例谈求线段最值的方法

合集下载

初三数学两之间线段最短求最值四大类型

初三数学两之间线段最短求最值四大类型

两之间线段最短求最值四大类型【专题说明】“两点之间,线段最短”是初中数学中的基本定理之一,也是人们在生活中认识到的基本事实,而对于数学中的最值问题,学生往往无从下手,其实往往就是这个基本定理的应用。

【方法技巧】模型一“一线两点”型(一动+两定)类型一异侧线段和最小值问题问题:两定点A,B位于直线l异侧,在直线l上找一点P,使PA+PB值最小.【解题思路】根据两点之间线段最短,PA+PB的最小值即为线段AB的长.连接AB交直线l 于点P,点P即为所求.类型二同侧线段和最小值问题(将军饮马模型)问题:两定点A,B位于直线l同侧,在直线l上找一点P,使得PA+PB值最小.【解题思路】将两定点同侧转化为异侧问题,同类型一即可解决.作点B关于l 的对称点B′,连接AB′,与直线l的交点即为点P.类型三同侧差最大值问题问题:两定点A,B位于直线l同侧,在直线l上找一点P,使得|PA-PB|的值最大.【解题思路】根据三角形任意两边之差小于第三边,|PA-PB|≤AB,当A,B,P 三点共线时,等号成立,即|PA-PB|的最大值为线段AB的长.连接AB并延长,与直线l的交点即为点P.类型四异侧差最大值问题问题:两定点A,B位于直线l异侧,在直线l上找一点P,使得|PA-PB|的值最大.【解题思路】将异侧点转化为同侧,同类型三即可解决.模型二“一点两线”型(两动+一定)问题:点P是∠AOB的内部一定点,在OA上找一点M,在OB上找一点N,使得△PMN周长最小.【解题思路】要使△PMN周长最小,即PM+PN+MN值最小.根据两点之间线段最短,将三条线段转化到同一直线上即可.模型三“两点两线”型(两动+两定)问题:点P,Q是∠AOB的内部两定点,在OA上找点M,在OB上找点N,使得四边形PQNM周长最小.【解题思路】要使四边形PQNM周长最小,PQ为定值,即求得PM+MN+NQ的最小值即可,需将线段PM,MN,NQ三条线段尽可能转化在一条直线上,因此想到作点P关于OA的对称点,点Q关于OB的对称点.【典例分析】【典例1-1】基本模型问题:如图,定点A,B位于动点P所在直线l同侧试确定点P的位置,使AP+BP的值最小.解题思路:一找:作点B关于直线l的对称点B',连接AB′,与直线l交于点P;二证:验证当A,P,B'三点共线时,AP+BP取得最小值.三计算.请写出【基本模型】中解题思路“二证”的过程.【典例1-2】模型演变问题:如图,定点A,B位于动点P所在直线l同侧,在直线l上确定点P的位置,使|P A ﹣PB|的值最大.解题思路:一找:连接AB并延长,交直线l于点P;二证:验证当A,B,P三点共线时,|P A﹣PB|取得最大值.三计算.请写出【模型演变】中解题思路“二证”的过程.【典例1-3】模型演变问题:如图,定点A,B位于动点P所在直线l的两侧,试确定点P的位置,使AP+BP 的值最小.解题思路:一找:连接AB交直线l于点P;二证:验证当A,P,B三点共线时,AP+BP取得最小值.三计算.请写出【模型演变】中解题思路“二证”的过程.【典例1-4】模型演变问题:如图,定点A,B位于动点P所在直线l的两侧,试确定点P的位置,使|P A﹣PB|的值最大.解题思路:一找:作点B关于直线l的对称点B',连接AB'并延长,交直线于点P;二证:验证当A,B',P三点共线时,|P A﹣PB|取得最大值.三计算.请写出【模型演变】中解题思路“二证”的过程.【变式1-1】如图,已知菱形ABCD的边长为4,∠ABC=60°,点N为BC的中点,点M是对角线AC上一点,则MB+MN的最小值为.【变式1-2】如图,在矩形ABCD中,AB=4,BC=6,点O是对角线BD的中点,E是AB 边上一点,且AE=1,P是CD边上一点,则|PE﹣PO|的最大值为.【变式1-3】如图,在菱形ABCD中,AB=12,∠DAB=60°,对角线AC,BD交于点O,点E,F分别在BD,AB上,且BF=DE=4.点P为AC上一点,则|PF﹣PE|的最大值为.【变式1-4】结论:如图,抛物线y=ax2﹣bx﹣4与x轴交于,A(﹣1,0),B(4,0)两点,与y轴交于点C,直线l为该抛物线的对称轴,点M为直线l上的一点,则MA+MC 的最小值为.【典例2】模型分析问题:点P是∠AOB内的一定点,点M,N分别为OA,OB上的动点,试确定点M,N 的位置,使△PMN的周长最小.解题思路:一找:分别作点P关于OA,OB的对称点P′,P“,连接P'P“,分别交OA,OB于点M,N;二证:验证当P′,M,N,P″四点共线时,△PMN的周长最小.三计算.注:当三个点均为动点时,先假定一个点为定点,再将其特化为“一定两动“问题请写出【模型分析】中解题思路“二证”的过程.【变式2-1】如图,在四边形ABCD中,∠BAD=121°,∠B=∠D=90°,点M、N分别在BC、CD上,(1)当∠MAN=∠C时,∠AMN+∠ANM=°;(2)当△AMN周长最小时,∠AMN+∠ANM=°.【变式2-2】如图,在边长为2的等边△ABC中,点P,M,N分别是BC,AB,AC上的动点,则△PMN周长的最小值为.【典例3】模型分析问题:点P,Q是∠AOB内部的两定点,点M,N分别是OA,OB上的动点,试确定点M,N的位置,使四边形PMNQ的周长最小.解题思路:一找:作点P关于OA的对称点P',点Q关于OB的对称点Q′,连接P′Q′,分别交OA,OB于点M,N;二证:验证当P′,M,N,Q′四点共线时,四边形PQNM的周长最小.三计算.请写出【模型分析】中解题思路“二证”的过程.【变式3-1】如图,已知正方形ABCD的边长为5,AE=2DF=2,点G,H分别在CD,BC 边上,则四边形EFGH周长的最小值为.【变式3-2】如图,在矩形ABCD中,AB=6,BC=3,点E是AB的中点,若点P,Q分别是边BC,CD上的动点,则四边形AEPQ周长的最小值为.【典例4-1】基本模型问题:如图,点A,B为直线l同侧两定点,M,N为直线l上的动点,且MN的长度为定值,试确定点M,N的位置,使AM+MN+BN的值最小.解题思路:一找:以AM,MN为邻边.构造▱AMNA′,作点A′关于直线l的对称点A“,连接A “B,交直线l于点N,再确定点M;二证:验证当A“,N,B三点共线时,AM+MN+BN的值最小.三计算.请写出【基本模型】中解题思路“二证”的过程.【典例4-2】模型演变问题:如图,直线a∥b,定点A,B分别位于直线a的上方和直线b的下方,M,N分别为直线a,b上的动点,且MN⊥a,试确定点M,N的位置,使AM+MN+BN的值最小.解题思路:一找:以AM,MN为邻边构造▱AMNA′,连接A'B;二证:验证当A',N,B三点共线时,AM+MN+BN的值最小.三计算.请写出【模型演变】中解题思路“二证”的过程.【变式4-1】如图,正方形ABCD内接于⊙O,线段MN在对角线BD上运动,若⊙O的面积为2π,MN=1,则AM+CN的最小值为.【变式4-2】如图,在矩形ABCD中,AB=,BC=1,将△ABD沿射线DB方向平移得到△A'B'D',连接B'C,D'C,求B'C+D'C的最小值.专题12 两之间线段最短求最值(四大类型含将军饮马)(知识解读)【专题说明】“两点之间,线段最短”是初中数学中的基本定理之一,也是人们在生活中认识到的基本事实,而对于数学中的最值问题,学生往往无从下手,其实往往就是这个基本定理的应用。

