表征。
并讨论了热处理温度对TiO2晶型的影响,结果表明改性后的TiO2有优良的分散性能。
关键词:纳米TiO2;表面改性;高分子材料;负离子二氧化钛是一种性能最好的白色颜料,对光散射力强,着色力高,遮盖力大,白度好。
随着粒子尺寸的微细化(1nm~100nm),其表面电子结构和晶体结构发生了变化,产生了普通粒度级粒子所不具备的表面效应,小粒子效应,量子效应和宏观量子隧道效应,从而使其具有优异的紫外线屏蔽作用,颜色效应,光化活性等,纳米TiO2 具有多种优越的特殊性能,将之与高分子材料相结合,将会推动着材料科学的发展,提高人们的物质生活水平[1]。
1.实验部分1.1实验药品 C2H5OH(乙醇),TiCl4(四氯化钛), TEA(三乙醇胺), AMP-95(2-氨基-甲基-丙醇),KH-570(γ-甲基丙烯酰氧基三(甲氧基)硅烷),H2O。
1.2性能测试德国Mastersizer2000激光粒度分析仪测试二氧化钛粒径及分布;日本JEOL-2010型透射电镜观察二氧化钛形态及粒径;丹东奥龙射线有限公司生产Y2000型X—射线粉末衍射仪测试二氧化钛晶体结构;日本ECO-HOLISTIC.INC出品的负离子强度测试仪EB-13 IONTESTER 测试二氧化钛放负离子强度。
1.3 实验过程1.3.1纳米二氧化钛的制备方法在常温,磁力搅拌的情况下,将四氯化钛缓慢滴加到溶有三乙醇胺的乙醇溶液中。
该反应剧烈,放出大量的热,并有大量的酸雾形成,形成糊状络合物。
TiC14与TEA的物质的量比为l:2,乙醇作为溶剂,其体积为三乙醇胺的3倍。
将络合物在30℃左右保温一段时间后,加去离子水溶解配成溶液。
将配好的溶液在磁力搅拌的情况下,按不同的量滴加到100m1AMP-95的水溶液中,得到纳米锐钛矿型二氧化钛溶胶。
高分子材料的表面改性与功能化
高分子材料的表面改性与功能化高分子材料是一类重要的材料,广泛应用于许多领域。
然而,由于其特殊的性质和结构,其表面常常具有一些不足,如亲水性差、耐磨性差等问题。
为了克服这些问题,提高高分子材料的性能,人们提出了表面改性和功能化的方法。
本文将介绍高分子材料的表面改性与功能化的基本概念、方法和应用。
一、表面改性的概念和方法表面改性是指对高分子材料表面进行一系列化学或物理处理,改变其表面性质的过程。
常见的表面改性方法包括:1. 化学改性:通过在高分子材料表面引入新的官能团,改变其表面性质。
例如,通过表面引入羟基、氨基等官能团,可以增强高分子材料的亲水性;2. 物理改性:利用物理方法改变高分子材料的表面形貌和性质。
例如,利用等离子体处理可以使高分子材料表面形成更为平整的结构,增加其耐磨性;3. 界面改性:在高分子材料表面形成一层致密的界面层,提高其与其他材料的相容性。
例如,通过溶液法将一层介于高分子材料与其他材料之间的化合物涂覆在其表面,形成稳定的界面。
二、功能化的概念和方法功能化是指在高分子材料的表面上引入具有特定功能的官能团或化合物,赋予其新的性能和应用功能。
常见的功能化方法包括:1. 生物功能化:在高分子材料的表面引入生物活性分子,使其具有生物相容性、抗菌性等功能。
例如,通过将低分子量的抗菌剂共聚合到高分子材料表面,可以使其具有良好的抗菌性;2. 光学功能化:在高分子材料表面引入光学活性分子,使其具有光学透明性、光泽等功能。
例如,通过将含有特定荧光基团的物质接枝到高分子材料表面,可以使其具有荧光效应;3. 电化学功能化:在高分子材料表面引入具有良好电导性的分子,使其具有电容、电解质传感器等功能。
例如,通过在高分子材料表面修饰金属氧化物纳米颗粒,可以增加其电导性和储能性能。
三、高分子材料的表面改性与功能化的应用高分子材料的表面改性与功能化可以赋予其新的应用领域和性能。
