专题突破——极坐标与参数方程专题

合集下载

极坐标与参数方程考点汇总

极坐标与参数方程考点汇总

专题一极坐标与参数方程考点整合一、极坐标知识点一极坐标系1.极坐标系:如图所示,在平面内取一个定点O,叫作;自极点O引一条射线Ox,叫作;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.2.极坐标:设M是平面内一点,极点O与点M的距离|OM|叫作点M的,记为ρ;以极轴Ox 为始边,射线OM为终边的角xOM叫作点M的,记为θ.有序数对(ρ,θ)叫作点M的极坐标,记为M(ρ,θ).一般地,不做特殊说明时,我们认为ρ≥0,θ可取任意实数.3.点与极坐标的关系:一般地,极坐标(ρ,θ)与(ρ,θ+2kπ)(k∈Z)表示同一个点.特别地,极点O的坐标为(0,θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定ρ>0,0≤θ<2π,那么除极点外,平面内的点可用唯一的极坐标(ρ,θ)表示;同时,极坐标(ρ,θ)表示的点也是唯一确定的.4.极坐标与直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位.(2)互化公式:如图所示,设M是坐标系平面内任意一点,它的直角坐标系是(x,y),极坐标是(ρ,θ)(ρ≥0),于是极坐标与直角坐标的互化公式如下表:温馨提示;(1)在由点的直角坐标化为极坐标时,一定要注意点所在的象限和极角的范围,否则点的极坐标将不唯一.(2)在与曲线的方程进行互化时,一定要注意变量的范围,要注意转化的等价性知识点二 常见曲线的极坐标方程.二、参数方程知识点一 参数方程 1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t ),①,并且对于t 的每一个允许值,由方程组①所确定的点M (x ,y )都在这条曲线上,那么方程①就叫作这条曲线的参数方程,联系变数x ,y 的变数t 叫作参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫作普通方程. 2.参数方程和普通方程的变化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地,可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是曲线的参数方程.(3)在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.易误提醒 在将曲线的参数方程化为普通方程时,还要注意其中的x ,y 的取值范围,即在消去参数的过程中一定要注意普通方程与参数方程的等价性. 知识点二 常见曲线的参数方程 1.直线的参数方程经过点M 0(x 0,y 0),倾斜角为α(α≠π2)的直线l 的普通方程是y -y 0=tan_α(x -x 0),而过M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为 (t 为参数),若点P 对于的参数为t ,则有||PM = . 2.圆的参数方程如图所示,设圆O 的半径为r ,点M 从初始位置M 0(t =0时的位置)出发,按逆时针方向在圆O 上作匀速圆周运动,设M (x ,y ),则⎩⎪⎨⎪⎧x =r cos θy =r sin θ(θ为参数).这就是圆心在原点O ,半径为r 的圆的参数方程.其中参数θ的几何意义是OM 0绕点O 逆时针旋转到OM 的位置时,OM 0转过的角度.圆心为(a ,b ),半径为r 的圆的普通方程是(x -a )2+(y -b )2=r 2,它的参数方程为: . 3.椭圆的参数方程中心在原点O ,焦点在x 轴上的椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),其参数方程为 (φ为参数).其中参数φ称为离心角;中心在原点O ,焦点在y 轴上的椭圆的标准方程是y 2a 2+x 2b2=1(a >b >0),其参数方程为⎩⎪⎨⎪⎧x =b cos φ,y =a sin φ(φ为参数),其中参数φ仍为离心角,通常规定参数φ的范围为φ∈[0,2π). 温馨提示 (1)将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有代入消参法,加减消参法,平方消参法等.(2)将参数方程化为普通方程时,要注意两种方程的等价性,不要增解、漏解,若x 、y 有范围限制,要标出x 、y 的取值范围.典例分析一、t 的几何意义【例1】.在极坐标系中,曲线C 的方程为2cos29ρθ=,点6P π⎛⎫⎪⎝⎭.以极点O 为原点,极轴为x 轴的正半轴建立直角坐标系.(1)求直线OP 的参数方程的标准式和曲线C 的直角坐标方程; (2)若直线OP 与曲线C 交于A 、B 两点,求11PA PB+的值.【变式1】在直角坐标系xOy 中,直线l的参数方程为2{x t y =-+=(t 为参数),若以该直角坐标系的原点O 为极点, x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 4cos 0ρθθ+=. (Ⅰ)求直线l 与曲线C 的普通方程;(Ⅱ)已知直线l 与曲线C 交于,A B 两点,设()2,0M -,求11MA MB-的值.二、ρ的几何意义【例2】(2011新课标全国卷)在直角坐标系xOy 中,曲线C 1的参数方程为:2cos 22sin x y αα=⎧⎨=+⎩(α为参数)M 是C 1上的动点,P 点满足2OP OM =,P 点的轨迹为曲线C 2(Ⅰ)求C 2的方程(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求AB .【变式2】在平面直角坐标系中,曲线122:x cos C y sin αα=+⎧⎨=⎩(α为参数)经伸缩变换2x x y y⎧=⎪⎨⎪='⎩'后的曲线为2C ,以坐标原点O 为极点, x 轴非负半轴为极轴建立极坐标系. (1)求曲线2C 的极坐标方程; (2),A B 是曲线2C 上两点,且3AOB π∠=,求OA OB +的取值范围三、面积【例3】.在直角坐标系xOy 中,曲线C 的参数方程是35cos 35sin x y αα=+⎧⎨=+⎩(α为参数),以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系.(1)求曲线的极坐标方程; (2)设12:,:,63l l ππθθ==,若12,l l 与曲线C 分别交于异于原点的,A B 两点,求AOB的面积.【变式3】【2015高考新课标1,文23】选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (I )求12,C C 的极坐标方程. (II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C M N ∆ 的面积. 四、交点【例4】已知直线l 的参数方程为:2cos sin x t y t αα=-+⎧⎨=⎩(t 为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 2cos ρθθ=-.(Ⅰ)求曲线C 的参数方程; (Ⅱ)当4πα=时,求直线l 与曲线C 交点的极坐标.【变式4】【2013课标全国Ⅰ,文23】已知曲线C 1的参数方程为45cos ,55sin x t y t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).五、轨迹【例5】(2013全国Ⅱ卷)已知动点,P Q 都在曲线2cos :2sin x C y ββ=⎧⎨=⎩(β为参数)上,对应参数分别为βα=与)20(2πααβ<<=,M 为PQ 的中点. (Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.【变式5】在直角坐标系xOy 中,已知圆C : 2{2x cos y sin θθ== (θ为参数),点P 在直线l :40x y +-=上,以坐标原点为极点, x 轴的正半轴为极轴,建立极坐标系.(I )求圆C 和直线l 的极坐标方程;(II )射线OP 交圆C 于R ,点Q 在射线OP 上,且满足2OP OR OQ =⋅,求Q 点轨迹的极坐标方程六、参数方程的应用【例6】(2014课表全国Ⅰ)已知曲线22:149x y C +=,直线2:22x t l y t =+⎧⎨=-⎩(t 为参数).(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.【变式6】(2016·全国Ⅲ卷)在直角坐标系xOy 中,曲线1C 的参数方程为1:sin x C y αα⎧=⎪⎨=⎪⎩(α为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为sin()4πρθ+=。

极坐标与参数方程专题复习

极坐标与参数方程专题复习
平面内任一点M的位置可以由线段OM的长度ρ和从射线Ox到射线
OM的角度θ来刻画(如图所示).这两个数组成的有序数对(ρ,θ)称为
点M的极坐标.ρ称为点M的 极径 ,θ称为点M的极角
.
一般认为ρ≥0.当极角θ的取值范围是[0,2π)时,平面上的点(除去极
点)就与极坐标(ρ,θ)(ρ≠0)建立一一对应的关系.我们设定,极点的
例、将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原
来的2倍,得到曲线C.求曲线C的标准方程;
2.极坐标系
(1)极坐标与极坐标系的概念
在平面内取一个定点O,自点O引一条射线Ox,同时确定一个长
度单位和计算角度的正方向(通常取逆时针方向),这样就建立了
一个极坐标系.点O称为极点,射线Ox称为极轴.
0,直线 l 的参数方程为
(t 为参数),射线 OM 的极坐标方程
y=t

为 θ= 4 .求圆 C 和直线 l 的极坐标方程;
题型三、距离的最值: 用“参数法”
1.曲线上的点到直线距离的最值问题
2.点与点的最值问题
“参数法”:设点---套公式--三角辅助角
①设点: 设点的坐标,用该点在所在曲线的的参数 方程来设
直线

普通方程
参数方程
y-y0=tan α(x-x0)
x=x0+tcos α,

(t 为参数)
y=y0+tsin α
(x-a)2+(y-b)2=r2
2
椭圆
抛物线
2
x y
2+ 2=1(a>b>0)
a b
y2=2px(p>0)

= +
(为参数)
= +

极坐标系与参数方程专题

极坐标系与参数方程专题

练习题学校:___________姓名:___________班级:___________考号:___________ 评卷人 得分一、选择题1.在极坐标系中,点)65,2(π到直线4)3sin(=-πθρ的距离为( ) A .1 B .2 C .3 D .4 2.在极坐标系中,设圆C :4cos ρθ=与直线:(R)4l πθρ=∈交于A ,B 两点,求以AB 为直径的圆的极坐标方程为( ) A .22sin()4πρθ=+B .22sin()4πρθ=-C .22cos()4πρθ=+D .22cos()4πρθ=-3.化极坐标方程2cos 0ρθρ-=为直角坐标方程为( ) A .221x y +=或1y = B .1x =C .221x y +=或1x = D .1y =4.已知圆的直角坐标方程为2220x y y +-=.在以原点为极点,x 轴正半轴为极轴的极坐标系中,该圆的方程为()A .2cos ρθ=B .2sin ρθ=C .2cos ρθ=-D .2sin ρθ=-5.在极坐标中,与圆4sin ρθ=相切的一条直线方程为( )A .sin 2ρθ=B .cos 2ρθ=C .cos 4ρθ=D .cos 4ρθ=-6.参数方程2cos (3sin x y θθθ=⎧⎨=⎩,,为参数)和极坐标方程4sin ρθ=所表示的图形分别是( )(A )圆和直线 (B )直线和直线 (C )椭圆和直线 (D )椭圆和圆 评卷人 得分二、填空题7.在极坐标系中,经过点)3,4(π且与极轴垂直的直线的极坐标方程为 .8.(坐标系与参数方程选做题)极坐标系下,直线2)4cos(=-πθρ与圆2=ρ的公共点个数是________;9.极坐标系中,圆θρsin 4=的圆心到直线)(3R ∈=θπθ 的距离是 .10.已知圆C 的参数方程为cos ,(1sin .x y ααα=⎧⎨=+⎩为参数),直线l 的极坐标方程为sin 1ρθ=,则直线l 与圆C 的交点的直角坐标为 .三、解答题(题型注释)11.在平面直角坐标系中,已知直线l 过点(),12P - ,倾斜角6πα=,再以原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为3ρ=. (Ⅰ)写出直线l 的参数方程和曲线C 的直角坐标方程;(Ⅱ)若直线l 与曲线C 分别交于、M N 两点,求PM PN ⋅的值.12.在极坐标系中,已知曲线)4sin(22:πθρ-=C ,P 为曲线C 上的动点,定点)4,1(πQ .(1)将曲线C 的方程化成直角坐标方程,并说明它是什么曲线; (2)求P 、Q 两点的最短距离.13.在平面直角坐标系xOy 中,直线l 经过点(10)A -,,其倾斜角是α,以原点O 为极点,以x 轴的非负半轴为极轴,与直角坐标系xOy 取相同的长度单位,建立极坐标系.设曲线C 的极坐标方程是26cos 5ρρθ=-.(Ⅰ)若直线l 和曲线C 有公共点,求倾斜角α的取值范围; (Ⅱ)设()B x y ,为曲线C 任意一点,求3x y +的取值范围.14.在直角坐标系xoy 中,直线l 的参数方程为212242x ty t ⎧=-⎪⎪⎨⎪=-⎪⎩(t 为参数).再以原点为极点,以x 正半轴为极轴建立极坐标系,并使得它与直角坐标系xoy 有相同的长度单位.在该极坐标系中圆C 的方程为4sin ρθ=. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A 、B ,若点M 的坐标为()2,1-,求MA MB +的值.15.在极坐标系中,已知点A 的极坐标为(22,)4π-,圆E 的极坐标方程为4cos 4sin ρθθ=+,试判断点A 和圆E 的位置关系16.已知曲线1C 的参数方程为45cos ,55sin x t y t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=. (1)把1C 的参数方程化为极坐标方程;(2)求1C 与2C 交点的极坐标(0,02ρθπ≥≤<).17.在平面直角坐标系xoy 中,已知曲线1cos :sin x C y θθ=⎧⎨=⎩(θ为参数),将1C 上的所有点的横坐标、纵坐标分别伸长为原来的2和2倍后得到曲线2C ,以平面直角坐标系xoy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线():2cos sin 4l ρθθ+=.(1)试写出曲线1C 的极坐标方程与曲线2C 的参数方程;(2)在曲线2C 上求一点P ,使点P 到直线l 的距离最小,并求此最小值.18.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知曲线12cos :3sin x C y αα=-+⎧⎨=+⎩(α为参数),28cos :23sin x Cy θθ=⎧⎪⎨=⎪⎩(θ为参数). (1)将12,C C 的方程化为普通方程,并说明它们分别表示什么曲线; (2)若1C 上的点P 对应的参数为2πα=,Q 为2C 上的动点,求PQ 中点M 到直线l :cos 33πρθ⎛⎫-= ⎪⎝⎭的距离的最大值.19.在直角坐标系中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为,M ,N 分别为C 与x 轴,y 轴的交点.(1)写出C 的直角坐标方程,并求M 、N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程.20.在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.已知点A 的极坐标为2,4π⎛⎫⎪⎝⎭,直线的极坐标方程为cos 4a πρθ⎛⎫-= ⎪⎝⎭,且点A 在直线上.(1)求a 的值及直线的直角坐标方程;(2)圆C 的参数方程为1cos sin x y αα=+⎧⎨=⎩,(α为参数),试判断直线与圆的位置关系.21.在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为()2sincos 0a a ρθθ=>,过点()2,4P --的直线l 的参数方程为222242x ty t ⎧=-+⎪⎪⎨⎪=-+⎪⎩(t 为参数),直线l 与曲线C 相交于,A B 两点.(Ⅰ)写出曲线C 的直角坐标方程和直线l 的普通方程; (Ⅱ)若2PA PB AB ⋅=,求a 的值.22.在直角坐标系xoy 中,直线l 的参数方程为122322x t y t ⎧=⎪⎪⎨⎪=+⎪⎩ (t 为参数),若以直角极坐标方程为2cos()4πρθ=-.(1)求直线l 的倾斜角;(2)若直线l 与曲线C 交于,A B 两点,求AB 的距离.23.已知在直角坐标系xOy 中,曲线t t y t x C (,233,211:1⎪⎪⎩⎪⎪⎨⎧+-=+-=为参数,)2≠t ,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线θρsin 32:2=C ,曲线θρcos 2:3=C . (Ⅰ)求C 2与C 3交点的直角坐标;(Ⅱ)若C 2与C 1相交于点A ,C 3与C 1相交于点B ,求||AB 的值.24.在直角坐标系xOy 中,圆C 的参数方程1cos (sin x y ϕϕϕ=+⎧⎨=⎩为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (Ⅰ)求圆C 的极坐标方程; (Ⅱ)射线4:πθ=OM 与圆C 的交点为O 、P 两点,求P 点的极坐标.25.已知曲线C 的参数方程是()cos sin x y m ααα=⎧⎨=+⎩为参数,直线l 的参数方程为()5152545x t t y t ⎧=+⎪⎪⎨⎪=+⎪⎩为参数, (1)求曲线C 与直线l 的普通方程;(2)若直线l 与曲线C 相交于,P Q 两点,且455PQ =,求实数m 的值。

