算子解法
算子(operator)和算法(Algorithm)
算⼦(operator)和算法(Algorithm)算⼦(operator)和算法(Algorithm)1、算⼦算⼦是⼀个函数空间到函数空间上的映射O:X→X。
⼴义上的算⼦可以推⼴到任何空间,如内积空间等。
中⽂名:算⼦外⽂名:operator别名:算符定义:⼀个函数空间到函数空间上的映射应⽤领域:数理科学1.1、算⼦解释⼴义的讲,对任何函数进⾏某⼀项操作都可以认为是⼀个算⼦,甚⾄包括求幂次,开⽅都可以认为是⼀个算⼦,只是有的算⼦我们⽤了⼀个符号来代替他所要进⾏的运算罢了,所以⼤家看到算⼦就不要纠结,他和的没区别,它甚⾄和加减乘除的基本运算符号都没有区别,只是他可以对单对象操作罢了(有的符号⽐如⼤于、⼩于号要对多对象操作)。
⼜⽐如取概率P{X<x},概率是集合{X<x}(他是属于实数集的⼦集)对[0,1]区间的⼀个映射,我们知道实数域和[0,1]区间是可以⼀⼀映射的(这个后⾯再说),所以取概率符号P,我们认为也是⼀个算⼦,和微分,积分算⼦算⼦没区别。
总⽽⾔之,算⼦就是映射,就是关系,就是变换。
1.2、常见算⼦常见的算⼦有微分算⼦,梯度算⼦,散度算⼦,拉普拉斯算⼦,哈密顿算⼦等。
狭义的算⼦实际上是指从⼀个函数空间到另⼀个函数空间(或它⾃⾝)的映射。
⼴义的算⼦的定义只要把上⾯的空间推⼴到⼀般空间,可以是向量空间。
赋范向量空间,内积空间,或更进⼀步,Banach空间,Hilbert 空间都可以。
算⼦还可分为有界的与⽆界的,线性的与⾮线性的等等类别。
1.3、特征值对于⼀个输⼊和输出函数类型相同的算⼦T,满⾜的k称为T的特征值,相应的称作T关于k的特征函数。
1.4、可交换对两个输⼊和输出函数类型相同的算⼦和,如果,则称和为可交换的,可交换意味着和拥有同样的特征函数(但对应的特征值不同)。
1.5、认知⼼理学在⼼智技能形成的第⼀阶段,即认知阶段,要了解问题的结构,即起始状态,要到达的⽬标状态,从起始状态到⽬标状态所需要的步骤。
微分方程的算子算法【精选】
(1) P(D)( f1( x) f2 ( x)) P(D) f1(x) P(D) f2 (x)
(2) [P1(D) p2 (D)] f ( x) P1(D) f ( x) p2 (D) f ( x)
(3) P(D) P1(D)P2 (D),则
P(D) f (x) P1(D)[P2 (D) f (x)] P2 (D)[P1(D) f (x)]
10
常系数线性微分方程的算子解法
1
9.算子 P ( D)的基本性质及运算法则
(1)
1 (
P(D)
f1( x)
f2 ( x))
1 P(D)
f1( x)
1 P(D)
f2 ( x)
(2) P(D) P1(D)P2 (D),则
1 f ( x) 1 [ 1 f ( x)] 1 [ 1 f ( x)]
, D2
d2 dx 2
,L
, Dn
DDn1
dn dx n
P(D) Dn p1Dn1
P(D) y 0
3
常系数线性微分方程的算子解法
2.解的结构
线性算子 P(D)( y1 y2 ) P(D) y1 P(D) y2 定理1 方程(1)的通解为:y y(x) y *(x) ,其中y(x)
cos x
cos x P(2 )
(P(2 )
0)
12
常系数线性微分方程的算子解法
1
10.算子 P ( D) 的运算公式
(4)
1 [exv( x)] ex 1 v( x)
P(D)
P( D)
(5) 设fk ( x) b0 b1x L bk xk , P(0) pn 0,则
高阶常系数非齐次线性微分方程的算子法
高阶常系数非齐次线性微分方程的算子法
高阶常系数非齐次线性微分方程的算子法是一种特殊的数值解法,用于求解高阶常系数非齐次线性微分方程。
它利用算子方法(operator method)来求解这类方程,即将微分方程转化为
一个算子方程,然后再使用数值方法求解算子方程。
首先,将高阶常系数非齐次线性微分方程转化为算子方程,即:
$\mathcal{L}y=f$
其中,$\mathcal{L}$是一个算子,$y$是待求解的函数,$f$是
方程的右端项。
接下来,使用数值方法求解算子方程。
常用的方法有有限差分法(finite difference method)和有限元法(finite element method)等。
有限差分法是将算子方程转化为一组线性方程组,然后使用数值解法(如Gauss-Seidel法)求解。
有限元法是将空间上的算子方程转化为一组有限元方程,然后使用数值解法(如Galerkin法)求解。
最后,根据求解的结果,得到算子方程的解,即高阶常系数非齐次线性微分方程的解。
关于非齐次线性常系数微分方程特解的微分子解法的若干示例
关于非齐次线性常系数微分方程特解的微分算子解法的若干示例一、表示符号把某函数对于自变量x 的导数写成D ,即D=dxd 。
例如,函数y 对x 的一阶导数为y dxdy '=,可以表示成Dy ,同理,y ''可以写成2D y ,三阶、四阶….以此类推D1则代表着求积分,如D1x ,就是⎰xdx ,参看复习指导二、 微分方程的表示如果非齐次方程按降阶写成:)x (f y a y a ya y a n 1n )1n (1)n (0=+'+++-- (1)当然,你也可以写成:)x (f y p y p y p y n 1n )1n (1)n (=+'+++-- ,本质都一样,这种形式相当于(1)方程两边同时除以a 0(0≠)。
这里我们以(1)式为准。
用微分子形式表示方程(1):)x (f y a Dy a y D a y D a n 1n 1n 1n 0=++++-- 方程左边把公因子y 提出来:f(x))y a D a D a D (a n 1n 1n 1n 0=++++--上式中,把)a D a Da D (a n 1n 1n 1n0++++-- 看作关于D 的一个函数表达式,表示成F (D )即F (D )=)a D a Da D (a n 1n 1n 1n 0++++--则方程(1)最终可以写成:F (D )y=f (x )三、 相关结论 F (D )kxe=kxe·F (k )甲也可以写成:)F(k ee )D (F 1kxkx=,(分母不为零时),若分母为零,参见指导书表格内的公式证明:F (D )kxe =kxn 1n 1n 1n0)ea D a Da D (a ++++--=)(ea )(ea )(ea )(ea kxn kx1n )1n (kx1)n (kx0+'+++--=kxn kx1n kx1-n 1kxn 0ea kea eka e k a ++++-kxn 1n 1-n 1n0-kx=F (k )kxe甲注意此处方程左右两端的写法,表达的意义是不一样的,左边F (D )是求导,具体来说左边是kxn 1n 1n 1n0)ea D a D a D (a ++++-- ,即)(ea )(e a )(ea )(ea kxn kx1n )1n (kx1)n (kx0+'+++-- ,而方程右边则是)(ekx乘于多项式F (k )其中,左边的带下划线的部分的函数形式与F (D )一样,因此写成F (k )形式,只是字母 是常数k ,而不是求导了,意义也就不同了,它只是个关于k 的多项式了。
常系数非齐次方程特解--比较系数、算子法
m
km
是(4.3)的线性无关的n个解。
15
1 i 方程的一个 k 重特征根 2 i 也是一个 k 重特征根
它们对应 2k 个线性无关的实解是
e
t
cos t , te
t
cos t , , t
k 1 t
e
cos t ,
e
t
中所有系数 ai ( t )( i 1, 2, , n) 都是实值函数,
而 x z( t ) ( t ) i ( t ) 是方程的复值解, 则 z( t ) 的实部 ( t ),虚部 ( t ) 和共轭复数函数
z ( t ) 也是方程(4.2)的解。
7
dnx d n1 x dx a1 ( t ) n1 an1 ( t ) an ( t ) x u( t ) iv( t ) n dt dt dt 有复值解 x U ( t ) iV ( t ) ,这里 ai ( t )( i 1, 2, ..., n)
x z( t ) 满足方程
d x d x dx a1 ( t ) n1 an1 ( t ) an ( t ) x f ( t ) n dt dt dt
n n1
(4.1)
则称 x z( t )
为方程的一个复值解。
6
定理8
如果方程
(4.2)
dnx d n1 x dx a1 ( t ) n1 an1 ( t ) an ( t ) x 0 n dt dt dt
4
F ( ) 1 0
4
1,2 1,
3,4 i
第二步:求出基本解组
算子法解微分方程
常系数非齐次线性微分方程的解法有很多,例如笔者的教材(《高等数学第六版》)所述的待定系数法和接下来给出的称之为“算子法”以及另一种同样使用算子的方法。
1、首先介绍一种使用算子求解的方法:考察二阶常系数非齐次线性微分方程d2x/dt2+a1dx/dt+a0x=b(t)相应的齐次方程的通解是已知的,所以只须求出方程的一个特解(由微分方程解的结构给出)。
设该方程的特征多项式q(λ)=λ2+a1λ+a0分解为q(λ)=(λ-λ1) (λ-λ2)则算子多项式q(D)也分解为q(D)=(D-λ1) (D-λ2)则原微分方程可写成 (D-λ1) (D-λ2)=b(t)依次解以下两个方程(D-λ2) x1=b(t)(D-λ1) x=x1就可求得方程的特解。