初中线段最值问题的常用解法

初中线段最值问题的常用解法

初中线段最值问题的常用解法初中线段最值问题是数学中的一个常见问题,也是初步引导学生运用数学知识解决实际问题的一种典型例题。

下面将介绍几种常用的解法。

1.分情况讨论法分情况讨论是解决初中线段最值问题的一个常用方法。

以找线段上的最大值为例,我们可以将线段分为两个部分,一部分是线段的左半部分,一部分是线段的右半部分。

然后分别在左半部分和右半部分找到最大值,最后比较这两个最大值,取较大者即为线段上的最大值。

同理,要找线段上的最小值,也可以采用相似的方法。

2.数轴法数轴法是线段最值问题中常用的一种解法。

以线段的最大值为例,我们可以将数轴上线段的两个端点列出,然后根据所给条件(如线段的起点和终点的坐标等)确定线段的位置。

然后,我们可以逐个将线段上的点都标在数轴上,然后找到其中的最大值。

同样地,我们也可以用数轴法来找线段上的最小值。

3.函数法函数法是解决线段最值问题的常用方法之一。

我们可以根据线段的起点和终点的坐标,建立一个函数来描述线段上的点。

然后,对这个函数进行求导,求出其导数为零的点,这些点即为函数的极值点。

然后,我们可以将这些极值点与线段的端点进行比较,找出线段上的最大值或最小值。

4.图像法图像法是解决线段最值问题的另一种有效方法。

我们可以根据线段的起点和终点的坐标,在坐标平面上画出对应的线段图像。

然后,通过观察图像,我们可以直观地找到线段上的最大值或最小值。

5.代数法代数法是解决线段最值问题的另一种常用方法。

我们可以先将线段上的点表示为变量的形式,然后根据线段的端点的坐标,列出相应的方程组。

然后,我们可以通过求解方程组,得到线段上的最大值或最小值。

总结起来,初中线段最值问题一般可以通过分情况讨论法、数轴法、函数法、图像法和代数法等解决。

根据实际情况和题目要求,可以选择合适的方法来解决问题。

需要注意的是,在解题过程中,我们不仅要运用数学知识,还要灵活运用判断和推理能力,善于观察和分析问题,才能高效地解决线段最值问题。

几何专项——线段最值问题

几何专项——线段最值问题

1 / 14线段最值问题一、将军饮马问题作法图形原理在直线l 上求作点P ,使PA +PB 最小.连接AB ,与l 交点即为P.两点之间,线段最短. PA +PB 最小值即为AB 长.在直线l 上求一点P ,使AP BP +最短将A 对称到'A ,连接'A B ,与l 的交点即为点P两点之间,线段最短.'AP BP A B +=在直线12l l 、上分别求点M N 、,使PMN △周长最小分别将点P 关于两直线对称到'''P P 、,连接'''P P 与两直线交点即为M N 、两点之间,线段最短.'''PM MN PN P P ++=在直线l 1、l 2上分别求点M N 、,使四边形PMNQ 周长最小将P Q 、分别对称到P ′、Q ′,连接''P Q 与直线的交点即为M N 、两点之间,线段最短.''PM MN NQ P Q ++=直线l 1∥l 2,在l 1、l 2上分别求点M N 、,使MN ⊥l 1,且AM +MN +NB 最小.将点A 向下平移MN 的长度 得A ′,连接A ′B ,交l 2于点N ,过点N 作MN⊥l 1于点M.两点之间,线段最短. AM +MN +NB 的最小值为A ′B+MN .2 / 14在直线l 上求两点M N 、(M在左),使得MN =a ,并使AM MN NB ++最短将B 向左平移a 个单位到B ′,对称A 到A′,连接A′B′与l 交点即为M ,右平移a 个单位即为N.两点之间,线段最短.AM MN NB ++的最小值为A′B′+MN .在OA 上求点M ,在OB 上求点B ,使PM+PN 值最小.作点P 关于OA 的对称点P ′,作P ′N ⊥OB 于点N ,交OA 于点M.点到直线,垂线段最短.PA+AB 的最小值为线段P ′N 的长.P ,Q 为OA ,OB 的定点,在OA ,OB 上求作点M ,N ,使PN +NM +MQ 的值最小.作点P 关于OA 的对称点P ′,作点Q 关于OB 的对称点Q ′,连P ′Q′交OA 于点M ,交OB 于点N.两点之间,线段最短. PN +NM +MQ 最小值为线段P′Q′的长.在直线l 上求作点P ,使|PA -PB|的值最小.连AB ,作AB 的垂直平分线与直线l 的交点即为P.垂直平分线上的点到线段两端的距离相等.|PA -PB|最小为0.在直线l 上求作点P ,使|PA -PB|的值最大.作直线AB ,与直线l 的交点即为P.三角形任意两边之差小于第三边. |PA -PB|最大值即为AB 长.在直线l 上求点P ,使AP BP -最大 作点B 关于l 的对称点B ′,作直线'AB ,与l 的交点即为点P .三角形任意两边之差小于第三边. |AP −BP |最大值即为AB′.3 / 14二、垂线段最值问题作法图形原理在直线l 上求作点P ,使线段AP 的值最小. 过点A 作AP ′⊥l于点P ′.连结直线外一点和直线上各点的所有线段中,垂线段最短. AP ′即为最小值.三、轨迹问题问题作法图形原理如图,在Rt△ABC 中,∠ACB=90°,AC=4,BC=6,点D 是边BC 的中点,点E 是边AB 上的任意一点(点E 不与点B 重合),沿DE 翻折△DBE 使点B 落在点F 处,连接AF ,则线段AF 长的最小值是________.由翻折得到,DF=DB=3.所以点F 在以点D 为圆心以3为半径的圆上.连接A 与圆心D ,AD 与圆的交点即为F'所以AF 的最小值是AD-DF'=5-3=2.利用“画圆”来确定动点问题解决最值问题. 如图,E ,F 是正方形ABCD 的边AD 上两个动点,满足AE=DF .连接CF 交BD 于点G ,连接BE 交AG 于点H .若正方形的边长为2,则线段DH 长度的最小值是________.取AB 的中点O ,连接OH 、OD ,根据直角三角形斜边上的中线等于斜边的一半可得OH=AB=1,利用勾股定理列式求出OD ,然后根据三角形的三边关系可知当O 、D 、H 三点共线求线段的最大值与最小值需要将该条线段转化到一个三角形中,在该三角形中,其他两边是已知的,则所求线段的最大值为其他两线段之和,最小时,DH的长度最小.值为其他两线段之差.4/ 14巩固练习类型一、将军饮马问题1.如图,在Rt△ABC中∠ACB=90°,AC=BC=8,CD=2,点P是AB上的一的动点,求:PC+PD的最小值。

二次函数中线段最值问题

二次函数中线段最值问题

二次函数中线段最值问题二次函数中的线段最值问题(一)例1:已知抛物线经过点A(-1,0)、B(3,0)、C(0,-3),顶点为M。

求抛物线的解析式和对称轴上使得PA+PC最小的点P的坐标。

解:(1)由已知点可列出三个方程:y=a(-1)^2+b(-1)+cy=a(3)^2+b(3)+c3=a(0)^2+b(0)+c化简后可得:y=x^2-2x-32)对称轴为x=1,因此P的横坐标为1.设P的纵坐标为y,则根据距离公式可得:PA+PC=sqrt[(1+1)^2+y^2]+sqrt[(1-0)^2+(y+3)^2]对其求导并令其为0,可得y=-1/2.因此P的坐标为(1,-1/2),PA+PC的最小值为3.练1:如图,直线y=-x+3与x轴、y轴分别交于B、C两点,抛物线y=-x^2+2x+3经过点B、C,与x轴另一交点为A,顶点为D。

