矩形的性质导学案(修改)

合集下载

矩形性质 导学案

矩形性质 导学案
A、矩形是轴对称图形吗?如果是,它有几条对称轴?如果不是,简述你的理由.
①矩形是图形。
B、矩形的一个内角是90°,其他三个内角各是多少度?
已知:如图,四边形ABCD是矩形,∠ABC=90○对角线
AC与BD相交于点O。
求证:(1)∠ABC=∠BCD=∠CDA=∠DAB=90○
(2)AC=BD
②矩形的
表达式:
1.2特殊平行四边形—矩形的性质
一、学习目标
1、经历矩形性质定理的证明过程;
2、能够运用矩形的性质定理进行证明;
二、学习内容
(一)复习引入:
1、一活动的平行四边形木框,当它的一个内角变为直角时,会形成怎样的特殊图形。
(二)新课讲解:
1、定义:平行四边形叫做矩形。
2、性质
(1)具有的所有性质
(2)特性
4、如图,将矩形纸片ABCD沿对角线AC折叠,点B落在点E处。
(1)折叠后重合部分是什么图形?
(2)求证:EF=DF
(四)感悟收获
三、达标检测:
如图,在矩形ABCD中,AE⊥BD于E,∠DAE=2∠BAE,
AB=2.5cm
求①∠EAC的度数
②矩形对角线的长
四、拓展延伸
如图所示,在矩形ABCD中,AB=12,AC=20,两条对角线相交于点O。以OB、OC为邻边作第1个平行四边形OBB1C,对角线相交于点A1,再以A1B1、A1C为邻边作第2个平行四边形A1B1C1C,对角线相交于点O1;再以O1B1、O1C1为邻边作第3个平行四边形O1B1B2C1……以此类推。
(1)求矩形ABCD的面积;
(2) 求第1个平行四边形OBB1C、第2个平行四边形A1B1C1C和第6个平行四边形的面积。
五、课后作业

矩形的性质导学案

矩形的性质导学案

矩形的性质学习目标:1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.2.会初步运用矩形的概念和性质来解决有关问题.学习重点:矩形的性质.学习难点:矩形的性质的灵活应用.学习过程:一、自主学习:1、阅读课本17-18页,思考如下问题:(1)无论∠α如何变化,四边形ABCD还是平行四边形吗?(2)当∠α为直角时,这个时候平行四边形就变成一个特殊的平行四边形──矩形.所以:_____________________________的平行四边形叫做矩形。

2、判断:(1).矩形是轴对称图形,对角线是它的对称轴.()(2).平行四边形也是轴对称图形其对称轴也是对角线.()3、若矩形两邻边之比为3:4,周长为28cm,则它的面积为______.4、矩形ABCD中,AB长为5,BC为3,点E、F将AC三等分,则△BEF的面积为().A.355B C D.5..232完成上述的题目后,将所遇到的问题在小组内进行讨论交流,提出疑难并尝试解决。

二、课内探究:探究一、矩形是特殊的平行四边形,因而它且有平行四边形的所有性质.矩形有哪些平行四边形不具有的特殊性质?已知:矩形ABCD中,对角线AC、BD交于点O求证:AC=BD小组内选派一名同学进行展示巩固练习一:1、矩形具有而平行四边行不具有的的性质是()(A)对角相等(B)对角线相等(C)对角线互相平分(D)对边平行且相等2、矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形周长的和为46cm,对角线AC长为13cm,那么矩形的周长是_____.2、如图:矩形ABCD的两条对角线相交于点O,且∠BOC=2∠AOB,AB=6,则AC =_______.探究二、如图矩形ABCD,对角线相交于O,将目光锁定在Rt△ABC中,你能看到并想到它有什么特殊的性质吗?大胆猜想并尝试证明。

结论:巩固练习二:1、直角三角形斜边上的高与中线分别是5和6,则它的面积是( ) 2、 如图△ABC 中,AB=AC=10,BC=8,AD 平分∠BAC 交BC 于点D ,E 为AC 中点,连接DE ,△DEC 的周长是________.三、 拓展提升:1、如图,在矩形ABCD 中,对角线交于点O ,B E ∥AC 交DC的延长线于E 。

八年级数学下册 19.1.1 矩形的性质导学案1(新版)华东师大版

八年级数学下册 19.1.1 矩形的性质导学案1(新版)华东师大版

八年级数学下册 19.1.1 矩形的性质导学案1(新版)华东师大版19、1、1 矩形的性质【学情分析】学生已经学习了矩形的定义及其性质,本节课主要是让学生进一步熟悉上节课的内容,并能熟练的加以应用,学生应该可以较好的完成学习。

【学习内容分析】本节在上节课的基础上,进一步熟悉,并熟练的加以应用。

【学习目标】1、进一步巩固矩形的定义及其两个性质定理2、能利用相关知识解决实际问题3、培养学生的分析解题能力及演绎推理能力【重难点预测】能利用相关知识解决实际问题【学习过程】一、课前展示,激趣导入:(5分钟)1、上节课典错展析。

2、如图,在矩形ABCD中,1)、边:____________________;2)、角:____________________;3)、对角线:____________________。

二、明确目标、自学指导(2分钟)【自学指导】认真看P100-101的内容,思考:1、在P100例2(1)求AC的长是利用定理(2)为什么S=AB、BC=AC、BE 成立?2、在P100例3中,由“AE垂直取平分线段BO”我们可以得到 = 理由是:3、完成P101练习1三、自主学习,组内交流。

(12分钟)学生看书,完成[自学指导]问题,教师巡视、适当指导,了解普遍问题。

四、组间展示点评,达成共识(7分钟)小组代表展示,小组代表点评、质疑,教师点拨、拓展,控制秩序。

五、当堂检测,及时反馈(5分钟)4个小组:P101练习24个小组:P101练习3六、分层作业,巩固提高【5、6号】P106 习题1,L58-59第 1、3题【3、4号】P106 习题2,L59第 5、6题【1、2号】P106 习题3,L58-59第 2、7、8题。

《矩形的性质》第1课时导学案(二)

《矩形的性质》第1课时导学案(二)

初中数学学科导学案案例(二) 班级小组姓名矩形的性质定理1:_____________________________________⑵已知:如图,矩形ABCD中,AC、BD交于点O.求证:AC=BD矩形的性质定理2:_____________________________________ 通过观察猜想验证,已经掌握了矩形的性质。