以下举例说明:1. 表面亲水改性的应用:将表面亲水改性的高分子材料广泛应用于涂层、纺织品等领域,提高其耐水性和易清洁性;2. 生物功能化的应用:将生物活性分子功能化的高分子材料应用于医疗领域,如人工骨骼、药物缓释系统等;3. 光学功能化的应用:将具有光学功能的高分子材料应用于光学器件制造,如光纤、光学屏幕等;4. 电化学功能化的应用:将具有电化学功能的高分子材料应用于能源存储与传感器等领域,促进新能源技术的发展。
高分子膜的功能化改性
高分子膜的功能化改性高分子膜是一种准二维的材料,其表面性质对其应用有着极大的影响。
而高分子膜的表面性质也可以通过功能化改性来进行调控,从而对其性能进行优化。
本文将介绍高分子膜的功能化改性的具体方法及其在不同领域的应用。
一、功能化改性的方法1. 表面包覆法表面包覆法是一种比较常见的高分子膜功能化改性方法。
其原理是将高分子膜表面包覆一层具有不同性质的物质,从而改变高分子膜的性质。
常用的包覆物质包括磁性材料、金属氧化物等。
例如,通过在聚丙烯膜表面包覆一层氧化铁颗粒,可以使膜具有磁性,方便其在磁场控制下被污染物吸附。
2. 表面修饰法表面修饰法是一种通过化学反应对高分子膜表面进行修饰的方法。
常见的化学修饰反应包括酯化、醚化、磺化等。
例如,通过聚合丙烯酸单体,再通过二巯基乙烷交联,可以制备一种具有较高渗透性的稳定超薄氢氧化铝涂层,降低了其在复杂环境中的酸碱性影响。
3. 表面改变法表面改变法是一种通过改变高分子膜表面的形态和结构来改变其性质的方法。
常见的表面改变方法包括表面纳米孔、表面浸润涂覆等。
例如,通过将纳米材料浸入聚合物薄膜中,可以形成纳米孔,起到过滤和分离分子的作用。
二、功能化改性的应用1. 微流控技术微流控技术在高分子膜的功能化改性中应用比较广泛。
通过在高分子膜表面修饰微米级别的功能性材料,可以实现高效的微流控分析。
例如,在聚丙烯膜表面修饰亲水性聚合物后,可用于油水分离和废水处理。
2. 生物医学领域高分子膜在医学领域的应用也越来越广泛,例如可用于制备人工血管、人工皮肤以及药物缓释系统等。
通过功能化改性可以改变膜的生物相容性和生物活性,使其能够有效地应用于生物医学领域。
3. 环境保护领域高分子膜的功能化改性还可应用于环境保护领域。
例如,通过在聚合物薄膜表面修饰金属氧化物,可用于处理水中的重金属离子污染物。
此外,在制备纳米复合膜方面也具有很大的应用前景。
通过表面修饰和包覆等技术,可以实现高效地去除溶液中的有机物、离子和微生物等。
高分子表面改性及其在材料制备中的应用
高分子表面改性及其在材料制备中的应用高分子材料是目前工业和生活中应用非常广泛的一类材料,拥有多种优良的性质,比如高耐久性、良好的绝缘性、可塑性强等。
但是在实际应用中,高分子材料的表面性质往往不尽人意,比如附着力不强、耐腐蚀性较差等。
基于这些不足,科学家们研究出了一种叫做高分子表面改性的技术,通过这种技术可以对高分子材料表面进行改变,使其在应用中具有更好的性能表现。
本文将简要介绍高分子表面改性的技术以及在材料制备中的应用。
一、高分子表面改性的技术高分子表面改性的技术可以分为物理方法和化学方法两类。
物理方法一般指的是通过物理手段对高分子材料表面进行处理,从而改变其表面性能。
常见的物理方法有紫外线辐射、等离子体处理、气相沉积等。
这些方法一般适用于简单的表面改性,比如增强附着力、提高耐腐蚀性等。
化学方法则是通过将某些化学物质与高分子材料表面反应,从而产生新的表面性能。
化学方法一般需要配合表面处理剂,这些表面处理剂可以与高分子材料表面反应,形成一层覆盖层或者表面化学键,从而改变其表面性质。
常见的化学方法有溶液浸渍法、原子层沉积法、插层法等。
这些方法可以实现高精度的表面改性,比如制备高透明度的材料、增加防水性能等。