在x轴上找一点E,使得EC+ED的值最小,求EC+ED的最小值。

解:(1)由已知点可列出四个方程:y=a(-1)^2+b(-1)+cy=a(3)^2+b(3)+c0=a(1)^2+b(1)+cy=aD^2+bD+c化简后可得:y=-x^2+2x+32)对称轴为x=1,因此D的横坐标为1.设E的横坐标为x,则EC+ED=sqrt[x^2+(3-(-x+3))^2]+sqrt[(1-x)^2+D^2]。

对其求导并令其为0,可得x=1/2.因此E的坐标为(1/2,0),EC+ED的最小值为2sqrt(10)。

练2:如图,抛物线经过点A(-1,0)、B(1,0)、C (0,-3),顶点为D。

点M是对称轴上的一个动点,当△ACM的周长最小时,求点M的坐标。

解:(1)由已知点可列出三个方程:y=a(-1)^2+b(-1)+cy=a(1)^2+b(1)+c3=aD^2+bD+c化简后可得:y=x^2-2x-32)设M的横坐标为x,则△ACM的周长为AC+CM+MA=sqrt[(x+1)^2+9]+2sqrt[(x-D)^2+1]。

例谈初中几何“线段最值”问题的求解策略

例谈初中几何“线段最值”问题的求解策略

由 BE=2 AB2 + AE2 − 2 ⋅ AB ⋅ AE ⋅ cos ∠BAE ,
即19 = 32 + c2 − 2 ⋅ 3⋅ c ⋅ cos 60 ,
从而 c2 − 3c −10 = 0 ,
解得 c = 5 或 c = −2 (舍去).
法 9 (向量法)= BD
1 (BA + BC) , 2
∴ BD2 = 1 (BA + BC)2 4
的动点,且 AE + CF = 4 ,则线段 EF 的最大值为
____,最小值为____.
解析 如图 6,连接 BD 可证明 ∆ABE ≌ ∆DBF ,
得到 BE = BF ,进而证明出不论点 E,F 的位置如何
变化, ∆BEF 是正三角形,所以 EF = BE ,要求线
段 EF 的最大(小)值,实际就是求线段 BE 的最大
∴ AE =3m , AB = 2m , 显然 DF 是 ∆ACE 的中位线,
∴ DF =3 m , CF = m + 3 ,
2
2
∴ BF = BC − CF = 3 − m , 2
在 Rt∆DBF 中,
= ( 19 )2 (3 − m)2 + ( 3 m)2 ,
2
2
2
化简得 2m2 − 3m − 5 =0 ,
矩形,所以 EF = CP ,要求线段 EF 的最小值,实
际就是求线段 CP 的最小值,根据“垂线段最短”,
当 CP ⊥ AB 时,线段 CP 最小,其实就是斜边 AB 上
的高,利用勾股定理与等积法可求,答案为 2 5 . 5
例 3 如图 5,边长为 4 的菱形 ABCD 中,∠DAB
= 60 ,E 是 AD 上的动点(包括端点),F 是 CD 上

初中数学中求极值的几种常见的方法

初中数学中求极值的几种常见的方法

初中数学中求最值的几种常见方法仪陇县实验学校 李洪泉在生活实践中,人们经常面对求最值的问题:如在一定方案中,往往会讨论什么情况下花费最低、消耗最少、产值最高、获利最大等;在解数学题时也常常求某个变量的最大值或最小值。

同时,探求最值也是中考或一些高中学校自主招生考试中的一个热点内容,是初高中知识衔接的重要内容。

这类问题涉及变量多,综合性强,技巧性强,要求学生要有较强的数学转化思想和创新意识。

下面从不同的角度讨论如何求一些问题的最值。

一 、根据绝对值的几何意义求最值 实数的绝对值具有非负性,0a ≥,即a 的最小值为0,但根据绝对值的代数意义求一些复杂问题的最值就要采用分类讨论法,比较麻烦。

若根据绝对值的几何意义求最值就能够把一些复杂的问题简单化。

例1:已知13M x x =-++,则M 的最小值是 。

【思路点拨】用分类讨论法求出13x x -++的最小值是4,此时31x -≤≤。

如果我们从绝对值的几何意义来看此题,就是在数轴上求一点,使它到点1和点3-的距离之和为最短。

显然,若3x <-,距离之和为[1(3)]2(3)4x --+-->;若31x -≤≤,距离之和为1(3)4--=;若1x >,距离之和为[1(3)]2(1)4x --+->。

所以, 当31x -≤≤时,距离之和最短,最小值为4。

故M 的最小值为4。

二、利用配方法求最值完全平方式具有非负性,即2()0a b +≥。

一个代数式若能配方成2()m a b k ++的形式,则这个代数式的最小值就为k 。

例2:设,a b 为实数,求222a ab b a b ++--的最小值。

【思路点拨】一是将原式直接配方成与,a b 的完全平方式有关的式子可以求出最小值。

二是引入参数设222a ab b a b t ++--=,将等式整理成关于a 的二次方程,运用配方法利用判别式求最值。

解:(方法一) 配方得:当10,10,2b a b -+=-=即0,1a b ==时,上式中不等号的等式成立,故所求的最小值222222222(1)21331()242413()(1)1124a ab b a b a b a b b b a b b b a b ++--=+-+--=++---=++--≥-为1-。

求线段最小值方法总结

求线段最小值方法总结

求线段最小值方法总结嘿,咱今儿就来讲讲求线段最小值的那些事儿!你想想啊,线段最小值,这可不是个小问题呢!就好像咱出门找路,得找到最短最省力的那条道儿呀。

比如说,咱常见的一种情况就是“两点之间,线段最短”。

这就好比你要从 A 点到 B 点,那直接走直线肯定是最短的路呀,你总不能绕个大圈子吧,那多费劲呀!还有呢,像那种通过对称点来找线段最小值的。

哎呀,这就像是给线段变个魔术似的。

比如有个图形,你通过找到某个点的对称点,一下子就能发现那条最短的线段啦!这多神奇呀!再说说利用三角形三边关系来求的。

你看三角形,两边之和肯定大于第三边呀,那咱就利用这个特点,来找到最短的那条边。

这就好像是在一堆东西里面挑出最精华的那个。

还有一种情况,就是把线段放到一个具体的情境里面。

比如说在一个几何图形里,或者在一个实际问题中。

这时候你就得开动脑筋啦,把那些隐藏的条件都找出来,然后像侦探一样,找到那条最短的线段。

你说这求线段最小值是不是挺有意思的?就像玩游戏一样,得不断地探索、尝试,才能找到答案。

有时候啊,可能一开始觉得挺难的,但是别着急呀,慢慢想,总能找到办法的。

就像爬山一样,一开始觉得累,等爬到山顶了,那成就感可不是一般的大呀!咱在学习求线段最小值的时候,可不能死记硬背那些方法,得真正理解了,才能运用自如呀。

你想想,要是只知道背,到时候遇到个新问题不就傻眼啦?所以呀,得学会举一反三,灵活运用。

比如说,给你一个图形,你得能迅速判断出用哪种方法来求线段最小值。

这就需要咱多练习,多思考。

总之呢,求线段最小值虽然有一定难度,但只要咱用心去学,肯定能掌握好的。

加油吧,小伙伴们!让我们一起在求线段最小值的道路上披荆斩棘,所向披靡!到时候,什么难题都难不倒我们啦!这难道不是一件超级棒的事情吗?。

浅谈初中数学线段最值问题的求解原理

浅谈初中数学线段最值问题的求解原理

浅谈初中数学线段最值问题的求解原理摘要:在线段最值问题当中主要包含有线段的最短和与最短差两类,它是初中生在学习几何问题过程中的重难点,所涵盖的知识面比较宽广。

对此为了能够让学生对其相关知识之间的内在联系做出深刻理解,掌握基本的解题技巧,本文就针对当前这类问题解决过程中最常用的定理进行分析,探寻线段最值问题的方法和实质,以供参考。