二.微视频学习1.洋葱视频分享--认识矩形(4分52秒)2.洋葱视频分享—发现矩形的性质(4分24秒)3.洋葱视频分享—证明矩形的性质(3分54秒)【达标检测】1.判断(1)平行四边形就是矩形。

( )(2)矩形是平行四边形。

( )(3)矩形是轴对称图形不是中心对称图形( )(4)有一个内角是90°的四边形是矩形( )(5)矩形具有而平行四边形不具有的性质()(A)内角和是360°(B)对角相等(C)对边平行且相等(D)对角线相等2.矩形ABCD的周长是56cm,对角线AC与BD相交于点O,△OAB与△ OBC的周长差是4cm,则矩形ABCD的对角线长是 .3.如图,在矩形ABCD中,BE⊥AC于E,若AB=3, BC=4,试求出BE的长.4.如图,矩形ABCD的两条对角线相交于点O,∠AOD=120°,(1)判断△AOB的形状。

(2) 若AB=4cm,求矩形对角线长。

(3)若AE是∠BAD的角平分线, 求∠AEO的度数.请同学们继续思考:1.△AOD是什么三角形?在矩形中还有等腰三角形吗?有多少个?有几对全等等腰的三角形呢?矩形的四个角为直角,有几个直角三角形呢?因此,我们在解决矩形的边角对角线问题时,通常把它转化为和。

这就是我们数学中经常用到的的数学思想。

2、矩形的两条对角线将矩形分成四个等腰三角形,在第一题中,△OAB是什么三角形?大家想一想,矩形中增加什么条件后,会出现等边三角形呢?【反思总结】今天,我们与老朋友-矩形重逢。

又得知了他的一些信息: 矩形是特殊的,所以,它具有。

《矩形第1课时 矩形的性质》精品导学案 人教版八年级数学下册导学案(精品).docx

《矩形第1课时 矩形的性质》精品导学案 人教版八年级数学下册导学案(精品).docx

学习目标:1. 理解矩形的概念,知道矩形与平行四边形的区别与联系.2. 会证明矩形的性质,会用矩形的性质解决简单的问题. 学习重点:矩形的定义、性质及其应用.〉宙主研〈一、 课前检测二、 温故知新1. 平行四边形是怎样定义的?它有哪些性质?请分别用符号语言表示出来.2.如图,现有一个活动的平行四边形,使它的一个内角变化,当内角变化为90°N 这是我们学过的哪个图形?三、预习导航(预习教材第52页,标出你认为重要的关键词)1. 矩形的定义:有一个角是直角的平行四边形叫做 _______ ,也就是长方形.2. 矩形是特殊的平行四边形,你能根据平行四边形的性质,说出矩形的性质吗?四、自学自测1. 矩形是常见的图形,你能举出一些生活中的实例吗?2. _________________________________________ 矩形的定义中有两个条件:一是 ___________________________________________ ,二是 ________________ . 3. 已知矩形的一条对角线与一边的夹角为30° ,则矩形两条对角线相交所得的 锐角为 ________ ;若该矩形的对角线长为4cm,则矩形的两邻边长分别 为 ______ 、 _______ • 五、我的疑惑(反思)师生备注18. 2. 1矩形 第1课时矩形的性质1〉居究点一、要点探究探究点1:矩形的性质思考因为矩形是平行四边形,所以它具有平行四边形的所有性质,由于它有一 个角为直角,它是否具有一般平行四边形所不具有的一些特殊性质呢?活动准备素材:直尺、量角器、橡皮擦、课本、铅笔盒等.(1)请同学们以小组为单位,测量身边的矩形(如书本,课桌,铅笔盒等)的四个角 度数和对角线的长度,并记录测量结果.ACBDZBADZADCZABCZBCD橡皮擦课本桌子(2)根据测量的结果,你有什么猜想?师生备注B:.ZC = ________ ° .A ZB=ZC=ZD=ZA = ____________ ° .②如图,四边形ABCD 是矩形,ZABC=90° ,对角线AC 与DB 相较于点0. 求证:AC=DB.证明:•.•四边形ABCD 是矩形,AAB _____ DC, ZABC=ZDCB= _________在AABC 和ADCB 中,VAB=DC, ZABC=ZDCB, BC= CB, AABC _____ ADCB. /. AC ___________ DB.猜想1矩形的四个角都是 __________ . 猜想2矩形的对角线— 证一证①如图,四边形ABCD 是矩形,ZB=90° . 求证:ZB=ZC=ZD=ZA=90° .证明:•••四边形ABCD 是矩形,A ZB _______ Z D, ZC ________ Z A, AB ________ DC. /. ZB+ZC= _________ ° .A又 V ZB = 90° ,思考请同学们拿出准备好的矩形纸片,折一折,观察并思考. 矩形是不是轴对称图形?如果是,那么对称轴有几条? 要点归纳:矩形除了具有平行四边形所有性质,还具有的性质有: 1. 矩形的四个角都是 _____ •矩形的对角线 _________ • 2. 矩形是 ________ 图形,它有 __ 条对称轴. A 几何语言描述: 在矩形ABCD 中,对角线AC 与DB 相交于点0.A ZABC=ZBCD=ZCDA=ZDAB =90° , AC=DB.B二、精讲点拨例1如图,在矩形ABCD 中,E 是BC 上一点,AE=AD, DF 丄AE ,垂足为F.求证:DF=DC.例2如图,将矩形ABCD 沿着直线BD 折叠,使点C 落在C ,处,BC'交AD 于点E, AD=8, AB=4,求ABED 的面积.方法总结:三、变式训练1.如图,在矩形ABCD 中,对角线AC, BD 交于点0,下列说法错误的是(A. AB 〃DCC. AC±BD2.如图,在矩形ABCD 中,AE 丄BD 于E, ZDAE : 度数.四、课堂小结内容 符号语言B. AC=BD D. 0A=0BZBAE=3: 1,求ZBAE 和 ZEAO 的变式2题图矩形的概念 有一个角是直角的平行 四边形叫做矩形矩形的性质 矩形的四个角都是直角. 矩形的对角线相等./ 星级达标★ 1.已知矩形的一条对角线长为10cm,两条对角线的一个交角为120° ,则矩形的短 边长为 ________ cm.★2.矩形的对角线把矩形分成的三角形中全等三角形一共有( )•C. 6对D. 8对 B.矩形的对角线相等 D.有一个角是直角的四边形是矩形★ ★4.如图,在矩形ABCD 中,连接对角线AC, BD.将AABC 沿BC 方向平移,使点B移到点C,得到ADCE. (1)求证:AACD 竺AEDC.(2)试确定△ BDE 的形状,并说明理由.★★5.已知:如图,0是矩形ABCD 对角线的交点,AE 平分ZBAD, ZA0D=120° ,求 ZAE0的度数.★★★6.如图,在矩形ABCD 中,AB=3, AD=4, P 是AD 上不与A, D 重合的一个动点, 过点P 分别作AC 和BD 的垂线,垂足分别为E, F.求PE+PF 的值.我的反思(收获,不足) 分层作业必做(教材智慧学习配套)选做 参考答案精讲点拨例1试题分析:根据矩形的性质AD 〃BC,AE=AD,可以得到ZDEC=ZADE=ZAED,由DF 丄AE 于F,A. 2对B. 4对★3.下列说法错误的是().A.矩形的对角线互相平分 C.矩形的四个角都相等【详解】证明:连接DE.VAD=AE, .*.ZAED = ZADE.在矩形ABCD 中,AD〃BC, ZC=90° .ZADE=ZDEC,ZDEC = ZAED.又TDF丄AE,.•.ZDFE=ZC=90° .VDE=DE,/. ADFE^ADCE (AAS)..・.DF=DC.例2试题分析:首先根据矩形的性质可得出AD〃BC,即Z2=Z3,然后根据折叠知Z1=Z2, C,D=CD、BC' =BC,可得到Z1=Z3,进而得出BE=DE,设BE=DE=x,则EC' =8-x,利用勾股定理求出x的值,代入面积公式即可求出ABED的面积.详解:•••四边形ABCD是矩形,.・.AD〃BC,即Z2=Z3,由折叠知,Z1=Z2, C‘ D=CD=4、BC, =BC=8,3,即DE=BE,BE=DE=x,则EC' =8n,DEC'中,DC' '+EC' 2=DE242+(8^C)2=X2解得:x=5,ADE的长为5.ABED 的面积=丄DEX AB =丄X5X4=10.2 2变式训练1•试题分析:根据矩形的定义和性质分析判断即可.详解:矩形的性质有①矩形的两组对边分别平行且相等;②矩形的四个角都是直角;③矩形的两条对角线互相平分且相等.所以选项A, B, D正确,C错误.故选C..-.Z1=Z 设在RtA2•试题分析:根据矩形性质得出心血,。