二、高分子表面改性的应用高分子表面改性技术在材料制备中的应用非常广泛,下面介绍几个常见的应用:1、生物材料高分子表面改性技术可以应用于生物医学领域中的材料制备,比如制备生物兼容性材料、药物携带材料等。
一些表面处理剂可以使材料在生物环境中更加稳定,降低毒性风险。
同时,在材料表面形成特定的化学键可以增加其与生物体的相容性。
2、光伏材料工业制备中的一些光伏材料表面常常存在着严重的光损失现象。
在通常情况下,光通过材料表面的时候会发生一定的反射和吸收,从而丧失掉一些能量。
高分子表面改性技术可以有效降低光损失,提高材料的光转换效率。
3、电子材料在研制高分子电子材料的过程中,高分子表面改性技术可以应用于提高电输运性能、增加耐久性等。
高分子材料表面改性及其应用
高分子材料表面改性及其应用一、引言高分子材料具有重要的应用前景,可应用于医药、电子、光电子、动力等领域。
然而,由于高分子材料表面活性差、生物相容性差等缺点,限制了其应用。
因此,高分子材料表面改性技术的发展日益受到关注。
二、高分子材料表面改性的方法1. 物理改性物理改性是通过物理手段改变高分子材料表面的性质。
常用的物理改性方法包括等离子体处理、离子束辐照、紫外线照射、电子束辐照等。
其中,等离子体处理是一种获得高效率、高选择性表面改性的技术,可使高分子材料表面发生氧化、硝化、氟化等反应,提高材料表面的粘附性、亲水性。
2. 化学改性化学改性通过在高分子材料表面涂覆或共价修饰一些化学物质,改变材料表面的化学性质。
化学改性方法包括表面引入活性基团、表面覆盖生物活性分子等。
例如,利用羧基、氨基等活性基团修饰高分子表面,使材料表面具有更好的生物相容性,提高材料在医学领域的应用。
3. 生物改性生物改性是将高分子材料通过与生物体组织体液交互作用,使材料表面具有良好的生物相容性、生物功能等性质。
生物改性方法包括表面覆盖生物大分子、生物反应器改性、细胞培养等。
生物改性能够大幅提高高分子材料的生物相容性,为生物医药领域的高分子制品应用提供了关键技术。
三、高分子材料表面改性应用1. 医学领域高分子材料表面改性技术在医学领域中得到了广泛的应用,如制备生物相容性好的材料,用于修复组织损伤,支架修复等。
例如,聚氨酯、聚乳酸、聚己内酯、羟基磷灰石等高分子材料对人体组织具有较好的生物相容性和生物活性,可以制备成支架、细胞培养器等有益医疗材料。
2. 环保领域高分子材料表面改性技术也逐渐得到应用于环保领域。
例如,旋转切削颗粒床方法可通过表面氨基化修饰降解至少18种有机污染物,用于处理水体中存在的各种有机污染物。
3. 光电领域高分子材料表面改性技术在光电领域中也发挥了重要的作用,可制备光电材料,如发光二极管、太阳能电池等。
例如,聚苯胺是制备高效太阳能电池的重要材料之一,采用电子束辐照技术可制备固态电解质太阳能电池,其效率高于传统PbS/CQDs量子点太阳能电池。
高分子材料论文
高分子材料论文1课程设计题目选取课程设计选题合理与否,是课程设计改革的重要环节,应注意课题的综合性、实用性及层次性[2]。
课程设计环节中增加高分子材料改性及工艺探索的题目,目的在于加深学生对《高分子材料成型工艺学》、《聚合物改性原理及方法》等课程知识的理解,提高其理论联系实际和灵活运用知识的能力。
选择合适的题目是保证学生如期完成课程设计的前提。
课程设计环节比毕业设计环节少了8周的时间,因此课程设计选题应“小而精”,难度应明显低于毕业设计题目。
如果选取完全没有研究基础的题目,学生前期探索实验会花费过多时间,不利丁•课程设计顺利进行。
基于以上原因,笔者在以往毕业设计题目的基础上进行延伸,确定了课程设计相关题目。
例如往届学生曾做过“硅橡胶阻燃材料性能研究”的毕业设计题目,对丁•硅橡胶混炼及硫化工艺积累了一定的经验数据,而硅橡胶材料力学性能指标还不尽如人意,需要进一步改进配方。