关键词:初中数学;线段最值问题;求解原理引言:在初中数学当中线路的最值问题比较常见,如有求线段长度的最大值与最小值、线段和或者差的最大值与最小值。

这些问题基本都是来自三角形、四边形等图形,经常和函数问题联系在一起,通过两点之间线段最短、垂直线段最短,以及三角形两边和或者差大于或小于第三边等有关知识,在解题过程中经常需要使用数形结合、分类讨论、方程、转化等基本数学思想,因此绝大多数学生在遇到这类问题的时候往往会手足无措,其实只要认真审题,就通过合适的原理就能够解决问题,所以对其具体的解题原理进行分析具有很大必要性。

一、常见原理在初中数学教材之中关于平面几何有关线段最值问题的定理包含有以下几点:定理一:直线外一点到直线上面所有点所连接的线段之中,垂线段是最短的[1]。

定理二:两点之间线段最短。

定理三:在三角形当中,第三边往往比两边之和小,同时比两边之差大。

定理四:直径是圆当中最长的一条弦。

只有充分掌握这些定理,并明确题目之中给出的已知条件,所要求证的结论和定理适用的对象,并将其和线段最值问题的相关定理相互结合起来,就能够顺利找到解题思路,迅速解出题目。

二、应用(一)定理一例1:一直点A(0,-4)B(8,0)与C(a,-a),如果过点C的圆其圆心是线段AB的中点,那么这个圆它半径的最小值应该为?例题分析:根据题目已知条件能够得到图1,从题意当中的点C是直线y=-x上的任意一点,线段AB其重点是P(4,-2),圆的半径是PC。

过点P作出直线y=-x的垂线段,那么这一垂线段的长度就是半径的最小值。

中考数学复习 探求最大值的七种方法

中考数学复习  探求最大值的七种方法

探求最大值的七种方法求最值是近年中考的热点考题之一,有的是几何图形面积的最值,有的是线段长度的最值,有的是函数的最值,下面就结合考题介绍求解这些问题最大值的求解方法,供学习时借鉴. 方法1:定圆中,利用直径是最大的弦,确定三角形面积的最大值例1)如图 1,已知直线334y x=-与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连结PA,PB.则△PAB面积的最大值是()A. 8B. 12 C . 212D.172分析:要想使得三角形的面积最大,在底边不变的前提下,确保底上的高最大,根据圆中最大的弦是直径,只要确保高是经过圆心的一条直径,问题就得解.解:如图1,要使得三角形PAB的面积最大,需要三角形的高最大,根据圆的性质,直径最大,所以三角形的高一定要经过定圆的圆心,所以过点C作CD⊥AB,垂足为D,因为已知直线y=34x-3与x轴、y轴分别交于A、B两点,所以点A的坐标为(4,0),点B的坐标为(0,-3),所以OA=4,OB=3,因为点C(0,1),所以BC=4.在直角三角形AOB中,根据勾股定理,得AB=5.因为∠CBD=∠ABO,∠CDB=∠AOB=90°,所以△CBD∽△ABO,所以BC CD AB AO ,所以454CD,所以CD=165,所以PD=PC+CD=1+165=215,所以三角形PAB的面积为:12×5×215=212.所以选C.方法2:直角三角形中,利用斜边最长,确定线段长度的最大值例2如图2,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.分析:连接AN就构造出三角形中位线定理的使用条件,由于点D是个定点,所以点N运动到点B位置时,DN达到最大长度,因为直角三角形中斜边最长,只要利用条件求出DB的长度,就可以求得EF的最大长度了.解:如图2,连接DN,DB,因为∠A=90°,AB=3,AD=3,所以DB=6,因为点E,F分别为DM,MN的中点,所以EF=12DN,且DN≤DB,所以当DN=DB时,EF取的最大值,此时EF=3.方法3:一次函数中,利用函数的增减性,确定利润最大的方案例3 我县农业结构调整取得了巨大成功,今年水果又喜获丰收,某乡组织30辆汽车装运A、B、C三种水果共64吨到外地销售,规定每辆汽车只装运一种水果,且必须装满;又装运每种水果的汽车不少于4辆;同时,装运的B种水果的重量不超过装运的A、C两种水果重量之和.(1)设用x辆汽车装运A种水果,用y辆汽车装运B种水果,根据下表提供的信息,求y与x之间的函数关系式并写出自变量的取值范围.水果品种 A B C每辆汽车运装量(吨) 2.2 2.1 2每吨水果获利(百元) 6 8 5(2)设此次外销活动的利润为Q(万元),求Q与x之间的函数关系式,请你提出一个获得最大利润时的车辆分配方案.分析:装运C种水果的汽车辆数为:30-x-y,这是解决第一问的关键要素,其次,要明确总利润=A种水果吨获利×A种水果吨数+B种水果吨获利×B种水果吨数+C种水果吨获利×C种水果吨数.要注意单位的换算,这个细节,不要在这个环节上失分.解:(1)因为用x辆汽车装运A种水果,用y辆汽车装运B种水果,所以装运C种水果的汽车辆数为:30-x-y,由题得到:2.2×x+2.1×y+2×(30-x-y)=64 ,整理得: y = -2x+40,因为装运每种水果的汽车不少于4辆;所以x≥4,y≥4,30-x-y≥4,整理,得到:14≤x≤18;(2)因为A 种水果每吨获利6百元, B 种水果每吨获利8百元,C 种水果每吨获利5百元, 所以共获利为:Q=6x+8y+5(30-x -y )=-5x+170,因为k=-50,所以Q 随着x 的增大而减小,又因为14≤x ≤18,所以当x=14时,Q 取得最大值,即Q= -5x+170=100(百元)=1万元. 因此当x=14时,y = -2x+40=12, 30-x -y=4,所以应这样安排:A 种水果用14辆车,B 种水果用12辆车,C 种水果用4辆车利润最大.方法4:坐标系中,利用三角形三边关系定理,确定三点共线时线段的最大值例4 如图3,A,B 分别在y 轴和x 轴上,AB=4,AC=2,∠BAC=90°,点B 动,点A 就随着动,求线段OC 最大值.分析:由于AB 是定长,取斜边AB 的中点D ,所以不论如何运动,斜边上的中线OD 是定长,这样点O,C,D 构成一个三角形,根据三角形的三边关系定理,知道OC <OD+DC ,只有点O,D,C 三点共线时OC 最长,这样问题就获得求解.解:取AB 中点D,连接OD,CD ,在三角形OAB 中,∠AOB=90°,AD=DB,有OD=12AB=2. 在三角形ACD 中, ∠BAC=90°,AC=2,AD=12AB=2,所以2在三角形CDO 中, 根据三角形的三边关系定理可知,OD+CD >OC(当O 、C 、D 在一条直线上时等号成立) 所以,OC ≤2即OC 的最大值是2方法5:几何图形中,构造二次函数法,确定图形侧面积的最大值例5如图4,有一块边长为6cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( )32cm 3322cm 9322cm 27322cm 分析:如图4,由等边三角形的性质可以得出∠A=∠B=∠C=60°,由三个筝形全等就可以得出AD=BE=BF=CG=CH=AK ,根据折叠后是一个三棱柱就可以得出DO=PE=PF=QG=QH=OK ,四边形ODEP 、四边形PFGQ 、四边形QHKO 为矩形,且全等.连结AO 证明△AOD ≌△AOK 就可以得出∠OAD=∠OAK=30°,设OD=x ,则AO=2x ,由勾股定理就可以求出AD=3x ,由矩形的面积公式就可以表示纸盒的侧面积,由二次函数的性质就可以求出结论.解:因为△ABC 为等边三角形,所以∠A=∠B=∠C=60°,AB=BC=AC .因为筝形ADOK ≌筝形BEPF ≌筝形AGQH ,所以AD=BE=BF=CG=CH=AK .因为折叠后是一个三棱柱,所以DO=PE=PF=QG=QH=OK ,四边形ODEP 、四边形PFGQ 、四边形QHKO 都为矩形.所以∠ADO=∠AKO=90°.连结AO ,在Rt △AOD 和Rt △AOK 中,AO AO DO KO ,所以Rt △AOD ≌Rt △AOK (HL ).所以∠OAD=∠OAK=30°.设OD=x ,则AO=2x ,由勾股定理就可以求出3x ,所以DE=6﹣23x ,所以纸盒侧面积=3x (6﹣23x )=﹣632x +18x=﹣63232()x +932,所以当x=32时,纸盒侧面积最大为. 所以选C .方法6:抛物线上根据直线与定直线平行,且与抛物线只有1交点时距离最大,求三角形最大面积时点的坐标例6 如图5, 在平面直角坐标系中,二次函数y=a 2x +bx+2的图象与x 轴交于A (-3,0),B (1,0)两点,与y 轴交于点C .(1)求这个二次函数的解析式; (2)点P 是直线AC 上方的抛物线上一动点,是否存在点P ,使△ACP 的面积最大?若存在,求出点P 的坐标;若不存在,说明理由.。