专题突破——极坐标与参数方程专题

专题突破——极坐标与参数方程专题

极坐标与参数方程专题(1)——直线参数t 几何意义的应用1.在平面直角坐标系xoy 中,以O 为极点,x 轴非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρsin 2θ=4cosθ,直线l 的参数方程为:(t 为参数),两曲线相交于M ,N 两点.(Ⅰ)写出曲线C 的直角坐标方程和直线l 的普通方程;(Ⅱ)若P (﹣2,﹣4),求|PM |+|PN |的值.2.在直角坐标系xOy 中,直线l 过点P (1,﹣2),倾斜角为.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=4cosθ,直线l 与曲线C 交于A ,B 两点. (Ⅰ)求直线l 的参数方程(设参数为t )和曲线C 的普通方程;(Ⅱ)求的值.3.在极坐标系中,已知圆C 的圆心C (,),半径r=.(Ⅰ)求圆C 的极坐标方程;(Ⅱ)若α∈[0,),直线l 的参数方程为(t 为参数),直线l 交圆C 于A 、B 两点,求弦长|AB |的取值范围.4.(2018•新课标Ⅱ)在直角坐标系xOy 中,曲线C 的参数方程为,(θ为参数),直线l 的参数方程为,(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.5.(2016年全国II )在直角坐标系xOy 中,圆C 的方程为()22625x y ++=(I )以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程(II )直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于A 、B 两点,AB =求l 的斜率.极坐标与参数方程专题(2)——极坐标系下ρ意义的应用1.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),曲线C1经过坐标变换后得到的轨迹为曲线C2.(Ⅰ)求C2的极坐标方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.2.在直角坐标系xOy中,直线l的参数方程为(t为参数),曲线C的参数方程为(α为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求直线l和曲线C的极坐标方程;(Ⅱ)已知直线l上一点M的极坐标为(2,θ),其中.射线OM与曲线C交于不同于极点的点N,求|MN|的值.3.已知曲线C1:x+y=和C2:(φ为参数),以原点O为极点,x 轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.(1)把曲线C1、C2的方程化为极坐标方程(2)设C1与x轴、y轴交于M,N两点,且线段MN的中点为P.若射线OP与C1、C2交于P、Q两点,求P,Q两点间的距离.4.已知曲线C的极坐标方程为,以极点为平面直角坐标系的原点,极轴为x轴的正半轴建立平面直角坐标系.(1)求曲线C的普通方程(2)A、B为曲线C上两个点,若OA⊥OB,求的值.5.(2015•新课标Ⅱ)在直角坐标系xOy 中,曲线C 1:(t 为参数,t ≠0),其中0≤α≤π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sinθ,C 3:ρ=2cosθ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.6.(2017新课标Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程; (2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB ∆面积的最大值.7.(2011新课标)在直角坐标系xOy 中,曲线1C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),M 是1C 上的动点,P点满足2OP OM =uu u v uuu v,P 点的轨迹为曲线2C (Ⅰ)求2C 的方程(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求AB .8.(2015新课标Ⅰ)在直角坐标系xOy 中,直线1C :2x =-,圆2C :22(1)(2)1x y -+-=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(Ⅰ)求1C ,2C 的极坐标方程;(Ⅱ)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN ∆的面积.极坐标与参数方程专题(3)——求点到直线的距离1.(2017新课标Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为3cos sin x y θθ=⎧⎨=⎩,(θ为参数),直线l 的参数方程为41x a ty t=+⎧⎨=-⎩(t 为参数).(1)若1a =-,求C 与l 的交点坐标;(2)若C 上的点到l,求a .2.(2016年全国III )在直角坐标系xOy 中,曲线1C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C的极坐标方程为sin()4ρθπ+=(Ⅰ)写出1C 的普通方程和2C 的直角坐标方程;(Ⅱ)设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值及此时P 的直角坐标.3.(2015陕西)在直角坐标系xOy 中,直线l的参数方程为1322x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρθ=.(Ⅰ)写出⊙C 的直角坐标方程;(Ⅱ)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.4.在平面直角坐标系中,以O 为极点,x 轴为正半轴建立极坐标系,取相同的长度单位,若曲线C 1的极坐标方程为ρsin (θ﹣)=3,曲线C 2的参数方程为(θ为参数).(1)将曲线C 1的极坐标方程化为直角方程,C 2的参数方程化为普通方程;(2)设P 是曲线C 1上任一点,Q 是曲线C 2上任一点,求|PQ |的最小值.极坐标与参数方程专题(4)——求轨迹方程1.(2018全国卷Ⅲ)在平面直角坐标系xOy 中,O 的参数方程为cos sin x y θθ=⎧⎨=⎩,(θ为参数),过点(0,且倾斜角为α的直线l 与O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.2.(2017新课标Ⅲ)在直角坐标系xOy 中,直线1l 的参数方程为2x ty kt=+⎧⎨=⎩ (t 为参数),直线2l 的参数方程为2x m m y k =-+⎧⎪⎨=⎪⎩(m 为参数).设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设3l :(cos sin )ρθθ+-0=,M 为3l 与C 的交点,求M 的极径.3.(2017新课标Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB ∆面积的最大值.4.(2013新课标Ⅱ)已知动点P ,Q 都在曲线C :()2cos 2sin x y βββ=⎧⎨=⎩为参数 上,对应参数分别为βα=与2βα=(02απ<<)M 为PQ 的中点。

极坐标与参数方程专题

极坐标与参数方程专题

极坐标与参数方程专题1.已知曲线1C 的直角坐标方程1422=+y x ,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,P 是曲线1C 上一点,∠xOP=α,)0(πα≤≤,将点P 绕点O 逆时针旋转角α后得到点Q, OQ OM 2=,OM 点M 的轨迹是曲线2C 。

(1)求曲线2C 的极坐标方程;(2)求|OM |的取值范围。

2.在直角坐标平面内,以坐标原点O 为极点,X 轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是θρcos 4=,直线l 的参数方程是⎪⎪⎩⎪⎪⎨⎧=+-=t y t x 21233(t 是参数)。

(1)过极点作直线l 的垂线,垂足为点P ,求P 的极坐标;(2)若点M,N 分别为曲线C 和直线l 上的动点,求|MN|的最小值。

3.已知直线l 的参数方程为⎩⎨⎧+=+-=ty tx 21(t 是参数),在直角坐标系xOy 中,以O 为极点,x轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为6)4sin(242--=πθρ。

(1)求直线l 与圆C 的直角坐标方程;x-y+3=0 (x+2)2+(y-2)2=2 (2)设P ,Q 为直线l 与圆C 的两个交点,A (-1,2),求|PA|+|AQ|的值。

4.已知曲线1C 的参数方程为⎪⎪⎩⎪⎪⎨⎧-=-+=t t y tt x 12122(t 是参数),以坐标原点为极点,x 轴正半轴为极轴,单位长度保持不变,建立极坐标系,直线l 的极坐标方程为2)4sin(=+πθρ。

(1)试求曲线1C 和直线l 的普通方程;y 2=x x+y=2 (2)求出它们的公共点的极坐标。

5.长为3的线段两端点A ,B 分别在x 轴正半轴和y 轴正半轴上滑动,BA =3PA ,点P 的轨迹为曲线C ,(1)以直线AB 的倾斜角α为参数,求曲线C 的参数方程; (2)求点P 到点D(0,-2)距离的最大值。

6.已知某圆的极坐标方程为6)4cos(242=+--πθρρ (1)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程;(2)若点P (x,y )在该圆上,求x+y 的最大值和最小值.7.已知直线l 的参数方程为⎩⎨⎧+-=-=ty tx 23,t 为参数),以坐标原点o 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为)3cos(4πθρ-= (1)将直线l 的参数方程化为普通方程,将圆C 的极坐标方程化为直角坐标方程。

专题:极坐标与参数方程知识点及对应例题

专题:极坐标与参数方程知识点及对应例题

极坐标及参数方程一、极坐标知识点 1.极坐标系的概念:2.有序数对),(θρ叫做点M 的极坐标,记为),(θρM . 3.极坐标与直角坐标的互化: (1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合; ②极轴与x 轴的正半轴重合 ③两种坐标系中取相同的长度单位. (2)互化公式二、参数方程知识点(1)圆222)()(r b y a x =-+-的参数方程可表示为 )(.sin ,cos 为参数θθθ⎩⎨⎧+=+=r b y r a x .(2)椭圆12222=+b y a x )0(>>b a 的参数方程可表示为)(.sin ,cos 为参数ϕϕϕ⎩⎨⎧==b y a x .(3)经过点),(o o O y x M ,倾斜角为α的直线l 的参数方程可表示为⎩⎨⎧+=+=.sin ,cos o o ααt y y t x x (t 为参数).三、点到直线的距离公式、直线与圆、圆与圆位置关系 极坐标方程典型例题1.点()22-,的极坐标为 。

2.已知圆C :22(1)(3)1x y ++-=,则圆心C 的极坐标为_______(0,02)ρθπ>≤<3.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________.4.化极坐标方程2cos 0ρθρ-=为直角坐标方程为( )A .201y y +==2x 或B .1x =C .201y +==2x 或xD .1y = 5.极坐标ρ=cos(θπ-4)表示的曲线是( )A.双曲线B.椭圆C.抛物线D.圆6.极点到直线()cos sin 3ρθθ+________ 。

7.在极坐标系中,点3(2,)2π到直线l :3cos 4sin 3ρθρθ-=的距离为 .8.在极坐标系中,点π(1,)2P 到曲线π3:cos()242l ρθ+=上的点的最短距离为 .9.已知直线4sin cos :=-θρθρl ,圆θρcos 4:=C ,则直线l 与圆C 的位置关系是________.(相交或相切或相离?)10.在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a 的值。

高考数学极坐标及参数方程专题

高考数学极坐标及参数方程专题

高考数学极坐标及参数方程专题1.设(,)P x y 是曲线(θ为参数,02θπ≤≤)上任意一点, (1)将曲线化为普通方程;(2)求的取值范围.2.知曲线1C 的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为。