(其中x1看成是中间变量,只要通过求解x1来求解x)对于λ1和λ2是共轭虚数的情形,按上述步骤求得的方程特解有可能是一个复值函数z(t)=x(t)+iy(t)。
这时应有恒等式d2z(t)/dt2+a1dz(t)/dt+a0z(t)=b(t)比较上式两边的实部,我们得到d2x(t)/dt2+a1dx(t)/dt+a0x(t)=b(t)这样,不论λ1和λ2是实数或者是共轭虚数,我们都可能够求出方程在实数范围内的特解,从而完全解决了这方程的求解问题。
给出教材上一个例子:求微分方程y``-5y`+6y=xe2x.(《高等数学》P343)解:该微分方程的算子多项式分解为 q(D)=(D-2) (D-3)设y1=(D-2)y,代入知(D-3)y1=xe2x(该式子是一阶常系数微分方程),易求得y1=﹣(x+1) e2x+Ce3x(其中C为任意常数).所以 (D-2)y=﹣(x+1) e2x+Ce3x.得y=C1e2x+C2e3x-(x2+2x) e2x/2.2、下面来说另一种更简便的方程,也就是“算子法”。
不过在使用算子法的时候,很多性质是必须了解的,在这里不作说明。
“算子法”是一个能直接求出常系数非齐次线性微分方程的特解的一个简单的方法,也就是得到我们需要求的y*。
微分方程的算子算法课件
解 考虑(D2 2D 5) y e(12i) x x的特解
y*
(D2
1 2D
5)
e(12i ) x
x
15
常系数线性微分方程的算子解法
11.特解的算子解法及例题
e(12i ) x
1
x
(D 1 2i)2 2(D 1 2i) 5
e(12i) x ( x2 i x ) 8 16
e x[( x2 sin 2x x cos 2x) i( x2 cos 2 x x sin 2 x)]
常系数线性微分方程的算子解法
1.n阶常系数线性微分方程
非齐次方程 齐次方程 微分算子
dny dx n
p1
d n1 y dx n1
pn y f ( x)
(1)
dny dx n
p1
d n1 y dx n1
pn y 0(2)DFra bibliotekd dx
,
D2
d2 dx 2
,
, Dn
DDn1
dn dx n
P(D) Dn p1Dn1 pn1D pn
2
常系数线性微分方程的算子解法
3.类比对象的确定
特殊情况 y f (x),其通解y f (x)dx C, y* f (x)dx
类似于原函数的概念,定义算子: 1
P(D) 1 f ( x)表示这样函数:用P(D)作用它的结果是f ( x),即 P(D)
若函数F ( x)使得P(D)F ( x) f ( x),则 1 f ( x) F ( x)
方程的算子表示
P(D) y f (x)
P(D) y 0
1
常系数线性微分方程的算子解法
2.解的结构
线性算子 P(D)( y1 y2 ) P(D) y1 P(D) y2 定理1 方程(1)的通解为:y y(x) y *(x) ,其中y(x)
微分算子法求解二阶常系数非齐次线性微分方程的特解.docx
微分算子法求解二阶常系数非齐次线性微分方程的特解李绍刚段复建徐安农(桂林电子科技大学,计算科学与数学系,广西桂林,541004)摘要:木文主要介绍了二阶微分算子的性质及其它在一些求解二阶常系数非齐次线性微分方程的常见运算公式,并对其中的大部分重要公式给出了详细的较为简单的证明,并通过具体而翔实的例子加以说明它在解题中的具体应用,大大简化了二阶常系数非齐次线性微分方程的特解的求法。
关犍词:线性微分算子非齐次微分方程特解中图分类号:0175.1 引言对于微分方程,尤其是常系数非齐次线性微分方程,算了法求其特解一肓是研究的热点问题,见参考文献[3・9],有一些是针对一般高阶的常系数非齐次线性微分方程[3-61,文献⑹ 研究了高阶的变系数非齐次线性微分方程的算子特解算法,而[7]是针对二阶的常系数非齐次线性微分方程的算子特解解法,但是理论不是很完善,而微分级数法以及复常系数非齐次线性微分方程在一般教科书很少出现,针对性不够强。
因为在高等数学中,二阶非齐次常系数线性微分方程特解的求法在微分方程屮占有很重要的地位,也是学习的重点和难点,人多高数教材采用待定系数法来求其特解,根据不同情况记忆特解的设法对人多数学生而言述是很有难度的,而且有些题目计算过程非常复朵,本文就针对微分算子法在求解二阶常系数非齐次线性微分方程特解方而的应用做一些讨论,给出理论的详细证明,并通过例子说明理论的的一些具体应用。
我们考虑如下的二阶常系数非齐次线性微分方程的一般形式y"+py'+q = f(x)其中p,q 为常数。
(1)2 2引入微分算子—= D,^ = D2,则有:y=型二Dydx dx" dx dx~于是(1)式可化为:D’y + pDy + qy = f(x) 即:(D2 + pD + q)y = f(x) (2)令F(D) = D24-pD + q 称其为算子多项式。
则(2)式即为:F(D)y = f(x) 其特解为:y = ^—f(x),在这里我们称为逆算子。
五阶线性微分方程的算子解法
r d c e r e i o ti e yt e meh d t a e d f rn ile u t n s r n lt d it l e e u e d g e s b an d b t o h t h i e e t q ai si ta sae n oag — h t a o
可 降 阶 的 充要 条 件 , 给 出 了求 解对 应 方 程 通 解 的 方法 . 并 关键 词 : 系数 ; 变 线性 微 分 方 程 ; 子 解 法 ; 征 方 程 算 特
中 图分 类 号 : 15 1 0 7 . 文献标识码: A 文 章编 号 :62— 96 2 1 )6— 70— 3 17 0 4 (00 0 0 1 0
Y= ( ) ) , ) ( ,( ≠0
则
, =。 + Z , Y
法 的研究还 没有结果 . 本文研 究了五阶 变 系数 线性 微 分方 程 的算子解法 及其在方 程求解 中 的应 用 , 得 到 了五阶线 性微分方 程可降 阶 的充要 条件 , 到 了 得
它在 不 同条 件下 的降 阶方程 , 并给 出了求解对 应方
V16 。 o2 . . N6
D c2 1 e.0 0
五 阶线性 微分 方程 的算 子解 法
孙 法 国 , 丽 娜 任
( 安 工程大 学 理 学 院 , 安 7 04 ) 西 西 10 8
摘
要 : 过 算 子 代 换 引入 了特 征 方 程 的概 念 , 微 分 方 程 化 为代 数 方 程 , 到 了五 阶 线 性 微 分 方 程 通 将 得
第2卷 第6 6 期
21 0 0年 1 2月
哈 尔 滨 商 业 大 学 学 报( 自然科 学版 )
J u n l fHa bn Unv r i fCo o r a r i ie s yo mm e c ( t r l ce c sEdt n) o t r e Nau a in e i o S i
谈谈微分算子
谈谈算子SCIbird适当的引入一些算子可以简洁地展现出数学结构,比如差分算子Δ定义为:()(1)()f x f x f x Δ=+−,2:()f x Δ=ΔΔ,再定义移位算子()(1)Ef x f x =+,以及恒等算子()()If x f x =,则差分算子满足()()()f x E I f x Δ=−,即E I Δ=−容易发现()()mE f x f x m =+,所以00()()()(1)()(1)()n n k n n k n k n k k f x E I f x E f x f x k −−==⎛⎞⎟⎜Δ=−=−=−+⎟⎜⎜⎟⎝⎠∑∑ 类似地,()()()()f x If x E f x ==−Δ,()n n I I E ==−Δ 思考题:令()n f x x =,问()?n f x Δ=,1()?n f x −Δ=以微积分的观点看,利用拉格朗日中值定理,得1()(1)()()f x f x f x f ξ′Δ=+−=然后再利用一次,得12()()()f x f f ξξ′′′ΔΔ=Δ=,这样()()(),(,1)n n n n f x f x x ξξΔ=∈+可惜n ξ的位置不知道,不过对()n f x x =有()()!n f x n =是一个常数。
以拉格朗日中值定理为桥梁,将差分与微分联系起来了。
实际上还可以进一步挖掘联系。
算子的引入很多时候是形式算子,但发现特别好用,莫非是巧合。
深入研究后发现,数学中其实没有那么多巧合,“巧合”后面往往有深层含义。
这方面最具代表性的要数Laplace 变换了,抛开这个吓人的专有名词,先看一个例子。
考虑微分方程:(),(0)0y f x y ′==. 直接利用牛顿莱布尼茨积分公式,得()()x y x f t dt =∫ 英国工程师海维塞德思考上述方法后,提出了一个形式微分算子法,定义算子d D dx =, 则微分方程可写成()Dy f x =,于是移项得:1()y f x D= 对比上面的积分过程可知01x D =∫,于是002111x x D D D ==∫∫等等。
微分方程算子法总结
1 1 1 f ( x) = f ( x) f ( x) = F(D) F2 (D) • F1 ( D) F1 (D) • F2 ( D)
(6)性质六:
1 1 1 f1 ( x) + f 2 ( x) ( f1 ( x) + f 2 ( x)) = F(D) F(D) F(D)
三、例题练习 例 1.
