人教版高中数学必修3知识点和练习题

合集下载

高中人教版数学必修3课本练习-习题参考答案

高中人教版数学必修3课本练习-习题参考答案

高中数学必修③课本练习,习题参考答案第一章算法初步1.1算法与程序框图1.1.1算法的概念(p5)1. 解;第一步:输入任意正实数r,第二步:计算第三步:输出圆的面积S2. 解;第一步:给定一个大于l的正整数;第二步:令;第三步:用除,得到余数;第四步:判断“”是否成立,若成立,则i是n的因数;否则,i不是n的因数;第五步:使的值增加l,仍用表示,即令;第六步,判断“”是否成立.若是,则结束算法;否则,返回第三步1.1.2程序框图与算法的基本逻辑(P19)1.解;算法步骤:第一步,给定精确地d,令i=1第二步,取出的到小数点后第i位的不足近似值,记为a;取出的到小数点后第i位的过剩近似值,记为b,第三步,计算第四步,若m<d,则执行第五步;否则,将i的值增加1,返回第二步.第五步,输出程序框图如下图所示:1.1算法与程序框图(P20)解; 题目:在国内寄平信(外埠),每封信的质量x (克)不超过60克时的邮费(单位:分)标准为,试写出计算邮费的算法并画出程序框图。

算法如下:第一步,输入质量数x 。

第二步,判断是否成立,若是,则输出y=120,否则执行第三步。

第三步,判断是否成立,若是,则输出y=240,否则,输出y=360,算法结束。

程序框图如下图所示:(注释:条件结构)2.解:算法如下:第一步,i=1,S=0.第二步,判断是否成立,若成立,则执行第三步,否则,执行第四步。

第三步,,i=i+1,返回第二步。

第四步,输出S.程序框图如下图所示:(注释:循环结构)3. 解:算法如下:第一步,输入人数x,设收取的卫生费为y元。

第二步,判断x>3是否成立,若不成立,y=5,输出y;否则,输出y.程序框图如下图所示:(注释:条件结构)1. 解:分析:我们设计对于一般的二元一次方程组(其中)的通用算法:第一步,,得(即) (3)第二步,解(3),得 (4)第三步,将(4)代入(1),得,因此,只要输入相应的未知数的系数和常数项,就能计算出方程组的解,即可以输出x、y的值,用顺序结构即可。

必修3第三章-概率-知识点总结和强化练习:

必修3第三章-概率-知识点总结和强化练习:

高中数学必修3 第三章 概率 知识点总结及强化训练一、 知识点总结3.1.1 —3.1.2随机事件的概率及概率的意义 1、基本概念:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;(5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A出现的次数nA 为事件A 出现的频数;称事件A 出现的比例fn(A)=n n A为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率fn(A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n 的比值n n A,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。

我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。

频率在大量重复试验的前提下可以近似地作为这个事件的概率3.1.3 概率的基本性质 1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥;(3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件;(4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);4)互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生,而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形;(1)事件A 发生B 不发生;(2)事件B 发生事件A 不发生,对立事件互斥事件的特殊情形。

人教版高一数学必修三知识点

人教版高一数学必修三知识点

人教版高一数学必修三知识点人教版高一数学必修三知识点(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。

(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X 轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。

其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于X轴,永不相交。

(7)函数总是通过(0,1)这点。

(8)显然指数函数无界。

奇偶性定义一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

人教版高一数学必修三知识点一、函数的单调性1、函数单调性的定义2、函数单调性的判断和证明:(1)定义法 (2)复合函数分析法(3)导数证明法 (4)图象法二、函数的奇偶性和周期性1、函数的奇偶性和周期性的定义2、函数的奇偶性的判定和证明方法3、函数的周期性的判定方法三、函数的图象1、函数图象的作法 (1)描点法 (2)图象变换法2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。

人教版高中数学必修三 2.1《随机抽样》知识梳理+跟踪检测

人教版高中数学必修三 2.1《随机抽样》知识梳理+跟踪检测

人教版高中数学必修三 第二章 统计2.1《随机抽样》知识梳理知识点一:简单随机抽样1.简单随机抽样的定义设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类简单随机抽样⎩⎨⎧随机数法抽签法 3.简单随机抽样的优点及适用类型简单随机抽样有操作简便易行的优点,在总体个体数不多的情况下是行之有效的.知识点二:系统抽样1.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔依次抽取即得到所求样本.2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(1)先将总体的N 个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等.(2)确定分段间隔k ,对编号进行分段.当N n(n 是样本容量)是整数时,取k =N n; (3)在第1段用简单随机抽样确定第一个个体编号l(l ≤k);(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k),再加k 得到第3个个体编号(l +2k),依次进行下去,直到获取整个样本.知识点三:简单随机抽样1.分层抽样的概念 在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2.分层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.人教版高中数学必修三第二章统计2.1《随机抽样》跟踪检测一、选择题1.下列哪种工作不能使用抽样方法进行()A.测定一批炮弹的射程B.测定海洋水域的某种微生物的含量C.高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D.检测某学校全体高三学生的身高和体重的情况2.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量3.某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是()A.分层抽样B.简单随机抽样C.系统抽样D.以上都不对4.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:①采用随机抽样法,将零件编号为00,01,02,,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则()A.不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是1 5B.①②两种抽样方法,这100个零件中每个被抽到的概率都是15,③并非如此C.①③两种抽样方法,这100个零件中每个被抽到的概率都是15,②并非如此 D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同5.一个田径队,有男运动员56人,女运动员42人,比赛后,立即用分层抽样的方法,从全体队员中抽出一个容量为28的样本进行尿样兴奋剂检查,其中男运动员应抽的人数为( )A .16B .14C .28D .126.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( )A. 2,5B. 5,5C. 5,8D. 8,87.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是( )A .简单随机抽样法B .抽签法C .随机数法D .分层抽样法[答案] D[解析] 由分层抽样的定义可知,该抽样为按比例的抽样.8.某公司10位员工的月工资(单位:元)为1210,,,x x x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A. 22,100x s +B. 22100,100x s ++C. 2,x sD. 2100,x s +9.对于简单随机抽样,下列说法中正确的命题为( )①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概念进行分析;②它是从总体中逐个进行抽取,以便在抽样实践中进行操作;③它是一种不放回抽样;④它是一种等可能抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.A.①②③B.①②④C.①③④D.①②③④10.下列抽样实验中,最适宜用系统抽样的是()A.某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B.某厂生产的2 000个电子元件中随机抽取5个入样C.从某厂生产的2 000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样11.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93B.123C.137D.16712.一段高速公路有300个太阳能标志灯,其中进口的有30个,联合研制的有75个,国产的有195个,为了掌握每个标志灯的使用情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的进口的标志灯的数量为()A.2个B.3个C.5个D.13个13.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7C.8,15,12,5 D.8,16,10,614.对某商店一个月(30天)内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A.46,45,56B.46,45,53C.47,45,56D.45,47,5315.某单位有职工100人,不到35岁的有45人,35岁到49岁的25人,剩下的为50岁以上的人,现在用分层抽样法抽取20人,则各年龄段人数分别是()A.7,4,6 B.9,5,6 C.6,4,9 D.4,5,916.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()A.9 B.18 C.27 D.36二、填空题17.在学生人数比例为2∶3∶5的A,B,C三所学校中,用分层抽样的方法招募n名志愿者,若在A学校恰好选出了6名志愿者,那么n=________. 18.博才实验中学共有学生1 600名,为了调查学生的身体健康状况,采用分层抽样法抽取一个容量为200的样本.已知样本容量中女生比男生少10人,则该校的女生人数是________人.19.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户,从普通家庭中以简单随机抽样方法抽取990户,从高收入家庭中以简单随机抽样方法抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.20.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本、用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是__________.若用分层抽样方法,则40岁以下年龄段应抽取________人.21.从某地区15 000位老人中随机抽取500人,其生活能否自理的情况如下表所示.人.三、解答题22.某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如下表:60人进行更为详细的调查,应当怎样进行抽样?23.某单位在岗职工共624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样?24.为调查小区平均每户居民的月用水量,下面是3名学生设计的调查方案:学生A:我把这个用水量调查表放在互联网上,只要登录网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快估计出小区平均每户居民的月用水量.学生B:我给我们居民小区的每一个住户发一个用水量调查表,只要一两天就可以统计出小区平均每户居民的月用水量.学生C:我在小区的电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们的月用水量,然后就可以估计出小区平均每户居民的月用水量.请问:对上述3种学生设计的调查方案能够获得平均每户居民的月用水量吗?为什么?你有什么建议?2.1《随机抽样》跟踪检测解答一、选择题1.下列哪种工作不能使用抽样方法进行()A.测定一批炮弹的射程B.测定海洋水域的某种微生物的含量C.高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D.检测某学校全体高三学生的身高和体重的情况[答案] D2.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量[答案] C3.某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是()A.分层抽样B.简单随机抽样C.系统抽样D.以上都不对[答案] C[解析]按照一定的规律进行抽取为系统抽样.4.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:①采用随机抽样法,将零件编号为00,01,02,,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则()A.不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是15B.①②两种抽样方法,这100个零件中每个被抽到的概率都是15,③并非如此 C.①③两种抽样方法,这100个零件中每个被抽到的概率都是15,②并非如此 D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同[答案] A[解析] 无论采用哪种抽样,每个个体被抽到的概率相等.5.一个田径队,有男运动员56人,女运动员42人,比赛后,立即用分层抽样的方法,从全体队员中抽出一个容量为28的样本进行尿样兴奋剂检查,其中男运动员应抽的人数为( )A .16B .14C .28D .12[答案] A[解析] 运动员共计98人,抽取比例为2898=27,因此男运动员56人中抽取16人.6.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( )A. 2,5B. 5,5C. 5,8D. 8,8[答案] C[解析] 由题意得x =15,16.8=51(9+15+10+y +18+24) y =8,选C. 7.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是( )A .简单随机抽样法B .抽签法C .随机数法D .分层抽样法[答案] D[解析] 由分层抽样的定义可知,该抽样为按比例的抽样.8.某公司10位员工的月工资(单位:元)为1210,,,x x x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( ) A. 22,100x s + B. 22100,100x s ++ C. 2,x s D. 2100,x s +[答案] D[解析] 设增加工资后10位员工下月工资均值为'x ,方差为2's , 则平均数()()()12101'10010010010x x x x =++++⋅⋅⋅++⎡⎤⎣⎦ ()1210110010010x x x x =++++=+; ()()()222212101'100'100'100'10s x x x x x x ⎡⎤=+-++-+⋅⋅⋅++-⎣⎦ ()()()22221210110x x x x x x s ⎡⎤=-+-+⋅⋅⋅+-=⎣⎦.故选D . 9.对于简单随机抽样,下列说法中正确的命题为( )①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概念进行分析;②它是从总体中逐个进行抽取,以便在抽样实践中进行操作;③它是一种不放回抽样;④它是一种等可能抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.A .①②③B .①②④C .①③④D .①②③④[答案] D10.下列抽样实验中,最适宜用系统抽样的是( )A .某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B .某厂生产的2 000个电子元件中随机抽取5个入样C .从某厂生产的2 000个电子元件中随机抽取200个入样D .从某厂生产的20个电子元件中随机抽取5个入样[答案] C[解析] A 中总体有明显层次,不适用系统抽样法;B 中样本容量很小,适宜用简单随机抽样法中的随机数法;D 中总体数很小,故适宜用抽签法,只有C 比较适用系统抽样法.11.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A.93B.123C.137D.167[答案] C[解析] 由图可知该校女教师的人数为()11070%150160%7760137⨯+⨯-=+= 故选C12.一段高速公路有300个太阳能标志灯,其中进口的有30个,联合研制的有75个,国产的有195个,为了掌握每个标志灯的使用情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的进口的标志灯的数量为( )A .2个B .3个C .5个D .13个[答案] A[考点]分层抽样方法[分析]由题意,设抽取的进口的标志灯的数量为x 个,则30030=20x ,即可得出结论.解:由题意,设抽取的进口的标志灯的数量为x 个,则30030=20x , ∴x=2,故选A .[点评]本题考查分层抽样,抽样过程中每个个体被抽到的可能性相同,这是解决抽样问题的依据,样本容量、总体个数、每个个体被抽到的概率,这三者可以做到知二求一.13.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7C.8,15,12,5 D.8,16,10,6[答案] D[解析]由题意,各种职称的人数比为160∶320∶200∶120=4∶8∶5∶3,所以抽取的具有高、中、初级职称的人数和其他人员的人数分别为40×4 20=8,40×820=16,40×520=10,40×320=6.14.对某商店一个月(30天)内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A.46,45,56B.46,45,53C.47,45,56D.45,47,53[答案] A[解析]样本中共有30个数据,中位数为4547462+=;显然样本中数据出现次数最多的为45,故众数为45;极差为68-12=56,故选A.15.某单位有职工100人,不到35岁的有45人,35岁到49岁的25人,剩下的为50岁以上的人,现在用分层抽样法抽取20人,则各年龄段人数分别是()A.7,4,6 B.9,5,6 C.6,4,9 D.4,5,9[答案] B[解析]各年龄段所选分别为20100×45=9,20100×25=5,20100×30=6.16.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()A.9 B.18 C.27 D.36[答案] B[解析]设该单位老年职工有x人,从中抽取y人.则160+3x=430⇒x=90,即老年职工有90人,则90160=y32⇒y=18.故选B.二、填空题17.在学生人数比例为2∶3∶5的A,B,C三所学校中,用分层抽样的方法招募n名志愿者,若在A学校恰好选出了6名志愿者,那么n=________. [答案]30[解析]由题意,知22+3+5×n=6,∴n=30.18.博才实验中学共有学生1 600名,为了调查学生的身体健康状况,采用分层抽样法抽取一个容量为200的样本.已知样本容量中女生比男生少10人,则该校的女生人数是________人.[答案]760[解析]设该校女生人数为x,则男生人数为(1 600-x).由已知,2001 600×(1 600-x)-2001 600·x=10,解得x=760.故该校的女生人数是760人.19.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户,从普通家庭中以简单随机抽样方法抽取990户,从高收入家庭中以简单随机抽样方法抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.[答案] 5.7%[解析]∵990∶99 000=1∶100,∴普通家庭中拥有3套或3套以上住房的大约为50×100=5 000(户).又∵100∶1 000=1∶10,∴高收入家庭中拥有3套或3套以上住房的大约为70×10=700(户).∴3套或3套以上住房的家庭约有5 000+700=5 700(户).故5 700100 000=5.7%.20.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本、用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是__________.若用分层抽样方法,则40岁以下年龄段应抽取________人.[答案]3720[解析]由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.40岁以下的年龄段的职工数为200×0.5=100,则应抽取的人数为40200×100=20(人).21.从某地区15 000位老人中随机抽取500人,其生活能否自理的情况如下表所示.生活能否自理人数性别男女能178 278不能23 21人.[答案]60[解析]由表知500人中生活不能自理的男性比女性多2人,所以该地区15 000位老人生活不能自理的男性比女性多2×15 000500=60(人).三、解答题22.某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如下表:很喜爱喜爱一般不喜爱2 435 4 5673 926 1 07260人进行更为详细的调查,应当怎样进行抽样?解:可用分层抽样方法,其总体容量为12 000.“很喜爱”占2 43512 000,应取60×2 43512 000≈12(人);“喜爱”占4 56712 000,应取60×4 56712 000≈23(人);“一般”占3 92612 000,应取60×3 92612 000≈20(人);“不喜爱”占1 07212 000,应取60×1 07212 000≈5(人).因此采用分层抽样在“很喜爱”、“喜爱”、“一般”和“不喜爱”的2 435人、4 567人、3 926人和1 072人中分别抽取12人、23人、20人和5人.23.某单位在岗职工共624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样?解:(1)将624名职工用随机方式编号由000至623.(2)利用随机数法从总体中剔除4人.(3)将剩下的620名职工重新编号由000至619.(4)分段,取间隔k=62062=10,将总体分成62组,每组含10人.(5)从第一段,即为000到009号随机抽取一个号l.(6)按编号将l,10+l,20+l,…,610+l,共62个号码选出,这62个号码所对应的职工组成样本.24.为调查小区平均每户居民的月用水量,下面是3名学生设计的调查方案:学生A:我把这个用水量调查表放在互联网上,只要登录网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快估计出小区平均每户居民的月用水量.学生B:我给我们居民小区的每一个住户发一个用水量调查表,只要一两天就可以统计出小区平均每户居民的月用水量.学生C:我在小区的电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们的月用水量,然后就可以估计出小区平均每户居民的月用水量.请问:对上述3种学生设计的调查方案能够获得平均每户居民的月用水量吗?为什么?你有什么建议?解:学生A的方法得到的样本不能够反映不上网的居民情况,是一种方便样本,所得的结果代表性差,不能很准确地获得平均每户居民的月用水量;学生B 的方法实际上是普查,花费的人力物力要多一些,但是如果统计过程不出错,可以准确地得到平均每户居民的月用水量;在小区的每户居民都装有电话的情况下,学生C的方法是一种随机抽样方法,所得的样本具有代表性,可以比较准确地获得平均每户居民的月用水量.在小区的每户居民都装有电话的情况下,建议用随机抽样的方法获取数据,即用学生C的方法,以节省人力物力,并且可以得到比较精确的结果.5、已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测数据算得的线性回归方程可能为( )A. 0.4.3ˆ2yx =+ B. 2 2.4ˆy x =- C. 9ˆ2.5yx =-+ D. 0.3 4.4ˆy x =-+ [答案] A[解析] 变量x 与y 正相关,可以排除C,D;样本平均数代入可求这组样本数据的回归直线方程.∵变量x 与y 正相关,∴可以排除C,D;样本平均数3x =, 3.5y =,代入A 符合,B 不符合,故选A.。