矩形的性质导学案(作课)

矩形的性质导学案(作课)

《矩形及其性质》导学案【学习目标】1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.2.会初步运用矩形的概念和性质来解决有关问题.3.掌握直角三角形斜边中线的性质,并能利用这一性质解决问题.【学习过程】一、复习检测:回顾平行四边形有哪些性质?然后填空。

边:平行四边形的____________________。

符号语言:角:平行四边形的___________________。

符号语言:对角线:平行四边形的对角线________.符号语言: 二、设问导读,合作探究(一)自主学习自学课本P52-53页,完成以下内容。

1. 细心观察平行四边形内角的变化2. 思考:在推动平行四边形的过程中,什么发生变化了?什么没变?答:___________3. 在上述变化过程中,你有没有发现一种熟悉的、更特殊的图形?答:_____________4.通过观察图形特征,我得出概念.叫做矩形.由此可见,矩形是特殊的___________ ,它具有平行四边形的所有性质。

5、拿出一张矩形纸片,请你用折叠的方法,验证它是否是轴对称图形,如果是,说一说它有几条对称轴。

(二)合作探究:矩形还具有什么性质呢:1、猜想:角:________________________________________________。

AB CDO对角线:_______________________________________________________自己用工具测量一下,你的猜想是否正确2、验证猜想已知:如图:四边形ABCD是矩形,∠ABC=900,对角线AC与BD相交于点O。

求证:(1)∠ABC=∠BCD=∠CDA=∠DAB=90°(2)AC= BD证明:(1)∵四边形ABCD是矩形,∴∠ABC=________,∠BCD=________(矩形的对角相等),AB∥________ (矩形的对边平行),∴∠ABC+________=180又∵∠ABC=90°,∴________=90°∴∠ABC=∠BCD=∠CDA=∠DAB=90°(2)∵四边形ABCD是矩形,∴AB=________(矩形的对边相等)在△ABC和△DCB中,∵AB=________∠ABC=________ BC=________∴△ABC≌△DCB∴AC=DB3、归纳:通过猜想,测量,证明,我知道了矩形的性质,即:矩形的四个角______;矩形的对角线______;矩形是轴对称图形。

矩形的性质导学案

矩形的性质导学案

导学案:18.2.1矩形的性质磊口三中杨超教学目标:1. 知识与技能:(1 ).理解并掌握矩形的性质;(2 ).会综合运用矩形的性质以及特殊三角形的性质进行证明计算。

2. 过程与方法:通过教学过程中同学的交流、讨论,并运用课件的直观形象性,加深对矩形性质定理及推论的理解和应用。

3. 情感态度与价值观:从矩形与平行四边形的区别与联系中,体会特殊与一般的关系,渗透集合的思想,培养学生辨证唯物主义观点。

学习重点: 矩形性质定理及特殊三角形的性质。

学习难点: 特殊三角形的性质的综合应用.。

教学过程:一、复习平行四边形的性质二、图片引入三、学生自学出示学习目标与学习指导:1、知道什么是矩形;你还能举出生活中一些矩形的例子吗?2、矩形和平行四边形有什么关系?矩形有哪些性质?3、直角三角形斜边上的中线的性质;4、会用矩形的性质解决实际问题。

自学指导:在5分钟时间内,认真预习课本52-53页内容,努力自己独立完成学习目标。

(手脑并用,相信自己“我能行”!)四、检查自学效果、交流合作、学生展示1、矩形的定义、性质(独立掌握)3、证明矩形的性质(学生展示)4、矩形性质的应用(例题示范)例一:教材53页例题一;例二:例2 :在矩形ABCD中,两条对角线AC、BD相交于点O,AB=6cm,OA=5cm,求BD与AD的长5、直角三角形斜边上的中线的性质(活动,小组交流)五、当堂练习1.矩形的定义中有两个条件:一是____________,二是_________________。

2.有一个角是直角的四边形是矩形。

()3.矩形的对角线互相平分。

()4.下列性质中,矩形不一定具有的是()A、对角线相等B、四个角都相等C、对角线垂直D、是轴对称图形5、已知△ABC是Rt△,∠ABC=900,BD是斜边AC上的中线. (1)若BD=3㎝,则AC=______ ㎝;(2)若∠C=30°,AB=5㎝,则AC=_____㎝,BD=_____㎝.6、在矩形ABCD中,对角线AC与BD相交于点O,已知AB=6,BC=8,(1)求AC=_______,BO=_______,(2)矩形ABCD的周长是______,面积是_____。

