第五章 三元相图

合集下载

第五章 三元合金相图

第五章    三元合金相图

第五章三元合金相图本章主要内容:成分表示方法:等边三角形,等腰三角形,直角坐标,成分三角形特殊线,直线法则与杠杆定律,重心法则;三元匀晶相图:相图分析,等温截面,变温截面;固态完全不溶三元共晶相图:相图分析,等温截面,变温截面,投影图;固态有限溶解的三元共晶系:相图分析,等温截面,变温截面,投影图及凝固过程;有包共晶反应的三元系:相图分析,投影图及凝固过程;有三元包晶反应的三元系:相图分析,投影图及凝固过程分析;生成化合物的三元相图;三元相图总结:三元系的单相区,三元系的两相区,三元系的三相区,三元系的四相平衡三元系的液相面投影,三元系的相区接触法则;三元相图实例:Fe-Cr-C系,Al-Cu-Mg系,CaO-SiO2-Al2O3系1 填空1. 三元相图等温截面的三相区都是___________________形。

2. 图1是A-B-C三元系成分三角形的一部分,其中X合金的成分是_____________________。

图2是三元系某变温截面的一部分,其中水平线代表________________反应,反应式为______________________ 。

4.图3为A-B-C三元系的一个等温截面, 固溶体中C组元的最大含量是_____________;X合金中A,B,C三组元的含量分别是_____________________________;在X合金的相组成物中,α相的百分含量是______,δ相的百分含量是____________。

图4图315图4是Cu-Zn-Al三元相图2%Al的一个变温截面,合金凝固时,L+α+β三相区将发生____________反应。

图中X合金的化学成分是______________________。

6图5是某三元系变温截面的一部分,合金凝固时,L+M+C将发生_________________反应。

7 三元相图的成分用__________________________表示。

第五章 三元相图

第五章 三元相图

B1
AБайду номын сангаас
B
C
(二)等温截面及其投影
L+C L
L+C L
L+A
L+A+C L+A L+C L
L+A+C L L+B
L+B
L+A+C L+A+B+C
C B
A+B+C
A
L+A+C L+A+B+C L+A+C L L+B
1.等温截面上的三相平衡区都是直边三角形,与 三角形相邻接的是两相平衡区 2.三角形的顶点与单相区相接,分别表示该温度 下三个平衡相的成分
LA+ C
TA C1 A3 A2 A1
E
L B + C
四三 相相 平平 衡衡 共共 晶晶 转 变 结 束
——
TB E1 B3 B2 E2 E B1
A
E3
TC
B
C3 C2 C1
C
中 转平 间 变衡 开 共 三面
始晶相
A3
A2 A1
E1
B2
B1
LA+ B
——
TA
A3 A2 A1
E TB E1 E3 TC E2 B3 B2 B1 B3 E2 B1 E C2 C1
B 10 20 30 40
50
C% 60 70 80 90
50 40 ← A%
30
20 10
C
课堂练习
90 3. 标出 50%A+20%B+30%C 80 的合金 70 60 B% 50 40 30 20 10 A 90 80 70 60

5 三元合金相图

5 三元合金相图

等边成分三角形中具有特定意义的点和线平行于三角形某一条边的直线:凡成分位于该线上的合金,它们所含的、由这条边对应顶点所代表的组元的含量为一定——等含量规则通过三角形某顶点的任一直线:凡成分位于该直线上的所有合金,它们所含的由另两个顶点所代表的两组元的含量之比为一——定比规则单相、两相和三相区为一空间。

w Om w Onαβ=平衡相含量的计算:所计算相的成分点、合金成分点和二者连线的延长线与对边的交点组成一个杠杆。

合金成分点为支点。

计算方法'100%'OF w FF γ=×'100%'OD w DD α=×'100%'OE w EE β=×3) 结晶过程分析成分轴的两端不一定是纯组元;注意:液、固相线不一定相交;液、固相线不是成分变化线,不能运用杠杆定律。