初中数学求线段最值的方法

初中数学求线段最值的方法

初中数学求线段最值的方法初中数学中,求解线段的最值是一个基本的问题,它可以用来优化一些实际问题的解法,例如最短路径、最大收益、最小支出等。

本文将为大家介绍在初中数学中求解线段最值的方法,包括整体流程和每个环节的详细描述。

一、问题描述和基本概念假设有一条直线段AB,其中A(x1,y1)和B(x2,y2)是已知的点。

我们的问题是如何求出该直线段上某个点P(x,y)的函数值的最大值或最小值。

我们需要了解一些基本的概念和知识:1. 直线段:由两个端点确定的线段,其中端点A是起点,端点B是终点。

2. 函数:将一个集合中的每个元素都对应到另一个集合中的唯一元素的规则。

通常用f(x)表示函数。

3. 函数的最值:给定一个函数f(x),若存在x1,x2∈D,使得f(x1)≥f(x) ∀x∈D 或f(x2)≤f(x) ∀x∈D,则称f(x)在D上取得最大值或最小值。

4. 坐标系:用于描述点或图形位置的平面直角坐标系,由x轴和y轴组成、原点为(0,0)。

5. 勾股定理:在直角三角形ABC中,设直角边分别为a,b,斜边为c,则有c²=a²+b²。

二、分析求解思路和方法对于我们的问题,我们可以用函数来描述直线段AB上每个点P(x,y)的值。

为了方便,我们通常称这个函数为f(x)。

如果我们要求f(x)的最大值,则需要寻找使得f(x)取得最大值的点x值。

同理,如果我们要求f(x)的最小值,则需要寻找使得f(x)取得最小值的点x值。

基于这个思路,我们可以考虑用以下的方法来求解线段最值:1. 明确问题:首先需要明确问题的具体描述和目标,即要求线段上某个点P(x,y)的函数值的最大值或最小值。

2. 理解数据:仔细查看题目给定的图形或数据,注意理解每个点的坐标和重要的约束条件。

3. 定义函数:用函数f(x)来描述线段上每个点P(x,y)的值,需要注意函数的定义域D,即x的取值范围。

4. 求解方法:根据问题的不同,可以选用合适的求解方法来求解线段的最值。

初中数学线段最值问题解题技巧

初中数学线段最值问题解题技巧

初中数学线段最值问题解题技巧(最新版4篇)目录(篇1)1.线段最值问题的定义和特点2.解题思路和方法3.具体解题步骤和技巧正文(篇1)一、线段最值问题的定义和特点线段最值问题是指在已知线段长度范围内,求取最大或最小值的问题。

此类问题在数学中较为常见,尤其是在几何学和代数中的应用广泛。

其特点在于,通常需要结合线段长度、角度、边长等几何要素进行求解。

二、解题思路和方法1.转化:将问题转化为具体几何模型或代数方程。

2.寻找最大值点:通过观察线段或几何图形,找到最大值点。

3.应用数学知识:利用数学知识求解最大值,如三角函数、勾股定理等。

4.运用数学公式:运用特定数学公式,如辅助线公式、几何倍增等,来寻找最大值。

三、具体解题步骤和技巧1.分析问题:首先需要认真阅读问题,理解问题的要求。

2.构建模型:根据问题建立几何模型或代数方程。

3.寻找最大值点:根据题目中的条件,找到最大值点。

这可能需要对几何图形或代数方程进行深入分析。

4.应用数学知识:使用所学的数学知识求解最大值,例如:三角函数、勾股定理等。

5.验证结果:验证所求得的解是否符合题目要求,必要时进行修正。

总之,解决线段最值问题需要灵活运用数学知识,同时注意分析问题、建立模型、寻找最大值点和应用数学知识等多个步骤。

目录(篇2)一、初中数学线段最值问题解题技巧概述1.解题技巧简介2.解题技巧的应用范围和优势3.解题技巧的适用条件和限制二、初中数学线段最值问题解题技巧详解1.寻找临界点法2.构造辅助线法3.转化角度法4.函数思想法三、初中数学线段最值问题解题技巧的实际应用案例1.题目类型:线段和的最值问题2.题目类型:线段长的最值问题3.题目类型:线段差的的最值问题4.题目类型:三角形中的最值问题正文(篇2)初中数学线段最值问题解题技巧是解决线段相关问题的有效工具。

它通过寻找临界点、构造辅助线、转化角度以及运用函数思想等方法,将复杂的问题简单化,从而快速准确地求解。

线段最值问题

线段最值问题

由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。

举例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。

,P是⊙O上一点,求AP简析:E是定点,F'是动点,要确定F'点的运动路径。

先确定线段A'B'的运动轨迹是,内圆半径为AB边上的高,F'是A'B'上任意一点,因此F到圆环的最短和最长路径。

E到圆环的最短距离为=EC+CF=3+6=9,其差为简析:动线段(或定点)应居于动点轨迹的两侧,本题的三条动线段在OA、OB的内侧。

所以本题的关键是动线段PM、MN、PN转化为连接两点之间的路径折得P1、P2,△PMN的周长转化为点P1、P2之间的路径,从而转化为求小值为线段P1P2=OP=6。

例5.如图,在锐角△ABC中,ABN分别是AD和AB上的动点,则简析:本题的问题也在于动线段BM、MN居于动点轨迹AD的同侧,同样把点N沿AD翻折至AC上,BM+MN=BM+MN',转化为求点B到直线AC的最短路径,即BN'⊥AC 时,最小值为2√2。

