高三文科第一轮复习数学
2023年高考数学(文科)一轮复习——三角恒等变换 第一课时 两角和与差的正弦、余弦和正切公式
第3节三角恒等变换考试要求 1.会用向量的数量积推导出两角差的余弦公式;2.能利用两角差的余弦公式导出两角差的正弦、正切公式;3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;4.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).1.两角和与差的正弦、余弦和正切公式sin(α±β)=sin__αcos__β±cos__αsin__β.cos(α∓β)=cos__αcos__β±sin__αsin__β.tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式sin 2α=2sin__αcos__α.cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α.tan 2α=2tan α1-tan2α.3.函数f(α)=a sin α+b cos α(a,b为常数),可以化为f(α)=a2+b2sin(α+φ)(其中tan φ=ba)或f(α)=a2+b2·cos(α-φ)(其中tan φ=ab).1.tan α±tan β=tan(α±β)(1∓tan αtan β).2.cos2α=1+cos 2α2,sin2α=1-cos 2α2.3.1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4.1.思考辨析(在括号内打“√”或“×”)(1)两角和与差的正弦、余弦公式中的角α,β是任意的.( ) (2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( )(3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( ) (4)存在实数α,使tan 2α=2tan α.( ) 答案 (1)√ (2)√ (3)× (4)√解析 (3)变形可以,但不是对任意的α,β都成立,α,β,α+β≠π2+k π(k ∈Z ).2.(易错题)已知锐角α,β满足sin α=1010,cos β=255,则α+β=( ) A.3π4 B.π4 C.π6 D.3π4或π4 答案 B解析 ∵sin α=1010,cos β=255, 又α,β为锐角,∴cos α=31010,sin β=55,∴cos(α+β)=cos αcos β-sin αsin β=31010×255-1010×55=22.∵0<α+β<π,∴α+β=π4. 3.计算:1+tan 15°1-tan 15°=________.答案3解析 1+tan 15°1-tan 15°=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)=tan 60°= 3.4.(易错题)tan 10°+tan 50°+3tan 10°tan 50°=________. 答案3解析 ∵tan 60°=tan(10°+50°) =tan 10°+tan 50°1-tan 10°tan 50°, ∴tan 10°+tan 50°=tan 60°(1-tan 10°tan 50°)=3-3tan 10°tan 50°, ∴原式=3-3tan 10°tan 50°+3tan10°tan 50°= 3. 5.(2020·江苏卷)已知sin 2⎝ ⎛⎭⎪⎫π4+α=23,则sin 2α的值是________.答案 13解析 因为sin 2⎝ ⎛⎭⎪⎫π4+α=23, 所以1-cos ⎝ ⎛⎭⎪⎫π2+2α2=23,即1+sin 2α2=23,所以sin 2α=13.6.函数f (x )=sin 2x +3cos 2x 的周期为________. 答案 π解析 f (x )=2⎝ ⎛⎭⎪⎫12sin 2x +32cos 2x=2sin ⎝ ⎛⎭⎪⎫2x +π3,周期T =2π2=π.第一课时 两角和与差的正弦、余弦和正切公式考点一 公式的基本应用1.已知cos α=-45,α∈⎝ ⎛⎭⎪⎫π,3π2,则sin ⎝ ⎛⎭⎪⎫α+π4等于( ) A.-210 B.210 C.-7210 D.7210 答案 C解析 ∵α∈⎝ ⎛⎭⎪⎫π,3π2,且cos α=-45,∴sin α=-35,∴sin ⎝ ⎛⎭⎪⎫α+π4=-35×22+⎝ ⎛⎭⎪⎫-45×22=-7210.2.(2022·贵阳模拟)已知角α,β的顶点为坐标原点,始边与x 轴的非负半轴重合,若角α,β的终边分别与单位圆交于点A ⎝ ⎛⎭⎪⎫x 1,13,B ⎝ ⎛⎭⎪⎫x 2,23,其中x 1<0<x 2,则cos(2α-β)=________. 答案 75-8227解析 由题意可知,sin α=13,sin β=23, 由x 1<0<x 2可知cos α=-1-sin 2α=-223,cos β=1-sin 2β=53,所以cos 2α=⎝ ⎛⎭⎪⎫-2232-⎝ ⎛⎭⎪⎫132=79, sin 2α=2×⎝⎛⎭⎪⎫-223×13=-429, 所以cos(2α-β)=cos 2αcos β+sin 2αsin β=75-8227.3.已知2tan θ-tan ⎝ ⎛⎭⎪⎫θ+π4=7,则tan 2θ=________.答案 -43解析 2tan θ-tan ⎝ ⎛⎭⎪⎫θ+π4=2tan θ-1+tan θ1-tan θ=7,解得tan θ=2,∴tan 2θ=2tan θ1-tan 2θ=2×21-22=-43. 感悟提升 1.使用两角和与差的三角函数公式,首先要记住公式的结构特征. 2.使用公式求值,应先求出相关角的函数值,再代入公式求值.考点二 公式的逆用、变形用 角度1 公式的活用例1 (1)tan 22.5°1-tan 222.5°的值为________.(2)若α+β=-3π4,则(1+tan α)(1+tan β)=________. (3)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________. 答案 (1)12 (2)2 (3)-12 解析 (1)tan 22.5°1-tan 222.5°=12·2tan 22.5°1-tan 222.5°=12tan 45°=12×1=12. (2)tan ⎝ ⎛⎭⎪⎫-3π4=tan(α+β)=tan α+tan β1-tan αtan β=1,所以1-tan αtan β=tan α+tan β,所以1+tan α+tan β+tan αtan β=2, 即(1+tan α)·(1+tan β)=2.(3)∵sin α+cos β=1,cos α+sin β=0,∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1, ∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.角度2 辅助角公式的运用 例2 化简:(1)sin π12-3cos π12; (2)cos 15°+sin 15°; (3)1sin 10°-3sin 80°; (4)315sin x +35cos x .解 (1)法一 原式=2⎝ ⎛⎭⎪⎫12sin π12-32cos π12=2⎝ ⎛⎭⎪⎫sin π6sin π12-cos π6cos π12 =-2cos ⎝ ⎛⎭⎪⎫π6+π12=-2cos π4=- 2.法二 原式=2⎝ ⎛⎭⎪⎫12sin π12-32cos π12=2⎝ ⎛⎭⎪⎫cos π3sin π12-sin π3cos π12 =-2sin ⎝ ⎛⎭⎪⎫π3-π12=-2sin π4=- 2. (2)cos 15°+sin 15°=2(cos 45°cos 15°+sin 45°sin 15°) =2cos(45°-15°) =2×32=62.(3)原式=cos 10°-3sin 10°sin 10°cos 10° =2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°sin 10°cos 10°=4(sin 30°cos 10°-cos 30°sin 10°)2sin 10°cos 10°.=4sin (30°-10°)sin 20°=4.(4)315sin x +35cos x =65⎝ ⎛⎭⎪⎫32sin x +12cos x=65⎝ ⎛⎭⎪⎫sin x cos π6+cos x sin π6=65sin ⎝ ⎛⎭⎪⎫x +π6.感悟提升 1.运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形.公式的逆用和变形应用更能开拓思路,增强从正向思维向逆向思维转化的能力.2.对a sin x +b cos x 化简时,辅助角φ的值如何求要清楚.训练1 (1)下列式子化简正确的是( ) A.cos 82°sin 52°-sin 82°cos 52°=12 B.sin 15°sin 30°sin 75°=14 C.tan 48°+tan 72°1-tan 48°tan 72°= 3D.cos 215°-sin 215°=32(2)(2022·郑州模拟)函数f (x )=cos x -sin ⎝ ⎛⎭⎪⎫x +π6-sin ⎝ ⎛⎭⎪⎫x -π6在[0,π]的值域为________.答案 (1)D (2)[-2,1]解析 (1)选项A 中,cos 82°sin 52°-sin 82°·cos 52°=sin(52°-82°)=sin(-30°) =-sin 30°=-12,故A 错误;选项B 中,sin 15°sin 30°sin 75°=12sin 15°cos 15°=14sin 30°=18,故B 错误; 选项C 中,tan 48°+tan 72°1-tan 48°tan 72°=tan (48°+72°)=tan 120°=-3,故C 错误;选项D 中,cos 215°-sin 215°=cos 30°=32,故D 正确.(2)f (x )=cos x -32sin x -12cos x -32sin x +12cos x =cos x -3sin x =2cos ⎝ ⎛⎭⎪⎫x +π3.∵0≤x ≤π,∴π3≤x +π3≤4π3,则当x +π3=π时,函数取得最小值2cos π=-2,当x +π3=π3时,函数取得最大值2cos π3=2×12=1, 即函数的值域为[-2,1]. 考点三 角的变换例3 (1)已知sin α=255,sin(β-α)=-1010,α,β均为锐角,则β等于( ) A.5π12 B.π3 C.π4 D.π6(2)(2022·大庆模拟)已知α,β∈⎝ ⎛⎭⎪⎫3π4,π,sin(α+β)=-35,sin ⎝ ⎛⎭⎪⎫β-π4=2425,则cos ⎝ ⎛⎭⎪⎫α+π4=________. (3)(2022·兰州模拟)若23sin x +2cos x =1,则sin ⎝ ⎛⎭⎪⎫5π6-x ·cos ⎝ ⎛⎭⎪⎫2x +π3=________.答案 (1)C (2)-45 (3)732解析 (1)因为sin α=255,sin(β-α)=-1010,且α,β均为锐角,所以cos α=55,cos(β-α)=31010, 所以sin β=sin [α+(β-α)] =sin α·cos(β-α)+cos αsin(β-α) =255×31010+55×⎝ ⎛⎭⎪⎫-1010=25250 =22,所以β=π4.故选C.(2)由题意知,α+β∈⎝ ⎛⎭⎪⎫3π2,2π,sin(α+β)=-35<0,所以cos(α+β)=45,因为β-π4∈⎝ ⎛⎭⎪⎫π2,3π4,所以cos ⎝ ⎛⎭⎪⎫β-π4=-725, cos ⎝ ⎛⎭⎪⎫α+π4=cos ⎣⎢⎡⎦⎥⎤(α+β)-⎝ ⎛⎭⎪⎫β-π4 =cos(α+β)cos ⎝ ⎛⎭⎪⎫β-π4+sin(α+β)sin ⎝ ⎛⎭⎪⎫β-π4=-45.(3)由题意可得4sin ⎝ ⎛⎭⎪⎫x +π6=1,令x +π6=t ,则sin t =14,x =t -π6, 所以原式=sin(π-t )cos 2t =sin t (1-2sin 2t )=732.感悟提升 1.求角的三角函数值的一般思路是把“所求角”用“已知角”表示. (1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β等.训练2 (1)已知π2<β<α<3π4,cos(α-β)=1213,sin(α+β)=-35,则sin 2α等于( ) A.5665B.-5665C.1665D.-1635(2)(2021·全国大联考)已知cos ⎝ ⎛⎭⎪⎫α+π6-sin α=435,则sin ⎝ ⎛⎭⎪⎫α+11π6=________.