高中数学 必修3专题(完整知识点梳理及经典例题答案详解)

高中数学 必修3专题(完整知识点梳理及经典例题答案详解)

必修三专题第一节算法与程序框图[最新考纲展示]1.了解算法的含义,了解算法的思想.2.理解算法框图的三种基本结构:顺序结构、条件结构、循环结构.3.了解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.考点一算法的定义算法是指按照一定规则解决某一类问题的明确和有限的步骤.考点二程序框图1.程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.2.程序框图通常由程序框和流程线组成.3.基本的程序框有终端框(起止框)、输入、输出框、处理框(执行框)、判断框.考点三三种基本逻辑结构算法的三种基本逻辑结构算法的三种基本逻辑结构为顺序结构、条件结构和循环结构,尽管算法千差万别,但都是由这三种基本逻辑结构构成的.顺序结构顺序结构是由若干个依次执行的步骤组成的,这是任何一个算法都离不开的基本结构,用程序框图表示为:条件结构的概念在一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向,处理这种过程的结构就是条件结构. 条件结构程序框图的两种形式及特征循环结构(1)概念:在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构,反复执行的步骤为循环体.可以用如图①②所示的程序框图表示.名称 形式一 形式二结构 形式特征 两个步骤A ,B 根据条件选择一个执行根据条件是否成立选择是否执行步骤A(2)直到型循环结构:如图①所示,其特征是:在执行了一次循环体后,对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.(3)当型循环结构:如图②所示,其特征是:在每次执行循环体前,对条件进行判断,当条件满足时,执行循环体,否则终止循环.考点四基本算法语句输入语句格式INPUT“提示内容”;变量功能可以一次为一个或多个变量赋值,实现了算法中的输入功能说明“提示内容”一般是提示用户输入什么样的信息,程序框图中的输入框转化为算法语句就是输入语句输出语句格式PRINT“提示内容”;表达式功能先计算表达式的值,然后输出结果,实现了算法中的输出功能.显然在计算机屏幕上,也就是输出信息,可以是常量、变量的值和系统信息说明程序框图中的输出框转化为算法语句就是输出语句赋值语句格式变量=表达式功能先计算表达式的值,然后把结果赋值给“=”左边的变量,此步完成后,“=”左边变量的值就改变了说明 赋值语句中的“=”叫做赋值号,它和数学中的等号不一样.条件语句的格式及框图格式一格式二条件 语句 IF 条件 THEN 语句体 END IF语句 功能首先对IF 后的条件进行判断,如果(IF)条件符合,那么(THEN)执行语句体,否则执行END_IF 之后的语句首先对IF 后的条件进行判断,如果(IF)条件符合,那么(THEN)执行语句体1,否则(ELSE)执行语句体2对应 条件 结构 框图循环语句 UNTIL 语句(1)UNTIL 语句的格式:(2)UNTIL 语句的执行过程:当计算机执行上述语句时,先执行一次DO和UNTIL之间的循环体,再对UNTIL后的条件进行判断,如果条件不符合,继续执行循环体;然后再检查上述条件,如果条件仍不符合,再次执行循环体,直到条件符合时为止.这时,计算机将不执行循环体,直接跳到UNTIL 语句后,接着执行UNTIL语句之后的语句.(3)UNTIL语句对应的程序框图:WHILE语句(1)WHILE语句的格式:(2)WHILE语句的执行过程:当计算机遇到WHILE语句时,先判断条件的真假,如果条件符合,就执行WHILE和WEND之间的循环体,然后再检查上述条件,如果条件仍符合,再次执行循环体,这个过程反复进行,直到某一次条件不符合为止,这时计算机将不执行循环体,直接跳到WEND语句后,接着执行WEND之后的语句.(3)WHILE语句对应的程序框图:解决程序框图问题时应注意(1)不要混淆处理框和输入框.(2)注意区分条件结构和循环结构.(3)注意区分当型循环和直到型循环.(4)循环结构中要正确控制循环次数.(5)要注意各个框的顺序.考向一算法的基本结构【例1】(2013年高考江西卷)阅读如下程序框图,如果输出i=4,那么空白的判断框中应填入的条件是( )A.S<8 B.S<9C.S<10 D.S<11[解析] 由框图及输出i=4可知循环应为:i=2,S=5;i=3,S =8;i=4,S=9,输出i=4,所以应填入的条件是S<9,故选B. [答案] B反思总结1.解决程序框图问题要注意几个常用变量(1)计数变量:用来记录某个事件发生的次数,如i=i+1;(2)累加变量:用来计算数据之和,如S=S+i;(3)累乘变量:用来计算数据之积,如p=p×i.2.处理循环结构的框图问题,关键是理解并认清终止循环结构的条件及循环次数.变式训练1.若如下框图所给的程序运行结果为S=20,那么判断框中应填入的关于k的条件是( )A.k=9? B.k≤8?C.k<8? D.k>8?解析:据程序框图可得当k=9时,S=11;k=8时,S=11+9=20.∴应填入“k>8?”答案:D考向二程序框图的应用【例2】(2014年广州模拟)阅读如图所示的程序框图,则输出的S =________.[解析] 由框图知,程序执行的功能为:S=(3×1-1)+(3×2-1)+(3×3-1)+(3×4-1)+(3×5-1)=3×(1+2+3+4+5)-5=40.[答案] 40反思总结1.识别、运行程序框图和完善程序框图的思路(1)要明确程序框图的顺序结构、条件分支结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.2.解决程序框图问题时的注意点(1)不要混淆处理框和输入框. (2)注意区分条件分支结构和循环结构. (3)注意区分当型循环和直到型循环. (4)循环结构中要正确控制循环次数. (5)要注意各个框的顺序考向三 基本算法语句【例3】 (2013年高考陕西卷)根据下列算法语句,当输入x 为60时,输出y 的值为( )A .25B .30C .31D .61[解析] 该语句为分段函数y =⎩⎨⎧0.5x , x ≤50,25+0.6(x -50),x >50,当x =60时, y =25+0.6×(60-50)=31,故选C.[答案] C 变式训练2.下面程序运行的结果为( )A.4 B.5 C.6 D.7解析:第一次执行后,S=100-10=90,n=10-1=9;第二次执行后,S=90-9=81,n=9-1=8;第三次执行后,S=81-8=73,n=8-1=7;第四次执行后,S=73-7=66,n=7-1=6.此时S=66≤70,结束循环,输出n=6.答案:C第二节随机抽样[最新考纲展示]1.理解随机抽样的必要性和重要性. 2.会用简单随机抽样方法从总体中抽取样本,了解分层抽样和系统抽样方法.考点一简单随机抽样定义一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样分类抽签法(抓阄法)和随机数法特点①简单随机抽样要求总体中的个体数N是有限的.②简单随机抽样抽取样本的容量n小于或等于总体的个体数N③简单随机抽样中的每个个体被抽到的可能性均为nN④逐个抽取即每次仅抽取一个个体⑤简单随机抽样是不放回的抽样,即抽取的个体不再放回总体适用范围当总体中的个体无差异且个体数目较少时,采用简单随机抽样抽取样本考点二系统抽样的步骤一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:[通关方略]1.辨析抽签法和随机数法相同点:(1)都是简单随机抽样,并且要求被抽取样本的总体的个体数有限;(2)都是从总体中逐个地进行抽取,都是不放回抽样.不同点:(1)在总体容量较小的情况下,抽签法比随机数法简单;(2)抽签法适用于总体中的个体数相对较少的情况,而随机数法更适用于总体中的个体数较多的情况,这样可以节约大量的人力和制作号签的成本.2.系统抽样的公平性在系统抽样中,(1)若N能被n整除,则将比值Nn作为分段间隔k.由于起始编号的抽取采用简单随机抽样的方法,因此每个个体被抽取的可能性是一样的.(2)若N不能被n整除,则用简单随机抽样的方法从总体中剔除几个个体,使得总体中剩余的个体数能被n整除,再确定样本.因此每个个体被抽取的可能性还是一样的.所以系统抽样是公平的.考点三分层抽样1.定义在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样.2.分层抽样的应用范围当总体是由差异明显的几个部分组成时,往往选用分层抽样.三种抽样方法的异同点考向一简单随机抽样【例1】第二届夏季青年奥林匹克运动会将于2014年在南京举行,南京某大学为了支持运动会,从报名的60名大学生中选10人组成志愿小组,请用抽签法设计抽样方案.[解析] 第一步:将60名志愿者编号,编号为1,2,3, (60)第二步:将60个号码分别写在60张外形完全相同的纸条上,并揉成团,制成号签;第三步:将60个号签放入一个不透明的盒子里,充分搅匀;第四步:从盒子中逐个抽取10个号签,并记录上面的编号;第五步:所得号码对应的志愿者,就是志愿小组的成员.反思总结简单随机抽样须满足的条件与特点(1)抽取的个体数有限;(2)逐个抽取;(3)是不放回抽取;(4)是等可能抽取;(5)抽签法适于总体中个体数较少的情况,随机数法适用于总体中个体数较多的情况.变式训练1.(2013年高考江西卷)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )7816 6572 0802 6314 0702 4369 9728 01983204 9234 4935 8200 3623 4869 6938 7481A.08 B.07C.02 D.01解析:由题意知前5个个体的编号为08、02、14、07、01,故选D.答案:D考向二系统抽样【例2】(2014年宿州模拟)一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同.若m=6,则在第7组中抽取的号码是________.[解析] 由题中的抽取规则可知依次抽取的号码为:6、18、29、30、41、52、63、74、85、96.故第7组中抽取的号码为63.[答案] 63反思总结1.当总体容量较大,样本容量也较大时,可用系统抽样法.2.在利用系统抽样时,经常遇到总体容量不能被样本容量整除的情况,这时可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除.变式训练2.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为( )A.7 B.9 C.10 D.15解析:由系统抽样的特点知:抽取号码间隔为96032=30,抽取的号码依次为9,39,69,...,939.落入区间[451,750]的有459,489, (729)这些数构成首项为459,公差为30的等差数列,设有n项,显然有729=459+(n-1)×30,解得n=10.答案:C考向三分层抽样【例3】(2013年高考湖南卷)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=( )A.9 B.10 C.12 D.13[解析]利用分层抽样抽取甲、乙、丙三个车间的产品数量比为120∶80∶60=6∶4∶3,从丙车间的产品中抽取了3件,则n×313=3,得n=13,则选D.[答案] D反思总结进行分层抽样时应注意以下几点(1)分层抽样中分多少层,如何分层要视具体情况而定,总的原则是:层内样本的差异要小,两层之间的样本差异要大,且互不重叠;(2)为了保证每个个体等可能入样,所有层中每个个体被抽到的可能性相同;(3)在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样(4)抽样比=样本容量个体数量=各层样本容量各层个体数量.第三节 用样本估计总体[最新考纲展示]1.了解分布的意义与作用,会列频率分布表、会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.2.理解样本数据标准差的意义和作用,会计算数据标准差. 3.能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释. 4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想. 5.会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.考点一 作频率分布直方图的步骤1.求极差(即一组数据中最大值 与 最小值 的差).2.决定 组距 与 组数 .3.将数据分组 .4.列 频率分布表.5.画频率分布直方图[通关方略]探究组距和组数的确定(1)组距的选择应力求“取整”,如果极差不利于分组(如不能被组数整除),可适当增大极差,如在左、右两端各增加适当范围(尽量使两端增加的量相同).(2)数据分组的组数与样本容量有关,一般样本容量越大,所分组数应越多.当样本容量不超过100时,按照数据的多少,常分成5至12组.考点二频率分布折线图和总体密度曲线1.频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得频率分布折线图.2.总体密度曲线:随着样本容量的增加,作图时所分组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,即总体密度曲线.考点三茎叶图用茎叶图表示数据有两个突出的优点:一是茎叶图上没有原始数据的损失,所有的数据信息都可以从茎叶图中得到;二是茎叶图可以在比赛时随时记录,方便记录与表示.考点四样本的数据特征(1)众数:在一组数据中,出现次数最多的数叫做众数.如果有两个或两个以上数据出现的最多且出现的次数相等,那么这些数据都是这组数据的众数;如果一组数据中,所有数据出现的次数都相等,那么认为这组数据没有众数.(2)中位数:将一组数据按从小到大的顺序依次排列,当数据有奇数个时,处在最中间的那个数是这组数据的中位数;当数据有偶数个时,处在最中间的两个数的平均数是这组数据的中位数.(3)平均数:一组数据的总和除以这组数据的个数取得的商叫做这组数据的平均数,一般记为x =1n(x 1+x 2+…+x n ). (4)标准差:标准差是样本数据到平均数的一种平均距离,一般用s 表示.假设样本数据是x 1,x 2,…,x n ,x 表示这组数据的平均数,则s =1n [x 1-x 2x 2-x 2x n -x 2].(5)方差:标准差的平方s 2即为方差.则s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. [通关方略]1.利用频率分布直方图求众数、中位数与平均数利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.2.标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,标准差、方差越小,数据的离散程度越小,因为方差与原始数据的单位不同,且平方后可能夸大了偏差的程度,所以虽然方差与标准差在刻画样本数据的分散程度上是一样的,但在解决实际问题时,一般多采用标准差.考向一频率分布直方图的应用【例1】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.[解析](1)由频率分布直方图可知(2a+0.04+0.03+0.02)×10=1,解得a=0.005.(2)由频率分布直方图估计这100名学生语文成绩的平均分为55×0.005×10+65×0.04×10+75×0.03×10+85×0.02×10+95×0.005×10=73(分).(3)由频率分布直方图及表中数据得:分数段x y[50,60) 5 5[60,70) 40 20[70,80) 30 40[80,90) 20 25∴数学成绩在[50,90)之外的人数为100-5-20-40-25=10.反思总结解决频率分布直方图问题时要抓住(1)直方图中各小长方形的面积之和为1.(2)直方图中纵轴表示频率组距,故每组样本的频率为组距×频率组距,即矩形的面积.(3)直方图中每组样本的频数为频率×总体数.考向二茎叶图的应用【例2】(2013年高考安徽卷)为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x 1、x 2,估计x 1-x 2的值.[解析] (1)设甲校高三年级学生总人数为n .由题意知,30n=0.05,即n =600.样本中甲校高三年级学生数学成绩不及格人数为5,据此估计甲校高三年级此次联考数学成绩及格率为1-530=56.(2)设甲、乙两校样本平均数分别为x1′、x2′,根据样本茎叶图可知,30(x1′-x2′)=30x1′-30x2′=(7-5)+(55+8-14)+(24-12-65)+(26-24-79)+(22-20)+92=2+49-53-77+2+92=15.因此x1′-x2′=0.5.故x1-x2的估计值为0.5分.反思总结由于茎叶图完全反映了所有的原始数据,解决由茎叶图给出的统计图表试题时,就要充分使用这个图表提供的数据进行相关的计算或者是对某些问题作出判断,这类试题往往伴随着对数据组的平均值或者是方差的计算等.变式训练1.如图是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,则甲、乙两人比赛得分的中位数之和是________.解析:甲比赛得分的中位数为28,乙比赛得分的中位数为36,所以甲、乙两人比赛得分的中位数之和为28+36=64.答案:64考向三用样本的数字特征估计总体的数字特征【例3】甲、乙两名战士在相同条件下各射靶10次,每次命中的环数分别是:甲:8,6,7,8,6,5,9,10,4,7;乙:6,7,7,8,6,7,8,7,9,5.(1)分别计算两组数据的平均数;(2)分别计算两组数据的方差;(3)根据计算结果,估计一下两名战士的射击水平谁更好一些.[解析] (1)x 甲=110(8+6+7+8+6+5+9+10+4+7)=7, x 乙=110(6+7+7+8+6+7+8+7+9+5)=7. (2)由方差公式s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]可求得s 2甲=3.0,s 2乙=1.2.(3)由x 甲=x 乙,说明甲、乙两战士的平均水平相当;又∵s 2甲>s 2乙,说明甲战士射击情况波动大,因此乙战士比甲战士射击情况稳定.反思总结平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.变式训练2.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差解析:由条形统计图知:甲射靶5次的成绩分别为:4,5,6,7,8;乙射靶5次的成绩分别为:5,5,5,6,9,所以x甲=4+5+6+7+85=6;x乙=5+5+5+6+95=6.所以x甲=x乙.故A不正确.甲的成绩的中位数为6,乙的成绩的中位数为5,故B 不正确. s 2甲=15[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=15×10=2,s 2乙=15[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=15×12=125,因为2<125,所以s 2甲<s 2乙.故C 正确.甲的成绩的极差为:8-4=4,乙的成绩的极差为:9-5=4,故D 不正确.故选C.答案:C第四节变量间的相关关系、统计案例[最新考纲展示]1.会作两个相关变量的数据的散点图,会利用散点图认识变量间的相关关系. 2.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程. 3.了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用. 4.了解回归分析的基本思想、方法及其简单应用.考点一变量间的相关关系1.常见的两变量之间的关系有两类:一类是函数关系,另一类是相关变量;与函数关系不同,相关变量是一种非确定性关系.2.从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关.[通关方略]相关关系与函数关系有何异同点?共同点:二者都是指两个变量间的关系.不同点:函数关系是一种确定性关系,体现的是因果关系;而相关关系是一种非确定性关系,体现的不一定是因果关系,可能是伴随关系.考点二两个变量的线相关1.从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线。

高中数学必修3各章节知识点梳理及测试题(附加答案).doc

高中数学必修3各章节知识点梳理及测试题(附加答案).doc

高中数学必修3知识点第一章算法初步1.1.1算法的概念1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2.算法的特点 :(1) 有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可 .(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题 .(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决 .1.1.2程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。

(二)构成程序框的图形符号及其作用程序框名称功能表示一个算法的起始和结束,是任何流程图起止框不可少的。

表示一个算法输入和输出的信息,可用在算输入、输出框法中任何需要输入、输出的位置。

赋值、计算,算法中处理数据需要的算式、处理框公式等分别写在不同的用以处理数据的处理框内。

判断某一条件是否成立,成立时在出口处标判断框明“是”或“ Y”;不成立时标明“否”或“ N”。

(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。

第二章统计2.1.1简单随机抽样1.总体和样本在统计学中,把研究对象的全体叫做总体.把每个研究对象叫做个体.把总体中个体的总数叫做总体容量.为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.2.简单随机抽样,也叫纯随机抽样。

高中数学必修3(人教A版)第三章概率3.2知识点总结含同步练习及答案

高中数学必修3(人教A版)第三章概率3.2知识点总结含同步练习及答案

3 18
)
B.
4 18
C.
5 18
D.
6 18
答案: C 解析: 正方形四个顶点可以确定
6 条直线,甲乙各自任选一条共有 36 个基本事件.4 组邻边和对角线中两条直线相互垂直 10 5 的情况有 5 种,包括 10 个基本事件,根据古典概型公式得到结果 p = . = 36 18
4. 有 20 张卡片,每张卡片上分别标有两个连续的自然数 k , k + 1 ,其中 k = 0, 1, 2, ⋯ , 19 .从这 20 张卡片中任取一 张,记事件"该卡片上两个数的各位数字之和(例如:若取到标有 9, 10 的卡片,则卡片上两个数的各位数字之和为
所以取出的 2 个球一个是白球,另一个是红球的概率为
P ( B) =
某高级中学共有学生 3000 名,各年级男、女生人数如下表:
8 . 15
已知在全校学生中抽取 1 名学生,抽到高二年级女生的概率是 0.18 . (1)求 x 的值; (2)现用分层抽样的方法在全校学生中抽取 120 名学生,问应在高三年级抽取学生多少名? (3)在(2)的前提下,已知 y ⩾ 345 ,z ⩾ 345,求高三年级男生比女生多的概率. 解:(1)因为 (2)高三年级总人数为
y = kx + b 不经过第三象限的概率为 (
A.
2 9
B.
1 3
)
C.
4 9Байду номын сангаас
D.
5 9
答案: A 解析: 若直线
y = kx + b 不经过第三象限,则有 { k = −1, 和 { k = −1, b = 1, b = 2.
则满足条件的概率为