(1)把1C 的参数方程化为极坐标方程;(2)求1C 与2C 交点的极坐标(0ρ≥, 02θπ≤<)。

3.已知曲线C 的极坐标方程为2sin cos 10ρθρθ+=,将曲线1cos :sin x C y αα=⎧⎨=⎩(α为参数)经过伸缩变换32x x y y'=⎧⎨'=⎩后得到曲线2C . (1)求曲线2C 的参数方程; (2)若点M 在曲线2C 上运动,试求出M 到曲线C 的距离的最小值.4.在直角坐标系xoy 中,曲线1C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),M 是1C 上的动点,P 点满足2OP OM =u u u v u u u u v ,P 点的轨迹为曲线2C . (1)求2C 的方程(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求AB .⎩⎨⎧=+-=θθsin ,cos 2y x x y5.在直角坐标系xOy 中,直线1C :x =-2,圆2C :()()22121x y -+-=,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系。

(1)求1C ,2C 的极坐标方程;(2)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN V 的面积6.极坐标系中,已知射线1C :(0)6πθρ=≥动圆2C :220002cos 40()x x x R ρρθ-+-=∈. (1)求1C ,2C 的直角坐标方程;(2)若射线1C 与动圆2C 相交于M 与N 两个不同点,求0x 的取值范围.7.在平面直角坐标系xOy 中,椭圆C 方程为5cos (3sin x y ϕϕϕ=⎧⎨=⎩为参数) (1)求过椭圆的右焦点,且与直线42(3x t t y t=-⎧⎨=-⎩为参数)平行的直线l 的普通方程。

艺术生高考数学专题讲义考点60极坐标与参数方程

艺术生高考数学专题讲义考点60极坐标与参数方程

艺术生高考数学专题讲义考点60极坐标与参数方程一、极坐标与参数方程的基本概念及性质1.极坐标:在平面直角坐标系中,以极轴为基准,通过极径和极角来确定一个点的坐标。

极坐标中,点的坐标表示为(r,θ),其中r为极径,θ为极角。

2.参数方程:用一个参数t表示自变量,由参数方程可以将二维平面上的点的坐标表示为一对关于参数t的函数。

一般形式为{x=f(t),y=g(t)}。

二、极坐标和参数方程的转化1. 极坐标转参数方程:通过极坐标的关系式,将r和θ用参数t表示,并转化为参数方程。

例如,直角坐标系中的点{(x,y)}可以用极坐标{(r,θ)}表示,其中x=r cosθ,y=r sinθ。

将x和y分别用参数t表示,可得到参数方程{x=f(t), y=g(t)}。

2. 参数方程转极坐标:反过来,将参数方程中的x和y分别转化为极坐标中的r和θ。

例如,参数方程{x=f(t), y=g(t)}可以表示为极坐标{(r, θ)},其中r²=f²(t)+g²(t),tanθ=g(t)/f(t)。

1.圆的极坐标和参数方程:极坐标:r=a;参数方程:{x=a cosθ, y=a sinθ}。

2.直线的极坐标和参数方程:极坐标:θ=α;参数方程:{x=a sec(θ-α), y=a tan(θ-α)}。

3.椭圆的极坐标和参数方程:极坐标:r=a√(1-ε²cos²θ);参数方程:{x=a cosθ, y=b sinθ}。

4.渐近线的极坐标和参数方程:极坐标:θ=π±α;参数方程:{x=a cos(θ±α), y=a sin(θ±α)}。

四、极坐标与参数方程的应用1.曲线的表示:极坐标和参数方程可以用来表示一些特殊的曲线,如圆、椭圆、双曲线等。

通过改变参数的取值范围和数值,可以得到不同形状的曲线。

2.确定曲线的方程:已知一些特征点的极坐标或参数方程,可以借助与直角坐标系的关系,确定曲线的方程。

高三数学专题复习--极坐标与参数方程

高三数学专题复习--极坐标与参数方程

五、考点练习:
1
在极坐标系中,已知
A2,π6
,B2,-π6
,求

A,B
两点
间的距离.
2.将参数方程xy==1-+24+co4ssitn,t(t 为参数,0≤t≤π )化为普通方程,并
说明方程表示的曲线.
3
将方程x=
t+1, (t 为参数)化为普通方程.
y=1-2 t
2、高考出现的题型:
(1)、求曲线的极坐标方程、参数方程; (2)、极坐标方程、参数方程与普通方程间的相互转化; (3)、解决与极坐标方程、参数方程研究有关的距离、 最值、交点等问题。
三、(1)
x y
= =
x0 y0
+ t cos + t sin
a a
, (t
为参数
)
类似地 过原点倾斜角为a的直线l的参数方程为:
解:(1)曲线C化为直角坐标方程为
x1 2 +(y
2
3) =1

它表示圆心为C(1, 3 ),半径r=1的圆。
∵ d = co 1(+
3) 2 = 2 >1,
∴点O在圆的外部,
当动点与O、C三点在同一直线上时,动点到原点O的距离最小。
d ∴
= d r =2-1=1,
m in
即圆心C上动点到原点O的距离最小值为1。
链接高考2014
以直角坐标系的原点为极点,轴非负半轴为极轴,在两种坐标系
中取相同单位的长度. 已知直线L的方程为

曲线C的参数方程为
,点M是曲线C上的一动点.
(Ⅰ)求线段OM的中点P的轨迹方程;
(Ⅱ) 求曲线C上的点到直线L的距离的最小值.

高考文科数学复习专题-极坐标与参数方程

高考文科数学复习专题-极坐标与参数方程

1.曲线的极坐标方程.(1)极坐标系:一般地,在平面上取一个定点O,自点O引一条射线Ox,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系.其中,点O 称为极点,射线Ox称为极轴.(2)极坐标(ρ,θ)的含义:设M是平面上任一点,ρ表示OM的长度,θ表示以射线Ox为始边,射线OM为终边所成的角.那么,有序数对(ρ,θ)称为点M的极坐标.明显,每一个有序实数对(ρ,θ),确定一个点的位置.其中ρ称为点M的极径,θ称为点M的极角.极坐标系和直角坐标系的最大区分在于:在直角坐标系中,平面上的点与有序数对之间的对应关系是一一对应的,而在极坐标系中,对于给定的有序数对(ρ,θ),可以确定平面上的一点,但是平面内的一点的极坐标却不是唯一的.(3)曲线的极坐标方程:一般地,在极坐标系中,假如平面曲线C上的随意一点的极坐标满意方程f(ρ,θ)=0,并且坐标适合方程f(ρ,θ)=0的点都在曲线C上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程.2.直线的极坐标方程.(1)过极点且与极轴成φ0角的直线方程是θ=φ0和θ=π-φ0,如下图所示.(2)与极轴垂直且与极轴交于点(a,0)的直线的极坐标方程是ρcos θ=a,如下图所示.(3)与极轴平行且在x轴的上方,与x轴的距离为a的直线的极坐标方程为ρsin θ=a,如下图所示.3.圆的极坐标方程.(1)以极点为圆心,半径为r的圆的方程为ρ=r,如图1所示.(2)圆心在极轴上且过极点,半径为r的圆的方程为ρ=2rcos_θ,如图2所示.(3)圆心在过极点且与极轴成π2的射线上,过极点且半径为r的圆的方程为ρ2rsin_θ,如图3所示.4.极坐标与直角坐标的互化.若极点在原点且极轴为x 轴的正半轴,则平面内随意一点M 的极坐标M(ρ,θ)化为平面直角坐标M(x ,y)的公式如下:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ或者ρ=x 2+y 2,tan θ=y x ,其中要结合点所在的象限确定角θ的值.1.曲线的参数方程的定义.在平面直角坐标系中,假如曲线上随意一点的坐标x ,y 都是某个变数t 的函数,即⎩⎪⎨⎪⎧x =f (t ),y =g (t ),并且对于t 的每一个允许值,由方程组所确定的点M(x ,y)都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x ,y 之间关系的变数t 叫做参变数,简称参数.2.常见曲线的参数方程.(1)过定点P(x 0,y 0),倾斜角为α的直线:⎩⎪⎨⎪⎧x =x 0+tcos α,y =y 0+tsin α(t 为参数), 其中参数t 是以定点P(x 0,y 0)为起点,点M(x ,y)为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离.依据t 的几何意义,有以下结论:①设A ,B 是直线上随意两点,它们对应的参数分别为t A 和t B ,则|AB|=|t B -t A |=(t B +t A )2-4t A ·t B ;②线段AB 的中点所对应的参数值等于t A +t B2.(2)中心在P(x 0,y 0),半径等于r 的圆:⎩⎪⎨⎪⎧x =x 0+rcos θ,y =y 0+rsin θ(θ为参数) (3)中心在原点,焦点在x 轴(或y 轴)上的椭圆:⎩⎪⎨⎪⎧x =acos θ,y =bsin θ(θ为参数)⎝ ⎛⎭⎪⎫或⎩⎪⎨⎪⎧x =bcos θ,y =asin θ. 中心在点P(x 0,y 0),焦点在平行于x 轴的直线上的椭圆的参数方程为⎩⎪⎨⎪⎧x =x 0+acos α,y =y 0+bsin α(α为参数).(4)中心在原点,焦点在x 轴(或y 轴)上的双曲线:⎩⎪⎨⎪⎧x =asec θ,y =btan θ(θ为参数)⎝ ⎛⎭⎪⎫或⎩⎪⎨⎪⎧x =btan θ,y =asec θ. (5)顶点在原点,焦点在x 轴的正半轴上的抛物线:⎩⎪⎨⎪⎧x =2p ,y =2p(t 为参数,p>0). 注:sec θ=1cos θ.3.参数方程化为一般方程.由参数方程化为一般方程就是要消去参数,消参数时经常采纳代入消元法、加减消元法、乘除消元法、三角代换法,消参数时要留意参数的取值范围对x ,y 的限制.1.已知点A 的极坐标为⎝⎛⎭⎪⎫4,5π3,则点A 的直角坐标是(2,-23).2.把点P 的直角坐标(6,-2)化为极坐标,结果为⎝ ⎛⎭⎪⎫22,-π6.3.曲线的极坐标方程ρ=4sin θ化为直角坐标方程为x 2+(y -2)2=4.4.以极坐标系中的点⎝ ⎛⎭⎪⎫1,π6为圆心、1为半径的圆的极坐标方程是ρ=2cos ⎝⎛⎭⎪⎫θ-π6.5.在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos θ,y =2sin θ(θ为参数)的右顶点,则常数a 的值为3.解析:由直线l :⎩⎪⎨⎪⎧x =t ,y =t -a ,得y =x -a.由椭圆C :⎩⎪⎨⎪⎧x =3cos θ,y =2sin θ,得x 29=y24=1.所以椭圆C 的右顶点为(3,0).因为直线l 过椭圆的右顶点,所以0=3-a ,即a =3.一、选择题1.在平面直角坐标系xOy 中,点P 的直角坐标为(1,-3).若以原点O 为极点,x 轴正半轴为极轴建立极坐标系,则点P 的极坐标可以是(C )A.⎝ ⎛⎭⎪⎫1,-π3B.⎝ ⎛⎭⎪⎫2,4π3C.⎝ ⎛⎭⎪⎫2,-π3D.⎝⎛⎭⎪⎫2,-4π3 2.若圆的方程为⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数),直线的方程为⎩⎪⎨⎪⎧x =t +1,y =t -1(t 为参数),则直线与圆的位置关系是(B )A .相离B .相交C .相切D .不能确定3.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是⎩⎪⎨⎪⎧x =t +1,y =t -3(t 为参数),圆C 的极坐标方程是ρ=4cosθ,则直线l 被圆C 截得的弦长为(D )A.14 B .214 C. 2 D .2 2解析:由题意可得直线和圆的方程分别为x -y -4=0,x 2+y 2=4x ,所以圆心C(2,0),半径r =2,圆心(2,0)到直线l 的距离d =2,由半径,圆心距,半弦长构成直角三角形,解得弦长为2 2.4.已知动直线l 平分圆C :(x -2)2+(y -1)2=1,则直线l 与圆O :⎩⎪⎨⎪⎧x =3cos θ,y =3sin θ(θ为参数)的位置关系是(A )A .相交B .相切C .相离D .过圆心解析:动直线l 平分圆C :(x -2)2+(y -1)2=1,即圆心(2,1)在直线l 上,又圆O :⎩⎪⎨⎪⎧x =3cos θ,y =3sin θ的一般方程为x 2+y 2=9且22+12<9,故点(2,1)在圆O 内,则直线l 与圆O 的位置关系是相交.二、填空题5.在平面直角坐标系xOy 中,已知曲线C 的参数方程是⎩⎪⎨⎪⎧y =sin θ-2,x =cos θ(θ是参数),若以O 为极点,x 轴的正半轴为极轴,则曲线C 的极坐标方程可写为ρ2+4ρsin_θ+3=0.解析:在平面直角坐标系xOy 中,⎩⎪⎨⎪⎧y =sin θ-2,x =cos θ(θ是参数),∴⎩⎪⎨⎪⎧y +2=sin θ,x =cos θ.依据sin 2θ+cos 2θ=1,可得x 2+(y +2)2=1,即x 2+y 2+4y +3=0.∴曲线C 的极坐标方程为ρ2+4ρsin θ+3=0.6.在平面直角坐标系中圆C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2+2sin θ(θ为参数),以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,则圆C 的圆心的极坐标为⎝⎛⎭⎪⎫2,π2.三、解答题7.求极点到直线2ρ=1sin ⎝⎛⎭⎪⎫θ+π4(ρ∈R)的距离.解析:由2ρ=1sin ⎝ ⎛⎭⎪⎫θ+π4⇒ρsin θ+ρcos θ=1⇒x +y =1,故d =|0+0-1|12+12=22. 8.极坐标系中,A 为曲线ρ2+2ρcos θ-3=0上的动点,B 为直线ρcos θ+ρsin θ-7=0上的动点,求|AB|的最小值.9.(2015·大连模拟)曲线C 1的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数),将曲线C 1上全部点的横坐标伸长为原来的2倍,纵坐标伸长为原来的3倍,得到曲线C 2.以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :ρ(cos θ-2sin θ)=6.(1)求曲线C 2和直线l 的一般方程;(2)P 为曲线C 2上随意一点,求点P 到直线l 的距离的最值.解析:(1)由题意可得C 2的参数方程为⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数),即C 2:x 24+y23=1,直线l :ρ(cos θ-2sin θ)=6化为直角坐标方程为x -2y -6=0.(2)设点P(2cos θ,3sin θ),由点到直线的距离公式得点P 到直线l 的距离为 d =|2cos θ-23sin θ-6|5=⎪⎪⎪⎪⎪⎪6+4⎝ ⎛⎭⎪⎫32sin θ-12cos θ5=⎪⎪⎪⎪⎪⎪6+4sin ⎝⎛⎭⎪⎫θ-π65=55⎣⎢⎡⎦⎥⎤6+4sin ⎝⎛⎭⎪⎫θ-π6. 所以255≤d ≤25,故点P 到直线l 的距离的最大值为25,最小值为255.10.已知在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+4cos θ,y =2+4sin θ(θ为参数),直线l经过定点P(3,5),倾斜角为π3.(1)写出直线l 的参数方程和曲线C 的标准方程.(2)设直线l 与曲线C 相交于A ,B 两点,求|PA|·|PB|的值.解析:(1)由曲线C 的参数方程⎩⎪⎨⎪⎧x =1+4cos θ,y =2+4sin θ(θ为参数),得一般方程为(x -1)2+(y -2)2=16,即x 2+y 2-2x -4y =11=0.直线l 经过定点P(3,5),倾斜角为π3,直线的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =5+32t (t 是参数).(2)将直线的参数方程代入x 2+y 2-2x -4y -11=0,整理,得t 2+(2+33)t -3=0,设方程的两根分别为t 1,t 2,则t 1t 2=-3,因为直线l 与曲线C 相交于A ,B 两点,所以|PA|·|PB|=|t 1t 2|=3.。