可以在此基础上引出两个课程设计题目:“硫化剂种类及用量对硅橡胶力学性能的影响”、“结构控制剂种类及用量对硅橡胶力学性能的影响”,并由两个学生分别完成以上题目。
由丁•有前人的基础,学生在实验过程中没有重复探索相关工艺参数,实验直接切入主题,有利于在有限的时间内完成课程设计。
此外,两个课程设计题目虽各有侧重,但主要原材料及成型工艺都相同,故两个学生可共用一套成型设备,大大节约了设备预热及清理时间。
将学生按相近课题组成互助小组, 不仅提供设备利用率,也有利于学生在遇到问题时,相互讨论,相互促进[3] °2实验人员安排我校高分子材料与工程专业每年招生人数为80人,现有实验室设备条件尚不能满足全部学生同时开展材料改性及工艺制定等实践内容。
因此,合理安排课程设计环节进行材料改性及工艺制定的学生人数,是如期完成课程设计内容的必要保证。
按照人才培养方案, 本专业课程设计安排在第四学年秋季学期最后4周进行。
此时学生的专业课程学习已全部完成,学生对丁•口己的就业去向也有了初步规划。
高分子材料改性综述
高分子材料改性综述在当今的社会中, 材料是人类赖以生存和发展的重要物质, 是现代工业和高科技发展的基础和关键。
由于材料单体的种类有限, 而且材料单体的单一的某的些性能比较差, 不符合人们所求, 所以要对其材料经行改性。
所谓的改性是通过物理, 机械和化学等作用使搞分子材料原有的性能得到改善。
高分子材料的改性即可能是物理变化也可能是化学变化在终多的改性方法中, 共混改性是最简单的也是最直接的方法。
他可以在各种加工设备中完成, 通过共混改性可以使高分子材料得到比较好的性能上的提升。
并且是现在应用最广的改性方法之一。
化学改性可以赋予高分子材料更好的物理化学和力学性能, 现在常用的有无轨共聚, 交替共聚, 嵌段共聚, 接枝共聚, 交联和互穿聚合物网络等技术, 化学改性能得更高的性能比物理改性, 但化学改性比物理改性的成本一般会更高, 而且工艺过程更复杂, 设备的要求更高。
还有填充与纤维增强改性, 表面改性, 共挤出复合改性, 对于公挤出复合改性一般用于管材等应用会比较多一高分子的共混改性高分子共混改性的目的和作用有: 1可以从各高分子组分的性能中取长补短, 获得更优越的性能的材料, 2还可以改善其高分子的加工性能。
3或者还可以制备新型的高分子材料, 聚烯烃与壳聚糖共混可以获得抗菌功能的材料。
4还可以使一些材料原本比较贵, 通过改性在不降低其原有的材料性能上可以使材料的成本更低。
在高分子的改性中遇到的一个难题就是两种或者多种不同的材料共混时他们的相容性, , 两种高分子能否相容就取决他们共混工程的自由能的变化, △Gm=△Hm-T△Sm≤0由于高分子的相对分子质量很大, 共混的过程熵变化很小, 如果高分子之间不存在特殊的相互作用, 共混过程通常是吸热过程, 也就是△Hm>0,因此绝大多的高分子共混时不能达到分子水平的共混,因此要他们自由相容是很困难的,这样我们就要借助其他方法来使他们相容,如增容剂.增溶剂是能使不相容的两种高分子结合在一起,从而形成稳定的共混物.增容剂大体可以分为反应型和非反应型的.反应型指共混时伴随化学反应与共混组分生成化学键,而非反应型只是起到乳化剂的分散作用,可以降低其相界面的张力,从而达到增容的目的.非反应型的有A-X-B,A-C.D-B.C-D等其中A-X-B具有A,B两种链段的嵌物, A-X-B型可以对多种共聚物增容.对于非反应型的增容剂: 1嵌段共聚物比接枝共聚物更有效2,二嵌段共聚物优于三段的.3接枝共聚物增容效果优于星型和三嵌段.4当共聚物的链段的相对分子质量大于或等于其均聚物的相对分子质量,效果比较好,反应型增容剂,有高分子和低分子两种,对于所有的低分子都是反应型,而高分子有反应型和非反应型增容剂.反应型增容剂主要是有一些可以与共混组分反应的官能团的共聚物,他们适合相容性差的又带有反应官能团的高分子之间的增容.反应增容剂对于他们参加反应的类型不同可以分为, 1反应性曾容剂与共混高分子组分反应而增容, 2使共混高分子先有官能团在凭借他们相互反应而增容。