答案 (1)B (2)-45解析 (1)因为π2<β<α<3π4,所以0<α-β<π4,π<α+β<3π2,由cos(α-β)=1213,得sin(α-β)=513,由sin(α+β)=-35,得cos(α+β)=-45, 则sin 2α=sin [(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β) =513×⎝ ⎛⎭⎪⎫-45+1213×⎝ ⎛⎭⎪⎫-35=-5665.故选B. (2)由cos ⎝ ⎛⎭⎪⎫α+π6-sin α=32cos α-12sin α-sin α=32cos α-32sin α=3⎝ ⎛⎭⎪⎫12cos α-32sin α=3cos ⎝ ⎛⎭⎪⎫α+π3=3sin ⎝ ⎛⎭⎪⎫π6-α=435,得sin ⎝ ⎛⎭⎪⎫π6-α=45.sin ⎝ ⎛⎭⎪⎫α+11π6=-sin ⎣⎢⎡⎦⎥⎤2π-⎝ ⎛⎭⎪⎫α+11π6 =-sin ⎝ ⎛⎭⎪⎫π6-α=-45.1.已知α是第二象限角,且tan α=-13,则sin 2α=( ) A.-31010 B.31010C.-35D.35答案 C解析 因为α是第二象限角,且tan α=-13, 所以sin α=1010,cos α=-31010,所以sin 2α=2sin αcos α=2×1010×⎝ ⎛⎭⎪⎫-31010=-35,故选C. 2.已知tan α2=3,则sin α1-cos α=( )A.3B.13 C.-3 D.-13答案 B解析 因为tan α2=3,所以sin α1-cos α=2sin α2cos α21-⎝⎛⎭⎪⎫1-2sin 2α2=cos α2sin α2=1tan α2=13,故选B.3.下列选项中,值为14的是( )A.2sin π12sin 5π12B.13-23cos 215°C.1sin 50°+3cos 50°D.cos 72°·cos 36° 答案 D解析 对于A ,2sin π12sin 5π12=2sin π12cos π12=sin π6=12,故A 错误; 对于B ,13-23cos 215°=-13(2cos 215°-1)=-13cos 30°=-36,故B 错误;对于C ,原式=cos 50°+3sin 50°sin 50°cos 50°=2⎝ ⎛⎭⎪⎫32sin 50°+12cos 50°12sin 100°=2sin 80°12sin 100°=2sin 80°12sin 80°=4,故C 错误;对于D ,cos 36°·cos 72°=2sin 36°·cos 36°·cos 72°2sin 36°=2sin 72°·cos 72°4sin 36°=sin 144°4sin 36°=14,故D 正确.4.(2020·全国Ⅲ卷)已知sin θ+sin ⎝ ⎛⎭⎪⎫θ+π3=1,则sin ⎝ ⎛⎭⎪⎫θ+π6等于( ) A.12 B.33 C.23 D.22答案 B解析 因为sin θ+sin ⎝ ⎛⎭⎪⎫θ+π3 =sin ⎝ ⎛⎭⎪⎫θ+π6-π6+sin ⎝ ⎛⎭⎪⎫θ+π6+π6 =sin ⎝ ⎛⎭⎪⎫θ+π6cos π6-cos ⎝ ⎛⎭⎪⎫θ+π6sin π6+ sin ⎝ ⎛⎭⎪⎫θ+π6cos π6+cos ⎝ ⎛⎭⎪⎫θ+π6sin π6=2sin ⎝ ⎛⎭⎪⎫θ+π6cos π6=3sin ⎝ ⎛⎭⎪⎫θ+π6=1. 所以sin ⎝ ⎛⎭⎪⎫θ+π6=33. 5.若sin ⎝ ⎛⎭⎪⎫π6-θ=35,则sin ⎝ ⎛⎭⎪⎫π6+2θ=( ) A.-2425 B.2425 C.-725 D.725答案 D解析 法一 因为sin ⎝ ⎛⎭⎪⎫π6-θ=35, 所以sin ⎝ ⎛⎭⎪⎫π6+2θ=sin ⎣⎢⎡⎦⎥⎤π2-2⎝ ⎛⎭⎪⎫π6-θ =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π6-θ=1-2sin 2⎝ ⎛⎭⎪⎫π6-θ =1-2×⎝ ⎛⎭⎪⎫352=725.故选D. 法二 因为sin ⎝ ⎛⎭⎪⎫π6-θ=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π6-θ=cos ⎝ ⎛⎭⎪⎫π3+θ=35,所以cos ⎝ ⎛⎭⎪⎫2π3+2θ=2×⎝ ⎛⎭⎪⎫352-1=-725. 因为cos ⎝ ⎛⎭⎪⎫π2+π6+2θ=-sin ⎝ ⎛⎭⎪⎫π6+2θ, 所以sin ⎝ ⎛⎭⎪⎫π6+2θ=725. 6.若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝ ⎛⎭⎪⎫π4-β2=33,则cos ⎝ ⎛⎭⎪⎫α+β2等于( ) A.33B.-33C.539D.-69答案 C解析 cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2 =cos ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫π4+α·sin ⎝ ⎛⎭⎪⎫π4-β2. ∵0<α<π2,则π4<π4+α<3π4,∴sin ⎝ ⎛⎭⎪⎫π4+α=223. 又-π2<β<0,则π4<π4-β2<π2,∴sin ⎝ ⎛⎭⎪⎫π4-β2=63. 故cos ⎝ ⎛⎭⎪⎫α+β2=13×33+223×63=539.故选C. 7.sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)=________.答案 sin(α+γ)解析 sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)=sin(α+β)cos(β-γ)-cos(α+β)sin(β-γ)=sin[(α+β)-(β-γ)]=sin(α+γ).8.(2020·浙江卷)已知tan θ=2,则cos 2θ=________,tan ⎝ ⎛⎭⎪⎫θ-π4=________. 答案 -35 13解析 由题意,cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2 θcos 2θ+sin 2 θ=1-tan 2θ1+tan 2θ=1-41+4=-35. tan ⎝ ⎛⎭⎪⎫θ-π4=tan θ-tan π41+tan θ·tan π4=tan θ-11+tan θ=2-11+2=13.9.tan 25°-tan 70°+tan 70°tan 25°=________.答案 -1解析 ∵tan 25°-tan 70°=tan(25°-70°)·(1+tan 25°tan 70°)=tan(-45°)(1+tan 25°tan 70°)=-1-tan 25°tan 70°,∴tan 25°-tan 70°+tan 70°tan 25°=-1.10.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值;(2)求cos β的值.解 (1)∵α,β∈⎝ ⎛⎭⎪⎫0,π2,∴-π2<α-β<π2. 又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010.(2)由(1)可得,cos(α-β)=31010.∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=45×31010+35×⎝ ⎛⎭⎪⎫-1010=91050. 11.已知cos ⎝ ⎛⎭⎪⎫α-β2=-19,sin ⎝ ⎛⎭⎪⎫α2-β=23,且π2<α<π,0<β< π2,求cos(α+β).解 由已知,得π2<α-β2<π,0<α2-β<π2,∴sin ⎝ ⎛⎭⎪⎫α-β2=459,cos ⎝ ⎛⎭⎪⎫α2-β=53, ∴cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-β2-⎝ ⎛⎭⎪⎫α2-β =cos ⎝ ⎛⎭⎪⎫α-β2cos ⎝ ⎛⎭⎪⎫α2-β+sin ⎝ ⎛⎭⎪⎫α-β2·sin ⎝ ⎛⎭⎪⎫α2-β =⎝ ⎛⎭⎪⎫-19×53+459×23=7527. 则cos(α+β)=2cos 2α+β2-1=-239729.12.若cos 2 α-cos 2β=a ,则sin(α+β)sin(α-β)等于( )A.-a 2B.a 2C.-aD.a答案 C解析 sin(α+β)sin(α-β)=(sin αcos β+cos αsin β)·(sin αcos β-cos αsin β)=sin 2αcos 2β-cos 2αsin 2 β=(1-cos 2α)cos 2β-cos 2α(1-cos 2β)=cos 2β-cos 2α=-a .13.已知sin 10°+m cos 10°=2cos 140°,则m =________.答案 - 3解析 由题意可得m =2cos 140°-sin 10°cos 10°=-2cos 40°-sin 10°cos 10°=-2cos (30°+10°)-sin 10°cos 10°=-3cos 10°cos 10°=- 3.14.(2021·合肥质检)已知函数f (x )=cos 2x +sin ⎝ ⎛⎭⎪⎫2x -π6. (1)求函数f (x )的最小正周期;(2)若α∈⎝ ⎛⎭⎪⎫0,π2,f (α)=13,求cos 2α.解 (1)∵f (x )=cos 2x +32sin 2x -12cos 2x =32sin 2x +12cos 2x =sin ⎝ ⎛⎭⎪⎫2x +π6, ∴函数f (x )的最小正周期T =2π2=π.(2)由f (α)=13,可得sin ⎝ ⎛⎭⎪⎫2α+π6=13. ∵α∈⎝ ⎛⎭⎪⎫0,π2,∴2α+π6∈⎝ ⎛⎭⎪⎫π6,7π6. 又∵0<sin ⎝ ⎛⎭⎪⎫2α+π6=13<12, ∴2α+π6∈⎝ ⎛⎭⎪⎫5π6,π. ∴cos ⎝⎛⎭⎪⎫2α+π6=-223. ∴cos 2α=cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2α+π6-π6 =cos ⎝ ⎛⎭⎪⎫2α+π6cos π6+sin ⎝ ⎛⎭⎪⎫2α+π6·sin π6 =1-266.。
2023年高考数学(文科)一轮复习——对数与对数函数
第6节对数与对数函数考试要求 1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用;2.理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点,会画底数为2,10,12的对数函数的图象;3.体会对数函数是一类重要的函数模型;4.了解指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数.1.对数的概念如果a x=N(a>0,且a≠1),那么x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.2.对数的性质、运算性质与换底公式(1)对数的性质:①a log a N=N;②log a a b=b(a>0,且a≠1).(2)对数的运算性质如果a>0且a≠1,M>0,N>0,那么①log a(MN)=log a M+log a N;②log a MN=log a M-log a N;③log a M n=n log a M(n∈R).(3)换底公式:log b N=log a Nlog a b(a,b均大于零且不等于1,N>0).3.对数函数及其性质(1)概念:函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).(2)对数函数的图象与性质a>10<a<1图象性质定义域:(0,+∞)值域:R当x =1时,y =0,即过定点(1,0)当x >1时,y >0;当0<x <1时,y <0当x >1时,y <0;当0<x <1时,y >0在(0,+∞)上是增函数在(0,+∞)上是减函数4.反函数指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,它们的图象关于直线y =x 对称.1.换底公式的两个重要结论(1)log a b =1log b a (a >0,且a ≠1;b >0,且b ≠1).(2)log am b n =nm log a b (a >0,且a ≠1;b >0;m ,n ∈R ,且m ≠0). 2.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.3.对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝ ⎛⎭⎪⎫1a ,-1,函数图象只在第一、四象限.1.思考辨析(在括号内打“√”或“×”) (1)log 2x 2=2log 2x .( )(2)函数y =log 2(x +1)是对数函数.( ) (3)函数y =ln1+x1-x与y =ln(1+x )-ln(1-x )的定义域相同.