(3) 变温截面(平行于浓度三角形AB边的变温截面)合金x的结晶过程:L→BL→A+BL→A+B+C化,不能应用杠杆定律。

计算室温组织组成物含量100%,100%A L oqw Aq Ao w Aq =×=×。

()()100%100%A C A B C Eq Ao w Ef Aq qf Ao w Ef Aq+++=××=××个5.4 其他形式的三元合金相图两个共晶型二元系与一个匀晶型二元系构成的三元相图5.4.2L+α→β+4个液相面5条单变量线三相平衡反应开始面与结束面结束与四相面重合5.4.3 具有四相平衡包晶转变的相图三个液相面三个单相固相面(2) 两相平衡(f=2)立体图:以一对共轭曲面为边界与其两个组成相的单相区相接;等温截面和变温截面:以一对曲线作为两相区和两个组成相的单相区的分界线。

(3) 三相平衡立体图:三棱柱体,棱边是三个平衡相成分的单变量线。

棱边与3个组成相的单相区相接,柱面与组成相两两组成的两相区相连。

第五章 三元合金相图

第五章 三元合金相图
两种变温截面; 单相区, 两相区, 相线; 两种变温截面 单相区 两相区 液(固)相线 凝固过程 固 相线 凝固过程.
变温截面同二元相图的区别: 变温截面同二元相图的区别
根据三元固溶体合金结晶时的蝴蝶形规律,在两相平衡时 根据三元固溶体合金结晶时的蝴蝶形规律 在两相平衡时, 平衡相的成分点 在两相平衡时 不是落在一个垂直面上. 因此,变温截面的液 变温截面的液(固 相线不能表示平衡相的成分 相线不能表示平衡相的成分, 不是落在一个垂直面上 因此 变温截面的液 固)相线不能表示平衡相的成分 不能应用杠杆定律计算相的相对含量. 不能应用杠杆定律计算相的相对含量
五.投影图 投影图
5.4 三元共晶相图 一.组元在固态完全不溶的共晶相图 组元在固态完全不溶的共晶相图 (一).相图分析 一 相图分析
液相面( 个);固相面 个);二元共晶点 固相面( 二元共晶点(线 条);二元共晶面 个 二元共晶面( 液相面(3个);固相面(1个);二元共晶点 线3条);二元共晶面(6个); 三元共晶点(面 个 三元共晶点 面1个).
注意:在同一温度下 尽管三元合金的液相和固相成分的连接线是条水平线, 注意 在同一温度下, 尽管三元合金的液相和固相成分的连接线是条水平线 在同一温度下 但是,液相和固相成分的变化轨迹不在同一个平面上 液相和固相成分的变化轨迹不在同一个平面上. 但是 液相和固相成分的变化轨迹不在同一个平面上
等温截面(水平截面 三.等温截面 水平截面 在某一温度下的状态 等温截面 水平截面): 在某一温度下的状态. 单相区, 两相区, 相等温线(或者称 相线). 单相区 两相区 液(固)相等温线 或者称 液(固)相线 固 相等温线 或者称:液 固 相线
三个液相面、六个二元功晶面、 三个液相面、六个二元功晶面、一个三元 共晶面将相图分成九个相区: 共晶面将相图分成九个相区: 液相区: L 液相区: 两相区:( :(L+A、L+B、L+C) 两相区:( 、 、 ) 三相区:( :(L+A+B、L+B+C、L+C+A) 三相区:( 、 、 ) 三相区:( :(A+B+C) 三相区:( ) 四相区:( :(L+A+B+C) 四相区:( )