n n-1 n-2 n-3 n n-1 n-2 n-3 n n-1 n-2 n-3
记 F(D)=D +a1D +a2D +a3D + ... +an-1D+an 规定特解:y 3、
*
= F(D)
1
f ( x)
1 的性质 F(D)
(1)性质一:
kx 1 F(D)
e = F(k) ekx
1
1
(F(k) 不等于 0)
取实部为特解 四)
1
1
y*= 4 (xcosx+x2sinx)
1
(性质二、三、
6
2
x d2y +4y = dx 2
e
则(D +4)y=e
(4)
x
,特解 y*=
1 D2
x x x 1 e = e = e (性质一) 5 1 +4 +4
2
4
1
例 2、 y +y=2cos(3x) ,则(D +1)y= 2cos(3x) 特解 y
*
=
1 D 4 +1
2cos(3x)= 2 cos(3x)=
e
-y=sinx
ix 1 3 D -1
,则(D -1)y=sinx ,特解 y*=
常系数非齐次线性微分方程的算子解法
常系数非齐次线性微分方程的算子解法摘要:本文讨论了求常系数非齐次线性微分方程特解的算子解法,结果说明当非齐次项是指数函数、三角函数、幂函数及其混合函数时,用这种方法可以直接求出一个特解,运算简单。
关键词:线性微分方程;算子方法;特解1.引言微分方程在解决实际问题中有着广泛的应用,例如单摆运动、传染病的预防等方面都要用到常微分方程.教材中一般只介绍用待定系数法和常数变易法求解常系数非齐次线性微分方程,然而用上述的两种方法需经大量的运算,甚至涉及到求解线性方程组.基于上述的情况,本文讨论求解线性微分方程的算子解法2.基本概念对于常系数非齐次线性微分方程)(111t f x a a n dt x d dt x d n n nn =+++-- (1)其中i a ),,3,2,1(n i =均为常数. 令dtd D =表示对x 求微商的运算,称它为微分算子;kk dt d k D =表示对x 求k 次微商的运算.于是方程(1)化为()()t f x a D a D a D a D n n n n n =++++---12211(2)记()()n n n n n a D a D a D a D D P +++++=---12211 ,称为算子多项式.所以(2)的一个解可简单的表示为()()t f D P x 1=,称()D P 1为逆算子. 特别地()()dt t f t f D ⎰=1,()()()kkk dt t f t f D⎰⎰=1.3. 算子多项式 3.1性质设()D P 是上述定义的算子多项式,()()t f t f 21,都是可导函数,则有如下的结论:1)()()()()()()()()()⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=t f D P D P t f D P D P t f D P D P 12212111111 2)()()()[]()()()()t f D P t f D P t f t f D P 2121111+=+ 以上两式的证明均可以由简单的积分来完成,从略. 3.2 运算公式设()D P 是上述定义的算子多项式,()t v 是可导函数,λ,a 都是常数,则有如下的结论:1)()()t t e P e D P λλλ=2)()()22cos cos a atP at D P -= 3)()()22sin sin a atP at D P -=4)()()()()t v e D P t v e D P t t λλλ+= 证明1)()()()()t t n n n t n n t e P e a a e a D a e D P λλλλλλλ=++=+++=-- 1111n D 2) 因为at i at e iat sin cos +=,at i at e iat sin cos -=-,所以()()⎪⎪⎭⎫⎝⎛+=-2cos 22iat iat e e D P at D P ()()iat iat e D P e D P -+=222121 ()()()()iat iat e ia P e ia P --+=222121()()221a P e e iat iat -+=-()2cos a atP -= 3) 由2)式证明可类似推之.4) 根据莱布尼茨公式,有()()t v D e D C t v e D k m t k mk km tm -=⋅=∑λλ0()t v D C e m k k m k k m t⎪⎭⎫⎝⎛=∑=-0λλ()()t v D e mt λλ+=3.3 逆算子运算公式设()D P 是上述定义的算子多项式,()t v 是可导函数,λ,a 都是常数,则有如下的结论: 1)()()tt e P e D P λλλ11=()()0≠λP(3) 2)()()at a P at D P cos 1cos 122-= ()()02≠-a P (4) 3)()()at aP at D P sin 1sin 122-= ()()02≠-a P (5) 4)()()()()t v D P e t v e D P t t λλλ+=11 (6)5)设()()00,10≠=+++=n k k k a P t b t b b t f ,则()()()()t f D Q t f D P k k k =1(7) 其中()kk k D c D c D c c D Q ++++= 2210是将()D P 按D 的升幂排列后去除1在第1+k 步得到的结果.ⅰ)当()0P =λ时,()()λλλ1111P D e e D P s t t =(s 为重数) (8) ⅱ)当()02=-a P 时,不妨设()()()2222D Q a D D P s+=,而()02≠-a Q .则()()()⎭⎬⎫⎩⎨⎧-=!2Re 1cos 122s ia t e a Q at D P s s iat (9)()=at DP sin 12()()⎭⎬⎫⎩⎨⎧-!2Im 12s ia t e a Q s s iat (10)ⅲ)当()00P =时,()k k k t b t b b t f +++= 10,此时()()s D D Q D P =而()00≠Q 则()()()()t f D Q D t f D P k s k 111= (11) 证明 以上1)、2)、3)式的推导可参见文献[1].4)()()()()()()t v D P D P e t v D P e D P t t λλλλλ++=⎥⎦⎤⎢⎣⎡+11=()t v e t λ5)用1除以()D P 得到的商是k 次多项式()D Q k 时,余式中的各项最起码是1+k 次的,即1=()()()D R D Q D P k +其中()n k n k k k D c D c D R ++++++= 11,上式两边同时作用()t f k 得 ()()()()()()t f D R D Q D P t f k k k += ()()()()()D f D R t f D Q D P k k k += ()()()t f D Q D P k k = 由于上式中的()D R 至少是1+k 次的,故()()0=t f D R k . ⅰ)不妨设()()()D P D D P s1⋅-=λ,而()01≠λP.由(6)可得 ()()111⋅+=λλλD P e e D P t t ()1111⋅+⋅=λλD P D e s t()λλ111P D e st⋅= ⅱ)由于()()()2222D Q a D D P s+=,所以()()()⎥⎦⎤⎢⎣⎡+=at D Q a D at D P scos 11cos 12222 ()()at a D a Q scos 11222+-=而()()()1112222⋅++=+siatiat saia D e e aD=()ss iatai D e 211 =()!21s t ai e ssiat故有()()()⎭⎬⎫⎩⎨⎧-=!2Re 1cos 122s ia t e a Q at D P s s iat 同理有()()()⎭⎬⎫⎩⎨⎧-=!2Im 1sin 122s ia t e a Q at D P s s iat ⅲ)显然成立.5. 小结由以上的题例可以明显的看出,若()t f 是指数、三角、幂函数及其混合函数时,不管采用常数变易法还是待定系数法,都需先求出方程的特征根.若用常数变易法还会涉及到求解方程组;若用待定系数法,当阶数比较高时计算比较复杂,而用算子解法却比较方便快捷.参考文献[1]周义仓.常微分方程及其应用[M].北京:科学出版社,2010:188-203[2]王怀柔,伍卓群.常微分方程讲义[M].北京:人民教育出版社,1979:122-133[3]李绍刚,徐安庆.二阶常系数线性微分方程特解的微分算子法[J].桂林电子科技大学学报,2008,(4)330-332[4]王高雄,周之铭等.常微分方程[M].北京:人民教育出版社,2006:120-155[5]杨盛祥,李梅.常系数线性微分方程的算子解法[J].成都电子机械高等专科学校学报,2009,(4)33-36。
二阶常系数线性微分方程特解的微分算子法
二阶常系数线性微分方程特解的微分算子法原 迦摘 要 微分算子法是求解常系数非齐次线性微分方程特解的有效方法, 基于算子多项式的理论, 针对二阶常系数线性微分方程, 论文给出了非线性项为指数函数、三角函数、幂函数及其混合函数的微分算子特解公式, 实例表明特解公式在解题中具有可应用性、有效性和简捷性。
关键词 线性微分方程 常系数 微分算子 特解常系数线性微分方程是常微分方程中的重点内容之一,其求解方法通常是先求对应的齐次 线性方程的通解,再求一特解。
前者用特征方程法容易得到,难点是特解的求法。
多数教材中采用的是待定系数法求其特解, 这不仅要根据非线性项的不同情况做相应的处理, 而且计算过程中需要求导运算和求解线性方程组。
因此, 微分算子法成为求解不同类型的常系数非齐次线性微分方程特的有效方法, 基于上述考虑, 文章针对非线性项的不同情况, 给出微分算子法求 二阶常系数非齐次线性微分方程的特解公式, 具有记忆方便, 计算简单的特点。
二阶常系数非齐次线性微分方程的一般形式为()y py qy f x '''++=, (1)其中,p q 为常数.为了文中需要,我们给出通常教材中所给出的求特解的待定系数法 见下表表中()n R x 为待定的n 次多项式,()k R x , ()k S x 为系数待定的k 次多项式,max k ={},n m .引入微分算子,dD dx= 222,d D dx =则有,dyy Dy dx'== 222,dy y D y dx ''==于是式(1)可化为()()2D pD q y f x ++= (2)令()2,F D D pD q =++称为算子多项式,则式(2)即为()()F D y f x =,其特解为()()1,y f x F D =这里,()1F D 称为逆算子.1.算子多项式1.1 算子多项式的性质引理[]61 设算子多项式()F D 如上定义,()f x ,()g x 为可微函数,则有 (1)()()()()()()()F D f x g x F D f x F D g x αβαβ+=+⎡⎤⎣⎦; (2) 设 ()()()12F D F D F D =; 则有()()()()()()1221F D F D f x F D F D f x =⎡⎤⎡⎤⎣⎦⎣⎦;(3) 设()()()12F D F D F D =+,则有()()()()()()12F D f x F D f x F D f x =+.证明略.1.2算子多项式的公式引理[]72 设算子多项式()F D 如上定义,,k a 为任意实数, ()v x 为二阶可导函数,则有下列结论成立(1) ()()kx kx F D e e F k =;(2) ()()22sin sin F D ax axF a =-; ()()22cos cos F D ax axF a =-; (3) ()()()()kx kx F D e v x e F D k v x =+; (4)()()()()()()F D xv x xF D v x F D v x '=+. 证明略.1.3逆算子多项式的性质引理[]73 设算子多项式()F D 如上定义,,R αβ∈,()f x ,()g x 为可微函数,则有 (1)()()()()1F D f x f x F D =; (2)()()()()()()()111f xg x f x g x F D F D F D αβαβ+=+⎡⎤⎣⎦ ; (3)设 ()()()12F D F D F D =, 则有()()()()()()()()122111111f x f x f x F D F D F D F D F D ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦.2. 特解公式利用上述性质,可以得到下面的特解公式。
一类高阶线性微分方程的算子解法及其解的稳定性
一
, 文利 用 这 一思 想讨 论 n阶线 性 微 分方 程算 子 的 本
般的, 若有 n个 函数 ( ( ) i=1 2 )满足所 要求 的可 微次数 并连 续 , 入记 号. , …n 引
p()= : l p一 “=∑ ()
l 1
n一1
P() p ”=∑ ( () p() + p() p() =: () 一 ) (? 一 ) p i
且 ( )≤ 0, 方 程 ( ) 则 3 的解是 稳定 的. ( ) ( <0或 ( 3 ) )一O ( t )>0至少 有一个 成立 , 方程 ( ) 则 3 的解不 稳定 . 特别地 , 在方 程 ( ) 3 中 性依 据. 若 令 ):
依据公 式 ( ) 算 出 : 1计 P ( ,2 ) ) ) P ( …P ( 从而公 式 ( ) 如下 形式 的分 解式 . 2有 D +P ( 一 l ) +尸 ( D 一 … +P 一( D +P ( 2 ) + l ) )
叫 】 )
叫 ] )
[+ ㈩ _n D (
[ +K G )一F( ] D ( )
从 而方程
【 G _n 。 ㈤ (
…
叫 圳【+2x n 2 。 K( G _)
一 ) +K )一 ) r=, ) J (
叫 ] )
文 献 标 识 码 : A 文章 编 号 :0 5 8 3 ( 0 0 ( -0 4 0 1 0 —0 6 2 1 ) l 5 - 】0 3
关 键 词 : 高 阶线 性 微 分 方 程 ; 分 算 子 ; 定 性 微 稳
中图 分 类 号 : 1 5 0 7
用微 分算 子可研 究 四阶线性 微分 方程分解
l 1
三阶变系数线性微分方程的算子解法
第2 6卷
一
( = : () 一 一 ,() ( + , c一 一 , ) c一 r . ) a d ) ) ( 五 : 一 , -
c 一 戈 =c一 c 2 ) . 一 一c一 一 + t () : () ()一 ( 一 () . 3 ) I ) a 3 c4 ( ( 卜
是 可积 的 ,则 n阶变 系数 线性 微分算 子
D + 一( D 一+ 一( D 一 + +r( D+a( I ) “。 2 ) “ … 上 ) l ( ) ) () 2
可 分解 出一 阶微 分算 子 的因式 D—f( ,这 时微分 算 子 () J ) 2 可表 示 为 :
(( = ( ( +d( ( + ( +/ I. ( ) ( l L ) )z 0 ) l ) ) ) J ) ( ( d ) + )
再把 式 (4 代 人 式 ( 1可 得 到 以下 的微 分算 子分解 式 : 1) 1)
D +n ( D +n( ) ’ 2 ) 2 I o+r( ) D+b l x z :『 l 】 ( ) D+d( l I I I ) D+d( I 2 ) (6 1)
数 线性 方程 的一 种 简便 实用 的方 法. 由于在 理论 研究 和 实 际应 用 中 出现有 大量 的 三阶 以
上 的高 阶变 系数 线性 微 分方 程 ,因此 ,近 年来人 们注 重 对高 阶 变 系数 线性 方程 求解 方法 的研究 ,并 已取 得 了一 些成 果 “ . 本 文 应用 文 献 [ — ] 3 4 的有 关 结果 研 究 了三 阶变 系数 线 性微 分方 程 的算 子解 法 ,得 到了这 类方 程 的求 解方 法 和可 积类 型.