高中必修三数学习题带答案

高中必修三数学习题带答案

高中必修三数学习题带答案
高中必修三数学学习题带答案
数学作为一门重要的学科,对于学生来说是必修的课程之一。

在高中阶段,数
学的学习变得更加深入和复杂,需要学生付出更多的努力和时间。

为了帮助学
生更好地掌握高中必修三数学知识,我们整理了一些常见的数学学习题,并提
供了详细的答案,希望能够帮助学生更好地理解和掌握数学知识。

1. 请用代数方法解方程:2x+3=7
解答:首先将方程化简为2x=4,然后将方程两边都除以2,得到x=2。

2. 求下列方程的解:5x-7=18
解答:首先将方程化简为5x=25,然后将方程两边都除以5,得到x=5。

3. 求下列方程的解:3(x-4)=15
解答:首先将方程化简为3x-12=15,然后将方程两边都加上12,得到3x=27,最后将方程两边都除以3,得到x=9。

4. 求下列方程的解:2(x+3)=10
解答:首先将方程化简为2x+6=10,然后将方程两边都减去6,得到2x=4,最
后将方程两边都除以2,得到x=2。

5. 求下列方程的解:4(x-2)=16
解答:首先将方程化简为4x-8=16,然后将方程两边都加上8,得到4x=24,
最后将方程两边都除以4,得到x=6。

通过以上的练习题,相信学生们对于高中必修三数学知识有了更深入的理解和
掌握。

希望学生们能够在课余时间多多练习,提高自己的数学水平,为将来的
学习和考试打下坚实的基础。

人教版高中数学必修三 3.1.1《随机事件的概率》要点梳理+跟踪检测

人教版高中数学必修三 3.1.1《随机事件的概率》要点梳理+跟踪检测

人教版高中数学必修三第三章统计3.1.1《随机事件的概率》要点梳理【学习目标】在具体情境中,了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.【要点梳理·夯实知识基础】12.频数与频率在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中______________为事件A出现的频数,称______________________为事件A 出现的频率.[答案]事件A出现的次数nA 事件A出现的比例fn(A)=nAn3.概率(1)含义:概率是度量随机事件发生的________的量.(2)与频率联系:对于给定的随机事件A,事件A发生的频率fn(A)随着试验次数的增加稳定于________,因此可以用__________来估计概率P(A).[答案](1)可能性(2)概率P(A) 频率fn(A)【考点探究·突破重点难点】考点一:事件类型的判断1.下列事件:①明天下雨;②3>2;③航天飞机发射成功;④x∈R,x2+2<0;⑤某艘商船遭遇索马里海盗;⑥任给x0∈R,x0+2=0.其中随机事件的个数为()A.1B.2C.3D.4答案:D2.下列说法正确的是()A.某人购买福利彩票一注,中奖500万元,是不可能事件B.三角形的两边之和大于第三边,是随机事件C.没有空气和水,人类可以生存下去,是不可能事件D.科学技术达到一定水平后,不需任何能量的“永动机”将会出现,是必然事件答案:C3.从一副牌中抽出5张红桃、4张梅花、3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事情()A.可能发生B.不可能发生C.很可能发生D.必然发生答案:D解析:∵若这10张牌中抽出了全部的红桃与梅花共9张,一定还有1张黑桃;若抽出了全部的梅花与黑桃共7张,则还会有3张红桃;若抽出了全部的红桃与黑桃共8张,则还会有2张梅花;∴这个事件一定发生,是必然事件.考点而:试验的结果分析4.下列命题中正确的个数是()①先后抛掷两枚质地均匀的硬币的结果为正面,正面;正面,反面;反面,反面,共计3种.②从12个同类产品(其中10个是正品,2个次品)中,任意抽取3个产品的每一个结果中一定含有正品.③某地举行运动会,从来自A学校的a,b志愿者中选一人,从来自B学校的c,d,e志愿者中选一人共2人为体操馆服务,则有ac,ad,ae,bc,bd,be,共6种选法. A.0 B.1 C.2 D.3答案:C解析:①中应该有4个结果,即正面,正面;正面,反面;反面,正面;反面,反面.故①不正确.②③正确.5.先后投掷2枚均匀的一分、二分的硬币,观察落地后硬币的正反面情况,则包含3个试验结果的是()A.至少一枚硬币正面向上B.只有一枚硬币正面向上C.两枚硬币都是正面向上D.两枚硬币一枚正面向上,另一枚反面向上答案:A解析:“至少一枚硬币正面向上”包括“一分正面向上,二分正面向上”,“一分正面向上,二分正面向下”,“一分正面向下,二分正面向上”3种试验结果.6.同时转动如图所示的两个转盘,记转盘①得到的数为x,转盘②得到的数为y,结果为(x,y).(1)写出这个试验的所有结果.(2)“x+y=5”包含的结果有哪些?“x<3且y>1”呢? (3)“xy=4”包含的结果有哪些?“x=y ”呢?解:(1)结果为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).(2)“x+y=5”包含的结果为(1,4),(2,3),(3,2),(4,1).“x<3且y>1” 包含的结果为(1,2),(1,3),(1,4),(2,2),(2,3),(2,4). (3)“xy=4”包含的结果为(1,4),(2,2),(4,1). “x=y ”包含的结果为(1,1),(2,2),(3,3),(4,4). 考点三:随机事件的频率与概率7.下列说法:①频率反映的是事件发生的频繁程度.概率反映的是事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率nm就是事件A 的概率;③频率是不能脱离具体的n 次的试验值,而概率是确定性的,不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确说法的序号是 . 答案:①③④解析:由频率及概率的定义可知①是正确的.在②中,nm是事件A 发生的频率,虽然概率是与频率接近的一个常数,但是概率不一定等于频率,故②是错误的.由概率的定义知③④是正确的.8.在抛掷骰子的游戏中,将一枚质地均匀的骰子抛掷6次,对于点数4的出现有下列说法:①一定会出现;②出现的频率为61;③出现的概率是61;④出现的频率是32.其中正确的是 . 答案:③9.李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这门课3年来学生的考试成绩分布:经济学院一年级的学生王小慧下学期将修李老师的高等数学课,用已有的信息估计她得以下分数的概率(结果保留到小数点后三位):(1)90分以上;(2)60~69分;(3)60分以下.解:由题意知总人数为40+200+400+100+40+20=800.则选修李老师高等数学的学生考试成绩在90分以上,60~69分,60分以下的频率分别为80040=201;800100=81;80060=403.用以上信息估计王小慧得分的概率情况如下:(1)“得90分以上”的概率为201,(2)“得60~69分”的概率为81,(3)“得60分以下”的概率为403.[3.1.1《随机事件的概率》跟踪检测一、选择题1.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是m n =73; ③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数 是( ) A.0B.1C.2D.32.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( ) A.① B.② C.③ D.④ 3.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件B.随机事件C.不可能事件D.无法确定4.已知下列事件:①向区间(0,2)内投点,点落在(0,2)区间;②将一根长为a 的铁丝随意截成三段,构成一个三角形;③函数y=a x (a>0,且a ≠1)在R 上为增函数;④解方程x 2-1=0的根为2.其中是随机事件的个数是( ) A .1 B .2 C .3 D .45.下列事件中,不可能事件为( ) A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边6.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A.49B.51C.0.49D.0.517.某班计划从A ,B ,C ,D ,E 这五名班干部中选两人代表班级参加一次活动,则可能的结果有( ) A .5种 B .10种 C .15种 D .20种 8.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有 ( ) A.64个B.640个C.16个D.160个9.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. A.0 B.1 C.2 D.3 10.一个家庭有两个小孩儿,则可能的结果为( ) A.{(男,女),(男,男),(女,女)} B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}11.从一批即将出厂的螺丝中抽查了100颗,仅有2颗是次品.下列说法正确的是( )A .从这批螺丝中随机抽取1颗,恰为次品的概率一定是2%B .从这批螺丝中随机抽取1颗,一定不是次品C .从这批螺丝中随机抽取100颗,必有2颗是次品D .从这批螺丝中随机抽取1颗,恰为次品的概率约是2%12.每道选择题有4个选项,其中只有1个选项是正确的.某次考试共有12道选择题,某人说:“每个选项正确的概率是41,我每题都选择第一个选项,则一定有3个题选择结果正确”这句话( ) A.正确B.错误C.不一定D.无法解释二、填空题13.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一位同学,估计该同学的身高在155.5~170.5 cm 范围内的概率为 (用分数表示).14.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A 出现的频数为 ,事件A 出现的频率为 .15.设集合A={x|x 2≤4,x ∈Z },a ,b ∈A ,设直线3x+4y=0与圆(x-a )2+(y-b )2=1相切为事件M ,用(a ,b )表示每一个基本事件,则事件M 所包含的结果为 . 16.则a= ,b= ,c= .据此可估计若掷硬币一次,正面向上的概率为.17.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为 .18.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是 .三、解答题19.从含有两个正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有可能结果.(2)设A为“取出两件产品中恰有一件次品”,写出事件A对应的结果.20.对一批U盘进行抽检,结果如下表:(1)计算表中各个次品频率.(2)从这批U盘中任抽一个是次品的概率是多少?(3)为保证买到次品的顾客能够及时更换,则销售2 000个U盘,至少需进货多少个U盘?21.:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.22.为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.3.1.1《随机事件的概率》跟踪检测解答一、选择题1.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是m n =73; ③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数 是( ) A.0B.1C.2D.3答案:A2.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( ) A.① B.② C.③ D.④ 答案:D解析:三角形的三条边必须满足两边之和大于第三边.3.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件B.随机事件C.不可能事件D.无法确定答案:B4.已知下列事件:①向区间(0,2)内投点,点落在(0,2)区间;②将一根长为a 的铁丝随意截成三段,构成一个三角形;③函数y=a x (a>0,且a ≠1)在R 上为增函数;④解方程x 2-1=0的根为2.其中是随机事件的个数是( ) A .1 B .2 C .3 D .4 答案:B解析:①为必然事件;④为不可能事件. 5.下列事件中,不可能事件为( ) A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边 答案: C6.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A.49B.51C.0.49D.0.51答案:B7.某班计划从A ,B ,C ,D ,E 这五名班干部中选两人代表班级参加一次活动,则可能的结果有( ) A .5种 B .10种 C .15种 D .20种 答案:B解析:从A ,B ,C ,D ,E 五人中选2人,不同的选法有:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E )共10种.8.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有 ( ) A.64个B.640个C.16个D.160个答案: C9.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. A.0 B.1 C.2 D.3 答案:A解析:①错误;②出现正面的概率为21,故错误;③频率与概率不是一回事,故错误. 10.一个家庭有两个小孩儿,则可能的结果为( ) A.{(男,女),(男,男),(女,女)} B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}答案: C11.从一批即将出厂的螺丝中抽查了100颗,仅有2颗是次品.下列说法正确的是( )A .从这批螺丝中随机抽取1颗,恰为次品的概率一定是2%B .从这批螺丝中随机抽取1颗,一定不是次品C .从这批螺丝中随机抽取100颗,必有2颗是次品D .从这批螺丝中随机抽取1颗,恰为次品的概率约是2% 答案: D解析:抽取出次品的频率是1002=2%,用频率估计概率,抽出次品的概率大约是2%. 12.每道选择题有4个选项,其中只有1个选项是正确的.某次考试共有12道选择题,某人说:“每个选项正确的概率是41,我每题都选择第一个选项,则一定有3个题选择结果正确”这句话( ) A.正确 B.错误 C.不一定D.无法解释答案: B 二、填空题13.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一位同学,估计该同学的身高在155.5~170.5 cm 范围内的概率为 (用分数表示).答案:52解析:数据在155.5~170.5之间有8名学生,则身高在此范围内的频率为208=52,所以概率约为52.14.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A 出现的频数为 ,事件A 出现的频率为 .答案: 52 0.5215.设集合A={x|x 2≤4,x ∈Z },a ,b ∈A ,设直线3x+4y=0与圆(x-a )2+(y-b )2=1相切为事件M ,用(a ,b )表示每一个基本事件,则事件M 所包含的结果为 . 答案:(-1,2),(1,-2) 解析:由直线与圆相切知,543b a +=1,所以3a+4b=±5,依次取a=-2,-1,0,1,2,验证知,只有⎩⎨⎧=-=21b a ,⎩⎨⎧==2-1b a 满足等式.16.则a= ,b= ,c= .据此可估计若掷硬币一次,正面向上的概率为 . 答案: 0.51 241 800 0.5解析:a=200102=0.51,b=500×0.482=241;c=505.0404=800. 易知正面向上的频率在0.5附近,所以若掷硬币一次,正面向上的概率应为0.5.17.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为 . 答案: 0.3518.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是 . 答案: 0.03 三、解答题19.从含有两个正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有可能结果.(2)设A 为“取出两件产品中恰有一件次品”,写出事件A 对应的结果. [解析](1)试验所有结果:a 1,a 2;a 1,b 1;a 2,b 1;a 2,a 1;b 1,a 1;b 1,a 2.共6种. (2)事件A 对应的结果为:a 1,b 1;a 2,b 1;b 1,a 1;b 1,a 2. 20.对一批U 盘进行抽检,结果如下表:(1)计算表中各个次品频率.(2)从这批U 盘中任抽一个是次品的概率是多少?(3)为保证买到次品的顾客能够及时更换,则销售2 000个U 盘,至少需进货多少个U 盘?[解析](1)表中各个次品频率分别为0.06,0.04,0.025,0.017,0.02,0.018. (2)当抽取件数a 越来越大时,出现次品的频率在0.02附近摆动,所以从这批U 盘中任抽一个是次品的概率是0.02.(3)设需要进货x 个U 盘,为保证其中有2 000个正品U 盘,则x(1-0.02)≥2 000,因为x 是正整数,所以x ≥2 041,即至少需进货2 041个U 盘.21.:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.解:(1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为1513.(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为87.以频率估计概率,运动会期间不下雨的概率为87.22.为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.[解析] 设水库中鱼的尾数为n,从水库中任捕一尾,每尾鱼被捕的频率(代替概率)为n2000,第二次从水库中捕出500尾,带有记号的鱼有40尾,则带记号的鱼被捕 的频率(代替概率)为50040,由n 2000=50040,得n=25 000.所以水库中约有25 000尾.。