极坐标和参数方程

极坐标和参数方程

极坐标和参数方程1. 极坐标极坐标是一种描述平面上点位置的坐标系统,它使用距离和角度来确定点的位置。

与直角坐标系不同,极坐标系统以原点为中心,用一个非负数表示点到原点的距离,用一个角度表示点与正半轴的夹角。

1.1 极坐标的表示方式在极坐标中,一个点可以由两个值来表示:极径(r)和极角(θ)。

其中,极径是指从原点到点的直线距离,而极角是指从正半轴逆时针旋转到该直线所需要的角度。

通常情况下,我们将极径和极角用圆括号括起来,并以逗号分隔。

例如,(r, θ) 表示一个位于距离原点 r 的位置上,并与正半轴夹角为θ 的点。

1.2 极坐标与直角坐标之间的转换关系在直角坐标系中,我们使用 x 和 y 坐标来确定一个点的位置。

而在极坐标系中,我们使用 r 和θ 来确定一个点的位置。

两种坐标系之间存在着一定的转换关系:x = r * cos(θ)y = r * sin(θ)其中,cos 和 sin 分别代表余弦和正弦函数。

2. 参数方程参数方程也是一种描述平面上点位置的方法,它使用一个参数来表示点的位置。

与直角坐标系和极坐标系不同,参数方程使用一个或多个参数来确定点的位置。

2.1 参数方程的表示方式在参数方程中,一个点的 x 坐标和 y 坐标分别用一个或多个参数来表示。

常见的参数有 t 和θ。

例如,对于一条曲线 C,我们可以用下面的参数方程来描述:x = f(t)y = g(t)其中,f(t) 和 g(t) 是关于 t 的函数。

通过给定不同的 t 值,我们可以得到曲线上不同位置的点。

2.2 参数方程与直角坐标之间的转换关系与极坐标类似,参数方程也可以与直角坐标系进行转换。

假设我们已知一个点在直角坐标系中的坐标 (x, y),我们可以将其转换为参数方程:x = f(t)y = g(t)其中,f(t) = xg(t) = y反过来,如果已知一个曲线 C 的参数方程为:x = f(t)y = g(t)我们可以将其转换为直角坐标系中的表示:x = f(t)y = g(t)3. 极坐标和参数方程的应用极坐标和参数方程在数学和物理中有着广泛的应用。