定 理 l 如果 函数 a() 。 , () 足下 列的条 件 : 2 , ( 满 )
偏微分方程的几种经典解法
偏微分方程的几种经典解法经过一个学期偏微分方程课程的学习,我们掌握了几种求解三种典型方程的方法,如分离变量法、行波法、特征函数展开法、求解非齐次方程的Duhanmel 原理灯,此外,我们通过学习还掌握了求解波动方程的'D Alembert 公式,求解位势方程的Green 公式等等.这些经典方法的综合运用可以求解很多初等偏微分方程,故而是基本而重要的.本文着重总结了偏微分方程的几种经典解法,一次介绍了分离变量法、行波法、幂级数解法、Fourier 变换法以及Green 函数法,通过对典型方程的研究,深入理解集中经典方法.1.分离变量法分离变量法:基本思想是设法把偏微分方程的问题转化为解常微分方程的问题.1.1第一初边值问题例:利用分离变量法求解下述问题(非齐次0边值双曲方程)2222sin 2cos 2,u ux t t x ∂∂-=∂∂ 0,0x t π<<> (1.1) (0,)(,)0,u t u t π== 0t > (1.2) (,0)sin ,u x x =0x π<< (1.3)(,0)sin 2,ux x t∂=∂ 0x π<< (1.4) 解:用分离变量法求问题(1.1)—(1.4)的形式解.设该问题有如下形式的非零解(,)()()u x t X x T t = (1.5)方程(1.1)对应的齐次方程为22220,u ut x∂∂-=∂∂0,0x t π<<> (1.6) 将(1.5)式代入方程(1.6)得""()()()(),X x T t X x T t =0,0x t π<<>即""()()()()X x T t X x T t λ∆==- (1.7) 其中λ为固定常数,下面证明0λ>. 由(1.7)有"()()0,X x X x λ+=上式两端同乘()X x ,并在(0,)π上积分,得"20()()()0,X x X x dx X x dx ππλ+=⎰⎰注意到由(1.2)和(1.5)有(0)()0,X X π==所以有'220()()X x dx X x dx ππλ=⎰⎰易见0λ>.所以(1.2)—(1.6)可以化为如下形式的两个常微分问题,即()()"()()0,1(0)()0,2X x X x X X λπ⎧+=⎪⎨==⎪⎩ 以及由"()()0T t T t λ+=和适当的定解条件确定的关于()T t 的常微分问题. 求解问题(1).根据常微分方程的理论可知,问题(1)的通解为().X x A B =+将其带入(0)0,X =得0A =.再将()X x B =带入()0X π=,得2,1,2,3,n n n λ==特征值2n n λ=相应的特征函数为()sin ,1,2,n X x nx n == (1.8)注意到{}1()n n X x ∞=是一个直交系统,即0,,()(),,2m n m n X x X x dx m n ππ≠⎧⎪=⎨=⎪⎩⎰这表明{}1()n n X x ∞=正规化后是2((0,))L π的一个基底.将问题(1.1)—(1.4)中的非齐次项和初值按{}1()n n X x ∞=展开,得1sin 2cos 2()sin ,n n x t f t nx ∞==∑ 0,0x t π≤≤≥1sin sin ,n n x a nx ∞==∑ 0,x π≤≤1sin 2sin ,n n x b nx ∞==∑ 0,x π≤≤其中0,1()cos 2,20,0,3n n f t t n t n =⎧⎪==≥⎨⎪≥⎩ 1,10,2n n a n =⎧=⎨≥⎩,0,11,20,3n n b n n =⎧⎪==⎨⎪≥⎩设1(,)()()n n n u x t X x T t ∞==∑, 0,0x t π≤≤≥ (1.9)是问题(1.1)—(1.4)的形式解,将上式代入(1.1)—(1.4)可得,()n T t 是如下常微分方程初值问题的解,"'()()(),0(0),(0),n n n n n n n n T t T t f t t T a T b λ⎧+=>⎪=⎨⎪=⎩,其中1,2,n = . 求解问题(2).当1n =时,问题(2)转化为求常微分问题"11'11()()0,(0)0,(0)1,T t T t T T ⎧+=⎪=⎨⎪=⎩ (3) 有常微分方程理论可知,问题(3)的通解为112()cos sin T t c t c t =+.将其代入1(0)1T =,得11c =.将12()cos sin T t t c t =+代入'1(0)0T =得20c =.故1()cos T t t =. 当2n =时,问题(2)转化为常微分问题"22'22()4()cos 2,(0)1,(0)0,T t T t t T T ⎧+=⎪=⎨⎪=⎩ (4)对应其次方程的特征根为2i α=±,用常微分方程中的算子解法求特解.2(4)cos2,D x t +=故sin 24tx t =.所以问题(4)的通解为212()cos 2sin 2sin 2.4tT t c t c t t =++将其代入2(0)0T =得10c =,将22()sin 2sin 24t T t c t t =+代入'2(0)1T =得212c =,故22()sin 2.4t T t t +=当3n ≥时,问题(2)转化为常微分问题"2'()()0,(0)0,(0)0,n n n nT t n T t T T ⎧+=⎪=⎨⎪=⎩ (5) 由常微分理论可知,问题(5)的通解为12()cos sin ,3,4,n T t c nt c nt n =+= 将其代入(0)0,n T =得10c =.将2()sin n T t c nt =代入'(0)0,n T =得20c =.故()0n T t =. 综上有cos ,1,2()sin 2,2,040,3,n t n t T t t n t n =⎧⎪+⎪==≥⎨⎪≥⎪⎩(1.10)将(1.8)(1.10)代入(1.9)中,得问题(1.1)—(1.4)的形式解为2(,)sin cos sin 2sin 2,4t u x t x t x t +=+ 0,0x t π≤≤≥经检验,该形式解满足原问题及初边值条件,该形式解就是原问题的解. 例:利用分离变量法求解下述问题22220,u ut x ∂∂-=∂∂ 0,0x t π<<> (1.11) (0,)sin ,(,)0,u t t u t π== 0t >, (1.12) (,0)0,u x = 0x π<<, (1.13)(,0),u x x t ππ∂-=∂ 0x π<<, (1.14)解:将上述非零边值问题转化为零边值问题,用变量代换,设(,)u x t 是原问题的解,令(,)(,)sin ,xv x t u x t t ππ-=-0,0x t π≤≤≥. 则(,)v x t 是如下问题的解2222(,),v vf x t t x ∂∂-=∂∂ 0,0x t π<<> (1.15) (0,)(,)0,v t v t π== 0t >, (1.16) (,0)0v x =, 0x π<<, (1.17)(,0)0,vx t∂=∂ 0x π<<, (1.18) 其中(,)sin ,xf x t t ππ-=0,0x t π≤≤≥. 用分离变量法求问题(1.15)—(1.18)的形式解.设该问题有如下形式的形式解(,)()()v x t X x T t =, (1.19)方程(1.15)对应的齐次方程为22220,v vt x∂∂-=∂∂ 0,0x t π<<>, (1.20) 将(1.19)代入方程(1.20)得""()()()(),X x T t X x T t =0,0x t π<<>即""()()()()X x T t X x T t λ∆==- (1.21) 其中λ为固定常数,下面证明0λ>. 由(1.21)有"()()0,X x X x λ+=上式两端同乘()X x ,并在(0,)π上积分,得"20()()()0,X x X x dx X x dx ππλ+=⎰⎰注意到由(1.16)和(1.19)有(0)()0,X X π==所以有'220()()X x dx X x dx ππλ=⎰⎰易见0λ>.所以(1.16)—(1.18)(1.20)可以化为如下形式的两个常微分问题,即"()()0,(0)()0,X x X x X X λπ⎧+=⎨==⎩ (6) 以及由"()()0T t T t λ+=和适当的定解条件确定的关于()T t 的常微分问题.(7) 求解问题(6).根据常微分方程的理论可知,问题(6)的通解为().X x A B =+将其带入(0)0,X =得0A =.再将()X x B =带入()0X π=,得2,1,2,3,n n n λ==特征值2n n λ=相应的特征函数为()sin ,1,2,n X x nx n == (1.22)注意到{}1()n n X x ∞=是一个直交系统,即0,,()(),,2m n m n X x X x dx m n ππ≠⎧⎪=⎨=⎪⎩⎰这表明{}1()n n X x ∞=正规化后是2((0,))L π的一个基底. 将问题(1.15)—(1.18)的非齐次项按{}1()n n X x ∞=展开,得1sin ()sin ,n n xt f t nx ππ∞=-=∑0,0.x t π≤≤≥ 令sin n xc nx ππ-=,则在其两端同乘sin nx 再在(0,)π上积分,得 200sin sin 2nn x nxdx c nxdx c πππππ-==⎰⎰. 由分部积分,经计算可得2n c n π=.从而2()sin n f t t n π=,0t ≥,1,2,n = . 设1(,)()()n n n v x t X x T t ∞==∑,0,0.x t π≤≤≥是问题(1.15)—(1.18)的形式解,将其带入(1.15)—(1.18)可得,()n T t 是如下常微分问题的解"22()()sin ,n n T t n T t t n π+=0,t > (1.23) (0)0,n T = (1.24) '(0)0,n T = (1.25)其中1,2,n =(1.23)—(1.25)对应的齐次方程的特征根为ni α=±,则通解为()cos sin n n n T t A nt B nt =+.用算子算法求特解,222()()sin n D n T t t n π+=,解得 22sin ()(1)n tT t n n π=-.故该问题的通解为22sin ()cos sin (1)n n n tT t A nt B nt n n π=++-. (1.26)将上式代入(0)0,n T =得0n A =,将22sin ()sin (1)n n tT t B nt n n π=+-代入'(0)0,n T =得222(1)n B n n π-=-,1,2,n = . 故2222sin 2sin ()(1)(1)n nt tT t n n n n ππ-=+--,0,t >1,2,n = . 因此,问题(1.15)—(1.18)的形式解为22212sin 2sin (,)sin (1)(1)n nt t v x t nx n n n n ππ∞=⎛⎫-=+ ⎪--⎝⎭∑,0,0.x t π≤≤≥ (1.27) 考察(1.27)右端级数的收敛性.