人教版数学必修三复习参考题及答案

人教版数学必修三复习参考题及答案

⼈教版数学必修三复习参考题及答案 数学课较为枯燥,不是每个学⽣都具有良好的学习数学的兴趣。

但是可以通过做题来接触数学,养成学习数学的好习惯。

下⾯是店铺分享给⼤家的数学必修三复习参考题及答案的资料,希望⼤家喜欢! 数学必修三复习参考题及答案⼀ 题试题,请考⽣练习。

1.把集合C={a+bi|a,bR}中的数,即形如a+bi(a,bR)的数叫作________,其中i叫作____________,复数的全体组成的集合C叫作__________. 2.复数通常⽤z表⽰,z=____________叫作复数的代数形式,其中________分别叫复数z的实部与虚部. 3.设z=a+bi(a,bR),则当且仅当________时,z为实数.当________时,z为虚数,当____________时,z为纯虚数. 4.实数集R是复数集C的__________,即__________.这样复数包括实数和虚数. 5.a+bi=c+di(a,b,c,dR)的充要条件是_____________________________________. 6.复数与点、向量间的对应 如图,在复平⾯内,复数z=a+bi (a,bR)可以⽤点________或向量________表⽰. 复数z=a+bi (a,bR)与点Z(a,b)和向量的⼀⼀对应关系如下: 7.复数的模 复数z=a+bi (a,bR)对应的向量为,则的模叫作复数z的模,记作|z|,且|z|=__________. ⼀、选择题 1.“a=0”是“复数a+bi (a,bR)为纯虚数”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 2.设a,bR,若(a+b)+i=-10+abi (i为虚数单位),则(-)2等于( )A.-12B.-8C.8D.10 3.若z=(x2-1)+(x-1)i为纯虚数,则实数x的值为( )A.-1B.0C.1D.-1或1 4.下列命题中: 两个复数不能⽐较⼤⼩; 若z=a+bi,则当且仅当a=0且b≠0时,z为纯虚数; x+yi=1+ix=y=1; 若a+bi=0,则a=b=0. 其中正确命题的个数为( ) A.0B.1C.2D.3 5.若(m2-5m+4)+(m2-2m)i>0,则实数m的值为( )A.1B.0或2C.2D.0 6.在复平⾯内,若z=(m2-4m)+(m2-m-6)i所对应的点在第⼆象限,则实数m的取值范围是( )A.(0,3)B.(-∞,-2)C.(-2,0)D.(3,4) ⼆、填空题 7.已知复数z1=(3m+1)+(2n-1)i,z2=(n+7)-(m-1)i,若z1=z2,实数m、n的值分别为________、________. 8.给出下列⼏个命题: 若x是实数,则x可能不是复数; 若z是虚数,则z不是实数; ⼀个复数为纯虚数的充要条件是这个复数的实部等于零; -1没有平⽅根; 若aR,则(a+1)i是纯虚数; 两个虚数不能⽐较⼤⼩. 则其中正确命题的个数为________. 9.在复平⾯内,向量对应的复数是1-i,将P向左平移⼀个单位后得向量P0,则点P0对应的复数是________. 三、解答题 10.实数m分别为何值时,复数z=+(m2-3m-18)i是:(1)实数;(2)虚数;(3)纯虚数. 11.(1)求复数z1=3+4i及z2=--i的模,并⽐较它们的模的⼤⼩; (2)已知复数z=3+ai,且|z|<4,求实数a的取值范围. 能⼒提升 12.已知集合P={5,(m2-2m)+(m2+m-2)i},Q={4i,5},若P∩Q=PQ,求实数m的值. 13.已知复数z表⽰的点在直线y=x上,且|z|=3,求复数z. 1.对于复数z=x+yi只有当x,yR时,才能得出实部为x,虚部为y(不是yi),进⽽讨论复数z的性质. 2.复数相等的充要条件是复数问题实数化的依据. 3.复数与复平⾯上点⼀⼀对应,与以原点为起点的向量⼀⼀对应. 4.复数z=a+bi (a,bR)的模为⾮负实数,利⽤模的定义,可以将复数问题实数化.知识梳理 1.复数 虚数单位 复数集 2.a+bi(a,bR) a与b 3.b=0 b≠0 a=0且b≠0 4.真⼦集 R?C 5.a=c且b=d 6.Z(a,b) 7. 作业设计 1.B [复数a+bi (a,bR)为纯虚数a=0且b≠0.] 2.A [由, 可得(-)2=a+b-2=-12.] 3.A [z为纯虚数,∴x=-1.] 4.A 5.D [由题意得:解得m=0.故选D.] 6.D [z=(m2-4m)+(m2-m-6)i,对应点在第⼆象限,则解得3,|z1|>|z2|. (2)∵z=3+ai (aR),|z|=, 由已知得32+a2<42,a2<7,a∈(-,). 12.解 由题知P=Q, 所以(m2-2m)+(m2+m-2)i=4i, 所以,解得m=2. 13.解 设z=a+bi(a,bR), 则b=a且=3, 解得或. 因此z=6+3i或z=-6-3i. 数学必修三复习参考题及答案⼆ 1.如图所⽰程序框图,能判断任意输⼊的数x的奇偶性:其中判断框内的条件是( )A.m=0B.x=0C.x=1D.m=1 2.算法的过程称为“数学机械化”,数学机械化的最⼤优点是可以让计算机来完成,中国当代数学家在这⽅⾯研究处于世界领先地位,为此⽽获得⾸届⾃然科学500万⼤奖的是( )A.袁隆平B.华罗庚C.苏步青D.吴⽂俊 3. 算法 S1 m=a S2 若b S3 若c S4 若d S5 输出m,则输出m表⽰ ( ) A.a,b,c,d中最⼤值 B.a,b,c,d中最⼩值 C.将a,b,c,d由⼩到⼤排序 D.将a,b,c,d由⼤到⼩排序 4. 如图程序运⾏后输出的结果为 ( )A. 50B. 5C. 25D. 0 5.计算机执⾏下⾯的程序段后,输出的结果是 ( )A.1,3B.4,1C.0,0D.6,0 6.⽤“辗转相除法”求得459和357的最⼤公约数是( )A.3B.9C.17D.51 7.算法的三种基本结构是 ( )A. 顺序结构、模块结构、条件结构B. 顺序结构、循环结构、模块结构C. 顺序结构、条件结构、循环结构D. 模块结构、条件结构、循环结构 8.下⾯为⼀个求20个数的平均数的程序,在横线上应填充的语句为 ( )A.i>20B.i<20C.i>=20D.i<=20 9.⽤秦九韶算法计算多项式当时的值时,需要做乘法和加法的次数分别是 ( )A.6 , 6B.5 , 6C.5 , 5D.6 , 5 10.给出以下⼀个算法的程序框图(如图所⽰),该程序框图的功能是( ) A.求输出a,b,c三数的最⼤数 B.求输出a,b,c三数的最⼩数 C.将a,b,c按从⼩到⼤排列 D.将a,b,c按从⼤到⼩排列 11.若输⼊8时,则下列程序执⾏后输出的结果是 . 12.下左程序运⾏后输出的结果为_________. x=5 y=-20 IF x<0 THEN x=y-3 ELSE y=y+3 END IF PRINT x-y ; y-x END (第12题) 13.⽤直接插⼊排序法对:7,1,3,12,8,4,9,10进⾏从⼩到⼤排序时,第四步得到的⼀组数为: _ _ . 14.求⽅程的近似根,要先将它近似地放在某两个连续整数之间,则应当在区间上. 15.学了算法你的收获有两点,⼀⽅⾯了解我国古代数学家的杰出成就,另⼀⽅⾯,数学的机械化,能做许多我们⽤笔和纸不敢做的有很⼤计算量的问题,这主要归功于算法语句的 . 16.上右程序输出的n的值是____________. j=1 n=0 WHILE j<=11 j=j+1 IF j MOD 4=0 THEN n=n+1 END IF j=j+1 WEND PRINT n END (第1 6题) 17.函数y= 请设计算法流程图,要求输⼊⾃变量,输出函数值. 18.某电信部门规定:拨打市内电话时,如果通话时间不超过3分钟,则收取通话费0.2元,如果通话时间超过3分钟,则超过部分以每分钟0.1元收取通话费(通话不⾜1分钟时按1分钟计),试设计⼀个计算通话费⽤的算法.要求写出算法,画出程序框图,编写程序. 19.把“五进制”数转化为“⼗进制”数,再把它转化为“⼋进制”数. 20.给定⼀个年份,写出该年是不是闰年的算法,程序框图和程序. 21.已知正四棱锥的底⾯边长为3,⾼为4,求正四棱锥的体积和表⾯积,写出算法的伪代码,并画出相应图. 数学必修三复习参考题及答案三 ⼀、选择题 1.图中表⽰的区域满⾜不等式( )A.2x+2y-1>0B.2x+2y-1≥0C.2x+2y-1≤0D.2x+2y-1<0 答案:B 2.不等式组x≥2x-y+3≤0表⽰的平⾯区域是下列图中的( ) 答案:D 3.如图阴影部分⽤⼆元⼀次不等式组表⽰为( ) A.y≤2,2x-y+4≥0 B.0≤y≤2x≤02x-y+4≥0 C.y≤2,x≤02x-y+4≥0 D.0≤y≤22x-y+4≤0x≤0 解析:选B.2x-y+4≤0在直线2x-y+4=0上及左上⽅,故D错,A、C均缺y≥0,A还缺x≤0. 4.设点P(x,y),其中x,y∈N,则满⾜x+y≤3的点P的个数为( )A.10B.9C.3D.⽆数 解析:选A.当x=0时,y可取0,1,2,3有4个点; 当x=1时,y可取0,1,2有3个点; 当x=2时,y可取0,1有2个点; 当x=3时,y可取0,有1个点,故共有10个点,选A. 5.已知点(-3,1)和(0,-2)在直线x-y-a=0的⼀侧,则a的取值范围是( )A.(-2,4)B.(-4,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-4)∪(2,+∞) 解析:选D.(-3-1-a)(0+2-a)>0, 即(a+4)(a-2)>0,∴a>2或a<-4. 6.在平⾯直⾓坐标系中,若不等式组x+y-1≥0x-1≤0ax-y+1≥0(a为常数)所表⽰的平⾯区域的⾯积等于2,则a的值为( )A.-5B.1C.2D.3 解析:选D.如图, 由y=ax+1,x=1, 得A(1,a+1), 由x=1,x+y-1=0,得B(1,0), 由y=ax+1,x+y-1=0,得C(0,1). ∵△ABC的⾯积为2, ∴S△ABC=12(a+1)=2, ∴a=3.。