19.1.1矩形的性质导学案

19.1.1矩形的性质导学案

19.1矩形的性质导学案班级:姓名:学习目标1.借助几何直观,基于一般与特殊的关系理解矩形的概念.2.通过观察、猜想、验证并证明矩形的性质.3.会用矩形的定义和性质解决简单问题.学习过程活动一:矩形的定义一个平行四边形的活动木框,轻轻的推动它:(1)边的长度是否变化?它仍然是平行四边形吗?(2)角的大小是否发生变化?矩形的定义:有一个角是的叫做矩形,也就是长方形.几何语言:∵▱ABCD,且∠A=90°∵四边形ABCD是矩形∴▱ABCD是矩形∴四边形ABCD是平行四边形,且∠A=90°探究:矩形的性质填一填:平行四边形有哪些性质?对称性边角对角线平行四边形的一般性质矩形是特殊的平行四边形,所以矩形也具有平行四边形的一般性质.矩形还具有哪些特殊性质呢?思考:矩形是不是轴对称图形? 如果是,请同学们折一折看看有几条对称轴?小组合作:准备工作:拿出直尺、量角器、矩形纸片,并连接矩形纸片对角线,并标出字母. (1)请从边、角、对角线观察矩形纸片,小组交流讨论提出矩形特殊性质的猜想?(2)请用量角器、直尺度量;验证发现是否正确?完成猜想一、猜想二的证明过程已知:矩形ABCD,∠A=90°求证:∠A =∠B =∠C =∠D=90°. 证明:矩形的性质定理1:矩形的四个角都是直角. ∵矩形ABCD∴∠ABC=∠BCD=∠CDA=∠DAB =90°.测量 物体∠ABC∠BCD ∠ADC ∠BADACBD已知:矩形ABCD,AC、BD是对角线,求证:AC=BD.证明:方法小结:矩形的性质定理2:矩形的对角线相等.∵AC、BD是矩形ABCD的对角线∴AC=BD.课堂练习1.如图,在矩形ABCD中,对角线AC与BD相交于点O,试找出图中相等的线段与相等的角.对称性边角对角线平行四边形的一般性质矩形的特殊性质探究几何图形性质的一般方法:数学思想:例1如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形周长的和是86cm,矩形的对角线长是13cm,那么该矩形的周长是多少?解:课堂练习2.如图,矩形ABCD的两条对角线相交于点O,∠AOD=120°.求证:AC=2AB3.如图,在矩形ABCD中,点E在边CD上.将该矩形沿AE折叠,恰好使点D 落在边BC上的点F处,如果∠BAF=60°,则∠DAE= .课堂小结:本节课你收获了哪些知识?探究几何图形性质的一般过程是什么?解决问题的过程中,体验到了哪些数学思想方法?作业布置:矩形的性质作业设计:必做题1、2、3;选做题4。

矩形的性质-导学案

矩形的性质-导学案

(26)18.2.1矩形的性质-导学案(总2页)2吉昌中学 八 年 数学(上) 导学案制作人:霍雨佳 复核人:孙鸿雁 审核人: №:26 班级:8.(1)(2)(3)(4) 小组: 课题矩形的性质课 型新授 时 间学习 目标 1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.2.会初步运用矩形的概念和性质来解决有关问题.重 点 矩形的性质. 难 点矩形的性质的灵活应用.学 习 内 容 (资 源)教学 设计【自主学习】 一、温故知新:1.平行四边形的定义:2.平行四边形的性质:二、学习新知:1.思考:拿一个活动的平行四边形,轻轻拉动一个顶点,观察不管怎么拉,它还是一个平行四边形吗为什么当平行四边形移动到一个角是直角时,这时的图形是_______形。

归纳:矩形定义:__________________________________叫做矩形(通常也叫____________).2、矩形的性质:①矩形是一个特殊的平行四边形,它具有四边形和平行四边形所有的性质;②矩形的四个角_____________; ③矩形的对角线_______________;④矩形是轴对称图形,它的对称轴是____________. 【合作探究】1、如图,矩形ABCD ,对角线相交于O , 观察对角线所分成的三角形,你有什么 发现 将目光锁定在Rt △ABC 中,你能 发现它有什么特殊的性质吗如图,在矩形ABCD 中,AC 、BD 相交于点O ,由性质2有AO=BO=CO=DO=21AC=21BD .因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于_____________的一半.2、例1:在矩形ABCD 中,两条对角线AC 、BD 相交于O , ∠AOB =60°,AB=4cm.(1)判断△AOD 的形状;(2)求对角线AC 、BD 的长.例2: 矩形ABCD 中,P 是AD 上一动点,且PE ⊥AC 于点E ,PF ⊥BD 于点F .求证:PE +PF 为定值.【巩固练习】1.下列说法错误的是( ). A 、矩形的对角线互相平分 B 、矩形的对角线相等C 、有一个角是直角的四边形是矩形D 、有一个角是直角的平行四边形叫做矩形2.矩形的对角线把矩形分成的三角形中全等三角形共有( ).A 、2对B 、4对C 、6对D 、8对4.已知矩形的一条对角线长为10cm ,两条对角线的一个交角为120°,则矩形的边长分别为___________________. 3、已知:如图 ,矩形 ABCD 中,AB 长8 cm ,对角线比AD 边长4 cm .求AD 的长及点A 到BD 的距离AE 的长.【课堂检测】1.矩形的两条对角线的夹角为60°,对角线长为15cm ,较短边的长为( ).(A)12cm (B)10cm (C) (D)5cm2.已知:如图,矩形ABCD 的两条对角线AC 、BD 相交于点O ,∠BOC =120°,AB =4cm 。

八年级数学下册 18_2_1.1 矩形的性质导学案(新版)新人教版

八年级数学下册 18_2_1.1 矩形的性质导学案(新版)新人教版

矩形的性质【学习目标】:1、了解矩形与平行四边形的关系; 2、初步认识矩形性质。

3、直角三角形斜边上的中线的性质,并能运用相关性质求解。

【学习重点】:矩形的性质【学习难点】:熟练矩形的性质并利用它的性质解决问题。

一、 自主学习:1、四边形ABCD 是平行四边形 的三个性质: 如图,在ABCD 中,①∵四边形ABCD 是平行四边形 ∴ AB ∥ ,AD ∥ AB = , AD = ②∵四边形ABCD 是平行四边形 ∴ ∠A=∠ , ∠B=∠ ③∵四边形ABCD 是平行四边形 ∴AO= =12 , B O= =12, 2、预习课本第52—53页 三、 合作交流探究与展示: 1、矩形的定义:2.矩形的性质:(在旁边的空白处画一个矩形并通过观察或度量进行归纳) (1)边: ; (2)角: ; (3)对角线: 。