( ) (4)当x >1时,若log a x >log b x ,则a <b .( ) 答案 (1)× (2)× (3)√ (4)×解析 (1)log 2x 2=2log 2|x |,故(1)错误.(2)形如y =log a x (a >0,且a ≠1)为对数函数,故(2)错误. (4)若0<b <1<a ,则当x >1时,log a x >log b x ,故(4)错误.2.(2021·全国甲卷)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量,通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录法的数据V 满足L =5+lg V .已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为(1010≈1.259)( ) A.1.5 B.1.2 C.0.8D.0.6答案 C解析 由题意知,4.9=5+lg V ,得lg V =-0.1,得V =10-110=11010≈11.259≈0.8,所以该同学视力的小数记录法的数据约为0.8.3.(2021·天津卷)设a =log 2 0.3,b =log 120.4,c =0.40.3,则a ,b ,c 的大小关系为( )A.a <b <cB.c <a <bC.b <c <aD.a <c <b答案 D解析 ∵log 20.3<log 21=0,∴a <0. ∵log 120.4=-log 20.4=log 252>log 22=1,∴b >1.∵0<0.40.3<0.40=1,∴0<c <1, ∴a <c <b .4.(易错题)函数y =log a (x -1)+2(a >0,且a ≠1)的图象恒过的定点是________. 答案 (2,2)解析 当x =2时,函数y =log a (x -1)+2(a >0,且a ≠1)的值为2,所以图象恒过定点(2,2).5.(易错题)已知lg x +lg y =2lg(x -2y ),则xy =________. 答案 4解析 ∵lg x +lg y =2lg(x -2y ), ∴lg(xy )=lg(x -2y )2,∴⎩⎪⎨⎪⎧x >0,y >0,x -2y >0,xy =(x -2y )2,即⎩⎪⎨⎪⎧x >2y ,y >0,(x -y )(x -4y )=0,则x =4y >0,∴xy =4.6.若函数y =log a x (a >0,a ≠1)在[2,4]上的最大值与最小值的差是1,则a =________. 答案 2或12解析 当0<a <1时,f (x )=log a x 在[2,4]上单调递减,故f (x )max =f (2),f (x )min =f (4),则f (2)-f (4)=log a 12=1,解得a =12.当a >1时,f (x )在[2,4]上单调递增,此时f (x )max =f (4),f (x )min =f (2),则f (4)-f (2)=log a 2=1,解得a =2.考点一 对数的运算1.(2020·全国Ⅰ卷)设a log 34=2,则4-a =( ) A.116 B.19C.18D.16答案 B解析 法一 因为a log 34=2,所以log 34a =2,则4a =32=9,所以4-a =14a =19. 法二 因为a log 34=2,所以a =2log 34=2log 43=log 432=log 49,所以4-a =4-log 49=4log 49-1=9-1=19.2.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( ) A.1010.1 B.10.1 C.lg 10.1D.10-10.1答案 A解析 依题意,m 1=-26.7,m 2=-1.45,代入所给公式得52lg E 1E 2=-1.45-(-26.7)=25.25.所以lg E 1E 2=25.25×25=10.1,即E 1E 2=1010.1.3.(2021·天津卷)若2a =5b =10,则1a +1b =( ) A.-1 B.lg 7 C.1 D.log 710答案 C解析 ∵2a =5b =10, ∴a =log 210,b =log 510,∴1a +1b =1log 210+1log 510=lg 2+lg 5=lg 10=1.4.计算:(1-log 63)2+log 62·log 618log 64=________.答案 1解析 原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.感悟提升 1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后用对数运算法则化简合并.2.先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.3.a b =N ⇔b =log a N (a >0,且a ≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.考点二 对数函数的图象及应用例1 (1)函数f (x )=log a |x |+1(0<a <1)的图象大致为( )(2)若方程4x =log a x 在⎝ ⎛⎦⎥⎤0,12上有解,则实数a 的取值范围为________.答案 (1)A (2)⎝⎛⎦⎥⎤0,22解析 (1)由函数f (x )的解析式可确定该函数为偶函数,图象关于y 轴对称.设g (x )=log a |x |,先画出x >0时,g (x )的图象,然后根据g (x )的图象关于y 轴对称画出x <0时g (x )的图象,最后由函数g (x )的图象向上整体平移一个单位长度即得f (x )的图象,结合图象知选A.(2)若方程4x =log a x 在⎝ ⎛⎦⎥⎤0,12上有解,则函数y =4x 和函数y =log a x 的图象在⎝ ⎛⎦⎥⎤0,12上有交点,由图象知⎩⎨⎧0<a <1,log a 12≤2,解得0<a ≤22. 感悟提升 对数函数图象的识别及应用方法(1)在识别函数图象时,要善于利用已知函数的性质,函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.训练1 (1)已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图,则下列结论成立的是( )A.a >1,c >1B.a >1,0<c <1C.0<a <1,c >1D.0<a <1,0<c <1(2)已知函数f (x )=⎩⎨⎧log 2x ,x >0,3x ,x ≤0,关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________. 答案 (1)D (2)(1,+∞)解析 (1)由该函数的图象通过第一、二、四象限知该函数为减函数,∴0<a <1,∵图象与x 轴的交点在区间(0,1)之间,∴该函数的图象是由函数y =log a x 的图象向左平移不到1个单位长度后得到的,∴0<c <1.(2)问题等价于函数y =f (x )与y =-x +a 的图象有且只有一个交点,结合函数图象可知a >1.考点三 解决与对数函数的性质有关的问题 角度1 比较大小例2 (1)已知a =2-13,b =log 213,c =log 1213,则( )A.a >b >cB.a >c >bC.c >b >aD.c >a >b(2)若实数a ,b ,c 满足log a 2<log b 2<log c 2<0,则下列关系中正确的是( ) A.a <b <c B.b <a <c C.c <b <aD.a <c <b(3)(2021·衡水中学检测)已知a =⎝ ⎛⎭⎪⎫120.2,b =log 120.2,c =a b ,则a ,b ,c 的大小关系是( ) A.a <b <c B.c <a <b C.a <c <bD.b <c <a答案 (1)D (2)C (3)B解析 (1)∵0<a <1,b =log 213=-log 23<0,c =log 1213=log 23>1.∴c >a >b .(2)根据不等式的性质和对数的换底公式可得1log 2a <1log 2b <1log 2c <0,即log 2c <log 2b <log 2a <0, 可得c <b <a <1.故选C.(3)函数y =⎝ ⎛⎭⎪⎫12x与y =log 12x 的图象关于直线y =x 对称,则0<⎝ ⎛⎭⎪⎫120.2<1<log 120.2,∴a <b .又c =a b =⎝ ⎛⎭⎪⎫120.2log 120.2=⎝ ⎛⎭⎪⎫12log 120.20.2=0.20.2<⎝ ⎛⎭⎪⎫120.2=a ,所以b >a >c . 角度2 解对数不等式例3 (1)(2022·太原质检)定义在R 上的奇函数f (x ),当x ∈(0,+∞)时,f (x )=log 2x ,则不等式f (x )<-1的解集是________.(2)不等式log a (a 2+1)<log a (2a )<0,则a 的取值范围是________. 答案 (1)(-∞,-2)∪⎝ ⎛⎭⎪⎫0,12 (2)⎝ ⎛⎭⎪⎫12,1解析 (1)设x <0,则-x >0, ∴f (x )=-f (-x )=-log 2(-x ), ∴f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,0,x =0,-log 2(-x ),x <0.当x >0时,f (x )<-1,即log 2x <-1=log 212,解得0<x <12. 当x <0时,f (x )<-1,即-log 2(-x )<-1, 则log 2(-x )>1=log 22,解得x <-2. 当x =0时,f (x )=0<-1显然不成立.综上,原不等式的解集为(-∞,-2)∪⎝ ⎛⎭⎪⎫0,12.(2)由题意得a >0且a ≠1, 故必有a 2+1>2a .又log a (a 2+1)<log a (2a )<0,所以0<a <1, 所以2a >1,即a >12. 综上,12<a <1.角度3 对数型函数性质的综合应用 例4 已知函数f (x )=log 2⎝ ⎛⎭⎪⎫12x +a .(1)若函数f (x )是R 上的奇函数,求a 的值;(2)若函数f (x )的定义域是一切实数,求a 的取值范围;(3)若函数f (x )在区间[0,1]上的最大值与最小值的差不小于2,求实数a 的取值范围.解 (1)若函数f (x )是R 上的奇函数,则f (0)=0,∴log 2(1+a )=0,∴a =0.当a =0时,f (x )=-x 是R 上的奇函数. 所以a =0.(2)若函数f (x )的定义域是一切实数, 则12x +a >0恒成立.即a >-12x 恒成立,由于-12x ∈(-∞,0), 故只要a ≥0,则a 的取值范围是[0,+∞).(3)由已知得函数f (x )是减函数,故f (x )在区间[0,1]上的最大值是f (0)=log 2(1+a ),最小值是f (1)=log 2⎝ ⎛⎭⎪⎫12+a .由题设得log 2(1+a )-log 2⎝ ⎛⎭⎪⎫12+a ≥2,则log 2(1+a )≥log 2(4a +2). ∴⎩⎪⎨⎪⎧1+a ≥4a +2,4a +2>0,解得-12<a ≤-13. 故实数a 的取值范围是⎝ ⎛⎦⎥⎤-12,-13.感悟提升 1.比较对数值的大小与解形如log a f (x )>log a g (x )的不等式,主要是应用函数的单调性求解,如果a 的取值不确定,需要分a >1与0<a <1两种情况讨论. 2.与对数函数有关的复合函数的单调性问题,必须弄清三方面的问题:一是定义域,所有问题都必须在定义域内讨论;二是底数与1的大小关系;三是复合函数的构成,即它是由哪些基本初等函数复合而成的.训练2 (1)(2019·天津卷)已知a =log 27,b =log 38,c =0.30.2,则a ,b ,c 的大小关系为( ) A.c <b <aB.a <b <cC.b <c <aD.c <a <b(2)若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上单调递减,则a 的取值范围为________.(3)已知函数f (x )=log a (8-ax )(a >0,且a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围是________.答案 (1)A (2)[1,2) (3)⎝ ⎛⎭⎪⎫1,83 解析 (1)显然c =0.30.2∈(0,1).因为log 33<log 38<log 39,所以1<b <2.因为log 27>log 24=2,所以a >2.故c <b <a .