记2222sin 2sin sin (1)(1)n nt t a nx n n n n ππ⎛⎫-=+ ⎪--⎝⎭,0,0,x t π≤≤≥1,2,n = . 容易验证下列级数均在[0,][0,)π⨯+∞上一致收敛1n n a ∞=∑,1n n a x ∞=∂∂∑,1n n a t ∞=∂∂∑,221n n a x ∞=∂∂∑,221n n a t ∞=∂∂∑,21nn a x t ∞=∂∂∂∑. 经检验,(,)v x t 满足问题(1.15)—(1.18),就是 问题(1.15)—(1.18)解.将(1.27)代入(,)(,)sin xu x t v x t t ππ-=+,0,0,x t π≤≤≥ 得22212sin 2sin (,)sin sin (1)(1)n nt t xu x t nx t n n n n ππππ∞=⎛⎫--=++ ⎪--⎝⎭∑,0,0,x t π≤≤≥ 此即为原问题(1.11)—(1.14)的解.1.2第二初边值问题例:利用分离变量法求解下述问题(抛物型)220,u ut x ∂∂-=∂∂ 01,0x t <<> (1.28) (0,)(1,)0,u u t t x x ∂∂==∂∂ 0,t > (1.29) (,0)cos ,u x x π= 01,x << (1.30)解:用分离变量法求解问题(1.28)—(1.30)的形式解.设该问题有如下形式的非零解(,)()()u x t X x T t = (1.31)将其代入(1.28)有"'()()()()X x T t X x T t λ∆==-,01,0x t <<> (1.32) 其中λ为某一常数,且0λ≥. 由(1.32)有"()()0,X x X x λ+=上式两端同乘()X x ,并在(0,1)上积分,得11"20()()()0,X x X x dx X x dx λ+=⎰⎰注意到由(1.29)和(1.31)有''(0)(1)0,X X ==所以有11'220()()X x dx X x dx λ=⎰⎰易见0λ≥.故(1.28)—(1.30)可化为如下形式的两个常微分问题,即"''()()0,01,(0)(1)0,X x X x x X X λ⎧+=<<⎨==⎩ (8) 和'()()0,0T t T t t λ+=> (9)求解问题(8),当0λ=时,有"()0X x =,''(0)(1)0,X X ==由常微分方程的理论可知,问题(8)的通解为12()X x c c x =+,01x ≤≤.将其代入'(0)0X =,有20c =,故1()X x c =,其中1c 为任意常数. 当0λ>时,由常微分方程的理论可知,问题(8)的通解为12(),X x c c =+ 01x ≤≤将其代入'(0)0X =,则20c =,将1()X x c =代入'(1)0X =,得2()n n λπ=, 1,2,n =特征值n λ对应的特征函数为()cos n X x n x π=,1,2,n = ,01x ≤≤. 所以,对于0λ≥,有()cos n X x n x π=,01x ≤≤, 0,1,2,n =注意到{}1()n n X x ∞=是一个直交系统,即10,,()(),,2m n m n X x X x dx m n π≠⎧⎪=⎨=⎪⎩⎰ 这表明{}1()n n X x ∞=正规化后是2((0,1))L 的一个基底. 下面求解问题(9),将2()n n λπ=代入,可有'22()()0,n n T t n T t π+=0,1,2,n = ,0t ≥.有常微分方程理论可知其通解为223()n t n T t c e π-=, 0,1,2,n = , 0t ≥.此时,形式解为2230(,)()()cos n t n n n n u x t X x T t c n xe ππ∞∞-====∑∑, 01x ≤≤,0t ≥.将其代入(1.30)中,得30(,0)cos cos n u x c n x x ππ∞===∑,01,x <<由比较系数法,可得31,10,1n c n =⎧=⎨≠⎩故问题(1.28)—(1.30)的形式解为2(,)cos t u x t xe ππ-=,01x ≤≤,0t ≥.经检验,该形式解满足原问题(1.28)—(1.30),此即为原问题的解.1.3 Poisson 方程的边值问题分离变量法还适用于某些特殊形状区域上的二维Poisson 方程的各种边值问题,如果所考虑的定解区域是矩形域,那么可以完全仿照前面的方法来求解,只是此时x,y 之一要扮演t 的角色;如果定解区域是圆域或环形域,则应先做极坐标变换将定解问题化为矩形区域上的定解问题,然后利用分离变量法求解. 例:利用分离变量法求解下述问题22222212(),u u x y x y∂∂+=-∂∂ 12,<< (1.33)(,)0,u x y =1,= (1.34)(,)0,ux y υ∂=∂2,= (1.35)其中υ为2{(,)2}x y R ∂∈上的单位外法向量.解:用分离变量法求解问题(1.33)—(1.35)的形式解.首先,通过极坐标变换将环形域上的定解问题化为矩形域上的定解问题,做极 坐标变换cos ,sin ,x y ρθρθ=⎧⎨=⎩ 12,02ρθπ≤≤≤≤, 则(1.33)—(1.35)化为2222221112cos 2,v v vρθρρρρθ∂∂∂++=∂∂∂ 12,02ρθπ<<<<, (1.36) (1,)0,(2,)0,vv θθρ∂==∂ 02θπ<<, (1.37) 其中(,)(cos ,sin )v u ρθρθρθ=,12,02ρθπ≤≤≤≤.注意到在极坐标条件下(,0)ρ与(,2)ρπ表示同一点,故(,)v ρθ还满足如下周期性条件(,0)(,2),(,0)(,2),v v v v ρρπρρπθθ∂∂==∂∂ 12,ρ<< (1.38) 问题(1.36)—(1.38)是一个定解问题. 方程(1.36)对应的齐次方程为22222110,v v vρρρρθ∂∂∂++=∂∂∂ 12,02ρθπ<<<<, (1.39) 设问题对应的形式解为(,)()()v R ρθρθ=ψ,12,02ρθπ≤≤≤≤. (1.40)将(1.40)代入(1.37)中,得"'"211()()()()()()0,R R R ρθρθρθρρψ+ψ+ψ= 12,02ρθπ<<<<即"2"'()()(),()()R R R θρρρρλθρ∆ψ+=-=-ψ12,02ρθπ<<<<, (1.41) 其中λ为固定常数,下面证明0λ≥.由(1.41)有"()()0,θλθψ+ψ= 02θπ<<,在上式两端同乘()θψ,并在(0,2)π上积分,由(1.38)和(1.40)可知''(0)(2),(0)(2),ππψ=ψψ=ψ所以有22'220()(),d d ππθθλθθψ=ψ⎰⎰易见0λ≥.所以问题(1.37)(1.38)(1.40)可化为两个常微分问题,即"''()()0,(0)(2),(0)(2),θλθππ⎧ψ+ψ=⎪⎨ψ=ψψ=ψ⎪⎩ 02θπ<<, (10) 以及2"'()()()0R R R ρρρρλρ+-=和适当定解条件的常微分问题(11)求解问题(10).当0λ=时,有"''()0,(0)(2),(0)(2),θππψ=ψ=ψψ=ψ由常微分方程的理论可知,问题(10)的通解为()A B θθψ=+,02θπ≤≤,代入(0)(2)πψ=ψ得()A θψ=,其中A 为任意实数. 当0λ>时,通解为(),A B θψ=+02θπ≤≤, 将其代入''(0)(2),(0)(2)ππψ=ψψ=ψ有sin ,A A B =+=-+,故2,1,2,n n n λ==特征值n λ对应的特征函数为()cos sin ,02,1,2,n n n A n B n n θθθθπψ=+≤≤= .其中n A 和n B 是任意不同时为零的实数,综上可知()cos sin ,02,0,1,2,n n n A n B n n θθθθπψ=+≤≤= ,其中0A 是任意不为零的实数,n A 和n B 是任意不同时为零的实数. 注意到1{cos sin }n n n θθ∞=+是一个直交系统,即20()()0,,,0,1,2,m n m n m n πθθψψ=≠=⎰,这表明1{cos sin }n n n θθ∞=+正规化后是2((0,2))L π的一个基底.设1(,)()()()cos ()sin ,n n n n n n n v R A n B n ρθρθρθρθ∞∞∞====ψ=+∑∑∑12,02ρθπ≤≤≤≤,将非齐次项按1{cos sin }n n n θθ∞=+展开,有2n =时,2212A ρ=代入(1.4)—(1.6)有"'22222'2214()()()12,(1)(2)0,A A A A A ρρρρρρ⎧+-=⎪⎨⎪==⎩ 12,ρ<< 2"'2'1()()()0,12,(1)(2)0,n n n nn n A A A A A ρρρρρρ⎧+-=<<⎪⎨⎪==⎩ 0,1,3,4,n = ,和2"'2'1()()()0,12,(1)(2)0,n n n nn n B B B B B ρρρρρρ⎧+-=<<⎪⎨⎪==⎩ 1,2,3,n = .解得2242129112(),1717A ρρρρ-=-++ 12ρ≤≤, ()0n A ρ=, 12ρ≤≤,0,1,3,4,n = , ()0n B ρ=, 12ρ≤≤,1,2,3,n = .故224129112(,)()cos 21717v ρθρρρθ-=-++, 12,02ρθπ≤≤≤≤ 因此,原问题的形式解为2222222112(,)[12917()],17()x y u x y x y x y -=-++++12≤. 经检验,该形式解满足原问题,即为原问题的解.二.行波法行波法:求解一维波动方程的常用解法,利用这种方法得到波动方程的一个重要求解公式('d Alembert 公式)1.齐次波动方程cauchy 问题定理2.1('d Alembert 公式)设2C R ϕ∈(),1C R ψ∈(),则函数 ()()()()()x+atx-at11u x t =x-at +x+at +d 22a ϕϕψξζ⎰,,[)()2u C R 0+∈⨯∞, 是cauchy 问题22222u u-a=0t x ∂∂∂∂, x R t>0∈, ()(),0u x x ϕ=, x R ∈()(),0ux x tψ∂=∂, x R ∈的解.例:求解下述波动方程的cauchy 问题()()2222120,,0,0cos ,,0cos ,u u uu x R t t x t u x x x R ux e x x R t -⎧∂∂∂-++=∈>⎪∂∂∂⎪⎪=∈⎨⎪∂⎪=-∈⎪∂⎩解:首先将方程化为标准形式.设u 是原问题的解,令()(),,,,0t v x t e u x t x R t =∈≥则v 是如下问题的解()()222210,,0,cos ,,0,v vx R t t x v x t x x Rvx e x R t -⎧∂∂-=∈>⎪∂∂⎪⎪=∈⎨⎪∂⎪=∈∂⎪⎩由定理2.1可知()()()()1111,cos cos 22cos cos ,,0x t x tv x t x t x t e d x t te x R t ζ+---=-+++=+∈≥⎰ 因此()()()1,cos cos t u x t e x t t e -+=+, ,0x R t ∈≥为原问题的解.