【平移变换类】典型问题:“造桥选址”。

例6.如图,m、n是小河两岸,河宽20米,A、B是河旁两个村庄,要在河上造一座桥,要使A、B之间的路径最短应该如何选址(桥须与河岸垂直)?简析:桥长为定值,可以想像把河岸m向下平移与n重合,同时把点A向下平移河宽,此时转化成n上的一点到A、B的路径之和最短,即转化为定点A'到定点B的最短路径。

如下图:思路是把动线AM平移至A'M,A'N+BN即转化为求定点A'与定点B之间的最路径。

本题的关键是定长线段MN把动线段分隔,此时须通过平移把动线段A'N、BN变为连续路径,也可以把点B向上平移20米与点A连接。

中考数学专题复习-例说线段的最值问题 (共62张)

中考数学专题复习-例说线段的最值问题  (共62张)

MA MD 1 AD 1,FDM 60. 2
A
N
B
解答过程:
F M D 3 0 , F D = 1 M D = 1 .
2
2
FM =MD cos30= 3 . 2
MC = FM 2+CF 2 = 7.
A 'C = M C M A ' = 7 1.
FD
C
M
A‘'
A
N
B
小结:
“关联三角形”的另外两条边尽可能长度已知(或 可求),再利用三角形三边关系求解,线段取得最值时 ,“关联三角形”不存在(三顶点共线).
解答过程:
连接OC交e O于点P,此时PC最小. 在RtBCO中, Q BC=4,OB=3, OC=5,PC=OC OP=2. 即PC最小值为2.
小结:
此道作业题构造“辅助圆”的突破口在于发现动点与 两定点连线的夹角为确定值;若点P在△ABC外部,则CP 长存在最大值;若∠APB为非直角时,则作△ABP的外接 圆,此时AB为非直径的弦.
'
2
2
2
在 R t C D D '中 ,
C D '= C D 2 D D '2 3 2 4 2 5 , 即 PC PD的 最 小 值 为 5.
小结:
1. 本题从形的角度得到点P的位置,再从数的角度计算 出点P的坐标,进而得到最小值.这正是体现了数形结合 的重要性.
典型例题2:
D
C
M
A‘'
,52
),B(4,m)两点,点P是线段AB上异于A,B的动点
,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)求抛物线的表达式.
y

高中数学解题方法系列:解析几何中常见的最值求法

高中数学解题方法系列:解析几何中常见的最值求法

高中数学解题方法系列:解析几何中常见的最值求法最值问题是数学高考的热点,也是解析几何综合问题的重要内容之一。

圆锥曲线的最值问题几乎是高考的必考点,它融解析几何、函数、不等式等知识为一体,是综合试题考查的核心,对解题者有着相当高的能力要求,但其解法仍然有章可循,有法可依。

解析几何求最值常见类型之一是直接根据题意,利用几何关系或代数特征的几何意义求最值。

另一种类型是先根据条件列出所求目标的函数关系式,转化为前一类型或根据函数关系式的特征选用函数法、不等式法等求出它的最值。

本文从几个例子介绍解析几何最值问题的几种常见类型和方法。

一、结合“几何意义”求最值(一)两线段距离的最值问题这是圆锥曲线最值问题的基本方法,根据圆锥曲线的定义,把所求的最值转化为平面上两点之间的距离、点线之间的距离等问题来解。

例如:已知点F1,F2是双曲线的左右焦点,点A(1,4),P是双曲线右支上动点,则│PF1│+│PA│的最小值是多少。

解析:根据双曲线的定义,建立点A,P与两焦点之间的关系,发现两点之间线段最短。

即│PF1│+│PA│=│PF1│-│PF2│+│PA│+│PF2│=2a+│PA│+│PF2│≥4+│AF2│=9。

(二)特定代数式的最值问题因为一些数学概念如斜率、截距、两点距离等有特别的代数结构特征,可以根据这些表达式特征把所求的最值转化为平面上两点之间的距离、直线的截距或直线的斜率等问题来解。

例如:已知实数x,y满足方程x2-6x+y2+6=0。

求①的最大值;②y-x最小值;③x2+(y+2)2的最小值。

解析:①因为的几何意义是圆x2-6x+y2+6=0上的点(x,y)与定点(-1,0)连线的斜率,由数形结合算得最大值为。

②令y-x=b的几何意义是与圆x2-6x+y2+6=0有交点的平行直线系y=x+b在y轴上的截距,数形结合算得最小值为-3-。

③x2+(y+2)2的几何意义是圆x2-6x+y2+6=0上的点到定点(0,-2)的距离,数形结合算得最小值是-。

巧用托勒密定理,求解线段比最值“三例说”

巧用托勒密定理,求解线段比最值“三例说”

巧用托勒密定理,求解线段比最值“三例说”
平面几何中有一“托勒密”定理,就是:凸四边形ABCD中,AB·CD+BC·AD≥BD·AC,当A、B、C、D共圆时取等号。

此定理在求解动态图形中的线段比最值时有巧妙之用。

现举以下三例来说说:【例1】(如图)四边形ABCD中,AB=2√3,AC=2,∠BAC=∠ACD=60º,求AD/BD最小值。

【分析】首先,确认AB∥CD,点D的轨迹为CD所在直线;然后,作定点关于直线CD的对称点F,为产生AD/BD搭桥;最后,构造成凸四边形ABFD,应用“托勒密”定理…(过程见下)
【例二】(如图)在△ABC中,∠B=∠ACD,BC=3,S△ABC=3,求:BD/AD的最大值。

【分析】首先,确定点A的轨迹为过点平行BC的直线L;然后,由△ABC∽△ACD,导出BD/AD后,转化为与AB/AC;最后,通过作对称点造四边形BCAQ,应用“托勒密定理”…(过程见下)
【例三】(如图)在△ABC中,CD=2DB=8,∠DAC=60º,点P 满足△BAP∽△CAB,点P不在AC上,求:PB/PD的最大值。

【分析】首先,确定点P的轨迹(此步难度较大),造三角形相似确准点P所在的定直线L;然后,作定点B关于L的对称点M,构造凸四边形BDPM;最后,应用“托勒密定理”导PB/PD…(过程见下,此题难度在于定点P的轨迹)
以上三例之分析,“道听度说”供参考。

例谈初中数学中的最值问题

例谈初中数学中的最值问题

例谈初中数学中的最值问题作者:李相伟来源:《师道·教研》2013年第05期近几年来,各地初三毕业、升学考数学试题中屡屡出现求最值问题,我们在数学教学中也经常碰到求最大(小)值的问题,这类问题往往与生活实际联系紧密,不但体现数学的思想和方法,更体现数学在实际中的应用。

在一定范围内求最大值或最小值的问题,我们称之为最值问题。

在初中阶段,如何运用数学思想和方法来解决数学最值问题是值得探讨的问题,本文结合初中数学常见的最值问题进行分析,寻求解决最值问题的一些方法。

一、利用函数自变量取值范围的限制求最值问题由于函数自变量取值范围的限制,函数图像局限于某一线段或某一部分。

这样,函数的值往往也确定在某个范围内,从而存在最值,利用函数自变量取值范围的限制求最值问题是初中数学中常见的方法之一。

二、利用配方法求最值问题配方法,主要是利用完全平方公式:a2±2ab+b2=(a±b)2的结构特征。

把待解决问题中的代数式,通过一定变形手段,构造出完全平方式:a2±2ab+b2,然后使式子表示成(a+b)2+k或几个平方的和的形式,利用平方的非负性从而得到最值。