第五章 三元合金相图

第五章 三元合金相图

二元共晶
三元共晶
第四节三元共晶相图
通过成分三角形 顶点的变温截面
第四节三元共晶相图
(四) 投影图 1. 投影图分析
2. 合金O结晶过程 L----L+A------------L+A+(A+B)---------------A+(A+B)+(A+B+C)
二元共晶 三元共晶
第四节三元共晶相图
3.合金O在室温下的相和 组织含量
第一节三元合金相图的表示方法
B (1)确定O点的成分 1)过O作A角对边的平行线 B% C% 2)求平行线与A坐标的截距 得组元A的含量 3)同理求组元B、C的含量 O A C
← A%
第一节三元合金相图的表示方法
C B
A
Oa+Ob+Oc=AB=AC=BC=100% A浓度:Oa=Of=Cb B浓度:Ob=Od=Ac C浓度:Oc=Ba A浓度:55% B浓度:20% C浓度:25%
90 • 标出 50%A+20%B+30%C 的合金 60 B% 50 40 30 20 10 A 90 80 70 60
B
10 20 30 40
80
70
50
C%
60
70 80
90 50 40 ← A% 30 20 10 C
第一节三元合金相图的表示方法
二、在成分三角形中具有特定意义的直线 B 成分三角形中特殊的点和线
第五章 三元合金相图
三元系相图简介
相图基本知识
三元相图的主要特点——立体图形,主要由曲面构成
三元系相图简介
垂直轴表示温度。 成分表示在棱柱底,通常是 一等边三角形。 棱柱的每个侧面表示三个二 元系统,如AB,BC,AC。

第5章-2---三元相图1

第5章-2---三元相图1

5.13 四相平衡共晶系
5.13.4 综合投影图
冷却过程中有 四相反应
L-a+b+
5.13 四相平衡共晶系
5.13.4 综合投影图
5.13 四相平衡共晶系 L
L-a
合金 o
L-a+b
L-a+b+
a+a + b+a+b++b+
L
合金 o’
L-b
L-a+b
a+b
b+a+b+a+
5.13.4 综合投影图
5.13 四相平衡共晶系
5.13.3、垂直截面
5.13 四相平衡共晶系
5.13.4 综合投影图
1、作法:将立体图中 各空间曲面、曲线投 影到成分三角形
2、用途: a、可得到各个面的投影 b、可得到各相区的投影 c、各种成分的平衡冷却
过程 d、组织分区图
5.13 四相平衡共晶系
5.13.4 综合投影图
5.13 四相平衡共晶系
5.13.4 综合投影图
5.13 四相平衡共晶系
I a; II a + bII ; III a + bII + II ; IV a + (a + b ) + bII ; V a + (a + b ) + bII + II ; VI a + (a + b ) + (a + b + ) + bII + II
用杠杆定理
5.12 三相平衡三元
5.12.2 几种典型的三相平衡三元系
5.12 三相平衡三元系

第5章-三元相图PPT课件

第5章-三元相图PPT课件
•20
2、结晶过程分析 O 自液态缓冷至于液互
相相交时,开始从液相中结晶出 α 固溶体,此时液相的成分l1即为合金成分, 而固相的成分为固相面某一点 s。
α 相越来 越多,固相的成分由s1点沿固相面移至s2 点,液相成分自l1点移至 l2点,由直线法则可知,合金的成分点必落 在l2和s2的连线上。
Ca=WA=30% Ac=WC=60% Ab=WB=10%。
中都有应用,但应用最为广泛的还是等边 三角形。
•10
2、等边成分三角形中特定意义的线 (1) 平行 于三角形某一边的直线 凡成分位于该线上的所有合金,它们 所含的由这条边对应顶点所代表的组元的 含量为一定值。如图5-103中ef直线上代表 B组元的含量均为Ae。
•15
•16
•17
由直线法则可得到以下规律: a、 当温度一定时,若已知两平衡相的 成分,则合金的成分必位于两平衡相成分 的连线上; b、 当温度一定时,若已知一相的成分 及合金的成分,则另一平衡相的成分必位 于两已知成分点的连线的延长线上; c、 当温度变化时,两平衡相的成分变 化时,其连线一定绕合金的成分点而转动。
•1
三元相图与二元相图比较,组元数增加 了1个,即成分变量是两个,故表示成分的坐 标轴应为2个,需要用一个平面表示,再加上 垂直于该平面的温度轴,这样三元相图就 演变成一个在三维空间的立体图形,分隔 相区的是一系列空间曲面,而不是二元相 图的平面曲线。
•2
1、三元相图的成分表示方法 (1) 等边成分三角形 这样的三角形称为浓度三角形或成分三角 形(Composition Triangle)。常用的成分三 角形是等边三角形和直角三角形。
•38
•11
•12
(2)通过三角形顶点的任一直线 凡成分位于该直线上的所有合金