(2)令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a , 要使函数在(-∞,1]上递减,则有⎩⎪⎨⎪⎧g (1)>0,a ≥1,即⎩⎪⎨⎪⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[1,2).(3)当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数,由f (x )>1在区间[1,2]上恒成立,则f (x )min =f (2)=log a (8-2a )>1,即8-2a >a ,且8-2a >0,解得1<a <83.当0<a <1时,f (x )在[1,2]上是增函数,由f (x )>1在区间[1,2]上恒成立,知f (x )min =f (1)=log a (8-a )>1,且8-2a >0.∴8-a <a 且8-2a >0,此时解集为∅.综上可知,实数a 的取值范围是⎝ ⎛⎭⎪⎫1,83.1.已知b >0,log 5b =a ,lg b =c ,5d =10,则下列等式一定成立的是( )A.d =acB.a =cdC.c =adD.d =a +c 答案 B解析 ∵log 5b =a ,lg b =c ,∴5a =b ,10c =b .又∵5d =10,∴5a =b =10c =(5d )c =5cd ,∴a =cd .2.(2021·濮阳模拟)已知函数f (x )=lg ⎝ ⎛⎭⎪⎫3x +43x +m 的值域是全体实数,则实数m 的取值范围是( )A.(-4,+∞)B.[-4,+∞)C.(-∞,-4)D.(-∞,-4]答案 D解析 由题意可知3x +43x +m 能取遍所有正实数.又3x +43x +m ≥m +4,所以m +4≤0,即m ≤-4.∴实数m 的取值范围为(-∞,-4].3.若函数f (x )=|x |+x 3,则f (lg 2)+f ⎝ ⎛⎭⎪⎫lg 12+f (lg 5)+f ⎝ ⎛⎭⎪⎫lg 15=( ) A.2B.4C.6D.8答案 A 解析 由于f (x )=|x |+x 3,得f (-x )+f (x )=2|x |.又lg 12=-lg 2,lg 15=-lg 5.所以原式=2|lg 2|+2|lg 5|=2(lg 2+lg 5)=2.4.(2021·新高考Ⅱ卷)已知a =log 52,b =log 83,c =12,则下列判断正确的是( )A.c <b <aB.b <a <cC.a <c <bD.a <b <c答案 C解析 a =log 52<log 55=12=log 822<log 83=b ,即a <c <b .5.在同一直角坐标系中,函数y =1a x ,y =log a ⎝ ⎛⎭⎪⎫x +12(a >0,且a ≠1)的图象可能是( )答案 D解析 若a >1,则y =1a x 单调递减,A ,B ,D 不符合,且y =log a ⎝ ⎛⎭⎪⎫x +12过定点⎝ ⎛⎭⎪⎫12,0,C 项不符合,因此0<a <1.当0<a <1时,函数y =a x 的图象过定点(0,1),在R 上单调递减,于是函数y =1a x的图象过定点(0,1),在R 上单调递增,函数y =log a ⎝ ⎛⎭⎪⎫x +12的图象过定点⎝ ⎛⎭⎪⎫12,0,在(-12,+∞)上单调递减.因此, 选项D 中的两个图象符合.6.已知函数f (x )=log 2(1-|x |),则关于函数f (x )有下列说法:①f (x )的图象关于原点对称;②f (x )的图象关于y 轴对称;③f (x )的最大值为0;④f (x )在区间(-1,1)上单调递增.其中正确的是( )A.①③B.①④C.②③D.②④答案 C解析f(x)=log2(1-|x|)为偶函数,不是奇函数,∴①错误,②正确;根据f(x)的图象(图略)可知④错误;∵1-|x|≤1,∴f(x)≤log21=0,故③正确.7.(2021·济南一中检测)已知函数y=log a(2x-3)+2(a>0且a≠1)的图象恒过定点A,若点A也在函数f(x)=3x+b的图象上,则b=________.答案-7解析令2x-3=1,得x=2,∴定点为A(2,2),将定点A的坐标代入函数f(x)中,得2=32+b,解得b=-7.8.计算:lg 25+lg 50+lg 2·lg 500+(lg 2)2=________.答案 4解析原式=2lg 5+lg(5×10)+lg 2·lg(5×102)+(lg 2)2=2lg 5+lg 5+1+lg 2·(lg 5+2)+(lg 2)2=3lg 5+1+lg 2·lg 5+2lg 2+(lg 2)2=3lg 5+2lg 2+1+lg 2(lg 5+lg 2)=3lg 5+2lg 2+1+lg 2=3(lg 5+lg 2)+1 =4.9.函数f(x)=log2x·log2(2x)的最小值为________.答案-1 4解析依题意得f(x)=12log2x·(2+2log2x)=(log2x)2+log2x=⎝ ⎛⎭⎪⎫log2x+122-14≥-14,当log2x=-12,即x=22时等号成立,所以函数f(x)的最小值为-14.10.已知f(x)是定义在R上的偶函数,且当x≥0时,f(x)=log a(x+1)(a>0,且a≠1).(1)求函数f (x )的解析式;(2)若-1<f (1)<1,求实数a 的取值范围.解 (1)当x <0时,-x >0,由题意知f (-x )=log a (-x +1),又f (x )是定义在R 上的偶函数,所以f (-x )=f (x ).所以当x <0时,f (x )=log a (-x +1),所以函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧log a (x +1),x ≥0,log a (-x +1),x <0.(2)因为-1<f (1)<1,所以-1<log a 2<1,所以log a 1a <log a 2<log a a .①当a >1时,原不等式等价于⎩⎨⎧1a <2,a >2,解得a >2; ②当0<a <1时,原不等式等价于⎩⎨⎧1a >2,a <2,解得0<a <12.综上,实数a 的取值范围为⎝ ⎛⎭⎪⎫0,12∪(2,+∞). 11.已知函数f (x )=log 21+ax x -1(a 为常数)是奇函数. (1)求a 的值与函数f (x )的定义域;(2)若当x ∈(1,+∞)时,f (x )+log 2(x -1)>m 恒成立,求实数m 的取值范围.解 (1)因为函数f (x )=log 21+ax x -1是奇函数,所以f (-x )=-f (x ),所以log21-ax-x-1=-log21+axx-1,即log2ax-1x+1=log2x-11+ax,所以a=1,f(x)=log21+x x-1,令1+xx-1>0,解得x<-1或x>1,所以函数的定义域为{x|x<-1或x>1}.(2)f(x)+log2(x-1)=log2(1+x),当x>1时,x+1>2,所以log2(1+x)>log22=1.因为x∈(1,+∞)时,f(x)+log2(x-1)>m恒成立,所以m≤1,所以m的取值范围是(-∞,1].12.(2022·烟台模拟)某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P(单位:mg/L)与时间t(单位:h)间的关系式为P=P0e-kt,其中P0,k为正常数.如果一定量的废气在前10 h的过滤过程中污染物被消除了20%,那么污染物减少到最初含量的50%还需要经过多长时间?(结果四舍五入取整数,参考数据:ln 2≈0.693,ln 5≈1.609)()A.11 hB.21 hC.31 hD.41 h答案 B解析由已知得1-15=e-10k,方程两边同取自然对数得ln 45=-10k,所以k=2ln 2-ln 5-10≈0.022 3.设污染物减少到最初含量的50%需要经过t h,则12=e-0.022 3t,方程两边同取自然对数得ln 12=-0.022 3t,解得t≈31.所以还需要经过31-10=21(h)使污染物减少到最初含量的50%,故选B.13.已知函数f (x )=⎩⎨⎧log 2(x -1),x >1,2x ,x ≤1,且关于x 的方程f (x )-a =0有两个实数根,则实数a 的取值范围为( )A.(0,1)B.(0,1]C.(1,2)D.(0,2]答案 D解析 作出函数y =f (x )的图象(如图),方程f (x )-a =0有两个实数根,即y =f (x )与y =a 有两个交点,由图知,0<a ≤2.14.(2022·郑州调研)在①f (x )+f (-x )=0,②f (x )-f (-x )=0,③f (-2)=-f (2)这三个条件中选择一个合适的补充在下面问题中,并给出解答.已知函数f (x )=log 2(x 2+a +x )(a ∈R )满足________.(1)求a 的值;(2)若函数g (x )=2f (-x )+1-x 2+1,证明:g (x 2-x )≤54. 注:如果选择多个条件分别解答,按第一个解答计分.解 若选择②f (x )-f (-x )=0,因为f (x )-f (-x )=0,所以log 2(x 2+a +x )-log 2(x 2+a -x )=0, 所以x 2+a +x =x 2+a -x ,所以x =0,a ≥0,此时求不出a 的具体值,所以不能选②. 若选择①f (x )+f (-x )=0,(1)因为f (x )+f (-x )=0,所以log 2(x 2+a +x )+log 2(x 2+a -x )=0, 所以log 2[(x 2+a +x )(x 2+a -x )]=0, 所以x 2+a -x 2=1,解得a =1. 若选择③f (-2)=-f (2),(1)因为f (-2)=-f (2),所以log 2(4+a -2)=-log 2(4+a +2), 所以(4+a -2)(4+a +2)=1, 所以4+a -4=1,所以a =1.(2)由(1)知f (x )=log 2(x 2+1+x ), f (-x )=log 2(x 2+1-x ),所以g (x )=2log2(x 2+1-x )+1-x 2+1 =x 2+1-x +1-x 2+1=-x +1, 所以g (x 2-x )=-(x 2-x )+1=-x 2+x +1=-⎝ ⎛⎭⎪⎫x -122+54≤54.。
2023年高考数学(文科)一轮复习——不等式的性质与一元二次不等式
第1节不等式的性质与一元二次不等式考试要求 1.了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景;2.会从实际问题的情境中抽象出一元二次不等式模型;3.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系;4.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.1.实数大小比较的依据(1)a>b⇔a-b>0;(2)a=b⇔a-b=0;(3)a<b⇔a-b<0.2.不等式的性质(1)对称性:a>b⇔b<a;(2)传递性:a>b,b>c⇒a>c;(3)可加性:a>b⇔a+c>b+c;a>b,c>d⇒a+c>b+d;(4)可乘性:a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc;a>b>0,c>d>0⇒ac>bd;(5)可乘方:a>b>0⇒a n>b n(n∈N,n≥1);(6)可开方:a>b>0⇒n a>n b n∈N,n≥2).3.三个“二次”间的关系判别式Δ=b 2-4ac Δ>0Δ=0Δ<0y =ax 2+bx +c (a >0)的图象ax 2+bx +c =0 (a >0)的根 有两相异实根x 1,x 2(x 1<x 2) 有两相等实根x 1=x 2=-b2a没有实数根ax 2+bx +c >0 (a >0)的解集 {x |x >x 2或x <x 1}⎩⎨⎧⎭⎬⎫x |x ≠-b 2aRax 2+bx +c <0 (a >0)的解集{x |x 1<x <x 2}4.分式不等式与整式不等式(1)f (x )g (x )>0(<0)⇔f (x )·g (x )>0(<0). (2)f (x )g (x )≥0(≤0)⇔f (x )·g (x )≥0(≤0)且g (x )≠0.1.有关分式的性质(1)若a >b >0,m >0,则b a <b +m a +m ;b a >b -ma -m (b -m >0).(2)若ab >0,且a >b ⇔1a <1b .2.绝对值不等式|x |>a (a >0)的解集为(-∞,-a )∪(a ,+∞);|x |<a (a >0)的解集为(-a ,a ).记忆口诀:大于号取两边,小于号取中间.3.对于不等式ax 2+bx +c >0,求解时不要忘记a =0时的情形.4.当Δ<0时,不等式ax 2+bx +c >0(a ≠0)的解集为R 还是,要注意区别.1.思考辨析(在括号内打“√”或“×”)(1)a>b⇔ac2>bc2.