3、归纳:(几何语言)矩形( )平行四边形OAB CD平行四边形矩形图形DCBADCB A边 AB ∥DC ,AD ∥ ,AB=DC ,AD BC AB ∥ ,AD ∥ ,AB=DC ,AD BC角_____A ∠=∠______D ∠=∠ ____________90A ∠=∠=∠=∠=︒对角线1____________2AO ==1______________2BO ==______AC =11____________________22AO ===== 4、小结1、矩形是 的平行四边形2、矩形的两条对角线 。

5、观察下面三个图形,你能从中看到什么?OCBADAB COODCBAAO=BO= = =12 =12 BO 是斜边 上的 线。

BO= = =12结论:直角三角形斜边上的中线等于 的一半。

6、例题:已知:矩形ABCD 的两条对角线相交于点O ,∠AOB=60°,AB=4cm ,求矩形对角线的长及周长。

三、当堂检测:(1、2、3、4题为必做题;5、6题为选做题。

) 1、矩形ABCD 的对角线6AC cm =,则另一条对角线________BD =。

八年级数学下册 18.2.1《矩形》矩形的性质导学案(新版)新人教版

八年级数学下册 18.2.1《矩形》矩形的性质导学案(新版)新人教版

八年级数学下册 18.2.1《矩形》矩形的性质导学案(新版)新人教版一、学习目标1、掌握矩形的性质定理及推论。

2、能熟练应用矩形的性质进行有关证明和计算。

重点:掌握矩形的性质定理难点:利用矩形的性质进行证明和计算二、自主预(复)习1、自学教材52—53页相关内容,思考、完成下列问题。

拿一个活动的平行四边形,轻轻拉动一个顶点,观察不管怎么拉,它还是一个平行四边形吗?为什么?当平行四边形移到到一个角是直角时,这时的图形是______形。

2、归纳:矩形定义:_____________________叫做矩形(通常也叫_________)矩形具有平行四边形的一切性质,它还有以下性质:矩形性质定理1:_______________________________;矩形性质定理2:_______________________________、3、如图,在矩形ABCD中,AC、BD相交于点O,由性质2有AO=BO=CO=DO=AC=BD、因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于_______的一半。

4、填空:(1)矩形的定义中有两个条件:一是____________,二是___________。

(2)已知矩形的一条对角线与一边的夹角为30,则矩形两条对角线相交所得的四个角的度数分别为_____ 、_____ 、_____ 、_____、5、下列说法错误的是()A、矩形的对角线互相平分B、矩形的对角线相等C、有一个角是直角的四边形是矩形D、有一个角是直角的平行四边形叫做矩形6、矩形的对角线把矩形分成的三角形中,全等三角形一共有()A、2对B、4对C、6对D、8对7、Rt△ABC中,两条直角边分别为6和8,则斜边上的中线长为______、8、已知矩形的一条对角线长为10cm,两条对角线的一个交角为120,则矩形的边长分别为_____cm,_____cm,_____cm,_____cm。

三、合作探究ABCDO例1、如图,矩形ABCD的对角线AC,BD相交于点O ,∠AOB=60,AB=4,求矩形对角线的长。

八年级数学下册 18.2.1《矩形》矩形的性质导学案新版新人教版

八年级数学下册 18.2.1《矩形》矩形的性质导学案新版新人教版

八年级数学下册 18.2.1《矩形》矩形的性质导学案新版新人教版18、2、1《矩形》矩形的性质学习目标1、认识矩形的概念和性质,理解矩形与平行四边形的区别与联系。

2、会应用矩形的概念和性质解决有关问题。

3、经历探索矩形的概念和性质及推论的过程,发展合情推理的意识,培养严密的逻辑推理能力。

重点:矩形的性质及其应用、难点:矩形的性质及其应用、时间分配旧知回顾2分钟、自主探知10分钟合作学习15分练习巩固10分课堂小结3分、学案(学习过程)导案(学法指导)学习过程一、回顾旧知:1、平行四边形就有什么性质?(边、角、对角线)2、三角形具有稳定性,那么平行四边形具有稳定性吗?二、自主探知1、矩形的定义:有一个角是直角的平行四边形是矩形、2、矩形就有平行四边形的那些性质?(边、角、对角线)3、矩形既然是特殊的平行四边形,还应该具有特殊的性质,请思考探究:矩形还有什么性质?矩形的四个角都是直角矩形的对角线相等、4、综合总结矩形的性质:矩形性质边对边平行、对边相等角对角相等、四个角都是直角对角线对角线相等且互相平分三、合作学习:1、如图,通过以上对矩形性质的探究,你能进一步发现图中有多少个直角三角形吗?有多少个等腰三角形吗?你能发现线段AO、CO、BO、DO之间的大小关系吗?这四条线段与AC、BD又是什么关系呢?如果只看直角三角形ABC, BO是什么边上的什么线?你能说说这个结论吗?结论:直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于斜边的一半。

2、已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60,AB=4cm,求矩形对角线的长、四、课堂练习P53练习2学案42—探究5[一、导课:1、复习平行四边形的性质、2、从图形是否具备稳定性入手,理解长方形(矩形)是特殊的平行四边形,总结出矩形的定义,进而明白矩形具有平行四边形的一般性质。

二、自主探知1、教师引导解释强调矩形的定义:先判定是平行四边形在加一个直角。

1.2 第1课时 矩形的性质 导学案

1.2 第1课时 矩形的性质 导学案

1.2矩形的性质与判定第1课时矩形的性质【学习目标】1.了解矩形的有关概念,理解并掌握矩形的有关性质.2.经历探索矩形的概念和性质的过程,发展学生合情推理意识;掌握几何思维方法.3.培养严谨的推理能力以及自主合作精神;体会逻辑推理的思维价值.【学习重点】掌握矩形的性质,并学会应用.【学习难点】理解矩形的特殊性质.情景导入生成问题1.菱形的定义是什么?答:一组邻边相等的平行四边形叫做菱形.2.菱形的四条边都相等,菱形的对角线互相垂直.自学互研生成能力知识模块一探索矩形的性质先阅读教材P11-12页的内容,然后完成下列的问题。