第5章 三元合金相图

第5章  三元合金相图
相对应成分点的连接直线称为连接线, 或称共轭连线;
L1’、L2’、…和S1’ 、S2’、… 连成的 曲线称为共轭曲线。
3. 三相平衡(three-phase equilibrium)
三元系中三相平衡时,三个自由能—成分曲面 只有唯一的公切面。
三个公切点投影到成分三角形上构成的成分点 即三个平衡相在该温度下的成分点。当温度一 定,三个平衡相的成分将是确定不变的。连接 三个平衡相的成分点的三角形称为连接三角形。
线上的L2, α相的成分变到mp线上的α2 , α2在 L2和 x 两点连线的延长线上,根据杠杆定律可 算出此时两相相对量为:
L2 %

x 2 L2 2
100 %
2%

L2 x L2 2
100 %
在此温度下发生三相共晶反应
L2 2 2
在反应过程中L、α、β三相的成分分别沿着ee’、mp、nq线变化。冷
3. 三元相图的投影图(projections)
● 把三元立体相图中所有相区的交线都垂直投影 到浓度三角形中,就得到三元相图的投影图, 可利用它分析合金在加热和冷却过程中的转变。
● 如果把一系列不同温度的水平截面中的相界线 投影到浓度三角形中,并在每一条投影上标注 相应的温度,就得到等温线投影图;类似地图 上的等高线。
● 以等边成分三角形表示三元系的成分, 在浓度三角形的各个顶点分别作与浓度 平面垂直的温度轴,构成外形是一个三 棱柱体的三元相图;
● 三棱柱体的三个侧面是三组二元相图, 三棱柱体内部,有一系列空间曲面分隔 出若干相区。
● 三元相图复杂,不易描述相变过程和确 定相变温度。因此,实现三元相图实用 化的方法是使之平面化。
当 x 点在α3β的连线上,包晶反应结束而进入α+β两相区。反应结束 时α和β两相的相对量为

第五章 三元相图

第五章  三元相图

5.1
三元相图的成分表示法
C
二元系的成分可用一条 直线上的点来表示;三元 系合金有两个独立的成分 参数,所以必须用一个平 面三角形来表示,这个三 角形叫做成分三角形或浓 度三角形。常用的成分三 角形是等边三角形,有时 也用直角三角形或等腰三 角形。 A
A%
C%
B%
B
浓度三角形
5.1.1 浓度三角形 1. 等边三角形 三角形的三个顶点A,B, C分别表示3个纯组元, 三角形的边AB,BC, CA分别表示3个二元系 的成分坐标,三角形内 的任一点都代表一定成 分的三元合金. A 一般按顺时针(或逆时针) 标注组元浓度。
L(三元) ΔT α(三元)
自由度:f=c-P+1=3-2+1=2 故三元匀晶转变区可有两个自由度: 温度和相成分。
5.3.1 相图分析
1 画图 (1) 先画一成份三角形 (应为正三角形) (2) 画温度轴 (3) 画二元匀晶相图(每 两个合金上存在一个二 元相图) ---三元系立体图可视为三 个二元系在空间的延伸 液相面----三个二元系的液相线 所围成的面. 固相面----三个二元系的固相线 所围成的面.
5.4
三元共晶相图
TA A2 A3 A1 E3 E C2 C3 C1 C TB
5.4.1 组元在固态互不溶,具有共晶转变的相图
一、相图分析
1. 画图 (1) 先画一成份三角形
(2) 画温度轴
(3) 画二元共晶相图
E1 TC E2
B2 B3
B1 B
三个二元共晶相图向空间 A 延伸 (4) 画出四相平衡共晶转变平 面A1B1C1 (5) 三个二元系共晶点向空间 延伸为三条共晶沟线,交 A1B1C1面于E点,称为共晶点