()(2)若不等式ax2+bx+c<0的解集为(x1,x2),则必有a>0.()(3)若方程ax2+bx+c=0(a<0)没有实数根,则不等式ax2+bx+c>0(a<0)的解集为R.()(4)x-ax-b≥0等价于(x-a)(x-b)≥0.()答案(1)×(2)√(3)×(4)×解析(1)由不等式的性质,ac2>bc2⇒a>b;反之,c=0时,a>b⇒/ ac2>bc2.(3)若方程ax2+bx+c=0(a<0)没有实根,则不等式ax2+bx+c>0(a<0)的解集为.(4)x-ax-b≥0等价于(x-a)(x-b)≥0且x-b≠0.2.已知集合A={x|x2-5x+4<0},B={x|x2-x-6<0},则A∩B=()A.(-2,3)B.(1,3)C.(3,4)D.(-2,4)答案 B解析由题意知A={x|1<x<4},B={x|-2<x<3},所以A∩B=(1,3).3.(易错题)若a>b>0,c<d<0,则一定有()A.ad>bc B.ad<bcC.ac>bd D.ac<bd答案 B解析因为c<d<0,所以0>1c>1d,两边同乘-1,得-1d>-1c>0,又a>b>0,故由不等式的性质可知-ad >-bc>0.两边同乘-1,得ad<bc.4.(2021·烟台月考)不等式1-x2+x≥0的解集为()A.[-2,1]B.(-2,1]C.(-∞,-2)∪(1,+∞)D.(-∞,-2]∪(1,+∞) 答案 B解析 原不等式化为⎩⎪⎨⎪⎧(1-x )(2+x )≥0,2+x ≠0,即⎩⎪⎨⎪⎧(x -1)(x +2)≤0,x +2≠0,解得-2<x ≤1. 5.(2022·北京海淀区调研)设一元二次不等式ax 2+bx +1>0的解集为{x |-1<x <2},则ab 的值为( ) A.1 B.-14C.4D.-12答案 B解析 因为一元二次不等式ax 2+bx +1>0的解集为{x |-1<x <2},所以方程ax 2+bx +1=0的解为-1和2,所以-1+2=-b a ,(-1)×2=1a ,所以a =-12,b =12,所以ab =-14.6.(易错题)若关于x 的不等式kx 2-kx <1的解集是全体实数,则实数k 的取值范围是________. 答案 (-4,0]解析 当k =0时,0<1恒成立,当k ≠0时,要使kx 2-kx -1<0的解集是全体实数, 只需满足⎩⎪⎨⎪⎧k <0,k 2+4k <0,解得-4<k <0.综上可知,-4<k ≤0.考点一 不等式的性质及应用1.设a >b >0,c ≠0,则下列不等式恒成立的是( ) A.1a >1bB.ac 2>bc 2C.ac >bcD.c a <c b答案 B解析 由不等式的性质易得,当a >b >0,c ≠0时,恒成立的是ac 2>bc 2. 2.若a <0,b <0,则p =b 2a +a 2b 与q =a +b 的大小关系为( ) A.p <q B.p ≤q C.p >q D.p ≥q答案 B解析 (作差法)p -q =b 2a +a 2b -a -b =b 2-a 2a +a 2-b 2b =(b 2-a 2)·⎝ ⎛⎭⎪⎫1a -1b =(b 2-a 2)(b -a )ab =(b -a )2(b +a )ab ,因为a <0,b <0,所以a +b <0,ab >0. 若a =b ,则p -q =0,故p =q ; 若a ≠b ,则p -q <0,故p <q . 综上,p ≤q .故选B.3.已知3<a <8,4<b <9,则ab 的取值范围是________. 答案 ⎝ ⎛⎭⎪⎫13,2解析 ∵4<b <9,∴19<1b <14, 又3<a <8,∴19×3<a b <14×8,即13<ab <2.4.设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4,则f (-2)的取值范围是________. 答案 [5,10]解析 法一 设f (-2)=mf (-1)+nf (1)(m ,n 为待定系数),则4a -2b =m (a -b )+n (a +b ),即4a -2b =(m +n )a +(n -m )b . 于是得⎩⎪⎨⎪⎧m +n =4,n -m =-2,解得⎩⎪⎨⎪⎧m =3,n =1.∴f (-2)=3f (-1)+f (1). 又∵1≤f (-1)≤2,2≤f (1)≤4. ∴5≤3f (-1)+f (1)≤10, 故5≤f (-2)≤10.法二 由⎩⎪⎨⎪⎧f (-1)=a -b ,f (1)=a +b得⎩⎪⎨⎪⎧a =12[f (-1)+f (1)],b =12[f (1)-f (-1)],∴f (-2)=4a -2b =3f (-1)+f (1). 又∵1≤f (-1)≤2,2≤f (1)≤4, ∴5≤3f (-1)+f (1)≤10, 故5≤f (-2)≤10.法三 由⎩⎪⎨⎪⎧1≤a -b ≤2,2≤a +b ≤4确定的平面区域如图阴影部分所示,当f (-2)=4a -2b 过点A ⎝ ⎛⎭⎪⎫32,12时,取得最小值4×32-2×12=5, 当f (-2)=4a -2b 过点B (3,1)时,取得最大值4×3-2×1=10, ∴5≤f (-2)≤10.感悟提升 1.比较两个数(式)大小的两种方法2.与命题真假判断相结合问题.解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法.3.利用不等式性质求某些代数式的取值范围时,在多次运用不等式的性质时有可能扩大了变量的取值范围,解决的途径是先建立所求范围的整体与已知范围的整体的等量关系,最后通过“一次性”不等关系的运算求解范围. 考点二 一元二次不等式的解法例1 (1)不等式0<x 2-x -2≤4的解集为________. (2)不等式x +1x ≤3的解集是( ) A.⎩⎨⎧⎭⎬⎫x |x ≥12或x <0 B.⎩⎨⎧⎭⎬⎫x |0<x ≤12 C.⎩⎨⎧⎭⎬⎫x |x >12或x ≤0 D.⎩⎨⎧⎭⎬⎫x |0≤x <12 答案 (1){x |-2≤x <-1,或2<x ≤3} (2)A 解析 (1)原不等式等价于⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -2≤4,即⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0, 解得⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3.故原不等式的解集为{x |-2≤x <-1,或2<x ≤3}. (2)原不等式化为x +1x -3≤0,即1-2x x ≤0,则⎩⎪⎨⎪⎧(1-2x )·x ≤0,x ≠0,解得x ≥12或x <0,即不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≥12或x <0. 例2 解关于x 的不等式kx 2-2x +k <0(k ∈R ). 解 ①当k =0时,不等式的解为x >0.②当k >0时,若Δ=4-4k 2>0,即0<k <1时,不等式的 解为1-1-k 2k <x <1+1-k 2k ;若Δ≤0,即k ≥1时,不等式无解.③当k <0时,若Δ=4-4k 2>0,即-1<k <0时, 不等式的解为x <1+1-k 2k 或x >1-1-k 2k; 若Δ<0,即k <-1时,不等式的解集为R ; 若Δ=0,即k =-1时,不等式的解为x ≠-1, 综上所述,k ≥1时,不等式的解集为;0<k <1时,不等式的解集为 ⎩⎨⎧⎭⎬⎫x |1-1-k 2k <x <1+1-k 2k ; k =0时,不等式的解集为{x |x >0}; 当-1<k <0时,不等式的解集为 ⎩⎨⎧⎭⎬⎫x |x <1+1-k 2k ,或x >1-1-k 2k ; k =-1时,不等式的解集为{x |x ≠-1}; k <-1时,不等式的解集为R .感悟提升对含参的不等式,应对参数进行分类讨论(1)二次项中若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.(2)当不等式对应方程的根的个数不确定时,讨论判别式Δ与0的关系.(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.训练1 (2022·西安调研)关于x的不等式ax-b<0的解集是(1,+∞),则关于x的不等式(ax+b)(x-3)>0的解集是()A.(-∞,-1)∪(3,+∞)B.(1,3)C.(-1,3)D.(-∞,1)∪(3,+∞)答案 C解析关于x的不等式ax-b<0即ax<b的解集是(1,+∞),∴a=b<0,∴不等式(ax+b)(x-3)>0可化为(x+1)(x-3)<0,解得-1<x<3,∴所求不等式的解集是(-1,3).考点三一元二次不等式恒成立问题角度1在实数集R上恒成立例3 对于任意实数x,不等式(a-2)x2-2(a-2)x-4<0恒成立,则实数a的取值范围是()A.(-∞,2)B.(-∞,2]C.(-2,2)D.(-2,2]答案 D解析当a-2=0,即a=2时,-4<0恒成立;当a-2≠0,即a≠2时,则有⎩⎪⎨⎪⎧a -2<0,Δ=[-2(a -2)]2-4×(a -2)×(-4)<0,解得-2<a <2.综上,实数a 的取值范围是(-2,2]. 角度2 在给定区间上恒成立例4 设函数f (x )=mx 2-mx -1(m ≠0),若对于x ∈[1,3],f (x )<-m +5恒成立,则m 的取值范围是________. 答案⎩⎨⎧⎭⎬⎫m ⎪⎪⎪0<m <67或m <0 解析 要使f (x )<-m +5在[1,3]上恒成立,故mx 2-mx +m -6<0, 则m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.法一 令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)=7m -6<0. 所以m <67,则0<m <67.当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1)=m -6<0. 所以m <6,所以m <0.综上所述,m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪0<m <67或m <0.法二 因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,又因为m (x 2-x +1)-6<0, 所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 因为m ≠0,所以m的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪0<m <67或m <0. 角度3 给定参数范围的恒成立问题例5 对任意m ∈[-1,1],函数f (x )=x 2+(m -4)x +4-2m 的值恒大于零,求x 的取值范围.解 由f (x )=x 2+(m -4)x +4-2m=(x -2)m +x 2-4x +4,令g (m )=(x -2)m +x 2-4x +4.由题意知在[-1,1]上,g (m )的值恒大于零,所以⎩⎪⎨⎪⎧g (-1)=(x -2)×(-1)+x 2-4x +4>0,g (1)=(x -2)+x 2-4x +4>0,解得x <1或x >3.故当x ∈(-∞,1)∪(3,+∞)时,对任意的m ∈[-1,1],函数f (x )的值恒大于零. 感悟提升 1.对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.2.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.训练2 函数f (x )=x 2+ax +3.(1)若当x ∈R 时,f (x )≥a 恒成立,求实数a 的取值范围;(2)若当x ∈[-2,2]时,f (x )≥a 恒成立,求实数a 的取值范围;(3)若当a ∈[4,6]时,f (x )≥0恒成立,求实数x 的取值范围.解 (1)∵当x ∈R 时,x 2+ax +3-a ≥0恒成立,需Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0,解得-6≤a ≤2,∴实数a 的取值范围是[-6,2].(2)由题意可转化为x 2+ax +3-a ≥0在x ∈[-2,2]上恒成立,令g (x )=x 2+ax +3-a ,则有①Δ≤0或②⎩⎪⎨⎪⎧Δ>0,-a 2<-2,g (-2)=7-3a ≥0,或③⎩⎪⎨⎪⎧Δ>0,-a 2>2,g (2)=7+a ≥0,解①得-6≤a ≤2,解②得a ∈,解③得-7≤a <-6.综上可得,满足条件的实数a 的取值范围是[-7,2].(3)令h (a )=xa +x 2+3.