高分子材料的表面改性技术
高分子材料的表面改性技术高分子材料作为一类具有广泛应用价值的材料,拥有诸如重量轻、力学性能好、绝缘性能好等特点,广泛应用于电子、医疗、航空、汽车、建筑等领域。
然而,高分子材料本身也存在众所周知的问题,如容易老化、耐磨性能差等。
为了提高高分子材料的使用寿命及性能,表面改性技术应运而生。
一、表面改性技术简介表面改性技术是对材料表面进行物理、化学或生物改性,从而改变材料表面性质(如亲/疏水性、化学稳定性等),实现对材料性能的优化。
在高分子材料领域中,表面改性技术是一种有效的方法,可以改变高分子材料表面的化学、物理结构,提高高分子材料的性能。
二、表面改性技术的分类表面改性技术主要分为物理方法和化学方法两大类。
1.物理方法物理方法是利用外力来改变高分子材料表面性质的方法,包括光刻、电解、喷砂、电子束等。
其中,电子束法是一种常用的表面改性技术,它通过利用高能电子束照射高分子材料表面,使其表面产生化学和物理结构改变,改变表面性质,提高材料耐用性。
2.化学方法化学方法是指利用化学试剂对高分子材料表面进行改性的方法,包括化学清洗、化学修饰、浸渍基质改性、表面接枝等技术。
其中化学清洗是一种温和的表面改性技术,可以去除表面污染物、氧化皮层等物质,减少材料表面的异物,提高高分子材料的表面性质。
三、表面改性技术的应用表面改性技术的应用非常广泛,包括材料的吸附、催化、传感、分离等领域。
在高分子材料中,表面改性技术的应用同样非常重要。
例如,在高分子材料的表面上接枝特定的功能基团或者粘结一定的物质,从而改变其表面性质,提高其化学、力学等性能。
这些表面修饰后的高分子材料可以被应用于传感器、生物医学材料、纳米材料等多个领域。
四、表面改性技术的挑战与发展虽然表面改性技术在高分子材料领域中取得了许多重要进展,但是仍然存在一些挑战。
例如,现有的表面改性技术仍然存在一定的局限性,无法实现对高分子材料表面性质的精确调控。
此外,当前表面改性技术的成本较高,需要使用一定的化学试剂和条件,同时也存在环境问题。
高分子材料的表面修饰技术研究
高分子材料的表面修饰技术研究高分子材料是一种具有广泛用途的材料,其特点是具有高分子化合物的基本性质,如韧性、耐热、耐腐蚀、耐磨等。
高分子材料的广泛应用,不仅因为它的材料性能优异,还因为它的工艺性能适宜,容易生产加工。
然而,高分子材料表面缺乏化学反应的活性,对于一些需要改变表面性质的应用而言则需要进行表面修饰。
高分子材料表面修饰技术是指通过化学反应或物理方法改变材料表面性质,使之满足不同的应用需求,从而增加高分子材料的附加值。
高分子材料表面修饰技术已经融入到了很多领域中。
一、高分子材料表面修饰技术的分类高分子材料表面修饰技术可以分为化学修饰和物理修饰两大类。
其中,化学修饰是利用材料的化学反应特性,通过物理接触使其发生反应,改变材料外表性质。
物理修饰则是利用材料表面的物理力学性质,在材料表面形成一层保护膜。
1. 化学修饰化学修饰包括表面接枝、表面共聚物化、表面交联反应,烷基化等。
表面接枝是利用材料表面上的活性基团,通过引入引发剂或在表面沉积引发剂的方法,在材料表面引发自由基发生反应,形成新的分子链,从而增加它的物理化学性质。
表面共聚改性是将单体及引发剂注入到高分子材料表面上,通过构不同的单体自由基反应,使其在表面形成共聚物层,增加材料表面的性质。