高考数学十年真题专题解析—极坐标系与参数方程

高考数学十年真题专题解析—极坐标系与参数方程

极坐标系与参数方程考点116平面直角坐标系中的伸缩变换考点117极坐标和直角坐标的互化1.(2020全国Ⅱ文理21)已知曲线12,C C 的参数方程分别为2124cos ,:4sin x C y θθ⎧=⎪⎨=⎪⎩(θ为参数),21,:1x t tC y t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数).(1)将12,C C 的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设12,C C 的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【解析】(1)由22cos sin 1θθ+=得1C 的普通方程为:4x y +=,由11x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩得:2222221212x t t y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,两式作差可得2C 的普通方程为:224x y -=.(2)由2244x y x y +=⎧⎨-=⎩得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,即53,22P ⎛⎫ ⎪⎝⎭.设所求圆圆心的直角坐标为(),0a ,其中0a >,则22253022a a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,解得:1710a =,∴所求圆的半径1710r =,∴所求圆的直角坐标方程为:22217171010x y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即22175x y x +=,∴所求圆的极坐标方程为17cos 5ρθ=.2.(2020全国Ⅲ文理22)在直角坐标系xOy 中,曲线C 的参数方程为222,23x t t y t t⎧=--⎪⎨=-+⎪⎩(t 为参数且1t ≠),C 与坐标轴交于,A B 两点.(1)求AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.【解析】(1)令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即(0,12)A .令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即(4,0)B -.AB ∴==.(2)由(1)可知12030(4)AB k -==--,则直线AB 的方程为3(4)y x =+,即3120x y -+=.由cos ,sin x y ρθρθ==可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.3.(2020江苏22)在极坐标系中,已知点1π(,)3A ρ在直线:cos 2l ρθ=上,点2π(,6B ρ在圆:4sinC ρθ=上(其中0ρ≥,02θπ≤<).(1)求1ρ,2ρ的值(2)求出直线l 与圆C 的公共点的极坐标.【解析】(1)1122cos24;4sin 236ππρρρρ=∴==∴=Q Q .(2)5cos 2,4sin 4sin cos 2,sin 21[0,2),44ππρθρθθθθθπθ==∴=∴=∈∴=Q Q ,当4πθ=时ρ=;当54πθ=时0ρ=-<(舍);即所求交点坐标为当)4π.4.(2019全国II 文理22)在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l过点(4,0)A 且与OM 垂直,垂足为P .(1)当0=3θπ时,求0ρ及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.【解析】(1)因为()00,M ρθ在C 上,当03θπ=时,04sin 3ρπ==由已知得||||cos23OP OA π==.设(,)Q ρθ为l 上除P 的任意一点.在Rt OPQ △中cos ||23OP ρθπ⎛⎫-== ⎪⎝⎭,经检验,点(2,)3P π在曲线cos 23ρθπ⎛⎫-= ⎪⎝⎭上.所以,l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭.(2)设(,)P ρθ,在Rt OAP △中,||||cos 4cos ,OP OA θθ==即 4cos ρθ=..因为P 在线段OM 上,且AP OM ⊥,故θ的取值范围是,42ππ⎡⎤⎢⎥⎣⎦.所以,P 点轨迹的极坐标方程为4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π.5.(2019全国III 文理22)如图,在极坐标系Ox 中,(2,0)A ,)4B π,4C 3π,(2,)D π,弧 AB , BC , CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧 AB ,曲线2M 是弧 BC ,曲线3M 是弧 CD.(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.【解析】(1)由题设可得,弧 ,,AB BCCD 所在圆的极坐标方程分别为2cos ρθ=,2sin ρθ=,2cos ρθ=-,所以1M 的极坐标方程为π2cos 04ρθθ⎛⎫= ⎪⎝⎭ ,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫= ⎪⎝⎭ ,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=- ⎪⎝⎭.(2)设(,)P ρθ,由题设及(1)知若π04θ,则2cos θ=,解得π6θ=;若π3π44θ ,则2sin θ=π3θ=或2π3θ=;若3ππ4θ ,则2cos θ-=,解得5π6θ=.综上,P 的极坐标为π6⎫⎪⎭或π3⎫⎪⎭或2π3⎫⎪⎭或5π6⎫⎪⎭.考点118参数方程与普通方程的互化6.(2020上海14)已知直线方程3410x y ++=的一个参数方程可以是()A .1314x ty t=+⎧⎨=-+⎩B .1413x t y t=-⎧⎨=--⎩C .1314x t y t=-⎧⎨=-+⎩D .1413x t y t=+⎧⎨=--⎩【答案】D【解析】A .参数方程可化简为4370x y --=,故A 不正确;B .参数方程可化简为3470x y --=,故B 不正确;C .参数方程可化简为4310x y +-=,故C 不正确;D .参数方程可化简为3410x y ++=,故D 正确.故选D .7.(2018全国Ⅲ)[选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O 的参数方程为cos sin x y θθ=⎧⎨=⎩,(θ为参数),过点(0,且倾斜角为α的直线l 与O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.【解析】(1)O 的直角坐标方程为221x y +=.当2απ=时,l 与O 交于两点.当2απ≠时,记tan k α=,则l 的方程为y kx =-.l 与O 交于两点当且仅当1<,解得1k <-或1k >,即(,)42αππ∈或(,)24απ3π∈.综上,α的取值范围是(,44π3π.(2)l的参数方程为cos ,(sin x t t y t αα=⎧⎪⎨=+⎪⎩为参数,44απ3π<<).设A ,B ,P 对应的参数分别为A t ,B t ,P t ,则2A BP t t t +=,且A t ,B t满足2sin 10t α-+=.于是A B t t α+=,P t α=.又点P 的坐标(,)x y满足cos ,sin .P P x t y t αα=⎧⎪⎨=+⎪⎩所以点P的轨迹的参数方程是22,2cos 222x y αα⎧=⎪⎪⎨⎪=-⎪⎩(α为参数,44απ3π<<).考点119极坐标方程与参数方程的综合应用8.(2018北京文理)在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆=2cos ρθ相切,则a =___.【答案】1【解析】利用cos x ρθ=,sin y ρθ=,可得直线的方程为0x y a +-=,圆的方程为22(1)1x y -+=,所以圆心(1,0),半径1r =,由于直线与圆相切,故圆心到直线的距离等于半径,即1=,∴1a =或1,又0a >,∴1a =+.9.(2017北京文理)在极坐标系中,点A 在圆22cos 4sin 40ρρθρθ--+=上,点P 的坐标为(1,0)),则||AP 的最小值为___________.【答案】1【解析】圆的普通方程为222440x y x y +--+=,即22(1)(2)1x y -+-=.设圆心为(1,2)C ,所以min ||||211AP PC r =-=-=.10.(2017天津文理)在极坐标系中,直线4cos(106ρθπ-+=与圆2sin ρθ=的公共点的个数为_____.【答案】2【解析】直线的普通方程为210y ++=,圆的普通方程为22(1)1x y +-=,因为圆心到直线的距离314d =<,所以有两个交点.11.(2016北京文理)在极坐标系中,直线cos sin 10ρθθ-=与圆2cos ρθ=交于,A B 两点,则||AB =.【答案】2【解析】将cos sin 10ρθθ-=化为直角坐标方程为10x --=,将ρ=2cos θ化为直角坐标方程为22(1)1x y -+=,圆心坐标为(1,0),半径r=1,又(1,0)在直线10x -=上,所以|AB|=2r=2.12.(2015广东文理)已知直线l 的极坐标方程为2sin()24πρθ-=,点Α的极坐标为722,)4πA (,则点Α到直线l 的距离为.【答案】522【解析】由2sin()24πρθ-=得22(sin cos )22ρθθ´-=,所以1y x -=,故直线l 的直角坐标方程为10x y -+=,而点7(22,)4A π对应的直角坐标为(2,2)A -,所以点(2,2)A -到直线l :10x y -+=的距离为|221|5222++=.13.(2015安徽文理)在极坐标系中,圆8sin ρθ=上的点到直线()3R πθρ=∈距离的最大值是.【答案】6【解析】圆8sin ρθ=即28sin ρρθ=,化为直角坐标方程为22(4)16x y +-=,直线3πθ=,则tan 3θ=,化为直角坐标方程为30x y -=,圆心(0,4)到直线的距离为|4|24-=,所以圆上的点到直线距离的最大值为6.14.(2020全国Ⅰ文理21)在直角坐标系xOy 中,曲线1C 的参数方程为cos ,sin k kx t y t⎧=⎨=⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=.(1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标.【解析】(1)当1k =时,曲线1C 的参数方程为cos ,sin x t y t=⎧⎨=⎩(t 为参数),两式平方相加得221x y +=,∴曲线1C 表示以坐标原点为圆心,半径为1的圆.(2)当4k =时,曲线1C 的参数方程为44cos ,sin x t y t⎧=⎨=⎩(t 为参数),∴0,0x y ≥≥,曲线1C 的参数方程化为22cos (sin x tt y t==为参数),两式相加得曲线1C 方程为1x y +=,得1y x =-,平方得1,01,01y x x y=-+≤≤≤≤,曲线2C的极坐标方程为4cos16sin30ρθρθ-+=,曲线2C直角坐标方程为41630x y-+=,联立12,C C方程1,41630y xx y⎧=-+⎪⎨-+=⎪⎩,整理得12130x-=12=136=(舍去),11,44x y∴==,12,C C∴公共点的直角坐标为11(,)44.15.(2019全国1文理22)在直角坐标系xOy中,曲线C的参数方程为2221141txttyt⎧-=⎪⎪+⎨⎪=⎪+⎩,(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2cos sin110ρθθ+=.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.【解析】(1)因为221111tt--<≤+,且()22222222141211y t txt t⎛⎫-⎛⎫+=+=⎪⎪+⎝⎭⎝⎭+,所以C的直角坐标方程为221(1)4yx x+=≠-.l的直角坐标方程为2110x++=.(2)由(1)可设C的参数方程为cos,2sinxyαα=⎧⎨=⎩(α为参数,ππα-<<).C上的点到lπ4cos113α⎛⎫-+⎪=.当2π3α=-时,π4cos113α⎛⎫-+⎪⎝⎭取得最小值7,故C上的点到l.16.(2018全国Ⅰ文理)在直角坐标系xOy中,曲线1C的方程为||2y k x=+.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线2C的极坐标方程为22cos30ρρθ+-=.(1)求2C的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.【解析】(1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为22(1)4x y ++=.(2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为22=,故43k =-或0k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为22=,故0k =或43k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点.综上,所求1C 的方程为4||23y x =-+.17.(2018全国Ⅱ文理)在直角坐标系xOy 中,曲线C 的参数方程为2cos ,4sin ,=⎧⎨=⎩x θy θ(θ为参数),直线l 的参数方程为1cos 2sin =+⎧⎨=+⎩x t αy t α(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.【解析】(1)曲线C 的直角坐标方程为221416+=x y .当cos 0α≠时,l 的直角坐标方程为tan 2tan αα=⋅+-y x ;当cos 0α=时,l 的直角坐标方程为1=x .(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程22(13cos )4(2cos sin )80ααα+++-=t t .①因为曲线C 截直线l 所得线段的中点(1,2)在C 内,所以①有两个解,设为1t ,2t ,则120+=t t .又由①得1224(2cos sin )13cos ααα++=-+t t ,故2cos sin 0αα+=,于是直线l 的斜率tan 2α==-k .18.(2018江苏)在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长.【解析】因为曲线C 的极坐标方程为=4cos ρθ,所以曲线C 的圆心为(2,0),直径为4的圆.因为直线l 的极坐标方程为πsin()26ρθ-=,则直线l 过(4,0)A ,倾斜角为π6,所以A 为直线l 与圆C 的一个交点.设另一个交点为B ,则∠OAB=π6,连结OB ,因为OA 为直径,从而∠OBA=π2,所以π4cos 6AB ==.因此,直线l 被曲线C截得的弦长为.19.(2017全国Ⅰ文理)在直角坐标系xOy 中,曲线C 的参数方程为3cos sin x y θθ=⎧⎨=⎩,(θ为参数),直线l 的参数方程为41x a ty t=+⎧⎨=-⎩(t 为参数).(1)若1a =-,求C 与l 的交点坐标;(2)若C 上的点到l,求a .【解析】(1)曲线C 的普通方程为2219x y +=.当1a =-时,直线l 的普通方程为430x y +-=.由2243019x y x y +-=⎧⎪⎨+=⎪⎩解得30x y =⎧⎨=⎩或21252425x y ⎧=-⎪⎪⎨⎪=⎪⎩,从而C 与l 的交点坐标为(3,0),2124(,2525-.(2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l的距离为d =.当4a -≥时,d=,所以8a =;当4a <-时,d=16a =-.综上,8a =或16a =-.20.(2017全国Ⅱ文理)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,3π,点B 在曲线2C 上,求OAB ∆面积的最大值.【解析】(1)设P 的极坐标为(,)ρθ(0)ρ>,M 的极坐标为1(,)ρθ1(0)ρ>.由椭圆知||OP ρ=,14||cos OM ρθ==.由||||16OM OP ⋅=得2C 的极坐标方程4cos ρθ=(0)ρ>,因此2C 的直角坐标方程为22(2)4(0)x y x -+=≠.(2)设点B 的极坐标为(,)B ρα(0)B ρ>.由题设知||2OA =,4cos B ρα=,于是OAB ∆面积1||sin 2B S OA AOB ρ=⋅⋅∠4cos |sin()|3παα=-32|sin(2|32πα=--2+≤当12πα=-时,S取得最大值2+OAB ∆面积的最大值为2+.21.(2017全国Ⅲ文理)在直角坐标系xOy 中,直线1l 的参数方程为2x ty kt =+⎧⎨=⎩(t 为参数),直线2l 的参数方程为2x mm y k =-+⎧⎪⎨=⎪⎩(m 为参数).设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设3l :(cos sin )ρθθ+-0=,M 为3l 与C 的交点,求M 的极径.【解析】(1)消去参数t 得1l 的普通方程():l y k x =-12,消去参数m 得2l 的普通方程():l y x k=+212.设(,)P x y ,由题设得()()y k x y x k ⎧=-⎪⎨=+⎪⎩212,消去k 得()x y y -=≠2240,所以C 的普通方程为()x y y -=≠2240.(2)C 的极坐标方程为()cos sin ρθθ-=2224(),θπθπ≠0<<2,联立()()cos sin cos sin ρθθρθθ⎧-=⎪⎨⎪⎩2224+得()cos sin cos sin θθθθ-=2+,故tan θ=-13,从而cos sin θθ2291=,=1010,代入()cos sin ρθθ222-=4得ρ2=5,所以交点M22.(2017江苏)在平面坐标系中xOy 中,已知直线l 的参考方程为82x tty =-+⎧⎪⎨=⎪⎩(t 为参数),曲线C 的参数方程为22x s y ⎧=⎪⎨=⎪⎩(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.【解析】直线l 的普通方程为280x y -+=.因为点P 在曲线C上,设2(2,)P s ,从而点P 到直线l的的距离22d ==s =min 455d =.因此当点P 的坐标为(4,4)时,曲线C 上点P 到直线l的距离取到最小值5.23.(2016全国I 文理)在直角坐标系xOy 中,曲线1C 的参数方程为cos 1sin x a ty a t =⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2C :4cos ρθ=.(I)说明1C 是哪种曲线,并将1C 的方程化为极坐标方程;(II)直线3C 的极坐标方程为0=a θ,其中0a 满足0tan =2a ,若曲线1C 与2C 的公共点都在3C 上,求a .【解析】(1)cos 1sin x a t y a t=⎧⎨=+⎩(t 均为参数),∴()2221x y a +-=①∴1C 为以()01,为圆心,a 为半径的圆.方程为222210x y y a +-+-=.∵222sin x y y ρρθ+==,,∴222sin 10a ρρθ-+-=,即为1C 的极坐标方程.(2)24cos C ρθ=:,两边同乘ρ得22224cos cos x y x ρρθρρθ==+= ,,224x y x ∴+=,即()2224x y -+=②3C :化为普通方程为2y x =,由题意:1C 和2C 的公共方程所在直线即为3C ,①—②得:24210x y a -+-=,即为3C ,∴210a -=,∴1a =.24.(2016全国II 文理)在直角坐标系xOy 中,圆C 的方程为()22625x y ++=.(I)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(II)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于A 、B 两点,10AB =,求l 的斜率.【解析】(Ⅰ)整理圆的方程得2212110x y +++=,由222cos sin x y x y ρρθρθ⎧=+⎪=⎨⎪=⎩可知圆C 的极坐标方程为212cos 110ρρθ++=.(Ⅱ)记直线的斜率为k ,则直线的方程为0kx y -=,由垂径定理及点到直线距离公式知:226102521kk ⎛⎫-=- ⎪ ⎪+⎝⎭,即22369014k k =+,整理得253k =,则153k =±.25.(2016全国III 文理)在直角坐标系xOy 中,曲线1C 的参数方程为3cos sin x y αα⎧=⎪⎨=⎪⎩(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin()224ρθπ+=.(Ⅰ)写出1C 的普通方程和2C 的直角坐标方程;(Ⅱ)设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值及此时P 的直角坐标.【解析】(Ⅰ)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=.(Ⅱ)由题意,可设点P 的直角坐标为3,sin )αα,因为2C 是直线,所以||PQ 的最小值,即为P 到2C的距离()d α的最小值,|3cos sin 4|()2|sin()2|32d ααπαα+-==+-.当且仅当2()6k k Z παπ=+∈时,()d α2,此时P 的直角坐标为31(,)22.26.(2016江苏)在平面直角坐标系xOy 中,已知直线l 的参数方程为()11,23,2x t t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数,椭圆C 的参数方程为()cos ,2sin ,x y θθθ=⎧⎨=⎩为参数,设直线l 与椭圆C 相交于,A B 两点,求线段AB 的长.【解析】椭圆C 的普通方程为2214y x +=,将直线l 的参数方程11232x t y t⎧=+⎪⎪⎨⎪=⎪⎩,代入2214y x +=,得223()12(1)124t ++=,即27160t t +=,解得10t =,2167t =-,所以1216||7AB t t =-=.27.(2015全国Ⅰ文理)在直角坐标系xOy 中,直线1C :2x =-,圆2C :22(1)(2)1x y -+-=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(Ⅰ)求1C ,2C 的极坐标方程;(Ⅱ)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN ∆的面积.【解析】(Ⅰ)因为cos ,sin x y ρθρθ==,∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.(Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ--+=,得23240ρρ-+=,解得1ρ=222ρ2,|MN|=1ρ-2ρ2,因为2C 的半径为1,则2C MN 的面积o121sin 452⨯=12.28.(2015全国Ⅱ文理)在直角坐标系xOy 中,曲线1C :cos ,sin ,x t y t αα=⎧⎨=⎩(t 为参数,t ≠0)其中0απ<≤,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2C :2sin ρθ=,3C :23ρθ=.(Ⅰ)求2C 与3C 交点的直角坐标;(Ⅱ)若1C 与2C 相交于点A ,1C 与3C 相交于点B ,求||AB 的最大值.【解析】(Ⅰ)曲线2C 的直角坐标方程为2220x y y +-=,曲线3C的直角坐标方程为220x y +-=.联立222220,0,x y y x y ⎧+-=⎪⎨+-=⎪⎩解得0,0,x y =⎧⎨=⎩或3,23,2x y ⎧=⎪⎪⎨⎪=⎪⎩所以2C 与1C 交点的直角坐标为(0,0)和33,22.(Ⅱ)曲线1C 的极坐标方程为(,0)R θαρρ=∈≠,其中0απ≤<.因此A 得到极坐标为(2sin ,)αα,B的极坐标为,)αα.所以2sin AB αα=-4in(3s πα=-,当56πα=时,AB 取得最大值,最大值为4.29.(2015江苏)已知圆C的极坐标方程为2sin(404πρθ+--=,求圆C 的半径.【解析】以极坐标系的极点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐标系xoy .圆C的极坐标方程为2sin cos 4022ρθθ⎛⎫+--= ⎪ ⎪⎝⎭,化简,得22sin 2cos 40ρρθρθ+--=.则圆C 的直角坐标方程为222240x y x y +-+-=,即()()22116x y -++=,所以圆C.30.(2015陕西文理)在直角坐标系xOy 中,直线l 的参数方程为13232x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρθ=.(Ⅰ)写出⊙C 的直角坐标方程;(Ⅱ)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.【解析】(Ⅰ)由2,sin ρθρθ==得,从而有(2222+,+3x y x y =-=所以.(Ⅱ)设13(3t,t),22P +又,则|PC |==,故当t =0时,|PC |取最小值,此时P 点的直角坐标为(3,0).31.(2014全国Ⅰ文理)已知曲线C :22149x y +=,直线l :222x t y t=+⎧⎨=-⎩(t 为参数).(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o30的直线,交l 于点A ,求||PA 的最大值与最小值.【解析】2cos .().3sin .x y θθθ=⎧⎨=⎩(I)曲线C的参数方程为为参数60.l x y +-=直线的普通方程为2……5分(Ⅱ)cos sin l θθ曲线C上任意一点P(2.3)到的距离为3sin 6.d θθ=+-4)6,tan .sin 303d PA θααα==+-=︒则其中为锐角,且sin 5PA θα当(+)=-1时,取得最大值,最大值为25sin()1.5PA θα+=当时,取得最小值,最小值为32.(2014全国Ⅱ文理)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.【解析】(I)C 的普通方程为22(1)1(01)x y y -+=≤≤,可得C 的参数方程为1cos ,sin ,x t y t =+⎧⎨=⎩(t 为参数,0t x ≤≤).(Ⅱ)设D (1cos ,sin )t t +.由(I)知C 是以G(1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与t 垂直,所以直线GD 与t 的斜率相同,tan 3t t π==.故D 的直角坐标为(1cos,sin 33ππ+,即33(,22.33.(2013全国Ⅰ文理)已知曲线1C 的参数方程为45cos 55sin x ty t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=.(Ⅰ)把1C 的参数方程化为极坐标方程;(Ⅱ)求1C 与2C 交点的极坐标(0ρ≥,02θπ≤≤).【解析】将45cos 55sin x t y t =+⎧⎨=+⎩消去参数t ,化为普通方程22(4)(5)25x y -+-=,即1C :22810160x y x y +--+=,将cos sin x y ρθρθ=⎧⎨=⎩代入22810160x y x y +--+=得,28cos 10sin 160ρρθρθ--+=,∴1C 的极坐标方程为28cos 10sin 160ρρθρθ--+=.(Ⅱ)2C 的普通方程为2220x y y +-=,由222281016020x y x y x y y ⎧+--+=⎪⎨+-=⎪⎩解得11x y =⎧⎨=⎩或02x y =⎧⎨=⎩,∴1C 与2C 的交点的极坐标分别为4π),(2,2π.34.(2013全国Ⅱ文理)已知动点P ,Q 都在曲线C :()2cos 2sin x y βββ=⎧⎨=⎩为参数上,对应参数分别为βα=与2βα=(02απ<<)M 为PQ 的中点.(Ⅰ)求M 的轨迹的参数方程(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.【解析】(Ⅰ)由题意有()()2cos ,2sin ,2cos 2,2sin 2,P Q αααα因此()cos cos 2,sin sin 2M αααα++,M 的轨迹的参数方程为cos cos 2,sin sin 2,x y αααα=+⎧⎨=+⎩(02απ<<).(Ⅱ)M 点到坐标原点的距离d ==(02απ<<),当απ=时,0d =,故M 的轨迹过坐标原点.35.(2012全国文理)已知曲线1C 的参数方程是⎩⎨⎧==ϕϕsin 3cos 2y x (ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ.正方形ABCD 的顶点都在2C 上,且A 、B 、C 、D 依逆时针次序排列,点A 的极坐标为)3,2(π.(Ⅰ)求点A 、B 、C 、D 的直角坐标;(Ⅱ)设P 为1C 上任意一点,求2222||||||||PD PC PB P A +++的取值范围.【解析】(1)点,,,A B C D 的极坐标为5411(2,),(2,),(2,),(2,)3636ππππ,点,,,A B C D 的直角坐标为(1,3),(3,1),(1,3),(3,1)----.(2)设00(,)P x y ;则002cos ()3sin x y ϕϕϕ=⎧⎨=⎩为参数,222222004416t PA PB PC PD x y =+++=++23220sin [32,52]ϕ=+∈.36.(2011全国文理)在直角坐标系xOy 中,曲线1C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),M 是1C 上的动点,P 点满足2OP OM =uuu v uuuv,P 点的轨迹为曲线2C (Ⅰ)求2C 的方程(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求AB .【解析】(I)设(,)P x y ,则由条件知M(,22x y).由于M 点在1C 上,所以2cos 222sin 2xy αα⎧=⎪⎪⎨⎪=+⎪⎩,即4cos 44sin x y αα=⎧⎨=+⎩,从而2C 的参数方程为4cos 44sin x y αα=⎧⎨=+⎩(α为参数),(Ⅱ)曲线1C 的极坐标方程为4sin ρθ=,曲线2C 的极坐标方程为8sin ρθ=.射线3πθ=与1C 的交点A 的极径为14sin 3πρ=,射线3πθ=与2C 的交点B 的极径为28sin 3πρ=.所以21||||23AB ρρ-==。