第五章 三元相图

第五章 三元相图

三 一 组元在固态互不相溶的共晶相图
元 相
(1)相图分析

点:熔点;二相共晶点;三相共晶点。
两相共晶线

液相面交线

线:EnE 两相共晶面交线
液相单变量线

液相区与两相共晶面交线 共



11
第 五
第三节 三元共晶相图
章 一 组元在固态互不相溶的共晶相图

(1)相图分析

液相面

固相面

面: 两相共晶面 三相共晶面
三 (1)相图分析

点:熔点;二元共晶点;三元共晶点。

两相共晶线 液相面交线

线:EnE 两相共晶面交线
液相单变量线
液相区与两相共晶面交线

固相单变量线

液相面
固相面(组成)
节 面: 二相共晶面

三相共晶面

溶解度曲面:6个

两相区:6个

区: 单相区:4个
三相区:4个
四相区:1个
16
第 五
第三节 三元共晶相图
三 5 共线法则与杠杆定律
元 两条推论

(1)给定合金在一定温度下处于两相平衡时,若其中一个
图 相的成分给定,另一个相的成分点必然位于已知成分点连线
的延长线上。

(2)若两个平衡相的成分点已知,合金的成分点必然位于
一 两个已知成分点的连线上。

基 本 知 识
5
第 五
第一节 相图基本知识
章 6 重心法则
7
第 五
第二节 三元匀晶相图
章 3 等温截面(水平截面)

第5章 三元合金相图

第5章 三元合金相图

第5章 三元合金相图由A-B-C 三组元组成的合金称三元合金,其相图称三元相图。

要确定三元合金的成分,必须给出其中两个组元的成分。

所以,在三元相图中表示成分的坐标轴有两个。

5-1 三元相图成分表示方法在三元相图中表示成分的两个坐标轴原则上可以交成任何角度,但一般采用等边三角形的三个边表示。

设P 为等边三角形内任意点,从P 点分别做三条边的平行线,交三条边于a 、b 、c 点。

根据等边三角形的几何性质:%100==++=++AB Ba Ac Cb Pc Pb Pa 因此,可用Cb 、Ac 、Ba 表示A 、B 、C 的成分。

这样,三角形中每一点都表示一个三元合金的成分。

该三角形称浓度三角形,或成分三角形。

5-2 三元相图中的定量法则一、直线法则二元合金处于两相平衡时,自由度f =2-2+1=1,温度和成分两个变量中只有一个可以独立改变,如当温度一定时,两个平衡相的成分是确定的。

三元合金处于两相平衡时,f =3-2+1=2,当温度一定时,两个平衡相中,只有一个相的成分可独立改变。

当温度和其中一个相的成分一定时,剩余相的成分是确定的。

假设某三元合金的成分点为P ,在某一温度下,该合金处于α、β两相平衡,两相的成分点为a 、b (P133图4)。

可以证明(P133),此时,a 、b 、P 三成分点在一条直线上,且P 点位于a 、b 之间。

这一规律称直线法则。

二、杠杆定律三元相图中的杠杆定律与二元相图中的类似,即同样也只适用于两相区,但形式上略有不同,在直线法则的基础上:%100%⨯=ab Pbα, %100%⨯=ab Paβ三、重心法则三元合金处于α、β、γ三相平衡时,f =3-3+1=1。