当a ∈[4,6]时,h (a )≥0恒成立.只需⎩⎪⎨⎪⎧h (4)≥0,h (6)≥0,即⎩⎪⎨⎪⎧x 2+4x +3≥0,x 2+6x +3≥0, 解得x ≤-3-6或x ≥-3+ 6.∴实数x 的取值范围是(-∞,-3-6]∪[-3+6,+∞).一元二次方程根的分布一元二次方程的根即为对应二次函数的图象与x 轴交点的横坐标,因此,一元二次方程的根的分布问题,可以借助二次函数图象,利用数形结合的方法来研究.往往根据方程根的情况结合对应二次函数的图象建立不等关系式(组),求得参数的取值范围.例1 关于x 的方程x 2+(m -3)x +m =0满足下列条件,求m 的取值范围.(1)有两个正根;(2)有两个负根;(3)有一正一负根.解(1)由题意得⎩⎪⎨⎪⎧Δ=(m -3)2-4m ≥0,3-m >0,m >0,解得0<m ≤1.故m 的取值范围为(0,1].(2)由题意得⎩⎪⎨⎪⎧Δ=(m -3)2-4m ≥0,3-m <0,m >0,解得m ≥9.故m 的取值范围为[9,+∞).(3)由题意得⎩⎪⎨⎪⎧Δ>0,m <0,解得m <0. 故m 的取值范围为(-∞,0).例2 关于x 的方程x 2+(m -3)x +m =0满足下列条件,求m 的取值范围.(1)一个根大于1,一个根小于1;(2)一个根在(-2,0)内,另一个根在(0,4)内;(3)一个根小于2,一个根大于4;(4)两个根都在(0,2)内.解 令f (x )=x 2+(m -3)x +m ,(1)若方程x 2+(m -3)x +m =0的一个根大于1,一个根小于1,则f (1)=2m -2<0,解得m <1.故m 的取值范围为(-∞,1).(2)若方程x 2+(m -3)x +m =0的一个根在(-2,0)内,另一个根在(0,4)内,则⎩⎪⎨⎪⎧f (-2)=-m +10>0,f (0)=m <0,f (4)=5m +4>0,解得-45<m <0. 故m 的取值范围为⎝ ⎛⎭⎪⎫-45,0. (3)若方程x 2+(m -3)x +m =0的一个根小于2,一个根大于4,则⎩⎪⎨⎪⎧f (2)=3m -2<0,f (4)=5m +4<0,解得m <-45. 故m 的取值范围为⎝ ⎛⎭⎪⎫-∞,-45. (4)若方程x 2+(m -3)x +m =0的两个根都在(0,2)内,则⎩⎪⎨⎪⎧f (2)=3m -2>0,f (0)=m >0,0<-m -32<2,Δ=(m -3)2-4m ≥0,解得23<m ≤1.故m 的取值范围为⎝ ⎛⎦⎥⎤23,1.1.(2022·银川模拟)已知a ,b ,c 满足a >b >c ,且ac >0,则下列选项中一定能成立的是( )A.ab >acB.c (b -a )>0C.ab (a -c )>0D.cb 2>ca 2答案 C解析法一取a=-1,b=-2,c=-3,则ab=2<ac=3,cb2=-12<ca2=-3,排除A、D;取a=3,b=2,c=1,则c(b-a)=-1<0,排除B.法二因为a>b>c,且ac>0,所以a,b,c同号,且a-c>0,所以ab(a-c)>0.2.已知a1∈(0,1),a2∈(0,1),记M=a1a2,N=a1+a2-1,则M与N的大小关系是()A.M<NB.M>NC.M=ND.不确定答案 B解析M-N=a1a2-(a1+a2-1)=a1a2-a1-a2+1=(a1-1)(a2-1),又a1∈(0,1),a2∈(0,1),∴a1-1<0,a2-1<0.∴(a1-1)(a2-1)>0,即M-N>0,∴M>N.3.(2021·烟台模拟改编)若0<a<b<1,c>1,则下列选项错误的是()A.c a<c bB.ba c<ab cC.b-ac-a<bc D.log a c<log b c答案 D解析对于A,当c>1时,y=c x单调递增,由a<b可知c a<c b,故A正确;对于B,当c>1时,c-1>0,所以y=x c-1在(0,+∞)上单调递增,由0<a<b <1可得a c-1<b c-1,两边同时乘ab得ba c<ab c,故B正确;对于C ,因为b -ac -a -b c =(b -a )c -b (c -a )(c -a )c =a (b -c )c (c -a ), 又0<a <b <1,c >1,所以c -a >0,b -c <0,所以a (b -c )c (c -a )<0,即b -a c -a <b c ,故C 正确;对于D ,当c >1时,y =log c x 在(0,+∞)上单调递增,由0<a <b <1可得log c a<log c b <0,则1log c a >1log c b ,即log a c >log b c ,故D 错误,故选D. 4.不等式|x |(1-2x )>0的解集为( )A.(-∞,0)∪⎝ ⎛⎭⎪⎫0,12 B.⎝ ⎛⎭⎪⎫-∞,12 C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝ ⎛⎭⎪⎫0,12 答案 A解析 当x ≥0时,原不等式即为x (1-2x )>0,所以0<x <12;当x <0时,原不等式即为-x (1-2x )>0,所以x <0,综上,原不等式的解集为(-∞,0)∪⎝ ⎛⎭⎪⎫0,12. 5.(2022·渭南质检)若不等式ax 2+bx +c >0的解集为{x |-1<x <2},那么不等式a (x 2+1)+b (x -1)+c >2ax 的解集为( )A.{x |-2<x <1}B.{x |x <-2或x >1}C.{x |0<x <3}D.{x |x <0或x >3}答案 C解析 由a (x 2+1)+b (x -1)+c >2ax 整理得ax 2+(b -2a )x +(a +c -b )>0.① 又不等式ax 2+bx +c >0的解集为{x |-1<x <2},所以a <0,且-1,2是方程ax 2+bx +c =0的两根,由根与系数的关系可知⎩⎪⎨⎪⎧-1+2=-b a ,(-1)×2=c a ,即⎩⎪⎨⎪⎧b a =-1,c a =-2.② 将①两边同除以a 得x 2+⎝ ⎛⎭⎪⎫b a -2x +⎝ ⎛⎭⎪⎫1+c a -b a <0, 将②代入得x 2-3x <0,解得0<x <3,故选C.6.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集是( )A.(-∞,-1)∪(0,+∞)B.(-∞,0)∪(1,+∞)C.(-1,0)D.(0,1)答案 C解析 由Δ=[-(a +2)]2-4a =a 2+4>0知,函数f (x )必有两个不同的零点, 又f (x )在(-2,-1)上恰有一个零点,则f (-2)·f (-1)<0,即(6a +5)(2a +3)<0,解得-32<a <-56.又a ∈Z ,所以a =-1,此时不等式f (x )>1即为-x 2-x >0,解得-1<x <0.7.若不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是________________.答案 (-∞,-4)∪(4,+∞)解析 由题意得Δ=a 2-4×4>0,即a 2>16.∴a >4或a <-4.8.已知集合A ={-5,-1,2,4,5},请写出一个一元二次不等式,使得该不等式的解集与集合A 有且只有一个公共元素,这个不等式可以是________________.答案 (x +4)(x -6)>0(答案不唯一)解析 因为不等式(x +4)(x -6)>0解集为{x |x >6或x <-4},解集中只有-5在集合A 中.9.设a <0,若不等式-cos 2x +(a -1)cos x +a 2≥0对于任意的x ∈R 恒成立,则a 的取值范围是________.答案 (-∞,-2]解析 令t =cos x, t ∈[-1,1],则不等式f (t )=t 2-(a -1)t -a 2≤0对t ∈[-1,1]恒成立,因此⎩⎪⎨⎪⎧f (-1)≤0,f (1)≤0⇒⎩⎪⎨⎪⎧a -a 2≤0,2-a -a 2≤0,∵a <0,∴a ≤-2.10.若二次函数f (x )=ax 2+bx +c (a ≠0),满足f (x +2)-f (x )=16x 且f (0)=2.(1)求函数f (x )的解析式;(2)若存在x ∈[1,2],使不等式f (x )>2x +m 成立,求实数m 的取值范围. 解 (1)由f (0)=2,得c =2,所以f (x )=ax 2+bx +2(a ≠0),由f (x +2)-f (x )=[a (x +2)2+b (x +2)+2]-(ax 2+bx +2)=4ax +4a +2b , 又f (x +2)-f (x )=16x ,得4ax +4a +2b =16x ,所以⎩⎪⎨⎪⎧4a =16,4a +2b =0,故a =4,b =-8, 所以f (x )=4x 2-8x +2.(2)因为存在x ∈[1,2],使不等式f (x )>2x +m 成立,即存在x ∈[1,2],使不等式m <4x 2-10x +2成立,令g (x )=4x 2-10x +2,x ∈[1,2],故g (x )max =g (2)=-2,所以m <-2,即m 的取值范围为(-∞,-2).11.某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域;(2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围.解 (1)由题意得,y =100⎝ ⎛⎭⎪⎫1-x10·100⎝ ⎛⎭⎪⎫1+850x .因为售价不能低于成本价,所以100⎝ ⎛⎭⎪⎫1-x 10-80≥0,解得0≤x ≤2.所以y =f (x )=40(10-x )(25+4x ),定义域为{x |0≤x ≤2}.(2)由题意得40(10-x )(25+4x )≥10 260,化简得8x 2-30x +13≤0,解得12≤x ≤134.所以x 的取值范围是⎣⎢⎡⎦⎥⎤12,2.12.(2022·绵阳诊断)已知正实数x ,y 满足ln x y >lg yx ,则下列选项正确的是()A.ln x >ln(y +1)B.ln(x +1)<lg yC.3x <2y -1D.2x -y >1答案 D解析 因为正实数x ,y 满足ln x y >lg yx ,所以ln x -ln y >lg y -lg x ,所以ln x +lg x >ln y +lg y ,因为函数f (x )=ln x +lg x 在(0,+∞)上单调递增,所以x >y ,对于A ,取x =4,y =3,此时ln x =ln(y +1);对于B ,取x =2,y =1,此时ln(x +1)>lg y ;对于C ,取x =3,y =2,此时3x >2y -1,故C 错误;对于D ,因为x >y ,所以2x -y >20=1,故D 正确.13.(2021·张家口月考)已知函数f (x )=4x +a ·2x -a 在x ∈(0,+∞)上的图象恒在x 轴上方,则实数a 的取值范围是________.答案 (-4,+∞)解析 函数f (x )=4x +a ·2x -a 在x ∈(0,+∞)上的图象恒在x 轴上方即4x +a ·2x -a >0在x ∈(0,+∞)上恒成立.a (2x -1)>-4x,∴a >-4x 2x -1, 令t =2x ,则4x =t 2,t >1,则0<1t <1,故a >-t 2t -1=t 21-t =11t 2-1t =1⎝ ⎛⎭⎪⎫1t -122-14, 显然⎝ ⎛⎭⎪⎫1t -122-14≥-14,故-t 2t -1≤-4, 故a >-4.14.解关于x 的不等式ax 2-(2a +1)x +2<0(a ∈R ).解 原不等式可化为(ax -1)(x -2)<0.(1)当a >0时,原不等式可化为a (x -2)⎝ ⎛⎭⎪⎫x -1a <0,根据不等式的性质,这个不等式等价于(x -2)·⎝ ⎛⎭⎪⎫x -1a <0. 因为方程(x -2)⎝ ⎛⎭⎪⎫x -1a =0的两个根分别是2,1a ,所以当0<a <12时,2<1a ,则原不等式的解集是⎩⎨⎧⎭⎬⎫x |2<x <1a ;当a =12时,原不等式的解集是;当a >12时,1a <2,则原不等式的解集是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫1a <x <2. (2)当a =0时,原不等式为-(x -2)<0,解得x >2, 即原不等式的解集是{x |x >2}.(3)当a <0时,原不等式可以化为a (x -2)⎝ ⎛⎭⎪⎫x -1a <0,根据不等式的性质,这个不等式等价于(x -2)·⎝ ⎛⎭⎪⎫x -1a >0,由于1a <2.故原不等式的解集是⎩⎨⎧⎭⎬⎫x |x <1a 或x >2. 综上所述,当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <1a 或x >2; 当a =0时,不等式的解集为{x |x >2};当0<a <12时,不等式的解集为⎩⎨⎧⎭⎬⎫x |2<x <1a ;当a =12时,不等式的解集为;当a >12时,不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫1a <x <2.。