极坐标与参数方程

极坐标与参数方程

2

2,所以 y-x=1.由点
4
A 的极坐标为(2 2, 7 )得点 A 的直角坐标为(2,-2),所以 d=|2+2+1|=5 2.即点 A 到
4
2
2
直线 l 的距离为5 2. 2
(2)将 x=ρcos θ,y=ρsin θ代入 x2+y2=r2 中,得ρ2cos2θ+ρ2sin2θ=r2,即 ρ2(cos2θ+sin2θ)=r2,则ρ=r.
|-m+2| 2 5
(2)圆心(0,m)到直线 l 的距离为 d=|-m+2|,所以由勾股定理得
5 2+ 5 2
5
=1,解得 m=3 或 m=1.
x=-2+cos θ, 变 式 3 : 直 线 y = x-1 上 的 点 到 曲 线 y=1+sin θ
上的点的最近距离是
________.(2 2-1)
tan115
x=-1- 2t, 2
2.已知直线 l 的参数方程为 y=2+
2t
(t 为参数),则直线 l 的斜率为(
)
2
第5页
A.1 B.-1 C. 2 D.- 2
2
2
解析:选 B.直线 l 的普通方程为 x+y-1=0,斜率为-1
二、常考题型
题型一:极坐标与直角坐标之间的互化(见知识点例题)
题型二:极坐标(方程)与直角坐标(方程)互化
两平行直线之间的距离: 直线 l1 Ax By C1 0 直线 l2 Ax By C2 0 距离 d C1 C2 A2 B2
3 弦长公式: AB x1 x2 2 y1 y2 2 1 k 2 x1 x2 2 4x1x2
知识点一 坐标系 1.平面直角坐标系中的坐标伸缩变换
x'x0

极坐标和参数方程专题

极坐标和参数方程专题

极坐标和参数方程专题1. 极坐标系的建立:在平面上取一个定点O ,自点O 引一条射线OX ,同时确定一个单位长度和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系。

2. 设M 是平面上的任一点,ρ表示OM 的长度,θ表示以射线OX 为始边,射线OM 为终边所成的角。

那么有序数对 称为点M 的极坐标。

其中ρ称为 ,θ称为 。

3. 直角坐标与极坐标的互化:4. 参数方程的意义::在平面直角坐标系中,若曲线C 上的点(,)P x y 满足()()x f t y f t =⎧⎨=⎩,该方程叫曲线C 的参数方程,变量t 是参变数,简称参数练习1.在极坐标中,求两点)4,2(),4,2(ππ-Q P 之间的距离 2.已知曲线12C C ,的极坐标方程分别为cos 3ρθ=,π4cos 002ρθρθ⎛⎫=< ⎪⎝⎭,≥≤,则曲线1C 与2C 交点的极坐标为 .3.已知曲线C :θ⎩⎨⎧θ+=θ+=(sin 21cos 23y x 为参数,0≤θ<2π),将曲线化为普通方程;4. 已知直线113:()24x tl t y t=+⎧⎨=-⎩为参数与直线2:245l x y -=相交于点B ,又点(1,2)A ,则AB =_______________5. 直线122()112x t t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩为参数被圆224x y +=截得的弦长为______________6 圆5cos ρθθ=-的圆心坐标是7. 已知1sin()3απ+=-,且α是第二象限角,则sin 2α= .8. 如右图,一个简单空间几何体的三视图其主视图与左视图都是边长为2的正三角形,其俯视图轮廓为正方形,则其体积是 .9. 若曲线的极坐标方程为=2sin 4cos ,ρθθ+,以极点为原点,极轴为x 轴正半轴 建立直角坐标系,则该曲线的直角坐标方程为 .10. 在一个数列中,如果*N n ∈∀,都有k a a a n n n =++21(k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积。

极坐标与参数方程专题目

极坐标与参数方程专题目

极坐标与参数方程专题目极坐标与参数方程专题1、把下列参数方程化为普通方程,并说明它们各表示什么曲线:⑴⎩⎨⎧==ϕϕsin 4cos 5y x (ϕ为参数); ⑵⎩⎨⎧=-=t y t x 431(t 为参数)2、求圆心为C 36,π⎛⎝ ⎫⎭⎪,半径为3的圆的极坐标方程。

3、已知直线l 经过点P(1,1),倾斜角6πα=,(1)写出直线l 的参数方程。

(2)设l 与圆422=+y x 相交与两点A 、B ,求点P 到A 、B 两点的距离之积。

4、求椭圆14922=+y x )之间距离的最小值,与定点(上一点01P 。

5、已知x 、y 满足4)2()1(22=++-y x ,求y x S -=3的最值。

6、已知椭圆⎩⎨⎧==θθsin 5cos 4y x 上两个相邻顶点为A 、C ,又B 、D 为椭圆上的两个动点,且B 、D 分别在直线AC 的两旁,求四边形ABCD 面积的最大值。

7、已知过点P(1,-2),倾斜角为6π的直线l 和抛物线x 2=y+m (1)m 取何值时,直线l 和抛物线交于两点?(2)m 取何值时,直线l 被抛物线截下的线段长为3234-. 8.在极坐标系中,求点(,)3m π0m >到直线cos()23πρθ-=的距离。

9.极坐标方程cos ρθ=-与cos()14πρθ+=表示的两图形的位置关系是什么? 10.直线4πθ=与圆1=ρ和曲线θρρcos 2⋅+=依次自上而下相交于A 、B 、C 、D 四点,求|AB |+|CD |的值11、 圆θρcos a =(a>0)上有两点A 和B ,它们的极角分别是α,β⑴由极点向直线作一垂线,垂足为H ,求H 的极坐标 ⑵求直线AB 的极坐标方程12. 在圆x 2+2x +y 2=0上求一点,使它到直线2x +3y -5=0的距离最大.13. 在椭圆4x 2+9y 2=36上求一点P ,使它到直线x +2y +18=0的距离最短(或最长).14.已知直线;l :⎩⎨⎧+=--=t y t x 4231与双曲线(y-2)2-x 2=1相交于A 、B 两点,P 点坐标P(-1,2)。

高中数学专题:极坐标与参数方程

高中数学专题:极坐标与参数方程

综上,所求C1的方程为y=-43|x|+2.
第7页
栏目导航
2.(2018·全国卷Ⅱ)在直角坐标系xOy中,曲线C的参数方程为
x=2cos y=4sin
θ, θ
(θ为
参数),直线l的参数方程为xy= =12+ +ttcsions
α, α
(t为参数).
(1)求C和l的直角坐标方程;
(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.
x=
2 2 sin
2α,
y=-
22-
2 2 cos

α为参数,π4<α<34π.
第28页
栏目导航
2.(2019·西安模拟)在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.
(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;
(2)直线l的参数方程是xy= =ttcsions
α, α
(t为参数),l与C交于A,B两点,|AB|=
10,
求l的斜率.
第29页
栏目导航
解:(1)由x=ρcos θ,y=ρsin θ可得,圆C的极坐标方程为ρ2+12ρcos θ+11=0.
(2)在(1)中建立的极坐标系中,直线l的极坐标方程为θ=α(ρ∈R).
设A,B所对应的极径分别为ρ1,ρ2,将l的极坐标方程代入C的极坐标方程得ρ2+ 12ρcos α+11=0.
第一部分 高考层级专题突破 层级二 7个保分专题 师生共研
第1页
栏目导航
专题七 选修系列(4) 第一讲 极坐标与参数方程
第2页
栏目导航
栏 目 导 航
第3页
栏目导航
感悟真题 考点突破 课时跟踪检测

高考专题复习--极坐标与参数方程(极品课件系列).ppt

高考专题复习--极坐标与参数方程(极品课件系列).ppt

3.极坐标方程研究两曲线的位置关系

5.(江苏省南通市
2008-2009)求直线
x y
1 1
2t,(t 2t
为参数)被圆
x
y
3cos 3 sin
,
(α为参数)截得的弦长.
分析:把参数方程转化为普通方程来判断位 置关系,利用圆心距与半径求出弦长。
4.两曲线的位置关系