表面交联反应通过在高分子材料表面引入交联引发剂,使多个分子链相互交联,从而加强材料表面的力学性能;烷基化是利用预处理剂使材料表面上的活性基团与烷基(或烷基类似物)反应形成疏水表面,使材料表面具有更好的耐磨、耐热等特性。
2. 物理修饰由于化学方法在改变材料表面性质上存在明显的局限性,首先是由于许多高分子材料表面缺乏反应活性基团; 其次是化学方法所需的条件、工艺和环保要求较高,成本昂贵。
在这种情况下,物理修饰技术成为改变材料表面性质最常用的手段。
物理修饰技术包括高分子电沉积、离子束改性、等离子体处理、放电等离子改性及接枝等。
高分子电沉积技术是一种通过电化学反应在高分子材料表面投射硬质材料,形成一层保护膜的技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2014-2015学年第一学期)《高分子材料改性》课程论文题目:纳米粒子增韧聚氯乙烯研究新进展*名:**学院:材料与纺织工程学院专业:高分子材料与工程班级:高材121 班学号: ************ 任课教师:兰平教务处制2014年12月30日纳米粒子增韧聚氯乙烯研究新进展摘要通用塑料的高性能化和多功能化是开发新型材料的一个重要趋势, 而将纳米粒子作为填料来填充改性聚合物, 是获得高强高韧复合材料有效方法之一。
本文对近年来纳米增韧PVC 的制备方法, 增韧机理和发展趋势进行了说明。
关键词: 聚氯乙烯纳米材料增韧一.研究背景随着科学技术的发展, 人们对材料性能的要求越来越高。
聚氯乙烯作为第二大通用塑料, 具有阻燃、耐腐蚀、绝缘、耐磨损等优良的综合性能和价格低廉、原材料来源广泛的优点, 已被广泛应用于化学建材和其他部门。
但是, 聚氯乙烯在加工应用中, 尤其在用作结构材料时也暴露出了抗冲击强度低、热稳定性差等缺点。
纳米技术的发展及纳米材料所表现出的优异性能, 给人们以重大的启示。
人们开始探索将纳米材料引入PVC 增韧改性研究中, 并发现增韧改性后的PVC 树脂具有优异的韧性, 刚度及强度得到显著改善, 而且热稳定性、尺寸稳定性、耐老化性等也有较大提高, 纳米复合材料已经成为PVC增韧改性的一个重要途径。
本文主要介绍了近几年来纳米复合材料在PVC 增韧改性方面的研究现状和发展趋势[1]。
二.纳米CaCO3 增韧PVC碳酸钙是高分子复合材料中广泛使用的无机填料。
在橡胶、塑料制品中添加碳酸钙等无机填料, 可提高制品的耐热性、耐磨性、尺寸稳定性及刚度等,并降低制品成本, 成为一种功能性补强增韧填充材料, 受到了人们的广泛关注。
2.1 纳米CaCO3 增韧对PVC 力学性能的影响魏刚等[ 2]研究指出, 用CPE 包覆后纳米CaCO3填充PVC 的冲击强度均要比未包覆处理填充体系的略低, 而拉伸强度则相反。
特别是在包覆小份量CaCO3( 2 份) 时, 所得复合材料的冲击强度甚至比PVC/ CPE( 8 份) 基体的低12%, 而拉伸强度则出现最大值, 比基体的高8. 9% 左右, 如图2-1 所示。
熊传溪、王涛等[3]研究发现两种粒径的纳米晶PVC 均能起到显著的增韧和增强作用, 且粒径小的纳米晶PVC 作用更明显, 而且偶联剂用量对试样的拉伸强度和冲击强度也有很大的影响。
对CPE/ACR共混增韧PVC力学性能的影响2.2 纳米CaCO3如图2-2所示,为CPE/ACR共混物对PVC冲击强度的影响。
从图2-2中可以看出当CPE/ACR/PVC为10/2/100时,共混体系的冲击强度达到最大,明显优于单一CPE或单一ACR对PVC的增韧效果。
这是由于10mpr的CPE在PBC基体相中可能已经形成了完整的网络结构,这种网络结构可以吸收部分冲击能量而赋予共混体系一定的冲击强度,而在此基础上再添加2phr ACR后,由于核壳ACR在PVC基体相以及CPE网络中呈颗粒状分布,它们诱发基体产生大量的剪切带和银纹而图2-1 两种填充方法对复合材料力学性能的影响图2-2 CPE/ACR共混物对PVC冲击性能的影响使材料的冲击强度得到进一步提高,较之单一增加CPE的用量有更好的改性效果,表现出明显的协同增韧作用[9]。