高中数学必修3(人教A版)第一章算法初步1.1知识点总结含同步练习及答案

高中数学必修3(人教A版)第一章算法初步1.1知识点总结含同步练习及答案

描述:例题:高中数学必修3(人教A版)知识点总结含同步练习题及答案第一章 算法初步 1.1 算法与程序框图一、学习任务1. 了解算法的含义,了解算法的基本思想,能用自然语言描述解决具体问题的算法.2. 了解设计程序框图表达解决问题的过程,了解算法和程序语言的区别;了解程序框图的三种基本逻辑结构,会用程序框图表示简单的常见问题的算法.二、知识清单算法 程序框图三、知识讲解1.算法算法(algorithm)是指按照一定规则解决某一类问题的明确和有限的步骤 .可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.描述算法可以有不同的方式.例如,可以用自然语言和数学语言加以描述,也可以借助形式语言(算法语言)给出精确的说明,也可以用框图直观地显示算法的全貌.算法的要求:(1)写出的算法,必须能解决一类问题,并且能重复使用;(2)算法过程要能一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步后能得到结果.下列对算法的理解不正确的是( )A.一个算法应包含有限的步骤,而不能是无限的B.算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的C.算法中的每一个步骤都应当是有效地执行,并得到确定的结果D.一个问题只能设计出一种算法解:D算法的有限性是指包含的步骤是有限的,故 A 正确;算法的确定性是指每一步都是确定的,故 B正确;算法的每一步都是确定的,且每一步都应有确定的结果,故 C 正确;对于同一个问题可以有不同的算法,故 D 错误.下列叙述能称为算法的的个数为( )描述:2.程序框图程序框图简称框图,是一种用程序框、流程线及文字说明来表示算法的图形.其中,起、止框是任何流程不可少的,表明程序的开始和结束.输入和输出框可用在算法中任何需要输入、输出的位置.算法中间要处理数据或计算,可分别写在不同的处理框内.一个算法步骤到另一个算法步骤用流程线连接.如果一个框图需要分开来画,要在断开处画上连接点,并标出连接的号码.①植树需要运苗、挖坑、栽苗、浇水这些步骤;②依次进行下列运算:,,,,;③从枣庄乘火车到徐州,从徐州乘飞机到广州;④ ;⑤求所有能被 整除的正整数,即 .A. B. C. D.解:B①、②、③为算法.1+1=22+1=33+1=4⋯99+1=1003x >x +133,6,9,12,⋯2345写出解方程组的一个算法.解:方法一:代入消元法. 第一步,由 得 ;第二步,将 代入 ,得 ,解得 ;第三步,将 代入方程 ,得 ;第四步,得到方程组的解为 .方法二:加减消元法.第一步,方程 两边同乘以 ,得 ;第二步,将第一步所得的方程与方程 作差,消去 ,得 ,解得 ;第三步,将 代入方程 ,得 ,解得 ;第四步,得到方程组的解为 .{2x +y =74x +5y =112x +y =7y =7−2x y =7−2x 4x +5y =114x +5(7−2x )=11x =4x =4y =7−2x y =−1{x =4y =−12x +y =7510x +5y =354x +5y =11y 6x =24x =4x =42x +y =72×4+y =7y =−1{x =4y =−1例题:画程序框图的规则(1)使用标准的图形符号.(2)框图一般按从上到下、从左到右的方向画.(3)除判断框外,大多数流程图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的惟一符号.(4)判断框分两大类,一类判断框是“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果.(5)在图形符号内描述的语言要非常简练清楚.算法的三种基本逻辑结构顺序结构:语句与语句之间,框与框之间按从上到下的顺序进行.条件分支结构:在一个算法中,经常会遇到一些条件的判断,算法的流程条件是否成立有不同的流向,条件结构就是处理这种过程的结构.循环结构:在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.下列程序框图分别是解决什么问题的算法.解:(1)已知圆的半径,求圆的面积的算法.(2)求两个实数加法的算法.执行如图的程序框图,输出的 ______ .解:T =30四、课后作业 (查看更多本章节同步练习题,请到快乐学)某程序框图如图所示,若输出的 ,则判断框内为( )A. B. C. D.解:AS =57k >4?k >5?k >6?k >7?已知函数 ,对每次输入的一个值,都得到相应的函数值,画出程序框图.解:f (x )={2x +3,3−x ,x 2x ⩾0x <0x答案:1. 关于算法的说法中,正确的是 A .算法就是某个问题的解题过程B .算法执行后可以产生不确定的结果C .解决某类问题的算法不是唯一的D .算法可以无限地操作下去不停止C()答案:解析:2. 下列运算不属于我们所讨论算法范畴的是 A .已知圆的半径求圆的面积B .随意抽 张扑克牌算到二十四点的可能性C .已知坐标平面内两点求直线方程D .加减乘除法运算法则B注意算法需按照一定的顺序进行.()4答案:解析:3. 执行如图所示的程序框图,如果输入的 ,则输出的 属于 .A .B .C .D .D取 ,得输出的 ,即可判断.t ∈[−2,2]S ()[−6,−2][−5,−1][−4,5][−3,6]t =−2S =64. 某批发商按客户订单数额的大小分别给予不同的优惠折扣.计算客户应付货款的算法步骤如下: :输入订单数额 (单位:件);输入单价 (单位:元);:若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;:计算应付货款 (单位:元);:输出应付货款 .S 1x A S 2x <250d =0250⩽x <500d =0.05500⩽x <1000d =0.10x ⩾1000d =0.15S 3T =Ax (1−d )S 4T。

人教版高中数学【必修三】[知识点整理及重点题型梳理]_算法与程序框图_基础

人教版高中数学【必修三】[知识点整理及重点题型梳理]_算法与程序框图_基础

人教版高中数学必修三知识点梳理重点题型(常考知识点)巩固练习算法与程序框图【学习目标】1.初步建立算法的概念;2.让学生通过丰富的实例体会算法的思想;3.让学生通过对具体问题的探究,初步了解算法的含义;4.掌握程序框图的概念;5.会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构;6.掌握画程序框图的基本规则,能正确画出程序框图.【要点梳理】【算法与程序框图 397425 知识讲解1】要点一、算法的概念1、算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,现代意义的算法是指可以用计算机来解决的某一类问题的程序和步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2、算法的特征:(1)确定性:算法的每一步都应当做到准确无误、“不重不漏”.“不重”是指不是可有可无的、甚至无用的步骤,“不漏”是指缺少哪一步都无法完成任务.(2)逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.(3)有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制的持续进行.(4)不唯一性:求解某一个问题的算法不一定是唯一的,对于一个问题可以有不同的算法.3、设计算法的要求(1)写出的算法,必须能解决一类问题(如:判断一个整数35是否为质数;求任意一个方程的近似解……),并且能够重复使用.(2)要使算法尽量简单、步骤尽量少.(3)要保证算法正确.且计算机能够执行,如:让计算机计算1×2×3×4×5是可以做到的.4、算法的描述:(1)自然语言:自然语言就是人们日常使用的语言,可以是汉语、英语或数学语言等.用自然语言描述算法的优点是通俗易懂,当算法中的操作步骤都是顺序执行时比较容易理解.缺点是如果算法中包含判断和转向,并且操作步骤较多时,就不那么直观清晰了.(2)程序框图:所谓框图,就是指用规定的图形符号来描述算法,用框图描述算法具有直观、结构清晰、条理分明、通俗易懂、便于检查修改及交流等特点.(3)程序语言:算法最终可以通过程序的形式编写出来,并在计算机上执行.要点诠释:算法的特点:思路简单清晰,叙述复杂,步骤繁琐,计算量大,完全依靠人力难以完成,而这些恰恰就是计算机的特长,它能不厌其烦地完成枯燥的、重复的繁琐的工作,正因为这些,现代算法的作用之一就是使计算机代替人完成某些工作,这也是我们学习算法的重要原因之一.事实上,算法中出现的程序只是用基本的语句把程序的主要结构描述出来,与真正的程序还有差距,所以算法描述的许多程序并不能直接运行,要运行程序,还要把程序按照某种语言的严格要求重新改写才行.【算法与程序框图 397425 知识讲解2】要点二、程序框图1、程序框图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形.23一个程序框图包括以下几部分:实现不同算法功能的相对应的程序框;带箭头的流程线;程序框内必要的说明文字.4、算法的三种基本逻辑结构(1)顺序结构顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的.它是由若干个依次执行的步骤组成的,它是任何一个算法都离不开的一种基本算法结构.见示意图和实例:顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤.如在示意图中,A框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执行B框所指定的操作.(2)条件结构如下面图示中虚线框内是一个条件结构,此结构中含有一个判断框,算法执行到此判断给定的条件P 是否成立,选择不同的执行框(A框、B框).无论P条件是否成立,只能执行A框或B框之一,不可能既执行A框又执行B框,也不可能A框、B框都不执行.A框或B框中可以有一个是空的,即不执行任何操作.见示意图要点诠释:条件结构中的条件要准确,不能含混不清,要清楚在什么情况下需要作怎样的判断,用什么条件来区分.(3)循环结构在一些算法中要求重复执行同一操作的结构称为循环结构.即从算法某处开始,按照一定条件重复执行某一处理过程.重复执行的处理步骤称为循环体.循环结构有两种形式:当型循环结构和直到型循环结构.