1.矩形的定义是什么?答:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).2.矩形具有一般平行四边形的所有性质吗?答:因为矩形是特殊的平行四边形,所以矩形具有一般平行四边形的所有性质.1.拿一个可以活动的平行四边形教具,轻轻拉动一个点并观察,它还是一个平行四边形吗?为什么?(演示拉动过程如图)2.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形.归纳结论:矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).3.学生观察教师的教具,研究其变化情况后,可以发现:矩形是平行四边形的特例,属于平行四边形,因此它具有平行四边形所有性质.思考:矩形还具有哪些特殊的性质?为什么?归纳结论:矩形性质1:矩形的四个角都是直角;矩形性质2:矩形的对角线相等.4.矩形是轴对称图形吗?如果是,它有几条对称轴?答:矩形是轴对称图形,有两条对称轴.5.如图,在矩形ABCD 中,AC 、BD 相交于点O ,探究AO 与BD 的数量关系.归纳结论:直角三角形斜边上的中线等于斜边的一半.知识模块二 矩形性质的应用解答下列各题:1.平行四边形、矩形、菱形都具有的性质是( B )A .对角线相等B .对角线互相平行C .对角线平分一组对角D .对角线互相垂直2.如图,在Rt △ABC 中,∠ACB =90°,AB =10,CD 是AB 边上的中线,则CD 的长是( C )A .20B .10C .5D .52典例讲解:已知:如图,矩形ABCD 的两条对角线相交于点O ,∠AOB =60°,AB =4cm ,求矩形对角线的长. 解:∵四边形ABCD 是矩形.∴AC 与BD 相等且互相平分.∴OA =OB .又∠AOB =60°,∴△OAB 是等边三角形.∴矩形的对角线长AC =BD =2OA =2×4=8cm .对应练习:已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC.求证:CE=EF.证明:∵四边形ABCD是矩形,∴∠B=90°,且AD∥BC.∴∠1=∠2.∵DF⊥AE,∴∠AFD=90°.∴∠B =∠AFD.又AD=AE,∴△ABE≌△DF A(AAS).∴AF=BE.∴EF=EC.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一探索矩形的性质知识模块二矩形性质的应用检测反馈达成目标1.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=3cm,则EF =__3__cm.2.若矩形的一个角的平分线分一边为4cm和3cm的两部分,则矩形的周长为22或20cm.3.已知:如图,矩形ABCD中,AB长8cm,对角线比AD长4cm.求AD的长及点A到BD的距离AE 的长.解:设AD=xcm,则对角线长(x+4)cm,在Rt△ABD中,由勾股定理:x2+82=(x+4)2,解得x=6,则AD=6cm;利用面积公式,可得到两直角边、斜边及斜边上的高有一个基本关系式:AE·DB=AD·AB,解得AE=4.8cm.课后反思查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________。

湘教版八年级《矩形的性质》导学案

湘教版八年级《矩形的性质》导学案

湘教版八年级《矩形的性质》导学案教学目标1. 理解矩形的概念,通过实验操作观察发现矩形的特殊性质,能用演绎推理的方法加以证明,并会运用这些性质进行计算和说理。

2. 经历探索矩形性质的过程,体会研究数学问题的一般方法,发展学生合情推理和演绎推理的能力。

培养学生大胆猜想小心求证的科学态度。

教学重点1.理解矩形的定义,探索矩形的特殊性质2.应用矩形的性质解决简单的数学问题教学难点矩形特殊性质的探索及应用教学过程一、复习回顾新课之前,我们一起来回忆一下平行四边形的相关知识。

请同学们将表格填写完整。

(独立完成,请学生回答)我们知道,一个一般的四边形,使得它的两组对边分别平行,就得到了平行四边形,换言之,平行四边形是特殊的四边形。

那平行四边形中会不会也有特殊的平形四边形呢?带着这个问题,开始第一个探究活动。

请学生以小组为单位,利用平行四边形活动木框,完成活动一的第(1)、第(2)问。

二、合作探究探索新知活动一:归纳矩形的定义如图,用四根木条做一个平行四边形的活动木框,将其直立在桌面上并轻轻推动d点。

细心观察此过程并回答以下问题:(1)在此过程中,四边形的内角_______(有、没有)变化;四边形对边的数量关系_______(有、没有)变化。

四边形abcd仍然保持平行四边形的形状吗?为什么?理由:_________________________________ (2)观察∠dab的变化,当∠dab为直角时, abcd变成了______形,即______形。

(请一个小组派代表上讲台演示并回答有上述活动过程可知,一个平行四边形,使得它的一个角为直角,就得到了矩形。

由此归纳出矩形的定义:有一个角是直角的平行四边形是矩形(板书)强调:①平行四边形②有一个角是直角问一问:根据矩形的定义,如何理解矩形和平行四边形的关系指出:矩形是特殊的平行四边形。