图2-3 PVC/CPE/改性纳米碳酸钙复合材料的SEM照片古菊、贾德民等发现改性纳米碳酸钙与CPE互配,可以对PVC实现良好的协同增韧增强的效果,改性纳米碳酸钙的加入不仅有效地提高PVC/CPE体系的韧性和强度,还可提高材料的耐热性能及可加工性能。
刚性的改性纳米碳酸钙与弹性体氯化聚乙烯之间表现出良好的协同增韧效果。
所制得的PVC/CPE/R-CaCO3复合材料避免了常规的弹性体增韧聚氯乙烯所带来的强度、刚度下降,耐热性能降低、加工性能变差的弊端[4][5]。
2.3纳米碳酸钙填充型粉末丁苯橡胶增韧改性聚氯乙烯张周达、陈雪梅将冲击试样的断面喷金,在S4800型冷场电子显微镜发射电子显微镜(SEM)上观察断口的形貌及CaCO3/SBR粒子在PVC基体中的分布时[6]CO3/SBR量比为15:100时,随着CaCO3/SBR改性剂中纳米碳酸钙含量的提高,PVC冲击强度先升后降,当纳米碳酸钙质量分数为70%击强度达到最大。
说明在复合改性剂制备过程中,纳米碳酸钙和丁苯胶乳存在一个最佳配比,在此配比下的增韧效果较好。
苏新清认为,复合改性剂中纳米碳酸钙和丁苯橡胶形成的50nm 米碳酸钙粒子包藏于丁苯橡胶颗粒的结构内。
据此可知,当复合改性剂中纳米碳酸钙和丁苯橡胶的的质量比为7:3苯橡胶相刚好对纳米碳酸钙粒子进行有效包覆,实现橡胶弹性体和纳米粒子的协同增韧[7]。
2.4聚丙烯酸酯/纳米碳酸钙复合增韧PVC 的研究马治军,杨景辉[8]备了复合增韧改性剂聚丙烯酸酯/纳米CaCO3( PA-C) ,并将其用于硬质聚氯乙烯( PVC) 中,(观察表1)加复合改性剂PA-C 后,其缺口冲击强度大幅度提高,并且添加10份达到最大值88. 64kJ /m2,较添加未改性纳米CaCO3的PVC 复合材料的冲击强度提高了7 倍多。
弯曲模量随PA-C 添加量的增加明显增大,拉伸强度仅稍微降低,说明PA-C 能较好分散在PVC 基体材料中,既起到较好的增韧效果,又起到一定的补强作用。
这是由于PMMA 与PVC 溶解度参数相同,二者具有较好的相容性。
纳米CaCO3表面包覆有一定含量的PMMA,有效地改善了PVC 基体与纳米CaCO3之间的相容性,而且聚丙烯酸酯聚合物中含有一定量的柔性单体聚丙烯酸丁酯,其在CaCO3粒子与基体间形成过渡层,利于能量吸收,而纳米CaCO3为刚性粒子,其添加提高了复合材料的刚性和硬度。
三.炭黑填充增韧PVC导电炭黑是一种永久性抗静电剂, 添加后材料不会因水洗、磨损等原因在长期使用中丧失抗静电性能。
炭黑还具有高的比表面积和高的表面能, 能吸收润滑剂, 与PVC 界面结合良好。
炭黑的填充还能使PVC的熔体粘度大大提高。
陈克正、张言波等[10]研究了纳米导电纤维( nano-F) 和华光炭黑(HG-CB) 填充硬质PVC 复合材料的电性能以及温度对复合材料体积电阻率的影响及伏安特性, 发现随填料用量的增加, 材料的电阻率逐渐降低。
当nano-F、HG-CB的填充量分别达到20、10 份时, 电阻率急剧下降。
这说明此时导电填料在PVC 基体中已基本形成导电网络, 填充量继续增加电阻率下降不大。
nano-F 填充PVC 复合材料特性曲线均呈直线性, 即其伏安特性为欧姆性, 而HG-CB填充PVC 复合材料特性曲线偏离欧姆性。
四. SiO2 增韧改性PVC为了改善PVC 糊的流变性能及存放性能, 陈兴明等[11]采用纳米级SiO2填充到PVC糊中, 当其用量达到一定值(12份) 时可以赋予PVC 糊以明显的切力变稀性能, 而普通超细SiO2则不能给予PVC 糊以明显切力变稀性能。