利用一维齐次波动方程cauchy 问题的通解表达式,还可以求解其他定解问题.在此不再赘述.2.非齐次波动方程的cauchy 问题定理2.2('d Alembert 公式)设2C R ϕ∈(),1C R ψ∈(),[)()10,f C R ∈⨯+∞, 则函数()()()()()()()()011,221,,,02x atx att x a t x a t u x t x at x at d a f d d x R t a ττϕϕψξζζτζτ+-+---=-++++∈≥⎰⎰⎰属于[)()20,C R ⨯+∞,是cauchy 问题()()()()()22222,,,0,0,,0,u u a f x t x R t t x u x x x R ux x x R t ϕψ⎧∂∂-=∈>⎪∂∂⎪⎪=∈⎨⎪∂⎪=∈∂⎪⎩的解,其中0a >.注2.1上述问题解得光滑程度本质上取决于初值和非齐次项的光滑程度. 注2.2 如果()(),x x ϕψ和(),f x t 都是x 的奇(偶,周期)函数,则上述问题的解也是x 的奇(偶,周期)函数. 例:求解下述波动方程的定解问题()()()()()()22222,,00,0,0,0,0,0,0u u a f x t x t x u t t u x x x ux x x tϕψ∂∂-=>∂∂=>=>∂=>∂其中0a >,[)()[)()[)[)()2110,,0,,0,0,C C f C ϕψ∈+∞∈+∞∈+∞⨯+∞,且满足相容性条件()()()()2''000,00,0a f ϕψϕ==-=解:注意到如果u 是x 的奇函数,则u 自然满足边值条件.因此,根据注2.2,我们可以采用奇延拓方法来求解上述问题.将()(),x x ϕψ和(),f x t 关于0x =做奇延拓,即令()()(),0,0x x x x x ϕϕ≥⎧⎪Φ=⎨-<⎪⎩ ()()(),,0x x x x x ψψ≥⎧⎪ψ=⎨-<⎪⎩ ()()(),,0,0,,,0,0f x t x t F x t f x t x t ≥≥⎧⎪=⎨-<≥⎪⎩考虑cauchy 问题()()()()()22222,,,0,0,,0,u u a F x t x R t t x u x x x R ux x x R t⎧∂∂-=∈>⎪∂∂⎪⎪=Φ∈⎨⎪∂⎪=ψ∈∂⎪⎩ 按'd Alembert 公式形式地写出其解()()()()()()()()011,221,,,02x atx at t x a t x a t u x t x at x at d F d d x R t aττξζζτζτ+-+---=Φ-+Φ++ψ+∈≥⎰⎰⎰回到原来的初值,ϕψ和非齐次项f ,就可以得到原问题的形式解如下:当0x at ≥≥时,()()()()()()()()011,221,2x atx at t x a t x a t u x t x at x at d af d d aττϕϕψξζζτζτ+-+---=-++++⎰⎰⎰ ()1而当0x at ≤≤时,()()()()()()()()()()())/0/11,221(,,2x at at x t x a x a t t x a t a t x t x a x a t u x t at x x at d af d d f d d aττττϕϕψξζζτζτζτζτ+--+-+------=--+++++⎰⎰⎰⎰⎰ ()2可以直接验证由()1和()2确定的形式解[)[)()20,0,u C ∈+∞⨯+∞就是定解问题的解.三.幂级数解法幂级数解法:是求解偏微分方程的经典解法之一,不仅可以求解一维问题,还可以求解高维问题.我们先来求解如下的常微分方程初值问题()()()()2''0,00,'00,u t a u t t u A u +=>== ()()()3.13.23.3其中0a >方程()3.1的通解是()12cos sin ,0u t C at C at t =+≥其中1C 和2C 是任意实数.由边值条件()3.2和()3.3,可得12,0C A C ==.于是,问题()()3.1 3.3-的解为()cos ,0u t A at t =≥注意到()()()201cos ,02!nnn at at t n ∞=-=≥∑因此,问题()()3.1 3.3-的解可写为如下的级数形式()()()()()()222001,02!2!nn nnn n at tu x A a A t n n ∞∞==-==-≥∑∑. ()3.4定理3.1 假设()C R ϕ∞∈,并且对任意的0R >,都存在非负数列{}0n n a ∞=,满足级数()202!nn n t a n ∞=∑在[)0,+∞上收敛,且()2,,0,1,2,n n D x a x R n ϕ≤≤=则函数()()()()()2222200,,,0,2!2!nn n nn n t t u x t x D x x R t n x n ϕϕ∞∞==⎛⎫∂==∈≥ ⎪∂⎝⎭∑∑ 就是波动方程Cauchy 问题()()()22220,,0,0,,0=0,u ux R t t x u x x x R u x x Rt ϕ⎧∂∂-=∈>⎪∂∂⎪⎪=∈⎨⎪∂⎪∈∂⎪⎩的级数形式的形式解.定理3.2 假设()C R ϕ∞∈,并且对任意的0R >,都存在非负数列{}0n n a ∞=,满足级数0!nn n t a n ∞=∑在[)0,+∞上收敛,且()2,,0,1,2,n n D x a x R n ϕ≤≤=则函数()()()22200,,,0,!!nn n nn n t t u x t x D x x R t n x n ϕϕ∞∞==⎛⎫∂==∈≥ ⎪∂⎝⎭∑∑就是热传导方程Cauchy 问题220,,0u u x R t t x ∂∂-=∈>∂∂()(),0,u x x x R ϕ=∈的级数形式地形式解.幂级数方法求解问题的一大优点就是空间维数不限,下面的例子是一个高维问题.例:求解三维波动方程的Cauchy 问题()()()()()()()()()232330,,,,0, 3.5,,,0,,,,,, 3.6,,,00,,,,3.7uu x y z R t t u x y z x y z x y z R ux y z x y z R tϕ∂-∆=∈>∂=∈∂=∈∂ 其中222222,x y z∂∂∂∆=++∂∂∂()()2223,,,,,x y z x y z x y z R ϕ=++∈解:令2,a A ϕ=-∆=,则由()3.4可得到问题()()3.5 3.7-的级数形式的形式解()()()()230,,,,,,,,,02!n nn t u x y z t x y z x y z R t n ϕ∞==∆∈≥∑ ()3.8将ϕ的表达式代入()3.8,得()()22223,,,3,,,,0u x y z t x y z t x y z R t =+++∈≥容易验证,这个形式解的确是定解问题的解.四.Fourier 变换方法1.()R ε,()D R 和()R ϕ空间(i )()R ε空间:对于{}()1n n u C R ∞∞=⊂和()u C R ∞∈,如果对任何a b <及任何非负整数k ,都有[]()()()(),0sup limk knn x a b u x u x →∞∈-= 则称()n u x 在()C R ∞中收敛于()u x ,赋予上述收敛性的函数空间()C R ∞,称为基本空间()R ε.(ii )()D R 空间:对于{}()01n n u C R ∞∞=⊂和()0u C R ∞∈,如果存在a b <,使得[],n u a b ⊂supp 且对任何非负整数k ,都有()()()()0sup limk knn x Ru x u x →∞∈-= 则称()n u x 在()0C R ∞中收敛于()u x ,赋予上述收敛性的函数空间()0C R ∞,称为基本空间()D R .(iii )()R ϕ空间:如果()u C R ∞∈,且对任何非负整数k 和m ,都有()()s u p k mx Rxu x ∈<+∞,则称()u R ϕ∈.()R ϕ中序列收敛的概念:对于{}()1n n u R ϕ∞=⊂和()u R ϕ∈,如果对任何非负整数m 和k ,都有()()()()()0sup limkkmnn x Rx u x u x →∞∈-= 则称()n u x 在()R ϕ中收敛于()u x .2.速降函数空间上的Fourier 变换(i )定义:设(),R ϕϕ∈称函数[]()(),ix Rx e dx R ξϕξϕξ-=∈⎰F为ϕ的Fourier 变换,也记为();ϕξ∧称函数[]()-11x (),2ix Re d x R ξϕϕξξπ=∈⎰F为ϕ的Fourier 逆变换,也记为()x ϕ∨. (ii )性质:a )设()R ϕϕ∈,对任意正整数m 有()()()[]()()()()[]()11,;m m m m i x ix x ϕξξϕξϕϕ--⎡⎤⎡⎤==-⎣⎦⎣⎦F F F F[]()()()()()[]()()()()()11,.m m mm ix x i x ϕξϕξϕξϕ--⎡⎤⎡⎤=-=⎣⎦⎣⎦F F F Fb) 设()R ϕϕ∈,对任意正整数0a R b R ∈≠∈和,有[]()[]()()()[]()11(),;ia iaxx a e a x e x ξϕξϕξϕξϕ----=-=⎡⎤⎣⎦F F FF[]()[]()()()[]()1111(),.x bx b x b b bbξϕξϕϕξϕ--==⎡⎤⎣⎦F F FFc) 设()12,R ϕϕϕ∈,则[][][][][][]11112121212,2ϕϕϕϕϕϕπϕϕ---*=*=;F F F FF F [][][][][][]111121212121,.2ϕϕϕϕϕϕϕϕπ---=*=*F F F F FF其中12ϕϕ*表示1ϕ与2ϕ的卷积,即()()()()1212,.R x x y y dy x R ϕϕϕϕ*=-∈⎰d )Fourier 变换与Fourier 逆变换都是()R ϕ上的连续线性变换.e )Fourier 变换与Fourier 逆变换互为逆变换. (iii)在速降函数空间中求解热传导方程 考虑热传导方程的Cauchy 问题()()()()()()220,,0,,4.1,0,,4.2u u x t R t xu x g x x R ∂∂-=∈⨯+∞∂∂=∈ 其中()g R ϕ∈.由于()g R ϕ∈,因此,我们猜想Cauchy 问题()()4.1, 4.2的解u 满足(),u t ∙∈()()0.R t ϕ≥将方程()4.1和初值问题()4.2关于x 作Fourier 变换,并利用Fourier 变换的微分性质,得()()20,0,,0,u u t tu g ξξξ∧∧∧∧⎧∂⎪+=>⎪∂⎨⎪=⎪⎩其中R ξ∈.