第一,矩形是平行四边形。

因此它应该具有平行四边形的所有性质。

第二,矩形是有一个角是直角的平行四边形。

矩形的性质导学案

矩形的性质导学案

18.2(1)矩形的性质(导学单)一、学习目标:1.知识与技能:掌握矩形的概念和性质,掌握直角三角形斜边上的中线等于斜边的一半的性质.2.数学思考: 理解矩形与平行四边形的区别与联系.3.解决问题: 能运用矩形的性质进行简单的证明和计算.4.情感态度:逐步形成独立思考、主动探索的习惯,形成归纳能力和语言表述能力;二、学习重点、难点:重点:掌握矩形的概念和性质.难点:灵活运用矩形的概念和性质解题;理解矩形与平行四边形的区别与联系.三、学习方法:小组合作探究式.四、导学过程:(一)自主学习知识提炼(学习导航:阅读教材课本52-53页内容,并完成下列问题:)1.有一个内角是的平行四边形叫做矩形,用几何语言表述为:如图,在ABCD中,若=∠BAC,则四边形ABCD是矩形.2.矩形的四个角都是,用几何语言表述为:在矩形ABCD中,== ==90°3.矩形的对角线,用几何语言表述为:在矩形ABCD中,4.如图,在矩形ABCD中,相等的线段有,相等的角 .归纳:1.矩形的定义(如图):有一个角是直角的平行四边形是矩形.2.矩形的性质:(1)矩形是特殊的,所以矩形具有平行四边形所有的性质.(2)对称性:矩形既是图形,也是图形.(3)矩形的边和角的性质:矩形的两组对边.矩形的四个内角 .(4)矩形的对角线:矩形的对角线 .A B C C B A D O O 例题解析例1如图,矩形ABCD 两条对角线相交于点O ,∠AOB =60°,AB=4,求矩形对角线的长.例2如图,在矩形ABCD 中,3=AB ,4=BC ,AC BE ⊥于E ,求出BE 的长.跟踪训练在下面的空白处完成课本53页的练习题(2)(二)合作探究 思维拓展1.矩形和平行四边形的关系为:_________________________________________________________________.2.矩形具有而一般平行四边形不一定具有的性质是____________________________.3.如图,(1)找出图中的直角三角形分别是: . (2)联系矩形对角线的性质说一说你的发现:(3)归纳:直角三角形的斜边上的中线等于 .(4)跟踪训练用上面的性质解释生活中的问题投圈游戏,三位学生正在做投圈游戏,他们分别站在一个直角三角形的三个顶点处,目标物放在斜边的中点处,这样的队形对每个人公平吗?为什么?(三)课堂测试验收成果1.矩形具有而一般平行四边形不具有的性质是()A.对角相等B.对边相等C.对角线相等D.对角线互相平分2.在矩形ABCD中,对角线AC,BD相交于点O,若对角线AC=10cm,边BC=•8cm,•则△ABO的周长为________.3. 如图,矩形ABCD的两条对角线交于点O,且∠AOD=120°,试说明AC=2AB(四)课堂小结畅谈收获(1)知识方面的收获:(2)能力方面的收获:(3)还有哪些疑惑:(4)对同学还有什么温馨提示:作业布置:必做题:课本P60(1、2、3、4)选做题:如图,周长为68的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为().A.98B.196C.280D.28418.2(1)矩形的性质(训练单)一、基础巩固训练:1.已知矩形ABCD的边AB=4,BC=5.则对角线AC的长是.2.如图,矩形ABCD中,35,.过对角线==AB BC交点O作OE AC⊥交AD于E,则AE的长是()A.1.6 B.2.5 C.3 D.3.43.已知一矩形的周长是24cm,相邻两边之比是1:2,那么这个矩形的面积是()A.24cm2 B.32cm2C.48cm2 D.128cm2二、中考预测题:1.如图,已知矩形ABCD的一条对角线AC长8cm,两条对角线的一个交角∠AOB=60°.求这个矩形的周长.2.如图,矩形ABCD的两条对角线相交于点O,∠AOD=120°,AB=4cm.求矩形对角线的长.三、能力提升题:1.如图,在矩形ABCD中,E是边AD上的一点.试说明△BCE的面积与矩形ABCD的面积之间的关系是.2.若矩形的一条角平分线分一边为3cm和5cm两部分,则矩形的周长为()A.22 B.26 C.22或26D.28。

人教版19.2.1矩形的性质导学案定稿

人教版19.2.1矩形的性质导学案定稿

人教版19.2.1矩形的性质导学案定稿矩形的性质学案学习目标1、掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系;2、会初步运用矩形的概念和性质来解决有关问题;3、通过探究平行四边形与矩形的区别与联系,体会特殊与一般的关系学习重点:矩形的性质学习难点:矩形性质的灵活运用教学过程:一、复习旧知1、平行四边形有哪些性质?平行四边形边角对角线对称性二、探究新知 1、多媒体演示;平行四边形活动框架在变化过程中,哪些量发生了变化?哪些量没有变化?从中得到哪些结论?你能试着说明结论是否成立?矩形的定义:有______ 的平行四边形,叫做矩形。

由此可见,矩形是特殊的______ ,它具有平行四边形的所有性质。

2、平行四边形变成矩形时,图形的内角有何特征?平行四边形变成矩形时,两条对角线的长度有什么关系?作为特殊的平行四边形,矩形具有平行四边形的所有性质外,猜一猜还有哪些特殊性质呢?3、证明矩形的两条性质定理及推论 A D ①证明性质1:矩形的四个角都是直角。

口述证明。

已知:四边形ABCD是矩形。

求证:∠A=∠B=∠C=∠D=90°B C ②证明性质2 :矩形的对角线相等。

已知:如图,矩形ABCD中,AC,BD交于O,求证:AC=BD BC证明:OAD③通过以上对矩形性质的探究,进一步发现图中有___个直角三角形,有___个等腰三角形,AO=___=___=___=___ AC=___BD。

在直角三角形ABC,AO是BD边上的。

你能得出什么结论?是不是所有的三角形都有这样的性质?推论:直角三角形斜边上的___线等于 4、看演示得出矩形既是,也是。

三、例题解析例1 如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,DB=8�M, 求:AB,BC 的长。

BCOAD四、学以致用1、矩形具有而平行四边行不具有的的性质是()(A)对角相等(B)对角线相等(C)对角线互相平分(D)对边平行且相等 2、矩形的一条对角线与一边的夹角为40°,则两条对角线相交所成的锐角是()(A)20° (B)40° (C)60° (D)80°3、直角三角形中两条直角边的长分别为12和5,则斜边上的中线()(A)26 (B)13 (C)8.5 (D)6.54、在矩形ABCD中,对角线AC,BD相交于点O,若对角线AC=10cm,?边BC=?8cm,?则△ABO的周长为________.5、如图,E、F分别是矩形ABCD的对角线AC和BD上的点,且AE=DF.求证:BE=CF五、学有所得平行四边形矩形边角对角线对称性六、巩固提升1、若直角三角形斜边上的中线等于最短的直角边长,那么它的最小内角为() 2 、矩形的一边长为15cm,对角线长17cm,则另一边长为。