当温度一定时,三个平衡相的成分是确定的,其成分点a 、b 、c 构成一个三角形。

若将成分比喻成重量,则合金的成分点P 一定落在成分点a 、b 、c三角形的重心处,这一规律称重心法则。

其数学表达式为(证明见P135)%100%⨯''=a a a P α %100%⨯''=b b b P β %100%⨯''=c c c P γ 其实,重心法则可看作是直线法则和杠杆定律的变形。

材料学基础第5章三元相图

材料学基础第5章三元相图

材料科学基础
第五章
5.6三元相图小结
材料科学基础
第五章
一、单相状态 f=3-1+1=3,而一个温度变量和两个成分变量之间没有任何
相互制约的关系,因此,不论是等温截面还是变温截面,单相区可能具 有多种多样的形状。 二、两相平衡 立体图:共轭曲面。 成分变化:蝶形规则。 等温图:共轭曲线(可用杠杆定律) 变温截面:判定转变温度范围和相转变过程,不能用杠杆定律。 三、三相平衡 立体图:三棱柱,棱边是三个平衡相单变量线。
二、投影图
材料科学基础
第五章
投影图的作用:合金结晶过程分析、相组成物相对量计算、组织组成 物相对量计算。
图8.17 三元共晶相图的投影区
表8.2 各典型区域合金的凝固组织过程及室温组织
材料科学基础
第五章

凝固过程
室温组织

L→α
α

L→α ,α→βⅡ
α+βⅡ

L→α ,α→βⅡ,α β
α+βⅡ+γⅡ
(1)当给定合金在一定温度下处于两相平衡状态时,若其中一相的成分 给定,则根据直线法则,另一相的成分点必位于两已知成分点连线的 延长线上。 (2)如果两个平衡相的成分点已知,则合金的成分点必然位于两平衡相 成分点的连线上,根据两平衡相的成分,可用杠杆定律求出合金的成 分。
5.2.2重心定律
x,y,z分别为α,β,γ成分点,则
材料科学基础
第五章
投影图有两种。一种是把空间相图中所有相区间的交线部投影到浓度 三角形中,借助对立体图空间构造的了解,可以用投影图来分析合 金的冷却和加热过程。另一种是把一系列水平截面中的相界线投影 到浓度三角形中。每一条线上注明相应的温度,这样的投影图叫等 温线投影图。等温线可反映空间相图中各种相界面的变化趋势,等 温线越密,表示这个相面越陡。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
B%
C%
A
← A% C% →
C
b c
a
图 部分浓度三角形
§5.1.2 浓度三角形中具有特定意义的线
1)与某一边平行的直线
C
含对角组元浓度相等
A% d C% c
Bc C% 100% BC
A
B B% 图 平行于浓度三角形某一条边的直线
确定O点的成分 1)过O作A角对边的平行线 2)求平行线与A坐标的截距 得组元A的含量 3)同理求组元B、C的含量
三元系中如果任意两个组 元都可以无限互溶,那么它们 所组成的三元合金也可以形 成无限固溶体,这样的三元合 金相图,叫三元匀晶相图。
相图概况
[1] 特征点: ta, tb, tc- 三个纯组 元的熔点; [2]特征面:液相面、固相面; [3]相区:L, α, L+α。
图 三元匀晶相图
§5.3.1 相图分析
( A B )
Ax nE nA Ee
( A B C )
Ax ne nA Ee
§5.4.2 组元在固态下有限溶解,具有共晶转变的三 元相图
1.相图分析
从占有空间的角度看,固态有限互溶三元共晶相图比固态 完全不互溶三元共晶相图要多三个单相区(α、 β、 γ)和三个 固态两相区(α+β、 β+ γ、 α+ γ)。
图 过成分三角形顶点的变温截面图
图 平行于成分三角形一边的变温截面图
用垂直截面图可以分析合金的平衡结晶过程,了解合金在 平衡冷却过程中发生相变的临界温度,以及可以了解合金在 一定温度下所处的平衡状态。 但是,用垂直截面图不能了解合金在一定温度下的平衡相 成分和平衡相的重量。
图 变温截面图的应用
课堂练习
90 • 标出 75%A+10%B+15%C 80 的合金 70 60 B% 50 40 30 20 10 A 90 80 70 60
B
10 20 30 40
50
C%
60
70 80
90 50 40 ← A% 30 20 10 C
课堂练习
90 • 标出 50%A+20%B+30%C 80 的合金 70 60 B% 50 40 30 20 10 A 90 80 70 60
B
10 20 30 40
80
50
C%
60
70 80
90 50 40 ← A% 30 20 10 C
课堂练习
• 确定合金I、II、 III、IV的成分
II点: A%=20% B%=50% C%=30% 70 60 B% 50 40 30 20 10 A 90 80 70 60 90
B
10 20 30 40 II
80
50
C%
60
70 80
90 50 40 ← A% 30 20 10 C
课堂练习
• 确定合金I、II、 III、IV的成分
III 点: A%=20% B%=20% C%=60% 90 80
B 10 20 30 40 50 C%
70
60 B% 50
40
30 20 10 III
60
70 80 90
A
三元相图的特点 [1]立体图形,主要由曲面构成; [2]可发生四相平衡转变; [3]一、二、三相区为一空间。