求解这个常微分方程的初值问题,得()()2,,,0.t u t g e R t ξξξξ∧∧-=∈≥关于ξ作Fourier 逆变换,并利用()R ϕ上Fourier 逆变换的线性性质,得(),u x t ()212t ix Rg e e d ξξξξπ∧-=⎰()()22241()21()2().iy t ix R R t i x y R R x y tR g y e dye e d g y e d dy g y e dy ξξξξξξπξπ---+---===⎰⎰⎰⎰⎰ 即问题()()4.1,4.2的解u 具有如下表达式的形式解()()24,(),,0.x y tRu x t g y edy x R t --=∈>⎰特别地,若()22,xg x ex R -=∈,则问题()()4.1,4.2的解u 的形式解为()()()2222442,,,0.x x y y t tRu x t eedy x R t ----+==∈≥且容易验证这个形式解满足方程(4.1)和初值问题(4.2),从而是问题(4.1),(4.2)的解.(iv)在速降函数空间中求解弦振动方程考虑弦振动方程的Cauchy 问题()()()()()()()()()22220,,0,,4.3,0,, 4.4,0,,4.5u ux t R t xu x x x R ux x x R tϕψ∂∂-=∈⨯+∞∂∂=∈∂=∈∂其中()()(),x x R ϕψϕ∈.由于()()(),x x R ϕψϕ∈,因此,我们猜想Cauchy 问题()()4.3 4.5-的解u 满足(),u t ∙∈()()0.R t ϕ≥将方程()4.3和初值问题()()4.4,4.5关于x 作Fourier 变换,并利用Fourier 变换的微分性质,得()()()()()()()2220,0,4.6,0, 4.7,0, 4.8u u t t u ut ξξϕξξψξ∧∧∧∧∧∧⎧∂⎪+=>⎪∂⎪⎪=⎨⎪⎪∂=⎪∂⎪⎩其中R ξ∈.求解这个常微分方程,方程()4.6的通解为()()()12,.i t i t u t C e C e ξξξξξ∧-=+由()()4.7 4.8和,得()()()()()()12121==,.C C C C R i ξξϕξξξψξξξ∧∧+-∈,因此()()()()()()1211=,.22C C R i i ψξψξξϕξξϕξξξξ∧∧∧∧⎛⎫⎛⎫ ⎪ ⎪=+-∈ ⎪ ⎪⎝⎭⎝⎭,从而()()()()()11,22i t i t u t e e i i ξξψξψξξϕξϕξξξ∧∧∧∧∧-⎛⎫⎛⎫ ⎪ ⎪=++-⎪ ⎪⎝⎭⎝⎭()()()()1,,0.(4.9)22i t i t i t i t e e e e R t i ξξξξψξϕξξξ∧∧--=++-∈≥将()()i t i t e e i ξξξ--改写为()1,,0.t i t i t i t e e e d R t i ξξξττξξ---=∈≥⎰ 对()4.9两端同时关于ξ作Fourier 变换,结合上式可得(),u x t ()()()()11222i t i t i t i t ix R e e e e e d i ξξξξξψξϕξξπξ∧∧--⎡⎤⎢⎥=++-⎢⎥⎣⎦⎰ ()()()()()()()()()()()()()()()()()()()1144111222112211,,0.22t i x t i x t i i xR R t t i x t t R t tx tx te e d e d e d x t x t e d d x t x t x d x t x t d x R t ξξξτξξϕξξψξτξππϕϕψξξτπϕϕψττϕϕψξξ∧∧+--∧+--+-=++⎛⎫=++-+ ⎪⎝⎭=++-++=++-+∈≥⎰⎰⎰⎰⎰⎰⎰即问题()()4.3 4.5-的解u 具有如下表达式的形式解()()()()()11,,,0.22x tx tu x t x t x t d x R t ϕϕψξξ+-==++-+∈≥⎰3.广义函数(i )定义:(),D R ()R ε和()R ϕ上的连续线性泛函分别称为()',D R ()'R ε和()'R ϕ广义函数,它们统称为广义函数;(),D R ()R ε和()R ϕ上的全体连续线性泛函分别记为()',D R ()'R ε和()'.R ϕ(ii)判定:a )设F 为()D R 上的线性泛函,则()'F D R ∈的充分必要条件是对任何闭区间[],ab ,存在非负整数~k 和正实数,M 使得()[]()()()[]~,0,,.sup k x a b k kF u M u x u D R a b ∈≤≤≤∈⊂且supp ub )设F 为()R ε上的线性泛函,则()'F R ε∈的充分必要条件是存在闭区间[],a b以及非负整数~k 和正实数,M 使得()[]()()()~,0,.sup k x a b k kF u M u x u R ε∈≤≤≤∈c )设F 为()R ϕ上的线性泛函,则()'F R ϕ∈的充分必要条件是存在非负整数~~,m k 和正实数,M 使得()()()()~~0,0,.supk m x Rm m k kF u Mx u x u R ϕ∈≤≤≤≤≤∈4.广义函数空间上的Fourier 变换(i )定义:设()[]()',f R f Fourier f R ϕϕ∈定义的变换为如下的上的泛函F[][](),,,f f R ϕϕϕϕ=∈,FF也记为;f ∧[]()-1f Fourier f R ϕ定义的逆变换为如下的上的泛函F[][]()-1-1,,,f f R ϕϕϕϕ=∈,F F也记为f ∨. (ii )性质:a )设()'f R ϕ∈,有()[]()[]()'1'1,;f i f f x ix f x ξξ--⎡⎤⎡⎤==-⎣⎦⎣⎦F FFF[]()()()()[]()()()()'11,'.f ixf x f x i f x ξξξξ--=-=⎡⎤⎡⎤⎣⎦⎣⎦F FFF这里,导数指广义导数,乘积是指广义函数与其乘子的乘积.b )Fourier 变换与Fourier 逆变换都是()'R ϕ上的连续线性变换.c )Fourier 变换与Fourier 逆变换互为逆变换.(iii )()'R Fourier ϕ上的变换方法考虑热传导方程的Cauchy 问题()()()()()()220,,0,,4.10,0,,4.11u u x t R t x u x g x x R ∂∂-=∈⨯+∞∂∂=∈ 其中()'g R ϕ∈.由于()g R ϕ∈,因此,我们猜想Cauchy 问题()()4.10,4.11的解u 满足(),u t ∙∈()()'0.R t ϕ≥将方程()4.10和初值问题()4.11关于x 作Fourier 变换,并利用()'R ϕ上Fourier 变换的微分性质,得()()20,0,,0,u u t tu g ξξξ∧∧∧∧⎧∂⎪+=>⎪∂⎨⎪=⎪⎩其中R ξ∈.求解这个常微分方程的初值问题,得()()2,,,0.tu t g eR t ξξξξ∧∧-=∈≥()()()2'',0t g R e t R ξϕϕ∧-∈≥这里是的乘子.关于ξ作Fourier 逆变换,就可以得到问题()()4.10,4.11的形式解. 例:求解问题()()()()()()220,,0,,4.12,0,,4.13u u x t R t x u x x x R δ⎧∂∂-=∈⨯+∞⎪∂∂⎨⎪=∈⎩解:由于初值不是一个普通函数,所以问题()()4.12,4.13的解不可能在 0t =处连续,因此我们需要重新定义u 满足初值条件()4.13的含义.既然g 是一个不是普通函数的()'R ϕ广义函数,因此我们可以把初值条件()4.13定义为:作为()'R ϕ广义函数,(),u t ∙在0t =处等于g ,即()()'0lim ,.t u t g R ϕ+→∙=于下面我们来求解问题()()()4.12,4.13.1, 5.3g ∧=注意到于是由,得()()22,=,,0.ttu t g eeR t ξξξξξ∧∧--=∈≥0t >因此当时,有()()224-14,,.x t tu x t ex R ξ--⎡⎤==∈⎢⎥⎣⎦F()()4.12,4.13于是我们得到问题的形式解()()24,,0.xt u x t x R t -=∈>,()()()0, 5.1.u C R ∞∈⨯+∞容易验证这个形式解满足方程最后验证它还满足初值条件()5.2,即()()()0lim ,,,,.t u x t x R ϕδϕϕϕ+→=∈事实上,对任意的()R ϕϕ∈,有()()()()()()2244,,,xxt t Ru x t x x ex dx ϕϕϕ--==⎰(22,0.yRe dy t ϕ-=>由控制收敛定理可知()()(2lim ,,lim 2y Rt t u x t x e dyϕϕ++-→→=(()200,yRedy ϕϕϕ-===五.Laplace 方程的基本解和Green 函数place 方程的基本解求解全空间上的N (≥2)维Poisson 方程()(), 5.1Nu f x x R -∆=∈的解的表达式,先寻找其次Poisson 方程,即Laplace 方程()0, 5.2Nu x R -∆=∈的径向解,设()(||),N u x w x x R =∈是方程(5.2)的一个解,将u 的表达式代入方程(5.2),得1''(||)'()0,\{0}N N w x w r x R r---=∈也就是说,w 满足方程1''()'()0,0N w r w r r r-+=>即1('())'0,0N r w r r -=>因此1'(),0,N A w r r r -=>其中A 是任意实数.从而2ln ,2(),3N B r C N w r BC N r -+=⎧⎪⎨+≥⎪⎩当,当, 其中B 和C 是任意实数, 定义:称N R 上的函数211ln 22||()1,3(2)||N N N x x N N x πω-⎧=⎪⎪Γ=⎨⎪≥⎪-⎩,当当 为Laplace 方程(5.2)的基本解,也成为Newton 位势,其中N ω是N 维单位球的表面积,Laplace 方程的基本解具有的性质:(1) (\{0})N C R ∞Γ∈,且对任意的\{0}N x R ∈,有()0x ∆Γ=;(2) Γ,1()()Nloc x L R ∇Γ∈,且在广义函数意义下()(),N x x x R δ-∆Γ=∈,即对任意的0()N C R ϕ∞∈,有()()(0)NR x x dx ϕϕ∇Γ⋅∇=⎰或者()()(0)NR x x dx ϕϕΓ⋅∇=-⎰2.Green 函数考虑Poisson 方程的第一边值问题()(),, 5.3u f x x -∆=∈Ω()()(),,5.4u x g x x =∈∂Ω其中Ω是(2)N R N ≥中具有光滑边界的有界区域,设21()()u C C ∈Ω⋂Ω是为题(5.3),(5.4)的解,可以得到对任意的ξ∈Ω,()()()()()(()()),u x x x u x dx u x x u x dS v vξξξΩ∂Ω∂∂Γ-Γ-∆=-+Γ--∂∂⎰⎰ 即()()()()()()(()()), 5.5u x x u x x u x dx x u x dS v vξξξΩ∂Ω∂∂Γ-=Γ-∆+Γ--∂∂⎰⎰其中v 表示∂Ω的单位外法向量,因此,问题(5.3),(5.4)属于21()()C C Ω⋂Ω的解可用(5.5)右侧积分值表示出来,但第二个积分式子中含未知数u 沿外法向量的导数,这是我们所不知道的,注意到由Green 公式可以推出:对任意的21()()v C C ∈Ω⋂Ω,有()()(()()()())(()()),v x u x u x v x v x u x dx u x v x dS v vΩ∂Ω∂∂∆-∆=-∂∂⎰⎰ 即()()()(()()()())(()()). 