高三文科数学第一轮复习资料
第一章集合与常用逻辑用语第一节集合☆☆☆2017考纲考题考情☆☆☆自|主|排|查1.集合的含义与表示方法(1)集合的含义:研究对象叫做元素,一些元素组成的总体叫做集合。
集合中元素的性质:确定性、无序性、互异性。
(2)元素与集合的关系:①属于,记为∈;②不属于,记为∉。
(3)集合的表示方法:列举法、描述法和图示法。
(4)常用数集的记号:自然数集N,正整数集N*或N+,整数集Z,有理数集Q,实数集R。
2.集合间的基本关系A B或B A3.集合的基本运算1.认清集合元素的属性(是点集、数集或其他情形)和化简集合是正确求解集合问题的两个先决条件。
2.易忘空集的特殊性,在写集合的子集时不要忘了空集和它本身。
3.运用数轴图示法易忽视端点是实心还是空心。
4.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性\”而导致解题错误。
5.记住以下结论(1)若集合A中有n个元素,则其子集的个数为2n,真子集的个数为2n-1。
(2)A∪B=A⇔B⊆A;A∩B=A⇔A⊆B。
小|题|快|练一、走进教材1.(必修1P12B组T4改编)满足{0,1}⊆A{0,1,2,3}的集合A的个数为()A.1 B.2C.3 D.4【解析】由题意得A可为{0,1},{0,1,2},{0,1,3}。
故选C。
【答案】 C2.(必修1P12B组T1改编)已知集合A={0,1,2},集合B满足A∪B ={0,1,2},则集合B有________个。
【解析】由题意知B⊆A,则集合B有8个。
【答案】8二、双基查验1.已知集合M={-1,0,1},N={0,1,2},则M∪N=()A.{-1,0,1} B.{-1,0,1,2}C.{-1,0,2} D.{0,1}【解析】M∪N表示属于M或属于N的元素构成的集合,故M∪N={-1,0,1,2}。
故选B。
【答案】 B2.设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=() A.[0,1]B.[0,1)C.(0,1] D.(0,1)【解析】∵x2<1,∴-1<x<1。
2023高三文科数学上学期一轮复习联考全国卷4pdf
2023届高三一轮复习联考(四)全国卷8.已知函数J(x)=屈s in(2x+0)—cos(2x+0),0 E(气],且f(O)=l,则0=re_6.A产4.B亢_3.c产2.D文科数学试题注意事项:l.答卷前,考生务必将自己的姓名、考场号、座位号、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交 回。
考试时间为120分钟,满分150分一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x lx2<l},B = {x I O<x<2},则AnB=A.(—1, 2)2.(2+i)(2—3i)=A.l—i3.下列命题中的假命题是迈A.3 x E R, s in x=— 2A.—2B.25.函数f(x)=cos x+sin 2x的图象可能是yB.(—1,0)B.7—IyC.(O, 1)C.l—4iB.3 xER,ln x=—lC.'efxER,x2>0D.'efxER,3气>04.已知数列{a n}是各项均为正数的等差数列,a s=10,且a4• a6=96,则公差为C.—2或2D.4y yAXB c D16.已知a=lg—,b=cos l,c=z-2,则a,b,c的大小关系为2A.a<b<cB.a<c<bC.b<a<cxD.Cl,2)D.7—4iD.b<c<a.,7.如图,正方形ABCD中,E、F分别为AB、A D的中点,且BF=入B E+AXDµBD,则入十µ的值是1 EA.1B.—23D.2C.—2 B CX 2 y 2 ',9直线l:y=瓦x与椭圆C:勹+—=1交于P,Q两点,F是椭圆C的右焦点,且PP·QF=a z, b20,则椭圆的离心率为A.4—2祁B.2点—3C.点—l10.已知正数a,b满足矿+2矿=1,则a矿的最大值是A. 屈屈B. C.— D.—11如图所示,在正方体ABCD—A1B1C卫中,O,F分别为BD,AA]的中D,点,设二面角F—D10—B的平面角为a直线O F与平面B B丸D所成A,'\ \B角为p,则::;:三:高三三三三:三<言昙三三:个立体,被任一平行千这两个平面的平面所截,如果两个截面的面积相等,则这两个几何体的体积相等.上述原理在中国被称为祖睢原理,国外则一般称之为卡瓦列利原理.已知y将双曲线C:三——=1与直线y=土2围成的图形绕y轴8 2旋转一周得到一个旋转体E,则旋转体E的体积是昼2D二、填空题:本题共4小题,每小题5分,共20分。
2023年高考数学(文科)一轮复习讲义——坐标系与参数方程 第一课时 坐标系
第1节 坐标系与参数方程第一课时 坐标系考试要求 1.了解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况;2.了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化;3.能在极坐标系中给出简单图形表示的极坐标方程.1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎨⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换.2.极坐标系与点的极坐标(1)极坐标系:如图所示,在平面内取一个定点O (极点),自极点O 引一条射线Ox (极轴);再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标①极径:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为ρ.②极角:以极轴Ox为始边,射线OM为终边的角∠xOM叫做点M的极角,记为θ.③极坐标:有序数对(ρ,θ)叫做点M的极坐标,记作M(ρ,θ).3.极坐标与直角坐标的互化4.常见曲线的极坐标方程曲线图形极坐标方程 圆心在极点,半径为r 的圆 ρ=r (0≤θ<2π) 圆心为(r ,0),半径为r 的圆ρ=2r cos__θ⎝ ⎛⎭⎪⎫-π2≤θ<π2圆心为⎝ ⎛⎭⎪⎫r ,π2,半径为r 的圆ρ=2r sin__θ(0≤θ<π)过极点,倾斜角为α的直线①θ=α(ρ∈R )或θ=π+α(ρ∈R ) ②θ=α(ρ≥0)和 θ=π+α(ρ≥0)过点(a ,0),与极轴垂直的直线ρcos__θ=a ⎝ ⎛⎭⎪⎫-π2<θ<π2过点⎝ ⎛⎭⎪⎫a ,π2,与极轴平行的直线ρsin__θ=a (0<θ<π)1.极坐标的四要素:(1)极点;(2)极轴;(3)长度单位;(4)角度单位和它的正方向,四者缺一不可.2.由极径的意义知ρ≥0,当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)与极坐标(ρ,θ)(ρ≠0)建立一一对应关系,约定极点的极坐标是极径ρ=0,极角可取任意角.3.曲线的极坐标方程与直角坐标方程互化:对于简单的可以直接代入公式ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y 2,但有时需要作适当的变化,如将式子的两边同时平方,两边同乘以ρ等.1.思考辨析(在括号内打“√”或“×”)(1)平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是一一对应关系.( )(2)若点P 的直角坐标为(1,-3),则点P 的一个极坐标是⎝ ⎛⎭⎪⎫2,-π3.( )(3)在极坐标系中,曲线的极坐标方程不是唯一的.( ) (4)极坐标方程θ=π(ρ≥0)表示的曲线是一条直线.( ) 答案 (1)× (2)√ (3)√ (4)×解析 (1)一般认为ρ≥0,当θ∈[0,2π)时,平面上的点(除去极点)才与极坐标建立一一对应关系;(4)极坐标方程θ=π(ρ≥0)表示的曲线是一条射线.2.(易错题)在极坐标系中,已知点P ⎝ ⎛⎭⎪⎫2,π6,则过点P 且平行于极轴的直线方程是( ) A.ρsin θ=1 B.ρsin θ= 3 C.ρcos θ=1D.ρcos θ= 3答案 A解析 先将极坐标化成直角坐标表示,P ⎝ ⎛⎭⎪⎫2,π6转化为直角坐标为x =ρcos θ=2cos π6=3,y =ρsin θ=2sin π6=1,即(3,1),过点(3,1)且平行于x 轴的直线为y =1, 再化为极坐标为ρsin θ=1.3.若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( ) A.ρ=1cos θ+sin θ,0≤θ≤π2B.ρ=1cos θ+sin θ,0≤θ≤π4C.ρ=cos θ+sin θ,0≤θ≤π2D.ρ=cos θ+sin θ,0≤θ≤π4 答案 A解析 ∵y =1-x (0≤x ≤1), ∴ρsin θ=1-ρcos θ(0≤ρcos θ≤1), ∴ρ=1sin θ+cos θ⎝⎛⎭⎪⎫0≤θ≤π2.4.在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( ) A.⎝ ⎛⎭⎪⎫1,π2 B.⎝ ⎛⎭⎪⎫1,-π2 C.(1,0)D.(1,π)答案 B解析 由ρ=-2sin θ得ρ2=-2ρsin θ,化成直角坐标方程为x 2+y 2=-2y , 即x 2+(y +1)2=1,圆心坐标为(0,-1),其对应的极坐标为⎝ ⎛⎭⎪⎫1,-π2.5.(易错题)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为ρ=2sin θ,则曲线C 的直角坐标方程为________. 答案 x 2+(y -1)2=1解析 由ρ=2sin θ,得ρ2=2ρsin θ,所以曲线C 的直角坐标方程为x 2+y 2-2y =0,即x 2+(y -1)2=1.6.(2018·北京卷)在极坐标系中,直线ρcos θ+ρsin θ=a (a >0)与圆ρ=2cos θ相切,则a =________. 答案 1+ 2解析 直线的方程为x +y -a =0,圆的方程为(x -1)2+y 2=1, 所以圆心(1,0),半径r =1, 由于直线与圆相切,故圆心到直线的距离等于半径,即|1-a |2=1,又a >0,所以a =1+ 2.考点一 平面直角坐标系中的伸缩变换1.曲线C :x 2+y 2=1经过伸缩变换⎩⎨⎧x ′=2x ,y ′=y得到曲线C ′,则曲线C ′的方程为________. 答案 x ′24+y ′2=1解析 因为⎩⎪⎨⎪⎧x ′=2x ,y ′=y ,所以⎩⎪⎨⎪⎧x =x ′2,y =y ′,代入曲线C 的方程得C ′:x ′24+y ′2=1.2.曲线C 经过伸缩变换⎩⎨⎧x ′=2x ,y ′=3y 后所得曲线的方程为x ′2+y ′2=1,则曲线C 的方程为________. 答案 4x 2+9y 2=1解析 根据题意,曲线C 经过伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 后所得曲线的方程为x ′2+y ′2=1,则(2x )2+(3y )2=1,即4x 2+9y 2=1,所以曲线C 的方程为4x 2+9y 2=1.3.在同一平面直角坐标系中,已知伸缩变换φ:⎩⎨⎧x ′=3x ,2y ′=y ,则点A ⎝ ⎛⎭⎪⎫13,-2经过变换后所得的点A ′的坐标为________. 答案 (1,-1)解析 设A ′(x ′,y ′),由伸缩变换φ: ⎩⎪⎨⎪⎧x ′=3x ,2y ′=y 得到⎩⎨⎧x ′=3x ,y ′=12y .由于点A 的坐标为⎝ ⎛⎭⎪⎫13,-2,于是x ′=3×13=1,y ′=12×(-2)=-1, 所以点A ′的坐标为(1,-1).4.双曲线C :x 2-y 264=1经过伸缩变换φ:⎩⎨⎧x ′=3x ,2y ′=y后所得曲线C ′的焦点坐标为________.答案 (-5,0),(5,0)解析 设曲线C ′上任意一点P ′(x ′,y ′),将⎩⎨⎧x =13x ′,y =2y ′代入x 2-y 264=1,得x ′29-4y ′264=1, 化简得x ′29-y ′216=1,即为曲线C ′的方程,知C ′仍是双曲线,其焦点坐标分别为(-5,0),(5,0).感悟提升 1.平面上的曲线y =f (x )在变换φ:⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0)的作用下的变换方程的求法是将⎩⎪⎨⎪⎧x =x ′λ,y =y ′μ代入y =f (x ),得y ′μ=f ⎝ ⎛⎭⎪⎫x ′λ,整理之后得到y ′=h (x ′),即为所求变换之后的方程.2.