例1.设x,y为实数,代数式5x2+4y2-8xy+2x+4的最小值为 .另外,我们经常利用二次函数的顶点性质求最值问题。

如:求面积最大值,求利润最大等。

三、利用根的判别式求最值问题通常根的判别式可以判别一元二次方程根的状况,可以用来研究二次函数图像和x轴交点个数。

在这里,我们还可以利用根的判别式求函数的最值。

例2.设x1、x2是方程2x2-4mx+2m2+3m-2=0的两个实数根,当m为何值时,x12+x22有最小值,并求这个最小值。

分析:先由韦达定理知x12+x22是关于m的二次函数,思考是否存在抛物线的顶点处取得最小值,就要看自变量m的取值范围,下面从判别式入手。

当问题分析得到二次函数的顶点式时,我们还要考虑到函数的顶点是否存在,如果顶点不可取得,那么问题变成为在a≤x≤b范围内求最值。

初中圆的线段最值问题的解法

初中圆的线段最值问题的解法

初中圆的线段最值问题的解法初中圆的线段最值问题是初中数学中不可忽视的重要概念。

这一问题的求解方法不仅普通初中生必须要求掌握,而且也是中学教师的必备知识。

本文以求解初中圆的线段最值问题为切入点,通过对现有教学研究成果的分析,介绍求解初中圆的线段最值问题的相关解法。

一、求解初中圆的线段最值问题的逆向定理初中数学课本中,圆的线段最值问题是一个重要概念。

圆的线段最值问题是指,在固定圆心和半径情况下,从圆上任意点P开始,向外沿圆绘制一条线段,当线段达到最大长度时,此线段叫做圆的线段最值。

求解圆线段最大值的方法有很多,其中最常用的是逆向定理。

逆向定理的思想是,当圆线段到达最大值时,此时所绘制线段两端点和圆心构成一个直角三角形,线段的一端点正好对应三角形的顶点,此时正好为圆线段最值。

二、求解初中圆的线段最值问题的圆心角定理除了逆向定理,还可以运用几何中的“圆心角定理”来求解初中圆的线段最值。

圆心角定理的思想是,在固定圆心和半径的情况下,当绘制的线段的角度等于圆心角,即圆心角为90度时,线段就达到最大值,此时正好为圆线段最值。

三、求解初中圆的线段最值问题的视觉法除了逆向定理和圆心角定理,初中圆的线段最值问题还可以采用视觉法求解。

视觉法的思想是,用手指沿着圆形接近圆心,绘制一条线段,当线段长度最长时,此时就可以得出圆线段最大值。

四、求解初中圆的线段最值问题的计算法此外,初中圆的线段最值问题还可以采用计算法求解。

计算法的思想是,用坐标轴系统绘制一个圆,令半径为R,则距离圆心的x轴方向的距离就是圆的线段最值,可以用如下公式求出:2*R*cos(90°)=2*R。

五、结论以上介绍了求解初中圆的线段最值问题的几种策略,包括逆向定理、圆心角定理、视觉法和计算法。

教师在教学中应该深入了解这些策略,为学生进行科学的教育,帮助学生更好地理解和掌握圆的线段最值问题的解法,为其未来的学习奠定坚实的基础。

例谈立体几何最值问题的几种解法

例谈立体几何最值问题的几种解法

思路探寻立体几何最值问题侧重于考查同学们的空间想象、逻辑推理和数学运算等能力.常见的立体几何最值问题是求立体几何图形中某条线段、某个角、体积、表面积的最值,那么如何求解呢?一、利用函数思想在大多数情况下,我们可以把与动点有关的立体几何问题看作函数问题来求解.以其中某一个量,如动点的坐标、线段的长、角的大小为变量,建立关于该变量的关系式,并将其视为函数式,即可利用一次函数、二次函数、三角函数的性质和图象求得最值.例1.如图1,正方体ABCD-A1B1C1D1的棱长为1,P为AA1的中点,M在侧面AA1B1B上,若D1M⊥CP,则ΔBCM).C.5D.2图1图2解:过M作MG⊥平面ABCD,垂足为G,作GH⊥BC于点H,连接MH,以D为坐标原点,建立如图2所示的空间直角坐标系,可得D()0,0,0,C()0,1,0,A()1,0,0,P()1,0,12,D1(0,0,1),B()1,1,0.设M()1,a,b,则D1M=()1,a,b-1,CP=()1,-1,12,∵D1M⊥CP,∴ D1M⋅ CP=12b-a+12=0,∴b=2a-1,∴CH=1-a,MG=2a-1,∴MH=()1-a2+()2a-12=5a2-6a+2,∴SΔBCM=12BC⋅MH=1=可知当a=35时,ΔBCM面积取最小值,为SΔBCM=12×=故选B.在建立空间直角坐标系后,设出点M的坐标,以a、b为变量,构建关于a的函数式SΔBCM=然后将5a2-6a+2看作二次函数式,对其配方,根据二次函数的性质即可知函数在a=35时取最小值.二、运用基本不等式在解答立体几何最值问题时,我们往往可以先根据立体几何中的性质、定义、定理求得目标式;然后将其进行合理的变形,采用拆项、凑系数、补一次项,去掉常数项等方式,配凑出两式的和或积,就可以直接运用基本不等式来求得最值.在运用基本不等式求最值时,要把握三个条件:一正、二定、三相等.例2.已知三棱锥P-ABC的4个顶点均在球心为O、直径为23的球面上,PA=2,且PA,PB,PC两两垂直.当PC+AB取最大值时,三棱锥O-PAB的体积为().A. C.6解:∵PA,PB,PC两两互相垂直,∴三棱锥P-ABC可补全为如图3所示的长方体.则长方体的外接球即为三棱锥P-ABC的外接球,∴PA2+PB2+PC2=()232=12,又PA=2,∴PB2+PC2=10,∵AB2=PA2+PB2=2+PB2,∴PC2+AB2=2+PB2+PC2=12,∴()PC+AB2-2PC⋅AB=12,又PC⋅AB≤()PC+AB22,∴12=()PC+AB2-2PC⋅AB≥()PC+AB2-2()PC+AB22=12()PC+AB2,当且仅当PC=AB时取等号,∴()PC+AB max=26,此时PC=AB=6,PB=图347思路探寻AB 2-PA 2=2,∴V O -PAB =12V C -PAB =16S △PAB ⋅PC =112PA ⋅PB⋅PC =112×2×2×6故选B.根据长方体的性质得到()PC +AB 2-2PC ⋅AB =10后,可发现该式中含有PC 、AB 的和与积,根据基本不等式a +b ≥2ab 求解,即可得到三棱锥O -PAB 的体积.三、转化法运用转化法求解立体几何最值问题有两种思路.一是将问题转化为平面几何问题.先将几何体的表面展开,或将几何体内部满足条件的某些面展开成平面;再在平面内利用平面几何知识,如正余弦定理、两点间的距离最短、三角形的两边之和大于第三边等求解,这样问题就变得十分直观,容易求解了.另一种思路是根据题意和几何图形中的点、线、面的位置关系,明确其中改变的量和不变的量及其关系,根据简单几何体的性质、表面积公式、体积公式,将问题转化为求某些线段或角的最值.再结合简单几何体的性质,几何图形中点、线、面的位置关系求得最值例3.如图4,在正三棱柱ABC -A 1B 1C 1中,AA 1=AB =2,D 在A 1C 上,E 是A 1B 的中点,则()AD +DE 2的最小值是().A.6-7 B.27 C.3+7 D.5+7图4图5解:将平面A 1BC 与平面A 1AC 翻折到同一平面上,连接AE ,如图5所示,设AE ⋂A 1C =F .由题意可知A 1A =AC =BC =2,A 1C =A 1B =22,所以AA 21+AC 2=A 1C 2,所以AA 1⊥AC ,则∠AA 1C =45°,由余弦定理可得cos∠BA 1C =A 1B 2+A 1C 2-BC 22A 1B ⋅A 1C=8+8-42×22×22=34,则sin∠BA 1C =1-cos 2∠BA 1C =故cos∠AA 1B =cos ()∠AA 1C +∠BA 1C =cos ∠AA 1C cos ∠BA 1C -sin ∠AA 1C sin ∠BA 1C =32-148.