第一节 三元相图的成分表示方法
§5.1.1 浓度三角形
右图是一个表示合金 成分的等边三角形,称为 浓度三角形。 浓度三角形的三个顶 点代表A、B、C三个纯 组元,A-B边代表A-B二 元合金的成分,BC、AC 分别代表B-C、A-C二元 合金的成分。三角形内 任一点代表一定成分的 三元合金。
图 A+B+C三相区
2.垂直截面图
图 垂直截面图
3.水平截面图和投影图
图 水平截面图
若在Ta与E之间作若干个等 距的水平截面, 然后将各截面 与液相面的交线投影到成分 三角形上, 即可得到液相面的 等温线投影图。 每条线上都可标上相应的 温度,则和 地图上的等高线一 样,由此可以看出液相面的变 化趋势。
A AO AL C CO CL
B BO BL A AO AL
图中的B'OE线为一条特性线,线上合金的 A组元和C组元含量之比恒等于A0/C0,所以α 相的平衡成分点P点位于B'OE线的近A'点侧, 而液相的平衡成分点Q点位于近C'点侧。
§5.3.3 变温截面图(垂直截面图)
PO L OQ
图 等温截面图和共扼线
f=c-p+1=3-2+1=2 三元合金在两相平衡时有两个独立变数,除温度外,还有 一个平衡相的成分可独立变化,而不影响系统平衡。 在一定温度下,还必须先确定一个平衡相的成分,然后才 可以应用直线法则和杠杆定律来求出另一个平衡相的成分, 以及两平衡相的重量。 如图合金O处于L+α两相平衡。先通过实验测出液相的成 分为P点成分,则由直线法则可以知道固相α的成分为Q点成 分。 应用杠杆定律可求得两平衡相的重量。
90
80 70
60 50 40 ← A%
30 20 10
C
课堂练习
• 确定合金I、II、 III、IV的成分
IV 点: A%=40% B%=0% C%=60% 70 60 B% 50 40 30 20 10 A 90 80 70 60 90
B
10 20 30 40
80
50
C%
60
70 80
90 IV 50 40 ← A% 30 20 10 C
思考题
将成分为x的材料300克 与成分为y的材料200克熔 化在一起,形成一个新的材 料,请用作图法求出新材料 的成分, 并用计算法进行验 证。
300 30% 200 70% 图 思考题3 C% 46% 300 200
推论 (1)当给定合金在一定温度下处于两相 平衡时,若其中一相的成分给定,另一相 的成分点必在已知相成分点与合金成分点 连线的延长线上; (2)若两平衡相的成分点已知,合金的 成分点必然位于两个已知成分点的连线上。
图 投影图
利用截面图分析材料的平衡冷却过程 材料冷至1点开始从 液相中析出A晶体,随A 晶体的析出,液相的成 分沿Ax的延线方向变 化,冷却至2点液相成分 变化到E1E2线上的n点。
nx A nA
Ax L nA