《矩形的性质》导学案 2022年最新word版

《矩形的性质》导学案 2022年最新word版

2.5 矩 形2.5.1 矩形的性质学习目标:1、理解矩形的意义,知道矩形与平行四边形的区别与联系.2、掌握矩形的性质定理,会用性质定理进行有关的计算与证明.学习重点:矩形的性质.学习难点:用性质定理进行有关的计算与证明. 教学方法:练讲练 学习过程:回忆:如以以下图:〔1〕左图是一个平行四边形,回忆平行四边形有哪些性质?〔2〕四边形具有不稳定性,即当一个四边形的四条边长保持不变时,它的形状是可以变化的.现在使左图的平行四边形保持边长不变,而将一个内角的度数不断变化,那么在变化过程中,何时平行四边形的面积最大?这时这个平行四边形的内角是多少度?为什么〔3〕总结:矩形的定义:有一个角是..... 的平行四边形,叫做矩形. 〔4〕练习:四边形、平行四边形、矩形有什么关系?2.一起探究:在上述变化过程中,当一个内角是90°时,其余三个内角各是多少度? 它的两条对角线长又具有什么关系?〔1〕由于矩形是特殊的平行四边形,因此它具有平行四边形的所有性质,还具有平行四边形不具有的特殊性质......如图,同学们研究矩形的性质,填写下表:〔2〕你能证明以下性质的正确性吗?⑴矩形的四个角都是直角⑵矩形的对角线相等〔1〕矩形具有而一般平行四边形不具有的性质是〔 〕A.对角相等B.对边相等C.对角线相等D.对角线互相平分〔2〕矩形ABCD 的两条对角线相交于点O ,AB=3,BC=4, 那么矩形ABCD 的对角行长是 ,周长是 , 面积是 .变式:右图中,如果矩形ABCD 的两条对角线相交于点O,矩形的性质边角对角线对称性具有平行四边形的所有性质具有平行四边形不具有的特殊性质∠AOB=60°,AB=4cm,求矩形对角线的长,周长和面积.〔3〕如图,在矩形ABCD 中,E 为AD 上一点,EF ⊥CE , 交AB 于点F ,DE=2,矩形的周长为16.且CE=EF.求AE 的长.4.能力提升:〔1〕,矩形ABCD 中,对角线AC ,BD 相交于点O ,过点B 作BE ∥AC,交DC 的延长线于点E.求证:BD=BE.(2)在矩形ABCD 中,AB=3,AD=4,P 为AD 上一点, 过点P 作PE ⊥AC ,PF ⊥BD,垂足分别为E,F.求PE+PF 的值.〔3〕在矩形ABCD 中,AB=3,AD=4,E 为CD 的中点,连接AE 并延长,交BC 的延长线与点F ,连接DF.求DF 的长.课堂小结 课后作业第2课时 一次函数的图象和性质一、学习目标:1、知道一次函数的图象是一条直线,理解正比例函数图象和一次函数图象的关系.2、理解一次函数中k ,b 对函数图象的影响,掌握一次函数的性质.3、培养大胆猜测,乐于质疑的良好品质,体会合作探究的乐趣. 二、重点难点:重点:一次函数的图象和性质难点:对一次函数中的数与形的联系的理解 三、学习过程:A B C DE F A B C D E O PA B CDE F A B C D F E1、复习、回忆:〔1〕、什么叫正比例函数、一次函数?它们之间有什么关系? 〔2〕、正比例函数的图象是什么形状?〔3〕、正比例函数y=kx 〔k 是常数,k ≠0〕中,k 的正负对函数图像有什么影响? 2、合作、探究:1、在同一直角坐标系内做出y=-2x 、y=2x+3、y=2x-3的图像,比一比这三个函数的图象有什么异同并答复下面的问题:(1)这三个函数的图象形状都是___,并且倾斜程度___;(2)函数y=-2x 图象经过原点,一次函数y=-2x +3 的图象与y 轴交于点____,即它可以看作由直线y=-2x 向__平移__单位长度而得到;一次函数y=-2x -3的图象与y 轴交于点____,即它可以看作由直线y=-2x 向__平移__单位长度而得到; 归纳:(1) 所有一次函数y=kx+b 的图象都是________ (2)直线 y=kx+b 与直线y=kx__________(3)直线 y=kx+b 可以看作由直线y=kx___________而得到2、在同一坐标系中用两点法画出函数y=x+1、y=-x+1、y=2x+1、y=-2x+1的图象y观察上面四个一次函数的图象,类比正比例函数y=k x 中k 的正负对图象的影响,表述一次函数的性质. 3、练习检测〔1〕、有以下函数:①y=2x+1, ②y=-3x+4,③y=0.5x,④y=x-6; 其中过原点的直线是________;函数y 随x 的增大而增大的是__________; 函数y 随x 的增大而减小的是___________; 图象在第一、二、三象限的是________ .〔2〕、一次函数y = mx-(m-2), 假设它的图象经过原点,那么m= ;假设它的图象经过一、二、四象限,那么m .〔3〕、对于函数y=mx-3,y 随x 增大而减小,那么该直线经过 象限. 〔4〕、一次函数y=kx+b 中,kb>0,且y 随x 的增大而减小,画出它的大致图象.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学 案 小 结
∴直角三角形斜边上的中线等于斜边长的 .
O B C
【合作探究】
二求证:①矩形的四个角都是直角.
②矩形的对角线相等.
三.如图矩形 ABCD,∠AOD=1200, ,AB=4cm,求矩形对角线长。
A
D O
B
【巩固测评】
C
四、如图,矩形 ABCD 中,AC 与 BD 交于 O 点,BE⊥AC 于 E,CF⊥BD 于 F. 求证: BE=CF.
A D A
① 用几何语言表示:
D O B C

;
D. A O C B
.
3.矩形是轴对称图形,它的对称轴有 . AC,OB=OD=
条,分别是
BD,且 AC=BD 得 OA=
∴矩形对角线的交点 O 到各顶点的距离 的 ,则 OB= AC.
由矩形性质有∠ABC=90°,OA=OB=OC 这说明:Rt△ABC 中,若 OB 是斜边 AC 上
重难点
难点:矩形定义和性质的应用。
导 学 流 程 具体内容 【自学导航】
1.认真阅读课本 94-95 页,独立完成下列问题:
独 1.有一个角是 的 是矩形. 的所有性质. 2.矩形是特殊的平行四边行形,因此它具有 结合下图得到矩形特有的性质: 学 + 对 学 群 学 + 展 示 4.观察下图, ①由矩形性质有 OA=OC= = = . .
红安思源实验学校导学案
年级:八下 科目:数学 主备人:肖婷 尚俊杰 姓名: 审核人:八年级数学组 编号:
课题:矩形的性质 班级:
1.掌握矩形的定义与性质,理解矩形与平行四边形的关系。
学习 目标
2.理解并能运用直角三角形斜边上中线的性质。 3.初步运用矩形的定义、性质解决简单的计算题和证明题。 重点:掌握矩形的定义和性质。
A E O F
B
C

五、如图,在Δ ABC 中,CF⊥AB 于 F,BE⊥AC 于 E,M 为 BC 的中点,EF=6,BC=15, 则,Δ EFM 的周长为多少?
【拓展延伸】 馈 六、如图,四边形 ABCD 是矩形,对角线 AC、BD 相交于 点 O,CE∥DB,交 AB• 的延长线于点 E.求证 AC=CE.
相关文档
最新文档