6.(08
海南、宁夏理)已知曲线
3 S x y 的最大值.
5.极坐标方程与参数方程混合
例 10.(2008 南通四县市)已知曲线 C 的极坐标方程
是 4cos .以极点为平面直角坐标系的原点,极
轴为 x 轴的正半轴,建立平面直角坐标系,直线 l 的
参数方程是:x
2 t 1
2
,求直线 l 与曲线 C 相交
y
2t 2
所成的弦的弦长.
5(江苏省泰兴市2007—2008学年第一学期高三调研)
已知直线 l 经过点 P(1,1) ,倾斜角 ,
6
(1)写出直线 l 的参数方程; (2)设 l 与圆 x 2 y 2 4 相交与两点 A, B ,求点 P
到 A, B 两点的距离之积.
6(盐城市 2007/2008 学年度高三第三次调研考试)
本课的重点:(1)参数方程与 普通方程的互化;一般要求是把参数 方程化为普通方程;较高要求是利用 设参求曲线的轨迹方程或研究某些最 值问题;(2)极坐标与直角坐标的 互化。
重点方法:<1>消参的种种方法; <2>极坐标方程化为直角坐标方程的 方法;<3>设参的方法。
坐标系与参数方程在高考中根据我省的情况是 选考内容,是10分的解答题之一,与不等式选讲和 几何证明等三个选修模块进行三选一解答,知识相 对比较独立,与其他章节联系不大,容易拿分。根 据不同的几何问题可以建立不同的坐标系,坐标系 选取的恰当与否关系着解决平面内的点的坐标和线 的方程的难易以及它们位置关系的数据确立。有些 问题用极坐标系解答比较简单,而有些问题如果我 们引入一个参数就可以使问题容易入手解答,计算 简便。高考出现的题目往往是求曲线的极坐标方程、 参数方程以及极坐标方程、参数方程与普通方程间 的相互转化,并用极坐标方程、参数方程研究有关 的距离问题,交点问题和位置关系的判定。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极坐标与参数方程专题(1)——直线参数t几何意义的应用1.(2018•银川三模)在平面直角坐标系xoy中,以O为极点,x轴非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=4cosθ,直线l的参数方程为:(t为参数),两曲线相交于M,N两点.(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程;(Ⅱ)若P(﹣2,﹣4),求|PM|+|PN|的值.解:(Ⅰ)根据x=ρcosθ、y=ρsinθ,求得曲线C的直角坐标方程为y2=4x,用代入法消去参数求得直线l的普通方程x﹣y﹣2=0.(Ⅱ)直线l的参数方程为:(t为参数),代入y2=4x,得到,设M,N对应的参数分别为t1,t2,则t1+t2=12,t1•t2=48,∴|PM|+|PN|=|t1+t2|=.2.(2018•乐山二模)已知圆C的极坐标方程为ρ=2cosθ,直线l的参数方程为(t为参数),点A的极坐标为(,),设直线l与圆C交于点P、Q两点.(1)写出圆C的直角坐标方程;(2)求|AP|•|AQ|的值.解:(1)圆C的极坐标方程为ρ=2cosθ 即ρ2=2ρcosθ,即(x﹣1)2+y2=1,表示以C(1,0)为圆心、半径等于1的圆.(2)∵点A的直角坐标为(,),∴点A在直线(t为参数)上.把直线的参数方程代入曲线C的方程可得t2+t﹣=0.由韦达定理可得t1•t2=﹣<0,根据参数的几何意义可得|AP|•|AQ|=|t1•t2|=.3.(2018•西宁模拟)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知直线l的极坐标方程为ρcosθ+ρsinθ﹣=0,C的极坐标方程为ρ=4sin(θ﹣).(I)求直线l和C的普通方程;(II)直线l与C有两个公共点A、B,定点P(2,﹣),求||PA|﹣|PB||的值.解:(I)直线l的极坐标方程为ρcosθ+ρsinθ﹣=0,所以:直线l的普通方程为:,因为圆C的极坐标方程为为ρ=4sin(θ﹣),所以圆C的普通方程:.(II)直线l:的参数方程为:(t为参数),代入圆C2的普通方程:消去x、y整理得:t2﹣9t+17=0,t1+t2=9,t1t2=17,则:||PA|﹣|PB||=,=.4.(2018•内江三模)在直角坐标系xOy中,直线l过点P(1,﹣2),倾斜角为.以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4cosθ,直线l与曲线C交于A,B 两点.(Ⅰ)求直线l的参数方程(设参数为t)和曲线C的普通方程;(Ⅱ)求的值.解:(Ⅰ)∵直线l过点P(1,﹣2),倾斜角为.∴直线l以t为参数的参数方程为,(t为参数)…(3分)∵曲线C的极坐标方程为ρ=4cosθ.∴曲线C的普通方程为(x﹣2)2+y2=4.…(5分)(Ⅱ)将直线l的参数方程,(t为参数)代入曲线C的普通方程(x﹣2)2+y2=4,得,…(6分)设A,B两点对应的参数为t1,t2,∵点P在曲线C的左下方,∴|PA|=t1,|PB|=t2,…(8分)∴===3.…(10分)5.(2018•上饶三模)已知直线l过点P(1,0),且倾斜角为α,以坐标原点为极点,x轴的正半轴为极轴建立坐标系,圆C的极坐标方程为ρ=4cosθ.(1)求圆C的直角坐标系方程及直线l的参数方程;(2)若直线l与圆C交于A,B两点,求的最大值和最小值.解:(1)由ρ=4cosθ,得ρ2=4ρcosθ,即x2+y2=4x,所以圆C的直角坐标方程为(x﹣2)2+y2=4,直线l过点P(1,0),且倾斜角为α,所以直线l的参数方程为(t为参数).(2)将代入(x﹣2)2+y2=4,得t2﹣2tcosα﹣3=0,△=(2tcosα)2+12>0,设A,B两点对应的参数分别为t1,t2,则,=因为cosα∈[﹣1,1],所以的最大值为,最小值为.6.(2018•武昌区校级模拟)以直角坐标系的原点O为极点,以x轴的正半轴为极轴,且两个坐标系取相等的长度单位,已知直线l的参数方程为(t为参数,0≤α<π),曲线C的极坐标方程为ρcos2θ=4sinθ.(1)若,求直线l的普通方程和曲线C的直角坐标方程;(2)设直线l与曲线C相交于A,B两点,当α变化时,求|AB|的最小值.解:(1)当时,由直线l的参数方程消去t得,即直线l的普通方程为;因为曲线过极点,由ρcos2θ=4sinθ,得(ρcosθ)2=4ρsinθ,所以曲线C的直角坐标方程为x2=4y.(2)将直线l的参数方程代入x2=4y,得t2cos2α﹣4tsinα﹣8=0,由题意知,设A,B两点对应的参数分别为t1,t2,则,,∴==.∵,cos2α∈(0,1],,当cos2α=1,即α=0时,|AB|的最小值为.7.(2018•洛阳一模)在极坐标系中,已知圆C的圆心C(,),半径r=.(Ⅰ)求圆C的极坐标方程;(Ⅱ)若α∈[0,),直线l的参数方程为(t为参数),直线l交圆C于A、B两点,求弦长|AB|的取值范围.解:(Ⅰ)∵C(,)的直角坐标为(1,1),∴圆C的直角坐标方程为(x﹣1)2+(y﹣1)2=3.化为极坐标方程是ρ2﹣2ρ(cosθ+sinθ)﹣1=0 …(5分)(Ⅱ)将代入圆C的直角坐标方程(x﹣1)2+(y﹣1)2=3,得(1+tcosα)2+(1+tsinα)2=3,即t2+2t(cosα+sinα)﹣1=0.∴t1+t2=﹣2(cosα+sinα),t1•t2=﹣1.∴|AB|=|t1﹣t2|==2.∵α∈[0,),∴2α∈[0,),∴2≤|AB|<2.即弦长|AB|的取值范围是[2,2)…(10分)8.(2018•新课标Ⅱ)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.解:(1)曲线C的参数方程为(θ为参数),转换为直角坐标方程为:.直线l的参数方程为(t为参数).转换为直角坐标方程为:sinαx﹣cosαy+2cosα﹣sinα=0.(2)把直线的参数方程代入椭圆的方程得到:+=1整理得:(4cos2α+sin2α)t2+(8cosα+4sinα)t﹣8=0,则:,由于(1,2)为中点坐标,①当直线的斜率不存时,x=1.②当直线的斜率存在时,,则:8cosα+4sinα=0,解得:tanα=﹣2,即:直线l的斜率为﹣2.9.(2018•合肥二模)已知过点P(0,﹣1)的直线l的参数方程为(t为参数),在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C的方程为2asinθ﹣ρcos2θ=0(a>0).(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)若直线l与曲线C分别交于点M,N,且|PM|,|MN|,|PN|成等比数列,求a的值.解(Ⅰ)曲线C的方程为2asinθ﹣ρcos2θ=0(a>0).∴2aρsinθ﹣ρ2cos2θ=0.即x2=2ay(a>0).(Ⅱ)将代入x2=2ay,得,得.∵a>0,∴解①得.∵|PM|,|MN|,|PN|成等比数列,∴|MN|2=|PM|•|PN|,即,∴,即,解得a=0或.∵,∴.10.(2018•芜湖模拟)在平面直角坐标系xOy中,曲线C1过点P(a,1),其参数方程为(t为参数,a∈R),以坐标原点为极点,以x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρcos2θ+2cosθ﹣ρ=0.(1)写出曲线C1的普通方程和曲线C2的直角坐标方程;(2)已知曲线C1和曲线C2交于A,B两点(P在A,B之间),且|PA|=2|PB|,求实数a的值.解:(1)∵曲线C1过点P(a,1),其参数方程为(t为参数,a∈R),消参得曲线C1的普通方程为x+y﹣a﹣1=0,∵曲线C2的极坐标方程为ρcos2θ+2cosθ﹣ρ=0.两边同乘ρ得ρ2cos2θ+2ρcosθ﹣ρ2=0,即y2=2x.………(5分)(2)将曲线C1的参数方程代入曲线C2:y2=2x,得+2+1﹣2a=0,设A,B对应的参数为t1,t2,由题意得|t1|=2|t2|,且P在A,B之间,则t1=﹣2t2,∴,解得a=.………(10分)11.(2018•深圳一模)在直角坐标系xOy中,直线/的参数方程为(t为参数).在以O为极点、x轴的正半轴为极轴的极坐标系中,曲线C的方程为ρcos2θ+8cosθ﹣ρ=0(I)求直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)已知点P(a,1),设直线l与曲线C的两个交点为A,B,若|PA|=3|PB|.求a的值.解:(Ⅰ)直角坐标系xOy中,直线/的参数方程为(t为参数).转化为直角坐标方程为:4x﹣3y﹣4a+3=0.曲线C的方程为ρcos2θ+8cosθ﹣ρ=0,转化为直角坐标方程为:y2=8x.(Ⅱ)设A、B的两个参数为t1和t2,则:,整理得:,所以:.由,解得:.由|PA|=3|PB|.则:t1=3t2或t1=﹣3t2,当t1=3t2时,,解得:.当t1=﹣3t2时,,解得:.故:.极坐标与参数方程专题(2)——极坐标系下ρ意义的应用1.(2018•顺德区一模)在直角坐标系xOy中,曲线C1的参数方程为(α为参数),曲线C1经过坐标变换后得到的轨迹为曲线C2.(Ⅰ)求C2的极坐标方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.解:(Ⅰ)曲线C1的参数方程为(α为参数),转化为直角坐标方程为:x2+y2=1,曲线C1经过坐标变换后得到的轨迹为曲线C2.即:,故C2的直角坐标方程为:.转化为极坐标方程为:.(Ⅱ)曲线C1的参数方程为(α为参数),转化为极坐标方程为ρ1=1,由题意得到:A(1,),将B(ρ,)代入坐标方程:.得到,则:|AB|=.2.(2018•内江一模)在直角坐标系xOy中,直线l的参数方程为(t为参数),曲线C 的参数方程为(α为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求直线l和曲线C的极坐标方程;(Ⅱ)已知直线l上一点M的极坐标为(2,θ),其中.射线OM与曲线C交于不同于极点的点N,求|MN|的值.解:(Ⅰ)直线l的参数方程为(t为参数),直线的普通方程为,极坐标方程为.曲线C的普通方程为,极坐标方程为…(5分)(Ⅱ)∵点M在直线l上,且点M的极坐标为(2,θ)∴,∵∴,∴射线OM的极坐标方程为.联立,解得ρ=3.∴|MN|=|ρN﹣ρM|=1.3.(2016•晋中一模)已知曲线C1:x+y=和C2:(φ为参数),以原点O为极点,x 轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.(1)把曲线C1、C2的方程化为极坐标方程(2)设C1与x轴、y轴交于M,N两点,且线段MN的中点为P.若射线OP与C1、C2交于P、Q两点,求P,Q两点间的距离.