此时剩余的液相发生三相共晶反应, 即L→A+B,形成两相共晶体(A+B)。 L相的成分沿E1E线变化,共晶体 (A+B)的成分沿AB边变化。当冷却至3 点时,液相的成分变化到E点,共晶体 (A+B)的成分变化到En连线的延线与 AB边的交点e'。 成分为E的液相发生四相共晶反应 L→A+B+C。
图 三元匀晶相图
图 三元固溶体合金的平衡凝固过程分析
§5.3.2 等温截面图(水平截面图)
图 三元匀晶相图的水平截面图
等温截面作用: 1)该温度下三元系中各合金的相态; 2)杠杆定律计算平衡相的相对量; 3)反映液相面、固相面走向和坡度,确 定熔点、凝固点。
如图合金O处于L+α两相 平衡。 图中的PQ线是连接两平 衡相成分点的直线,称为连 接线或共轭线。
F B% A ← A% C%
D a2 a1
C
课堂练习
• 绘出C / B =1/3的合金
C 1 25% B 3 75%
B
90 10 20 30 40
80
70
60 • 绘出A / C = B% 50 1/4的合金 40 30 20 10 A 90 80 70 60 50 40 ← A%
50
C%
§5.3.4 投影图
将不同等温截面的液、固相线 投影到浓度三角形上,就获得如 图所示的投影图。 图中的实线为液相线,虚线为 固相线。由液、固相线投影图可 确定不同成分合金的结晶开始温 度和终了温度。 图中O点成分的合金在T3温度 开始结晶,在T'4温度结晶终了。
图 投影图
第四节 三元共晶相图
图 中心定理
重心法则可由直线法则和杠杆定律引伸得到。 如果将合金O看成是处于假想的α+(β+ γ )“两相平衡”, 两平衡相分别为α相和(β+ γ )混和物。 α的成分点为D点, 合金的成分点为O点,故(β+ γ )的成分点必在DO连线的延 长线上。同时,(β+ γ )是由β和 γ两相组成的,其成分点必 位于E、F的连线上。所以,(β+ γ )的成分点为DO连线的延 长线与EF连线的交点,即D'点。
二元相图只适用于二元合金或二个组元的陶瓷材料,对 于三组元的合金或陶瓷材料需用三元相图分析。
工程实用材料多是三组元或三组元以上的,三组元的合
金可举例如下:轴承钢中的Fe-C-Cr合金;高锰耐磨钢中的 Fe-C-Mn合金;不锈钢中的Fe-Cr-Ni合金;铸铁中的Fe-C-
Si合金;铝合金中的Al-Mg-Si合金,Al-Cu-Mg合金等等。
思考题4
某三元合金K在温 度T时分解为B组元和 液相L,两个相的相对 量WB/WL=2,已知合金 K中,C组元和A组元的 重量比为3,液相含B组 元为0.4,试求合金K的 成分。
§5.2.2 重心定理
—— 适用于三相平衡的情况 O点成分的三元合金处于 α+β+ γ三相平衡,α,β和 相的平衡成分分别为D,E和 F点的成分。重心法则指出: 三平衡相的成分点构成一个 重量三角形(三角形DEF), 合金成分点O必位于三角形 的重量重心位置。
B
10 20 30 40
50
C%
60
70 80
90 50 40 ← A% 30 20 10 C
相关文档
最新文档