因为E 是A 1B 的中点,所以A 1E =2,由余弦定理可得AE 2=AA 21+A 1E 2-2AA 1⋅A 1E cos∠BA 1A=4+2-2×2×2×32-148=3+7.因为D 在A 1C 上,所以AD +DE ≥AE ,当A 、E 、D 三点共线时,等号成立,则()AD +DE 2≥3+7.故选C .将平面A 1BC 与平面A 1AC 翻折到同一平面上,就可以把立体几何问题转化为平面几何问题,即可根据勾股定理和余弦定理求得A 1E 以及AE 的值.分析图形可知当A 、E 、D 三点共线时,AD +DE 取得最大值,再结合余弦定理求解即可.例4.已知球O 的表面积为60π,四面体P -ABC 内接于球O ,ΔABC 是边长为6的正三角形,平面PBC ⊥平面ABC ,则四面体P -ABC 体积的最大值为().A.18B.27C.32D.81解:因为球O 的表面积为60π,所以球的半径R ==15,由题意知四面体P -ABC 底面三角形的面积为定值,要使四面体的体积最大,只须使顶点P 到底面的距离最大,又因为平面PBC ⊥平面ABC ,所以当PB =PC 时,点P 到底面的距离最大,而ΔABC 外接圆的半径r =62sin60°=23,则O 到面ABC 的距离为d =R 2-r 2=3,且O 到面PBC 的距离为h =12r =3,设点P 到平面ABC 的距离为H ,则R 2=()H -d 2+h 2,解得H =33,此时体积最大值为V max =13×12×6×6×sin60°×33=27.故选B.解答本题,首先根据球的表面积求得球的半径;再根据题意和几何体的特征明确当PB =PC 时,点P 到底面的距离最大;最后根据外接圆的性质、勾股定理求出点P 到底面的距离,即可求出最大值.除了上述三种方法外,有时还可采用定义法、构造法来求立体几何最值问题的答案.总之,同学们在解题时,要先根据题意和几何体的结构特征寻找取得最值的情形,求得目标式;然后根据目标式的特征,选用合适的方法求最值.(作者单位:贵州省江口中学)48。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例谈求线段最值的方法
几何最值问题属于中考题中的热点问题,也是难点问题,其中,求线段的最值问题是近年常见的题型.下面结合一些实例谈谈解决此类问题的方法.
一、轨迹法
对于线段最小值问题,若线段的一个端点是定点,另一个端点是动点,可以考虑轨迹法,即考虑动点的轨迹.若动点的轨迹是一条直线,可以用“垂线段最短”原理解决;若动点的轨迹是圆(或一段圆弧),可以用“圆最值模型”解决.
圆最值模型如图1, P是⊙O外的一点,直线PO分别交⊙O于点,A B,则PA是点P
到⊙O上的点的最短距离, PB是点P到⊙O上的点的最长距离.
PC OC.
证明如图1,在⊙O是任取一点C(不为,A B),连结,
Q,
<+=+=+
,
P O P C O C P O P A O A P A O C
∴<,
P A P C
即PA是点P到⊙?O上的点的最短距离.
PD OD.
如图2,在⊙O是任取一点D(不为,A B) ,连接,
Q,
+>=+=+
,
PO OD PD PB PO OB PO OD
∴>,
PB PD
即PB是点P到⊙O上的点的最长距离.
例1 (2016年无锡市中考题)如图3,已知平行四边形OABC的顶点,A C分别在直线
x=上,O是坐标原点,则对角线OB长的最小值为.
x=和4
1
解析 如图3,设直线1x =和x 轴交于点E .作BF ⊥直线4x =点F ,因为平行四边形OABC ,所以OA 和BC 平行且相等,可得AOE ∆和CBF ∆全等,所以OE BF =,可得点B 的轨迹是直线5x =.当点B 在x 轴上时,OB ⊥直线5x =,此时OB 最小,最小值为5.
例2 (2016年安徽省中考题)如图4,Rt ABC ∆中,,6,4,AB BC AB BC P ⊥==是ABC ∆内部的一个动点,且满足PAB PBC ∠=∠,则线段CP 长的最小值为( )
(A) 32 (B) 2 (c)
解析 根据PAB PBC ∠=∠,可得90APB ∠=︒,故点P 在以AB 为直径的圆上(如图
4).取AB 的中点,O OC 交⊙O 于点P ,根据圆最值模型知此时CP 最小.
13,52
OP AB OC =
==Q , 所以CP 的最小值为532OC OP -=-=, 选B.
二、构造法
对于线段最大值问题,若线段的一个端点是定点,另一个端点是动点,但动点轨迹难确定,可以考虑构造法,即找一个定点,当这三点共线时,线段最大.
例3 如图5,平面直角坐标系中,已知矩形,2,1ABCD AB BC ==,点A 和B 分别在x 轴正半轴和第一象限角平分线上滑动,点C 在第一象限,求OC 的最大值.
解析 如图5,取AOB ∆外接圆的圆心I ,因为2AB =是确定的,且45AOB ∠=︒也
是确定的,所以AOB ∆外接圆是确定的.那么线段OI
BIC ∆是确定的,135,1IBC BI BC ∠=︒=,可解三角形得CI =所以当,,O I C
三点共线时,线段OC 取得最大值,即为OI CI + 三、转化法
对于线段最值问题,若线段的两个端点都是动点,可以考虑运用转化法,将它转化为求与之有关的另一条线段的最值.
例4 (2016年三明市中考题)如图6,在等边ABC ∆中,4AB =,点P 是BC 边上的动点,点P 关于直线,AB AC 的对称点分别为,M N ,则线段MN 长的取值范围是 .
解析 如图6,连结,,AP AM AN ,由对称可得,AP AM AN BAP MAB ==∠=∠,CAP NAC ∠=∠,所以2120MAN BAC ∠=∠=︒,所以AMN ∆是顶角为120°的等腰三
角形,可得MN ==.于是求线段MN 长的取值范围,就转化为求线段AP 长的取值范围.AP 最小为AP 垂直BC 时,最大为AB ,所以AP 的取值范围是
4
AP ≤≤,所以MN 的取值范围是6AP ≤≤ 四、函数法
当线段最值问题从几何角度很难求解的时候,可以考虑引入参数,建立函数模型,用函数法来解决.
例5 如图7,在ABC ∆中,2AB AC BC ===,点P 是AB 边上的动点(不与点,A B 重合).过点P 作//PE BC 交AC 于点E ,作P F B C ⊥于点F ,连结,EF M 是EF 上
的点,且2EM FM =,则PM 的最小值是 .
解析 由条件“2AB AC BC ===”可知ABC ∆是确定的,tan 2B =;又根据作图可知PBF ∆形状也是确定的,PF 二2BF,并且有2PF BF =.所以,分析可得PM 的大小取决于BF 的大小,所以引入参数.
设BF x =,则2PF x =,22PE x =-.
加图7,作MN PF ⊥于点N .
2EM FM =Q ,
122333MN PE x ∴==-,2433
PN PF x ==, 在Rt PMN ∆中,
222224()()333
PM x x =-+, 化简得2220116()9545
PM x =-+.
所以当15BF =时,PM。

相关文档
最新文档