解:(1)线C1:x+y=和C2:(φ为参数),以原点O为极点,x 轴的正半轴为极轴,建立极坐标系,因为x=ρcosθ,y=ρsinθ,所以C1:,即,所以;C2的普通方程为,所以其极坐标方程为,即.(2)由题意M(,0),N(0,1),所以P(),所以射线OP的极坐标方程为:,把代入C1得到ρ1=1,P(1,);把代入C2得到ρ2=2,Q(2,),所以|PQ|=|ρ2﹣ρ1|=1,即P,Q两点间的距离为1.4.(2015•新课标Ⅱ)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2cosθ.可得直角坐标方程:,联立,解得,,∴C2与C3交点的直角坐标为(0,0),.(2)曲线C1:(t为参数,t≠0),化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B都在C1上,∴A(2sinα,α),B.∴|AB|==4,当时,|AB|取得最大值4.5.(2018•城关区校级模拟)已知曲线C的极坐标方程为,以极点为平面直角坐标系的原点,极轴为x轴的正半轴建立平面直角坐标系.(1)求曲线C的普通方程;(2)A、B为曲线C上两个点,若OA⊥OB,求的值.解:(1)由,得ρ2cos2θ+9ρ2sin2θ=9,将x=ρcosθ,y=ρsinθ代入,得到曲线C的普通方程是.…(5分)(2)因为,所以,由OA⊥OB,设A(ρ1,α),则B点的坐标可设为,所以===.…(10分)6.(2018•衡阳二模)在直角坐标系xOy中,曲线C的参数方程为(φ为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,A,B为C上两点,且OA⊥OB,设射线OA:θ=α,其中0<α<.(1)求曲线C的极坐标方程;(2)求|OA|•|OB|的最小值.解:(1)曲线C的参数方程为(φ为参数)化为直角坐标方程为:.再转化为极坐标方程为:.(2)根据题意:射线OB的极坐标方程为或所以:|OA|=,=,所以:|OA||OB|=ρ1ρ2=,当且仅当sin2α=cos2α,即时,函数的最小值为.7.(2018•全国I模拟)在直角坐标系xOy中,直线l:x=4,M为l上的动点,P在线段OM上,满足|OM|•|OP|=16,记P的轨迹为曲线C;以O为极点,x轴正半轴为极轴建立极坐标系.(1)求l与C的极坐标方程;(2)设A的极坐标为(2,),点B在曲线C上,△OAB的面积为,求B点的直角坐标.解:(1)∵在直角坐标系xOy中,直线l:x=4,∴直线l的极坐标方程为l:ρcosθ=4.设P(ρ,θ),(ρ>0),M(ρ1,θ),(ρ1>0),则ρ1cosθ=4,∵M为l上的动点,P在线段OM上,满足|OM|•|OP|=16,∴|OM|•|OP|=ρρ1=16,∴ρ=4cosθ,ρ>0,∴C的极坐标方程为ρ=4cosθ,ρ>0.(2)依题意设B点极坐标为(4cosα,α),则S=|AO|•|BO|sin∠AOB=△ABO=2|sin(2α﹣)﹣|=,解得,此时B(2,),或α=﹣,此时B(2,﹣),化为直角坐标为B(3,)或B(1,﹣).8.(2018•石家庄一模)在平面直角坐标系xOy中,曲线C的参数方程为(r>0,φ为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为,若直线l与曲线C相切;(Ⅰ)求曲线C的极坐标方程;(Ⅱ)在曲线C上取两点M,N与原点O构成△MON,且满足,求面积△MON的最大值.解:(Ⅰ)∵直线l的极坐标方程为,∴由题意可知直线l的直角坐标方程为y=+2,曲线C是圆心为(,1),半径为r的圆,直线l与曲线C相切,可得r==2,∵曲线C的参数方程为(r>0,φ为参数),∴曲线C的普通方程为(x﹣)2+(y﹣1)2=4,所以曲线C的极坐标方程为ρ2﹣2ρcosθ﹣2ρsinθ=0,即.(Ⅱ)由(Ⅰ)不妨设M(ρ1,θ),N(ρ2,),(ρ1>0,ρ2>0),==4sin()sin()=2sinθcosθ+2=sin2θ+=2sin(2)+,当时,,所以△MON面积的最大值为2+.极坐标与参数方程专题(3)——求取值范围或最值1.(2018•曲靖二模)在平面直角坐标系中,以O为极点,x轴为正半轴建立极坐标系,取相同的长度单位,若曲线C1的极坐标方程为ρsin(θ﹣)=3,曲线C2的参数方程为(θ为参数).(1)将曲线C1的极坐标方程化为直角方程,C2的参数方程化为普通方程;(2)设P是曲线C1上任一点,Q是曲线C2上任一点,求|PQ|的最小值.解:∵曲线C1的极坐标方程为ρsin(θ﹣)=3,∴=3,∴曲线C1的直角坐标方程为.∵曲线C2的参数方程为(θ为参数),∴曲线C2的普通方程为:x2+(y+2)2=4.(2)∵曲线C2:x2+(y+2)2=4是以(0,﹣2)为圆心,以2为半径的圆,圆心(0,2)到曲线C1:的距离d==4,P是曲线C1上任一点,Q是曲线C2上任一点,∴|PQ|的最小值为:d﹣r=4﹣2=2.2.(2018•赤峰模拟)以平面直角坐标系xOy的原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1的参数方程为(α为参数),曲线C2的极坐标方程为.(1)求曲线C1,C2公共弦所在的直线的极坐标方程;(2)设M点在曲线C1上,N点在曲线C2上,求|MN|的最大值.解:(1)∵曲线C1的参数方程为(α为参数),∴曲线C1的普通方程为x2+y2=1,∵曲线C2的极坐标方程为.∴=4cosθ+4sinθ,∴ρ2=4ρcosθ+4ρsinθ,∴曲线C2的直角坐标方程为x2+y2﹣4x﹣4y=0,∴曲线C1,C2公共弦所在的直线的普通方程为4x+4y﹣1=0.∴曲线C1,C2公共弦所在的直线的极坐标方程4ρcosθ+4ρsinθ=1.(2)∵曲线C1:x2+y2=1的圆心为C1(0,0),半径r1=1,曲线C2:x2+y2﹣4x﹣4y=0的圆心C2(2,2),半径r2==2,|C1C2|==2,∵设M点在曲线C1上,N点在曲线C2上,∴|MN|的最大值为:|C1C2|+r1+r2=2=4+1.3.(2018•洛阳三模)已知直线l的极坐标方程为,现以极点O为原点,极轴为x 轴的非负半轴建立平面直角坐标系,曲线C1的参数方程为(φ为参数).(1)求直线l的直角坐标方程和曲线C1的普通方程;(2)若曲线C2为曲线C1关于直线l的对称曲线,点A,B分别为曲线C1、曲线C2上的动点,点P坐标为(2,2),求|AP|+|BP|的最小值.解:(1)直线l的极坐标方程为,∴,即ρcosθ+ρsinθ=4,∴直线l的直角坐标方程为x+y﹣4=0;曲线C1的参数方程为(φ为参数).∴曲线C1的普通方程为(x+1)2+(y+2)2=4.(2)∵点P在直线x+y=4上,根据对称性,|AP|的最小值与|BP|的最小值相等.曲线C1是以(﹣1,﹣2)为圆心,半径r=2的圆.∴|AP|min=|PC1|﹣r=.所以|AP|+|BP|的最小值为2×3=6.4.(2018•黑龙江模拟)在直角坐标系xOy中,圆C的参数方程为(θ为参数).(1)以原点为极点、x轴正半轴为极轴建立极坐标系,求圆C的极坐标方程;(2)已知A(﹣2,0),B(0,2),圆C上任意一点M(x,y),求△ABM面积的最大值.解:(1)圆C的参数方程为(θ为参数)所以普通方程为(x﹣3)2+(y+4)2=4.(2分),x=ρcosθ,y=ρsinθ,可得(ρcosθ﹣3)2+(ρsinθ+4)2=4,化简可得圆C的极坐标方程:ρ2﹣6ρcosθ+8ρsinθ+21=0.(5分)(2)点M(x,y)到直线AB:x﹣y+2=0的距离为(7分)△ABM的面积所以△ABM面积的最大值为(10分)5.(2018•孝义市一模)在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线C的极坐标方程为,P为曲线C上的动点,C与x轴、y轴的正半轴分别交于A,B两点.(1)求线段OP中点Q的轨迹的参数方程;(2)若M是(1)中点Q的轨迹上的动点,求△MAB面积的最大值.解:(1)由C的方程可得ρ2+3ρ2sin2θ=16,又ρ2=x2+y2,y=ρsinθ,∴C的直角坐标方程为x2+4y2=16,即.设P(4cosθ,2sinθ),则Q(2cosθ,sinθ),∴点Q的轨迹的参数方程为(θ为参数).(2)由(1)知点Q的轨迹的普通方程为,A(4,0),B(0,2),,所以直线AB的方程为x+2y﹣4=0.设M(2cosθ,sinθ),则点M到AB的距离为,∴△MAB面积的最大值为.6.(2018•思明区校级模拟)在以坐标原点为极点,x轴的正半轴为极轴建立的极坐标系中,曲线C1的极坐标方程为ρ=2,正三角形ABC的顶点都在C1上,且A,B,C依逆时针次序排列,点A的坐标为(2,0).(1)求点B,C的直角坐标;(2)设P是圆C2:x2+(y+)2=1上的任意一点,求|PB2|+|PC|2的取值范围.解:(1)∵曲线C1的极坐标方程为ρ=2,∴曲线C1的直角坐标方程为x2+y2=4,∵正三角形ABC的顶点都在C1上,且A,B,C依逆时针次序排列,点A的坐标为(2,0),∴B点的坐标为(2cos120°,2sin120°),即B(﹣1,),C点的坐标为(2cos240°,2sin240°),即C(﹣1,﹣).(2)∵圆C2:x2+(y+)2=1,∴圆C2的参数方程,设点P(cosα,﹣),0≤α<2π,∴|PB2|+|PC|2=+(cosα+1)2+sin2α=16+4cosα﹣4sinα=16+8cos(),∴|PB2|+|PC|2的范围是[8,24].7.(2018•河南一模)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4cos(θ﹣).(1)求圆C的直角坐标方程;(2)若P(x,y)是直线l与圆面的公共点,求x+y的取值范围.解:(1)∵圆C的极坐标方程为ρ=4cos(θ﹣),∴,又∵ρ2=x2+y2,x=ρcosθ,y=ρsinθ,…(5分)∴,∴圆C的普通方程为=0.(2)设z=,圆C的方程=0.即(x+1)2+(y﹣)2=4,∴圆C的圆心是C(﹣1,),半径r=2,将直线l的参数方程为(t为参数)代入z=,得z=﹣t,又∵直线l过C(﹣1,),圆C的半径是2,∴﹣2≤t≤2,∴﹣2≤﹣t≤2,即的取值范围是[﹣2,2].…(10分)8.(2018•湖南三模)在直角坐标系中,曲线经过伸缩变换后得到曲线C2,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标,曲线C3的极坐标方程为ρ=﹣2sinθ.(1)求出曲线C2,C3的参数方程;(2)若P,Q分别是曲线C2,C3上的动点,求|PQ|的最大值.解:(1)曲线经过伸缩变换后得到曲线C2,∴曲线C2的方程为+y2=1∴曲线C2的参数方程为,(α为参数).∵曲线C3的极坐标方程为ρ=﹣2sinθ.即ρ2=﹣2ρsinθ,∴曲线C3的直角坐标方程为x2+y2=﹣2y,即x2+(y+1)2=1,∴曲线C3的参数方程为,(β为参数).(2)设P(2cosα,sinα),则P到曲线C3的圆心(0,﹣1)的距离:d==.∵sinα∈[﹣1,1],∴当sinα=时,d max=.∴|PQ|max=d max+r=+1=.9.(2018•大庆模拟)在直角坐标系xOy中,曲线C的参数方程为(θ为参数).以点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin(θ+=.(Ⅰ)将曲线C和直线l化为直角坐标方程;(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最大值.解:(Ⅰ)解:由曲线C的参数方程为(θ为参数)可得,∴曲线C的直角坐标方程为.由ρsin(θ+=,得,化简得,ρsinθ+ρcosθ=2,∴x+y=2.∴直线l的直角坐标方程为x+y=2.(Ⅱ)解:由于点Q是曲线C上的点,则可设点Q的坐标为,点Q到直线l的距离为=.当时,.∴点Q到直线l的距离的最大值为.10.(2017•新课标Ⅱ)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.解:(1)曲线C1的直角坐标方程为:x=4,设P(x,y),M(4,y0),则,∴y0=,∵|OM||OP|=16,∴=16,即(x2+y2)(1+)=16,∴x4+2x2y2+y4=16x2,即(x2+y2)2=16x2,两边开方得:x2+y2=4x,整理得:(x﹣2)2+y2=4(x≠0),∴点P的轨迹C2的直角坐标方程:(x﹣2)2+y2=4(x≠0).(2)点A的直角坐标为A(1,),显然点A在曲线C2上,|OA|=2,∴曲线C2的圆心(2,0)到弦OA的距离d==,∴△AOB的最大面积S=|OA|•(2+)=2+.。

相关文档
最新文档