填充纳米级SiO2的PVC 糊, 其切力变稀性能可持久地保持, 而填充普通超细SiO2的PVC 糊,其切力变稀性能不能持久保持。
4.1 纳米粒子复合ACR 改性聚氯乙烯王锐兰、王锐刚等[12]采用纳米SiO2粒子作为种子进行聚丙烯酸酯的原位乳液聚合, 用此种聚丙烯酸酯复合物和PVC 树脂共混, 结果用偶联剂MAPS预包覆纳米SiO2再进行原位聚合的ACR, 如表2 所示, 当SiO2含量为10%时的ACR 作PVC 的改性剂,有最高的拉伸强度、断裂伸长率和冲击强度( 即破碎率最低) , 具有优良的力学性能。
4.2 纳米SiO2包覆HMPC接枝共聚宇海银[13]等研究发现, SiO2经SDS 预处理后包覆羟丙基甲基纤维素( HMPC) , 并接枝PMMA, 随着SiO2 /HPMC-PMMA、TiO2/HPMC-PMMA、ZnO/HPMC-PMMA 含量的增加, 冲击强度随之提高。
当复合粒子含量分别为10% 、10% 、20% 左右时, 冲击强度达到最大值61、62、68kJ/ m2。
这比纯PVC 的冲击强度52kJ/ m2分别提高了19.2、25、31% 。
4.3 纳米SiO2添加量对复合材料性能的影响田满红、郭少云[14]通过超声波、振磨等方法对纳米粒子进行表面处理, 以促进纳米粒子在基体中的均匀分散, 大幅度提高复合材料的强度和韧性。
当纳米SiO2的添加量为3% 时, 复合材料的综合力学性能最好, 其拉伸强度、冲击强度和杨氏模量均有较大的提高。
振磨处理时间对纳米粒子改善复合材料性能也有影响。
处理6h 时改善复合材料的冲击性能效果最好。
4.4聚氨酯弹性体/纳米二氧化硅协同改性聚氯乙烯及其力学性能王士财、张晓东[15]等用聚氨酯( PU )弹性体/纳米SiO2复合材料协同改性聚氯乙烯( PVC ), 用反应挤出一步法成型工艺制备了PU 弹性体/纳米SiO2/PVC 复合材料, 对挤出速率和温度进行了考察, 并对复合材料力学性能的影响因素进行了研究。
结果表明, 制备该复合材料的最佳工艺条件是螺杆转速为40~ 50 r/m in、挤出机均化段温度为180~ 190 ℃; 用分散于液化二异氰酸酯中的纳米SiO2制备的复合材料的性能优于用分散于聚醚二元醇中的纳米SiO2;PU 弹性体和纳米SiO2能协同增韧PVC, 两者质量比为5/1时增韧改性的效果最佳。
当PU弹性体/纳米SiO2/PVC (质量比)为5/1/20时, 复合材料的综合力学性能最优, 冲击强度达到45.6 kJ/m2, 拉伸强度为50.3MPa。
五. 纳米黏土填充增韧PVCPVC/纳米黏土复合材料只需少量的纳米黏土即可使PVC的韧性、强度和刚度显著改善。
因PVC分子链的运动受到限制,材料的热稳定性和尺寸稳定性提高,复合材料在二维或三维上均有较好的增韧和增强效果,不同层状黏土可以赋予材料不同的功能。
Mahmood等[16]通过熔融混合制备了有机黏土增强PVC/丙烯腈-丁二烯-苯乙稀(ABS)基体,并研究了纳米黏土对PVC/ABS的形态、流变学和力学性能的影响。
结果表明,加入纳米黏土,使PVC/ABS共混物的增韧效果显著增加。
当纳米黏土的加入量为5%时,共混物的力学性能达到最佳。
此外,添加顺序对黏土在PVC/ABS/黏土纳米复合材料中的分散也有显著影响,通过选择最佳的添加顺序来控制纳米黏土在共混物中的分布。
Shimpi等[17]用常规的双螺杆挤出机进行熔融配共混制备PVC纳米复合材料,并研究了有机物表面改性的蒙脱土(OMMT)对PVC纳米复合材料性能的影响。
从图5-1可以看出,冲击强度随着OMMT含量的增加而提高,当OMMT的质量分数为12%时,PVC复合材料的冲击强度达到最高为4.4KJ/m2,如果OMMT的含量大于12%时,复合材料的冲击强度则会下降。