①当型循环结构,如左下图所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,返回来再判断条件P是否成立,如果仍然成立,返回来再执行A框,如此反复执行A框,直到某一次返回来判断条件P不成立时为止,此时不再执行A框,离开循环结构,继续执行下面的框图.②直到型循环结构,如右下图所示,它的功能是先执行重复执行的A框,然后判断给定的条件P是否成立,如果P仍然不成立,则返回来继续执行A框,再判断条件P是否成立,依次重复操作,直到某一次给定的判断条件P成立为止,此时不再返回来执行A框,离开循环结构,继续执行下面的框图.见示意图要点诠释:循环结构中使用什么样的条件控制循环的开始和结束,要清楚满足某个条件的变量的次数与循环次数的联系与区别.误区提醒1、框图中的流程线不能出现交叉的现象.若有交叉,则程序语句无法写出;2、各种框图有其固定的格式和作用,不要乱用.如条件结构中不要忘了“是”与“否”,流程线不要忘记画箭头;3、条件分支结构的方向要准确;4、循环结构中,计数变量要赋初值,计数变量的自加不要忘记,自加多少不能弄错.另外计数变量一般只负责计数任务;5、循环结构中循环的次数要严格把握,区分“<”与“≤”等.循环变量的取值与循环结构(当型与直到型)有关,需区分清楚.另外,同一问题用两种不同的结构解决时,其判断条件恰是相反的;6、程序框图不要出现死循环(无限步的循环).【典型例题】类型一:算法的概念例1.(1)下列描述不能看作算法的是().A.做米饭需要刷锅,淘米,添水,加热这些步骤B.洗衣机的使用说明书C.解方程2x2+x-1=0D.利用公式S=πr2,计算半径为4的圆的面积,就是计算π×42(2)下列关于算法的说法:①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生明确的结果.其中正确的有().A.1个B.2个C.3个D.4个【答案】(1)C (2)C【解析】(1)A、B、D都描述了解决问题的过程,可以看作算法.而C只描述了一个事实,没说明怎么解决问题,不是算法.(2)根据算法的特征可以知道,算法要有明确的开始与结束,每一步操作都必须是明确而有效的,必须在有限步内得到明确的结果,所以②③④正确.而解决某一类问题的算法不一定是唯一的,故①错误.【总结升华】算法一般是机械的,有时需要进行大量的重复计算,只要按部就班去做,总能算出结果.通常把算法过程称为“数学机械化”,数学机械化的最大优点是它可以借助计算机来完成.实际上处理任何问题都需要算法,如:中国象棋有中国象棋的棋谱、走法、胜负的评判准则;而国际象棋有国际象棋的棋谱、走法、胜负的评判准则;再比如申请出国有一系列的先后手续,购买物品也有相关的手续…….举一反三:【变式1】我们已学过的算法有求解一元二次方程的求根公式,加减消元法求二元一次方程组的解,二分法求出函数的零点等,对算法的描述有:①对一类问题都有效;②算法可执行的步骤必须是有限的;③算法可以一步一步地进行,每一步都有确切的含义;④是一种通法,只要按部就班地做,总能得到结果.以上算法的描述正确的有().A.1个B.2个C.3个D.4个【答案】D类型二:算法的描述例2.写出求方程组32142x yx y-=⎧⎨+=-⎩①②的解的算法.【解析】可利用消元法或代入法求解.算法一:第一步:②×2+①,得到5x=14-4.③第二步,解方程③,可得x=2.④第三步,将④代入②,可得2+y=-2.⑤第四步,解⑤得y=-4.第五步,得到方程组的解为24 xy=⎧⎨=-⎩算法二:第一步,由②式移项可以得到x=-2-y.③第二步,把③代入①,得y=-4.④第三步,把④代入③,得x=2.第四步,得到方程组的解为24 xy=⎧⎨=-⎩.【总结升华】通过求解二元一次方程组可知,求解某个问题的算法不一定唯一.对于具体的实例可以选择合适的算法,尽量做到“省时省力”,使所用的算法是最优算法.举一反三:【变式1】试描述求解三元一次方程组1233162x y zx y zx y z++=⎧⎪--=⎨⎪--=-⎩①②③的算法步骤.【解析】算法1:第一步,①+③,得x=5.④第二步,将④分别代入①式和②式可得73 1y zy z+=⎧⎨+=-⎩⑤⑥.第三步,⑥-⑤,得y=-4.⑦第四步,将⑦代入⑤可得z=11.第五步,得到方程组的解为5411xyz=⎧⎪=-⎨⎪=⎩.算法2:第一步,①+②,得2x -y=14. ④ 第二步,②-③,得x -y=9. ⑤ 第三步,④-⑤,得x=5. ⑥第四步,将⑥代入⑤式,得y=-4. ⑦ 第五步,将⑥和⑦代入①式,得z=11.第六步,得到方程组的解为5411x y z =⎧⎪=-⎨⎪=⎩.类型三:算法的设计【算法与程序框图 397425 算法中的例1】例3.设计一个算法,从3个互不相等的数中选出最小的一个数.,并用数学语言表达. 【解析】第一步:假定这3个数中第一个是“最小值”;第二步:将第二个数与“最小值”比较,如果它小于此“最小值”,那么就用这个数取代“最小值”; 第三步:再重复第二步,将第三个数与最小值比较,如果它小于此“最小值”,那么就用这个数取代“最小值”;第四步:此时的“最小值”就是三个数中的最小值,输出最小值.所谓的算法,就是解决该类问题的一般步骤. 举一反三:【变式1】任意给定一个正整数n ,设计出判断n 是否为质数的一个算法. 【解析】第一步,当n =1时,n 既不是质数,也不是合数; 第二步,当n =2时,n 是质数;第三步,当n ≥3时,从2到n -1依次判断是否存在n 的因数(因数1除外),若存在,则n 是合数;若不存在,则n 是质数.类型四:顺序结构的应用【算法与程序框图 397425 程序框图中的例1】 例4.对于一个二次函数2y ax bx c =++,求出顶点坐标.【解析】算法步骤:S1 用户输入二次函数的系数a,b,c ;S2 计算顶点坐标24,24b ac b x y a a-=-=(赋值);S3 输出顶点坐标.举一反三:【变式1】已知x=40,y=3.画出计算z=15x+8y 的值的程序框图. 【答案】程序框图如下图所示.类型五:条件结构的应用例5.已知函数232 1 (0)1 (01)2 (1)x x y x x x x x -<⎧⎪=+≤<⎨⎪+≥⎩,写出求该函数的函数值的算法,并画出程序框图.【解析】该函数是分段函数,因此当给出一个自变量x 的值时,需先判断x 的范围,然后确定利用哪一段的解析式求函数值.画程序框图时,必须采用条件分支结构,因为函数解析式分了三段,所以需要两个判断框,即进行两次判断.算法如下:第一步,输入x .第二步,如果x <0,那么使y=2x -1,输出y ;否则,执行第三步. 第三步,如果0≤x <1,那么使y=x 2+1,输出y ;否则,执行第四步.第四步,y=x 2+2x 第五步,输出y .程序框图如下图所示.【总结升华】凡是必须先根据条件作出判断,然后再决定进行哪一个步骤的问题,在画程序框图时,必须引入判断框,采用条件结构.而像本题求分段函数的函数值的程序框图的画法,如果是分两段的函数,只需引入一个判断框;如果是分三段的函数,需引入两个判断框;分四段的函数需引入三个判断框,依此类推.判断框内的内容是没有固定顺序的.举一反三:【变式1】已知函数 1 (0)()0 (0)1 (0)x f x x x ->⎧⎪==⎨⎪<⎩, 写出求函数()f x 的任一函数值的一个算法并画出程序框图.【解析】记y=f (x).算法:第一步:输入x .第二步:如果x >0,那么使y=-1;如果x=0,那么使y=0;如果x <0,那么使y=1. 第三步:输出函数值y . 程序框图如下图所示.【变式2】如果学生的成绩大于或等于60分,则输出“及格”,否则输出“不及格”.用程序框图表示这一算法过程.【答案】开始结束类型六:循环结构的应用例6.设计一个计算1+3+5+7+…+999的值的算法,并画出程序框图.【解析】算法一:当型循环:第一步,令S=0,i=1.第二步,若i≤999成立,则执行第三步;否则输出S,结束算法.第三步,S=S+i.第四步,i=i+2,返回第二步,程序框图如图(1).算法二:直到型循环:第一步,令S=0,i=1.第二步,S=S+i.第三步,i=i+2.第四步,若i不大于999,转第二步;否则,输出S,结束算法.程序框图如图1-1-8(2).【总结升华】注意直到型循环和当型循环的区别.直到型循环先执行i=i+2,再判断i>999是否成立,若成立才输出S;而当型循环先判断i≤999是否成立,若成立,则执行i=i+2,直到条件i≤999不成立才结束循环,输出S.举一反三:【变式1】给出30个数:1,2,4,7,11,…,要计算这30个数的和,现已给出了该问题的程序框图如图所示,那么框图中判断框处①和执行框②处应分别填入()A.i≤30?;p=p+i-1 B.i≤31?;p=p+i+1C.i≤31?;p=p+i D.i≤30?;p=p+i【答案】D【解析】由于要计算30个数的和,故循环要执行30次,由于循环变量的初值为1,步长为1,故终值应为30即①中应填写i≤30;又由第1个数是1;第2个数比第1个数大1,即1+1=2;第3个数比第2个数大1,即2+2=4;第4个数比第3个数大1,即4+3=7;…故②中应填写p=p+i故选:D.【变式2】(2016春河南周口期中)设计求1+3+5+7+…+31的算法,并画出相应的程序框图.【解析】第一步:S=0;第二步:i=1;第三步:S=S+i;第四步:i=i+2;第五步:若i不大于31,返回执行第三步,否则执行第六步;第六步:输出S值.程序框图如图:类型七:利用算法和程序框图解决实际问题例7.北京获得了2008年第29届奥运会主办权.你知道在申办奥运会的最后阶段,国际奥委会是如何通过投票决定主办权归属的吗?对选出的5个申办城市进行表决的操作程序是:首先进行第一轮投票,如果有一个城市得票超过总票数的一半,那么该城市就获得主办权;如果所有申办城市得票数都不超过总票数的一半,则将得票最少的城市淘汰,然后重复上述过程,直到选出一个申办城市为止.试画出该过程的程序框图.【解析】本题为算法中与现实生活相联系的题目,从选举的方法看,应选择循环结构来描述算法.如图所示:【总结升华】解决与现实相关的问题时首先要理清题意,此循环结构中对用哪一个步骤控制循环,哪一个步骤作为循环体,要有清晰的思路.举一反三:【变式1】儿童乘坐火车时,若身高不超过1.1 m,则无需购票;若身高超过1.1 m,但不超过1.4 m,可买半票;若超过1.4 m,应买全票,请设计一个算法,并画出程序框图.【解析】根据题意,该题的算法中应用条件结构,首先以身高为标准,分成买和免票,在买票中再分出半票和全票.买票的算法步骤如下:第一步:测量儿童身高h.第二步:如果h≤1.1 m,那么免费乘车,否则若h≤1.4 m,则买半票,否则买全票.精品文档 用心整理资料来源于网络 仅供免费交流使用 程序框图如下图所示.【总结升华】本题的程序框图中有两个判断点,一个是以1.1 m 为判断点,1.1 m 把身高分为两段,在大于1.1 m 的一段中,1.4 m 又将其分两段,因此1.4 m 这个判断是套在1.1 m 的判断里的.所以我们用到两个条件结构.。