5.6v x u x u x v x v x f x dx g x v x dS v vΩ∂Ω∂∂∆+=-∂∂⎰⎰由(5.5)和(5.6)得()()()()()[(()())()()()][(()())()()].5.7u u x v x x x v x f x u x v x dx x v x g x dS v v v ξξξξΩ∂Ω=∂∂∂Γ-Γ-++∆+Γ-+-+∂∂∂⎰⎰ 如果21(,)()()()v C C ξξ⋅∈Ω⋂Ω∈Ω是问题()(,)0,,5.8x v x x ξ-∆=∈Ω()(,)(), 5.9v x x x ξξ=-Γ-∈∂Ω的解,那么根据(5.7)有()()()(,)()(),, 5.10G x u G x f x dx g x dS vξξξΩ∂Ω∂=-∈Ω∂⎰⎰其中(,)()(,),(,),.G x x v x x x ξξξξξ=Γ-+∈Ω⨯Ω≠这样我们得到了问题(5.3),(5.4)一个解的表达式(5.10)定义:如果对任意固定的21(,)()()()v C C ξξ⋅∈Ω⋂Ω∈Ω满足方程(5.8)和边值条件(5.9),则我们称定义于{(,):}x x ξξ∈Ω⨯Ω≠上的函数(,)()(,)G x x v x ξξξ=Γ-+为Laplace 算子关于区域Ω的Green 函数,称()x ξΓ-为Green 函数(,)G x ξ的奇异部分,而称(,)v x ξ为Green 函数(,)G x ξ的正则部分,注:如果Green 函数(,)G x ξ的正则部分(,)v x ξ存在,则根据第一边值问题(5.8)(5.9)解的唯一性,可知(,)(,),(,).v x v x x ξξξ=∈Ω⨯Ω因此21()().v C C ∈Ω⨯Ω⋂Ω⨯ΩLaplace 算子关于区域Ω的Green 函数(,)G x ξ具有以下性质: (1) 对任意的(,)x ξ∈Ω⨯Ω,x ξ≠,都有(,)(,);G x G x ξξ=(2) 对任意的ξ∈Ω,有21(,)(\{})(\{}),(,)|0,G C C G ξξξξ∂Ω⋅∈Ω⋂Ω⋅=且对任意的\{}x ξ∈Ω,(,)0x G x ξ∆=;(3) 对任意的ξ∈Ω,有1(,),(,)(),x G G x L ξξ⋅∇∈Ω且在广义函数意义下(,)(),x G x x x ξδξ-∆=-∈Ω.。
微分方程算子法总结
求导 n 次;
1 2 1 1 1 表示积分,如 x= x , x 表示 2 Dn D D
对 x 积分 n 次,不要常数。 2、计算 将 n 阶微分方程改写成下式: D y+a1D y+a2D y+a3D y+ ... +an-1Dy+any=f(x) 即 (D +a1D +a2D +a3D + ... +an-1D+an)y=f(x)
2 2
e2x D1
2
x
2
=
1 4 2x x 12
e
(性质二)
x
-3 ddxy +3 dy dx
*
y=e ,则(D3-3D2+3D-1)y=e
x x
xHale Waihona Puke 特解 y= 3 3 e =e (D -1 ) (D +1-1 )
x
1
1
•
1
=e D 3
d3y 例 5、 3 dx
1 •
1=
3
1 3 x x (性质二) 6
(性质二、四)
1
-x
2
=e
-x
(x
-2)
d2y 2 例 10、 2 +y=xcosx ,则(D +1)y=xcosx , dx
特解 y
1 D 2 +1
*
=
1 D 2 +1
ix
xcosx ,考察
1
1 D 2 +1
xe
ix
xe
= (D - i)(D+ i) xeix=eix (D+ i - i)(D+ i + i) x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3x
sin 2 x
解:方程为 ( D 2 6 D + 13) y = e 3 x sin 2 x , 特解为
y=
=e
=e
=e
1 ( D 2 6 D + 13 )
e
3x
sin 2 x
sin 2 x
=e
3x
Im[e
2 ix 1 D
1 ( ( D + 4 i ) 1)]
3x
1 [( D + 3 ) 2 6 ( D + 3 ) + 13 ]
D y + pDy + qy = Pn ( x ),
2
( D + pD + q ) y = Pn ( x ) .
2
1 Pn ( x ) 特解 y* = 2 D + pD + q
1 次项为止) 将 2 展开为泰勒级数 到 n 次项为止) ( D + pD + q
例. 求特解 2 y"+2 y'+ y = x + 2 x 1
1 1 x 2 t 于是 D 1 2 y = 3 t ,
1 1 x 1 2t 1 2 y = D 3t =
t2 2 3 2 t
两端同乘逆矩阵得
x 2 1 = y 1 1
1 t2 t = 2 3 2 1 2 2 t 2 t
D +1 D +1 D +1 0 系数行列式: 系数行列式: = = ( D + 1)(D 1) = D2 1 ≠ 0 D 2D 1 D D 1
令: 1 = 2t D + 1 3 t 2D 1 = ( 2 D 1) 2 t ( D + 1) 3 t = 1 5 t
D +1 2t 令: 2 = = ( D + 1 ) 3 t D ( 2 t)= 3 t + 1 D 3t 1 1 5 t x= = 2 = ( 1 D 2 D 4 L)(1 5 t ) = 5 t 1 由克莱姆 D 1
算子解法
d d2 dn 2 = D, = D LL n = D n . 规定 dx dx 2 dx
记 D0 = 1 .
对于函数 y = y( x) :
dy = Dy , dx
dny d y 2 LL n = D n y =D y 2 dx dx
2
an D n + an1 D n1 + L + a1 D + a0 称为 n 阶算子多项式.
2
2D 2D 2 D 4 D2 4 D3 2 3 2D + 4D
y* = (1 2 D + 2 D 2 )( x 2 + 2 x 1) = x 2 2 x 1
或. 求特解 2 y"+2 y'+ y = x + 2 x 1
2
( 2 D 2 + 2 D + 1) y = x 2 + 2 x 1, 解:
2
2 y"+2 y'+3 y = x + 2 x 1
2
2
解: 2 D + 2 D + 3) y = x + 2 x 1, (
2 2 1 2 D D 27 3 9
1 求 ( 2 D 2 + 2 D + 3)
3 + 2 D + 2 D 1 + 0D + 0D2 + L 1 + 2 D + 2 D2 3 3
1 D 2 1
( x + 1)
4
= 1 D 2 D 4 D 6 L
则 y* = ( 1 D 2 D 4 )( x 4 + 1)
= ( x 1) (12 x ) 24
4 2
= x 12 x 25
4 2
验证 ( D 2 1) y* = D 2 y * y* = ( 12 x 2 24 ) y *
1 2 2 2 = 1 2 D 2 D2 + L = 1 D D + L 3 9 27 3 3 9
1 2 D 2 D 2 (x 2 + 2 x 1) = 25 + 2 x + 1 x 2 则特解为 y = 27 9 3 27 3 9
(2)自由项
f ( x ) = e v( x )
x = 4 e 3 x cos 2 x
= e 3 x Im[e 2 ix
1 D ( D+4 i )
1]
或.
y"6 y'+13 y = e
1 ( D 2 6 D + 13 )
3x
sin 2 x
i )]
解:方程为 ( D 2 6 D + 13) y = e 3 x sin 2 x , 特解为
y=
1 f (D)
Im[ u( x ) + iv ( x )] = Im[
1 f (D)
( u( x ) + iv ( x ))]
1 f ( D)
Re[u( x ) + iv ( x )] = Re[ f (1D ) ( u( x ) + iv ( x )]
(1)当自由项 f(x)为n 次多项式时 为
λx
是实函数。 v 可以是复数, 其中 λ 可以是复数, ( x ) 是实函数。 此时有公式
1 f ( D)
e v( x) = e
λx
λx
1 f ( D+λ )
v( x)
y"4 y'+4 y = e 2 x 的特解。 的特解。 例.求方程
解:方程为 ( D 2) 2 y = e 2 x .
特解为: 特解为:
(1 + x )
2
= [ x 2 x + 3] =
1 D 2
1 D 2
2 2
x3 3
2
x + 3x
2
1 D 2
又 y* = [(1 D + D )(1 + x )]
= [ (1 D + D )](1 + x )= ( 1 + D )(1 + x )
1 D
=
x3 3
x + 3x 1
2
例. 求特解
2
2
解: 2 D + 2 D + 3) y = x + 2 x 1, (
1 1 = 2D2 + 2D + 3 3 1 2 1 + ( D + D2 ) 3
1 求 ( 2 D 2 + 2 D + 3)
1 2 3 = 1 x + x x +L 1+ x
1 2 4 2 2 2 = 1 ( D + D ) + ( D + D ) + L 3 3 9
2
2 3 2 3
D 2 D2 3 4 4 2 3 D9D 9D
2 9
D + D3
2 4 9
1 2 D 2 D 2 (x 2 + 2 x 1) = 25 + 2 x + 1 x 2 则特解为 y = 27 9 3 27 3 9
或. 求特解
2
2 y"+2 y'+3 y = x + 2 x 1
= x +1
4
例
求
y"+ y' = 1 + x
1 D2 + D
2
的特解。 的特解。
解:方程的算子形式为 ( D 2 + D ) y = 1 + x 2 特解为 y* =
=
1 1 D D +1
[
(1 + x )] =
2
(1 + x ) =
2
1 D
[(1 D + D )(1 + x )]
2 2
1 D ( D +1 )
D 2t D 3t
D ( 3t ) D ( 2t ) t2 1 = = 21= 2 2 2D D D 2D 2 D
D D
x '+ y '+ x + y = 2 t 例 2. 设 , 求特解。 求特解。 y = 3t x '+ 2 y ' ( D + 1) x + ( D + 1) y = 2t 解:算子形式为 Dx + ( 2 D 1) y = 3t
e
3x
sin 2 x
( 3+ 2 i ) x
=
= Im[e 3 x ( sin42 x
x = 4 e 3 x cos 2 x
x cos 2 x 4
1 D 2 6 D +13
Im e
= Im( D2 61D +13 e ( 3+ 2 i ) x )
= Im[e ( 3+ 2 ix )
1 ( D + 3+ 2 i ) 2 6 ( D + 3+ 2 i ) +13
1]
= Im[e ( 3+ 2 i ) x
1 D ( D+4 i )
1]
= Im[e
( 3+ 2 i ) x x 4i
]
微分方程组的算子解法
x '+ y ' = 2 t 例1. 设 ,求特解 x '+ 2 y ' = 3 t D D x 2 t 解:其算子形式为 D 2D y = 3 t