人教版高中数学【必修三】[知识点整理及重点题型梳理]_几何概型_基础

人教版高中数学【必修三】[知识点整理及重点题型梳理]_几何概型_基础

人教版高中数学必修三知识点梳理重点题型(常考知识点)巩固练习几何概型【学习目标】1.了解几何概型的概念及基本特点;2.熟练掌握几何概型中概率的计算公式;3.会进行简单的几何概率计算;4.能运用模拟的方法估计概率,掌握模拟估计面积的思想.【要点梳理】要点一:几何概型1.几何概型的概念:对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段,平面图形,立体图形等.用这种方法处理随机试验,称为几何概型.2.几何概型的基本特点:(1)试验中所有可能出现的结果(基本事件)有无限多个;(2)每个基本事件出现的可能性相等.3.几何概型的概率:一般地,在几何区域D 中随机地取一点,记事件"该点落在其内部一个区域d 内"为事件A ,则事件A 发生的概率()d P A D 的测度的测度. 说明:(1)D 的测度不为0;(2)其中"测度"的意义依D 确定,当D 分别是线段,平面图形,立体图形时,相应的"测度"分别是长度,面积和体积.(3)区域为"开区域";(4)区域D 内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关.要点诠释:几种常见的几何概型(1)设线段l 是线段L 的一部分,向线段L 上任投一点,若落在线段l 上的点数与线段l 的长度成正比,而与线段l 在线段L 上的相对位置无关,则点落在线段l 上的概率为:P=l 的长度/L 的长度(2)设平面区域g 是平面区域G 的一部分,向区域G 上任投一点,若落在区域g 上的点数与区域g 的面积成正比,而与区域g 在区域G 上的相对位置无关,则点落在区域g 上概率为:P=g 的面积/G 的面积(3)设空间区域上v 是空间区域V 的一部分,向区域V 上任投一点,若落在区域v 上的点数与区域v 的体积成正比,而与区域v 在区域V 上的相对位置无关,则点落在区域v 上的概率为:P=v 的体积/V 的体积要点二:均匀随机数的产生1.随机数的概念随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个数的机会是均等的.它可以帮助我们模拟随机试验,特别是一些成本高、时间长的试验,用随机模拟的方法可以起到降低成本,缩短时间的作用.2.随机数的产生方法(1)实例法.包括掷骰子、掷硬币、抽签、转盘等.(2)计算器模拟法.现在大部分计算器的RAND 函数都能产生0~1之间的均匀随机数.(3)计算机软件法.几乎所有的高级编程语言都有随机函数,借用随机函数可以产生一定范围的随机数. 要点诠释:1.在区间[a ,b]上的均匀随机数与整数值随机数的共同点都是等可能取值,不同点是均匀随机数可以取区间内的任意一个实数,整数值随机数只取区间内的整数.2.利用几何概型的概率公式,结合随机模拟试验,可以解决求概率、面积、参数值等一系列问题,体现了数学知识的应用价值.3.用随机模拟试验不规则图形的面积的基本思想是:构造一个包含这个图形的规则图形作为参照,通过计算机产生某区间内的均匀随机数,再利用两个图形的面积之比近似等于分别落在这两个图形区域内的均匀随机点的个数之比来解决.4.利用计算机和线性变换Y=X*(b-a)+a ,可以产生任意区间[a ,b]上的均匀随机数.【典型例题】类型一:与长度有关的几何概型问题例1.取1根长为3 m 的绳子,拉直后在任意位置剪断,那么剪得的两段长都不小于1 m 的概率有多大?【思路点拨】从每一个位置剪断绳子,都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点,基本事件有有限多个,而且每一个基本事件的发生都是等可能的,因此事件的发生的概率只与剪断位置所处的绳子的长度有关,符合几何概型的条件。

人教版高中数学必修3知识点和练习题

人教版高中数学必修3知识点和练习题

式,右边表达式可以是一个数据、常量或算式; (5)对于一个变量可以多次赋值。
注意: ①赋值号左边只能是变量名字,而不能是表达式。如:
2=X 是错误的。②赋值号
左右不能对换。如“ A=B ”“ B=A ”的含义运行结果是不同的。③ 不能利用赋值语句进
第 6页
行代数式的演算。 (如化简、因式分解、解方程等)④赋值号“ 不同。
INPUT “提示内容”;变量
图形计算器 格式
INPUT “提示内容”,变量
( 2)输入语句的作用是实现算法的输入信息功能; (3)“提示内容”提示用户输入什么
样的信息,变量是指程序在运行时其值是可以变化的量;
( 4)输入语句要求输入的值只
能是具体的常数,不能是函数、变量或表达式; (5)提示内容与变量之间用分号“; ”隔
ELSE 语句 2
END IF
满足条件? 是
语句 1
否 语句 2
图1
图2
分析:在 IF — THEN — ELSE 语句中,“条件”表示判断的条件, “语句 1”表示满足条件
时执行的操作内容; “语句 2”表示不满足条件时执行的操作内容; END IF 表示条件语
句的结束。 计算机在执行时, 首先对 IF 后的条件进行判断, 如果条件符合, 则执行 THEN
(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
1 、顺序结构: 顺序结构是最简单的算法结构, 语句与语句之间, 框与框之间是按从上 到
下的顺序进行的,它是由若干个依次执行的处理步骤组成的,
它是任何一个算法都离不
开的一种基本算法结构。
顺序结构在程序框图中的体现就是用流程线将程序框自上而 下地连接起来,按顺序执行算法步骤。如在示意图中, A 框和 B

高中数学必修3(人教A版)第二章统计2.1知识点总结含同步练习及答案

高中数学必修3(人教A版)第二章统计2.1知识点总结含同步练习及答案

⑤确定样本:从总体中找出与号签上的号码对应的个体,组成样本.
随机数表法是随机数表由数字 0 ,1 ,2,3,⋯,9 这 10 个数字组成,并且每个数字在表中 各个位置上出现的机会都是一样的,通过随机数表,根据实际需要和方便使用的原则,将几个数
组成一组,然后通过随机数表抽取样本.随机数表的优点是简单易行,它很好的解决了当总体中
样.因为 50 名官兵是从中挑出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单 随机抽样中“等可能抽样”的要求.(3)是简单随机抽样.因为总体中的个体数是有限的,并且
是从总体中逐个进行抽取的,是不放回、等可能的抽取.
2013年第27届世界大学生运动会在俄罗斯举行,为了支持这次运动会,某大学从报名的 20 名大 三学生中选取 6 人组成志愿小组,请用抽签法设计抽样方案. 解:(1)将 20 名志愿者编号,编号为 1,2,3,4,⋯,20; (2)将 20 个号码分别写在 20 张形状相同的卡片上,制成号签; (3)将 20 张卡片放入一个不透明的盒子里,搅拌均匀; (4)从盒子中逐个不放回地抽取 6 个号签,并记录上面的号码;
A.2
B.3
C.6
D.7
解:C
间隔相等,所以 126 − 8 × 15 = 6.
4.分层抽样
描述: 将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在 总体中所占比例进行简单随机抽样或系统抽样,这种抽样的方法叫做分层抽样.当总体由明显差 别的几部分组成时,为了使抽取样本更好地反映总体的情况,常采用分层抽样.
③简单随机抽样是一种不放回抽样.
④简单随机抽样是一种等可能的抽样,每个个体被抽取到的可能性均为
n N

常用的简单随机抽样方法有抽签法和随机数表法.

高中数学必修3(人教A版)第三章概率3.3知识点总结含同步练习及答案

高中数学必修3(人教A版)第三章概率3.3知识点总结含同步练习及答案

Q
A.
1 4 1 2
B.
1 3
C.
D.
解:C
2 3
1 |AB||CD| 1 S △ABE 点 Q 取自 △ABE 内部的概率为 = 2 = . 2 |AB||CD| S 矩形ABCD
设不等式组 { 0 ⩽ x ⩽ 2 表示的平面区域为 D ,在区域 D 内随机取一个点,则此点到坐标原
0⩽y⩽2 点的距离大于 2 的概率是( π A. 4 π C. 6
解:(1)先后抛掷两枚质地均匀的骰子,出现的可能结果有 6 × 6 = 36(种),且它们都是等可 能的,因此属于古典概型. (2)游戏中指针指向 N 区域时有无限多个结果,而且不难发现“指针落在阴影部分”的概率可 以用阴影部分的面积与总面积的比来衡量,即与区域面积有关,因此属于几何概型. 如图,矩形 ABCD 中,点 E 为边 CD 的中点,若在矩形 ABCD 内部随机取一个点 Q, 则点 Q 取自 △ABE 内部的概率等于( )

2 . 3



高考不提分,赔付1万元,关注快乐学了解详情。
x 的二次方程两根都是实数"为事件 A .由题意,得 Δ = 4 (a2 + b 2 ) − 4 ⩾ 0,

a2 + b 2 ⩾ 1.
因为点 (a, b) 的集合是边长为 2 的正方形以及内部的平面区域,所以事件 A 对应的是在正方形 内的圆 a2 + b 2 = 1 外的平面区域,如图所示. 故所求的概率为
P (A ) =
构成事件A的区域长度(面积或体积) 试验的全部结果所构成的区域长度(面积或体积)
.
例题: 判断下列试验是古典概型还是几何概型. (1)先后抛掷两枚质地均匀的骰子,求出现两个“ 4 点”的概率; (2)如图所示,图中有一个转盘,甲、乙两人玩转盘游戏,规定指南针指向 N 区域时,甲获 胜,否则乙获胜,求甲获胜的概率.

高中数学必修三知识点总结与例题精讲

高中数学必修三知识点总结与例题精讲

一:随机事件的概率(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件(certain event ),简称必然事件.(2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件(impossible event ),简称不可能事件.(3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件.(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件(random event ),简称随机事件;确定事件和随机事件统称为事件,用A,B,C,…表示.(5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n a 为事件A 出现的频数(frequency );称事件A 出现的比例f n (A)=nn A为事件A 出现的频率(relative frequency );对于给定的随机事件A,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率(probability ).(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数A n 与试验总次数n 的比值nn A ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小.我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小.频率在大量重复试验的前提下可以近似地作为这个事件的概率.频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率.在实际问题中,通常事件的概率未知,常用频率作为它的估计值.频率本身是随机的,在试验前不能确定.做同样次数的重复实验得到事件的频率会不同.概率是一个确定的数,是客观存在的,与每次试验无关.比如,一个硬币是质地均匀的,则掷硬币出现正面朝上的概率就是0.5,与做多少次实验无关.例1 为了估计水库中的鱼的尾数,可以使用以下的方法,先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.分析:学生先思考,然后交流讨论,教师指导,这实际上是概率问题,即2 000尾鱼在水库中占所有鱼的百分比,特别是500尾中带记号的有40尾,就说明捕出一定数量的鱼中带记号的概率为50040,问题可解. 解:设水库中鱼的尾数为n,A={带有记号的鱼},则有P(A)=n 2000. ① 因P(A)≈50040, ② 由①②得500402000 n ,解得n≈25 000. 所以估计水库中约有鱼25 000尾.二:概率的意义1、 概率是对随机事件发生的可能性的描述,概率越大随机事件发生的可能性越大,概率越小随机事件发生的可能性就越小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版高中数学必修3知识点和练习题第一章算法初步1.1.1算法的概念1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2. 算法的特点:(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.1.2程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。

(二)构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。

2、框图一般按从上到下、从左到右的方向画。

3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。

判断框具有超过一个退出点的唯一符号。

4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。

5、在图形符号内描述的语言要非常简练清楚。

(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。

1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。

顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。

如在示意图中,A框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执行B框所指定的操作。

2、条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的算法结构。

条件P是否成立而选择执行A框或B框。

无论P条件是否成立,只能执行A 框或B框之一,不可能同时执行A框和B框,也不可能A框、B框都不执行。

一个判断结构可以有多个判断框。

3、循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。

循环结构又称重复结构,循环结构可细分为两类:(1)、一类是当型循环结构,如下左图所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,再判断条件P是否成立,如果仍然成立,再执行A框,如此反复执行A框,直到某一次条件P不成立为止,此时不再执行A框,离开循环结构。

(2)、另一类是直到型循环结构,如下右图所示,它的功能是先执行,然后判断给定的条件P是否成立,如果P仍然不成立,则继续执行A框,直到某一次给定的条件P成立为止,此时不再执行A框,离开循环结构。

当型循环结构直到型循环结构注意:1循环结构要在某个条件下终止循环,这就需要条件结构来判断。

因此,循环结构中一定包含条件结构,但不允许“死循环”。

2在循环结构中都有一个计数变量和累加变量。

计数变量用于记录循环次数......,累加变量用于输出结果。

计数变量和累加变量一般是同步执行的,累加一次,计数一次。

1.2.1输入、输出语句和赋值语句1、输入语句(1)输入语句的一般格式(2)输入语句的作用是实现算法的输入信息功能;(3)“提示内容”提示用户输入什么样的信息,变量是指程序在运行时其值是可以变化的量;(4)输入语句要求输入的值只能是具体的常数,不能是函数、变量或表达式;(5)提示内容与变量之间用分号“;”隔开,若输入多个变量,变量与变量之间用逗号“,”隔开。

2、输出语句(1)输出语句的一般格式(2)输出语句的作用是实现算法的输出结果功能;(3)“提示内容”提示用户输入什么样的信息,表达式是指程序要输出的数据;(4)输出语句可以输出常量、变量或表达式的值以及字符。

3、赋值语句(1)赋值语句的一般格式(2)赋值语句的作用是将表达式所代表的值赋给变量;(3)赋值语句中的“=”称作赋值号,与数学中的等号的意义是不同的。

赋值号的左右两边不能对换,它将赋值号右边的表达式的值赋给赋值号左边的变量;(4)赋值语句左边只能是变量名字,而不是表达式,右边表达式可以是一个数据、常量或算式;(5)对于一个变量可以多次赋值。

注意:①赋值号左边只能是变量名字,而不能是表达式。

如:2=X 是错误的。

②赋值号左右不能对换。

如“A=B ”“B=A ”的含义运行结果是不同的。

③不能利用赋值语句进行代数式的演算。

(如化简、因式分解、解方程等)④赋值号“=”与数学中的等号意义不同。

1.2.2条件语句1、条件语句的一般格式有两种:(1)IF—THEN—ELSE语句;(2)IF—THEN语句。

2、IF—THEN—ELSE语句IF—THEN—ELSE语句的一般格式为图1,对应的程序框图为图2。

图1图2分析:在IF—THEN—ELSE语句中,“条件”表示判断的条件,“语句1”表示满足条件时执行的操作内容;“语句2”表示不满足条件时执行的操作内容;END IF表示条件语句的结束。

计算机在执行时,首先对IF后的条件进行判断,如果条件符合,则执行THEN 后面的语句1;若条件不符合,则执行ELSE后面的语句2。

3、IF—THEN语句IF—THEN语句的一般格式为图3,对应的程序框图为图注意:“条件”表示判断的条件;“语句”表示满足条件的操作内容,条件不满足时,结束程序;END IF表示条件语句的结束。

计算机在执行时首先对IF后的条件进行判断,如果条件符合就执行THEN后边的语句,若条件不符合则直接结束该条件语句,转而执行其它语句。

1.2.3循环语句循环结构是由循环语句来实现的。

对应于程序框图中的两种循环结构,一般程序设计语言中也有当型(WHILE 型)和直到型(UNTIL 型)两种语句结构。

即WHILE 语句和UNTIL 语句。

1、WHILE 语句(1)WHILE 语句的一般格式是(2)当计算机遇到WHILE 语句时,先判断条件的真假,如果条件符合,就执行WHILE与WEND 之间的循环体;然后再检查上述条件,如果条件仍符合,再次执行循环体,这个过程反复进行,直到某一次条件不符合为止。

这时,计算机将不执行循环体,直接跳到WEND 语句后,接着执行WEND 之后的语句。

因此,当型循环有时也称为“前测试型”循环。

2、UNTIL 语句(1)UNTIL 语句的一般格式是 对应的程序框图是(2)直到型循环又称为“后测试型”循环,从UNTIL 句时,先执行一次循环体,然后进行条件的判断,如果条件不满足,继续返回执行循环体,然后再进行条件的判断,这个过程反复进行,直到某一次条件满足时,不再执行循环体,跳到LOOP UNTIL 语句后执行其他语句,是先执行循环体后进行条件判断的循环语句。

分析:当型循环与直到型循环的区别:(先由学生讨论再归纳) (1) 当型循环先判断后执行,直到型循环先执行后判断;在WHILE 语句中,是当条件满足时执行循环体,在UNTIL 语句中,是当条件不满足时执行循环1.3.1辗转相除法与更相减损术1、辗转相除法。

也叫欧几里德算法,用辗转相除法求最大公约数的步骤如下: (1):用较大的数m 除以较小的数n 得到一个商0S 和一个余数R ;(2):若R =0,则n 为m ,n 的最大公约数;若0R ≠0,则用除数n 除以余数R 得到一个商1S 和一个余数1R ;(3):若1R =0,则1R 为m ,n 的最大公约数;若1R ≠0,则用除数R 除以余数1R 得到一个商2S 和一个余数2R ;…… 依次计算直至nR =0,此时所得到的1n R 即为所求的最大公约数。

2、更相减损术我国早期也有求最大公约数问题的算法,就是更相减损术。

在《九章算术》中有更相减损术求最大公约数的步骤:可半者半之,不可半者,副置分母•子之数,以少减多,更相减损,求其等也,以等数约之。

翻译为:(1):任意给出两个正数;判断它们是否都是偶数。

若是,用2约简;若不是,执行第二步。

(2):以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。

继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。

例2 用更相减损术求98与63的最大公约数. 分析:(略)3、辗转相除法与更相减损术的区别:(1)都是求最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。

(2)从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到1.3.2秦九韶算法与排序1、秦九韶算法概念:f(x)=a n x n+a n-1x n-1+….+a1x+a0求值问题f(x)=a n x n+a n-1x n-1+….+a1x+a0=( a n x n-1+a n-1x n-2+….+a1)x+a0 =(( a n x n-2+a n-1x n-3+….+a2)x+a1)x+a0=......=(...( a n x+a n-1)x+a n-2)x+...+a1)x+a0求多项式的值时,首先计算最内层括号内依次多项式的值,即v1=a n x+a n-1然后由内向外逐层计算一次多项式的值,即v2=v1x+a n-2 v3=v2x+a n-3 ......v n=v n-1x+a0、这样,把n次多项式的求值问题转化成求n个一次多项式的值的问题。

2、两种排序方法:直接插入排序和冒泡排序1、直接插入排序基本思想:插入排序的思想就是读一个,排一个。

将第1个数放入数组的第1个元素中,以后读入的数与已存入数组的数进行比较,确定它在从大到小的排列中应处的位置.将该位置以及以后的元素向后推移一个位置,将读入的新数填入空出的位置中.(由于算法简单,可以举例说明)2、冒泡排序基本思想:依次比较相邻的两个数,把大的放前面,小的放后面.即首先比较第1个数和第2个数,大数放前,小数放后.然后比较第2个数和第3个数......直到比较最后两个数.第一趟结束,最小的一定沉到最后.重复上过程,仍从第1个数开始,到最后第2个数...... 由于在排序过程中总是大数往前,小数往后,相当气泡上升,所以叫冒泡排序.1.3.3进位制1、概念:进位制是一种记数方式,用有限的数字在不同的位置表示不同的数值。

相关文档
最新文档