解答该类问题应明确两点:一是明确平面直角坐标系中的伸缩变换公式的意义与作用;二是明确变换前的点P (x ,y )与变换后的点P ′(x ′,y ′)的坐标关系,用方程思想求解.考点二 极坐标与直角坐标的互化例1 (1)极坐标方程ρ2cos θ-ρ=0转化成直角坐标方程为( ) A.x 2+y 2=0或y =1 B.x =1C.x 2+y 2=0或x =1D.y =1(2)点M 的直角坐标是(-1,3),则点M 的极坐标为( ) A.⎝ ⎛⎭⎪⎫2,π3B.⎝ ⎛⎭⎪⎫2,-π3 C.⎝ ⎛⎭⎪⎫2,2π3 D.⎝ ⎛⎭⎪⎫2,2k π+π3(k ∈Z ) 答案 (1)C (2)C解析 (1)ρ2cos θ-ρ=0⇒ρ=x 2+y 2=0,或ρcos θ=1,即x =1.(2)∵ρ=(-1)2+(3)2=2,tan θ=3-1=- 3.又点M 在第二象限,∴θ=2π3, ∴点M 的极坐标为⎝ ⎛⎭⎪⎫2,2π3.感悟提升 1.进行极坐标方程与直角坐标方程互化的关键是抓住互化公式;x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,tan θ=yx (x ≠0).2.进行极坐标方程与直角坐标方程互化时,要注意ρ,θ的取值范围及其影响;要善于对方程进行合理变形,并重视公式的逆向与变形使用;要灵活运用代入法和平方法等技巧.训练1 在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π3=1,M ,N 分别为C 与x 轴,y 轴的交点.(1)求C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 解 (1)由ρcos ⎝ ⎛⎭⎪⎫θ-π3=1得,ρ⎝ ⎛⎭⎪⎫12cos θ+32sin θ=1.从而C 的直角坐标方程为12x +32y =1, 即x +3y =2.当θ=0时,ρ=2,所以M (2,0).当θ=π2时,ρ=233,所以N ⎝ ⎛⎭⎪⎫233,π2.(2)由(1)知M 点的直角坐标为(2,0),N 点的直角坐标为⎝⎛⎭⎪⎫0,233. 所以点P 的直角坐标为⎝⎛⎭⎪⎫1,33,则点P 的极坐标为⎝ ⎛⎭⎪⎫233,π6,所以直线OP 的极坐标方程为θ=π6(ρ∈R ). 考点三 求曲线的极坐标方程例2 (2022·西安五校联考)在直角坐标系xOy 中,曲线C 1:(x -1)2+y 2=1(y ≥0),如图,将C 1分别绕原点O 逆时针旋转π2,π,3π2得到曲线C 2,C 3,C 4,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)分别写出曲线C 1,C 2,C 3,C 4的极坐标方程;(2)直线l :θ=π3(ρ∈R )交曲线C 1,C 3分别于A ,C 两点,直线l ′:θ=2π3(ρ∈R )交曲线C 2,C 4分别于B ,D 两点,求四边形ABCD 的面积.解 (1)将x =ρcos θ,y =ρsin θ代入C 1,得C 1的极坐标方程为ρ=2cos θ⎝ ⎛⎭⎪⎫0≤θ≤π2,设C 1上的点(ρ0,θ0)旋转π2得到曲线C 2上的点(ρ,θ),则ρ0=ρ,θ0=θ-π2,代入C 1的方程得ρ=2cos ⎝ ⎛⎭⎪⎫θ-π2=2sin θ⎝ ⎛⎭⎪⎫0≤θ-π2≤π2,所以C 2的极坐标方程为ρ=2sin θ⎝ ⎛⎭⎪⎫π2≤θ≤π,同理,C 3的极坐标方程为ρ=-2cos θ⎝ ⎛⎭⎪⎫π≤θ≤3π2,C 4的极坐标方程为ρ=-2sin θ⎝ ⎛⎭⎪⎫3π2≤θ≤2π.(2)结合图形的对称性可知S 四边形ABCD =4S △AOB , 将θ=π3代入C 1得|OA |=ρA =1,将θ=2π3代入C 2得|OB |=ρB =3,所以S 四边形ABCD =4S △AOB =4×12·|OA |·|OB |·sin π3=3. 感悟提升 求曲线的极坐标方程的步骤(1)建立适当的极坐标系,设P (ρ,θ)是曲线上任意一点.(2)由曲线上的点所适合的条件,列出曲线上任意一点的极径ρ和极角θ之间的关系式.(3)将列出的关系式进行整理、化简,得出曲线的极坐标方程.训练2 在极坐标系中,O 为极点,点M (ρ0,θ0)(ρ0>0)在曲线C :ρ=4sin θ上,直线l 过点A (4,0)且与OM 垂直,垂足为P . (1)当θ0=π3时,求ρ0及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 解 (1)因为M (ρ0,θ0)在曲线C 上, 当θ0=π3时,ρ0=4sin π3=2 3. 由已知得|OP |=|OA |cos π3=2. 设Q (ρ,θ)为l 上除P 外的任意一点.在Rt △OPQ 中,ρcos ⎝ ⎛⎭⎪⎫θ-π3=|OP |=2.经检验,点P ⎝ ⎛⎭⎪⎫2,π3在曲线ρcos ⎝ ⎛⎭⎪⎫θ-π3=2上,所以,l 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π3=2.(2)设P (ρ,θ),在Rt △OAP 中,|OP |=|OA |cos θ=4cos θ,即ρ=4cos θ. 因为P 在线段OM 上,且AP ⊥OM ,所以θ的取值范围是⎣⎢⎡⎦⎥⎤π4,π2.所以,P 点轨迹的极坐标方程为ρ=4cos θ,θ∈⎣⎢⎡⎦⎥⎤π4,π2.考点四 极坐标方程的应用例3 已知曲线C :⎩⎨⎧x =2cos α,y =2sin α(α为参数),设曲线C 经过伸缩变换⎩⎪⎨⎪⎧x ′=x ,y ′=12y 得到曲线C ′,以直角坐标中的原点O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求曲线C ′的极坐标方程;(2)若A ,B 是曲线C ′上的两个动点,且OA ⊥OB ,求|OA |2+|OB |2的最小值. 解 (1)曲线C :⎩⎪⎨⎪⎧x =2cos α,y =2sin α(α为参数),转换为普通方程为x 2+y 2=4,曲线C经过伸缩变换⎩⎨⎧x ′=x ,y ′=12y得到曲线C ′:x 24+y 2=1,极坐标方程为ρ=21+3sin 2θ.(2)设A (ρ1,θ),B ⎝ ⎛⎭⎪⎫ρ2,θ+π2,所以|OA |2+|OB |2=ρ21+ρ22=41+3sin 2θ+41+3cos 2θ =8+12(sin 2θ+cos 2θ)(1+3sin 2θ)(1+3cos 2θ)=20(1+3sin 2θ)(1+3cos 2θ) =201+3(sin 2θ+cos 2θ)+94sin 22θ =204+94sin 22θ≥165. 当sin 2θ=±1时,|OA |2+|OB |2取得最小值165.感悟提升 1.若把直角坐标化为极坐标求极角θ时,应注意判断点P 所在的象限(即角θ的终边的位置),以便正确地求出角θ.利用两种坐标的互化,可以把不熟悉的问题转化为熟悉的问题.2.在极坐标系中,如果P 1(ρ1,θ1),P 2(ρ2,θ2),那么两点间的距离公式 |P 1P 2|=ρ21+ρ22-2ρ1ρ2cos (θ1-θ2).两种特殊情况:(1)当θ1=θ2+2k π,k ∈Z 时,|P 1P 2|=|ρ1-ρ2|; (2)当θ1=θ2+π+2k π,k ∈Z ,|P 1P 2|=|ρ1+ρ2|.3.由极坐标方程求曲线交点、距离等几何问题时,如果不能直接用极坐标解决,可先转化为直角坐标方程,然后求解.训练3 (2021·昆明诊断)在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =9+3t ,y =t (t为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2=161+3sin 2θ.(1)求C 和l 的直角坐标方程;(2)已知P 为曲线C 上的一个动点,求线段OP 的中点M 到直线l 的最大距离. 解 (1)由ρ2=161+3sin 2θ, 得ρ2+3ρ2sin 2θ=16,则曲线C 的直角坐标方程为x 2+4y 2=16, 即x 216+y 24=1.直线l 的直角坐标方程为x -3y -9=0.(2)可知曲线C 的参数方程为⎩⎪⎨⎪⎧x =4cos α,y =2sin α(α为参数),设P (4cos α,2sin α),α∈[0,2π),则M (2cos α,sin α)到直线l :x -3y -9=0的距离为d =|2cos α-3sin α-9|2=|7sin (θ-α)-9|2≤9+72,所以线段OP 的中点M 到直线l 的最大距离为9+72.1.将直角坐标方程与极坐标方程互化: (1)y 2=4x ;(2)y 2+x 2-2x -1=0; (3)θ=π3(ρ∈R );(4)ρcos 2 θ2=1; (5)ρ2cos 2θ=4; (6)ρ=12-cos θ.解 (1)将x =ρcos θ,y =ρsin θ代入y 2=4x ,得(ρsin θ)2=4ρcos θ.化简得ρsin 2θ=4cos θ.(2)将x =ρcos θ,y =ρsin θ代入y 2+x 2-2x -1=0,得(ρsin θ)2+(ρcos θ)2-2ρcos θ-1=0,化简得ρ2-2ρcos θ-1=0.(3)当x ≠0时,由于tan θ=y x ,故tan π3=yx =3,化简得y =3x (x ≠0); 当x =0时,y =0.显然(0,0)在y =3x 上,故θ=π3(ρ∈R )的直角坐标方程为 y =3x .(4)因为ρcos 2θ2=1,所以ρ·1+cos θ2=1,而ρ+ρcos θ=2,所以x 2+y 2+x =2.化简得y 2=-4(x -1).(5)因为ρ2cos 2θ=4,所以ρ2cos 2θ-ρ2sin 2θ=4,即x 2-y 2=4. (6)因为ρ=12-cos θ,所以2ρ-ρcos θ=1,因此2x 2+y 2-x =1,化简得3x 2+4y 2-2x -1=0.2.在极坐标系中,已知两点A ⎝ ⎛⎭⎪⎫3,π4,B ⎝ ⎛⎭⎪⎫2,π2,直线l 的方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=3.(1)求A ,B 两点间的距离; (2)求点B 到直线l 的距离.解 (1)设极点为O .在△OAB 中,A ⎝ ⎛⎭⎪⎫3,π4,B ⎝ ⎛⎭⎪⎫2,π2,由余弦定理,得 |AB |=32+(2)2-2×3×2×cos ⎝ ⎛⎭⎪⎫π2-π4= 5.(2)因为直线l 的方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=3,所以直线l 过点⎝ ⎛⎭⎪⎫32,π2,倾斜角为3π4.又B ⎝ ⎛⎭⎪⎫2,π2, 所以点B 到直线l 的距离为(32-2)×sin ⎝ ⎛⎭⎪⎫3π4-π2=2.3.以直角坐标系中的原点O 为极点,x 轴正半轴为极轴的极坐标系中,已知曲线的极坐标方程为ρ=21-sin θ.(1)将曲线的极坐标方程化为直角坐标方程;(2)过极点O 作直线l 交曲线于点P ,Q ,若|OP |=3|OQ |,求直线l 的极坐标方程. 解 (1)因为ρ=x 2+y 2,ρsin θ=y ,所以ρ=21-sin θ化为ρ-ρsin θ=2,所以曲线的直角坐标方程为x 2=4y +4.(2)设直线l 的极坐标方程为θ=θ0(ρ∈R ), 根据题意21-sin θ0=3·21-sin (θ0+π),解得θ0=π6或θ0=5π6,所以直线l 的极坐标方程为θ=π6(ρ∈R )或θ=5π6(ρ∈R ).4.(2022·南宁调研)在直角坐标系xOy 中,圆C 1:(x -1)2+y 2=1,圆C 2:(x +2)2+y 2=4.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求圆C 1,C 2的极坐标方程;(2)设A ,B 分别为C 1,C 2上的点,若△OAB 为等边三角形,求|AB |. 解 (1)因为圆C 1:(x -1)2+y 2=1, 圆C 2:(x +2)2+y 2=4,所以C 1:x 2+y 2=2x ,C 2:x 2+y 2=-4x , 因为x 2+y 2=ρ2,x =ρcos θ, 所以C 1:ρ=2cos θ,C 2:ρ=-4cos θ.(2)因为C 1,C 2都关于x 轴对称,△OAB 为等边三角形, 所以不妨设A (ρA ,θ),B ⎝ ⎛⎭⎪⎫ρB ,θ+π3,0<θ<π2.依题意可得,ρA =2cos θ,ρB =-4cos ⎝ ⎛⎭⎪⎫θ+π3.从而2cos θ=-4cos ⎝ ⎛⎭⎪⎫θ+π3,整理得,2cos θ=3sin θ,所以tan θ=233,又因为0<θ<π2,所以cos θ=217,|AB |=|OA |=ρA =2217.5.(2021·成都诊断)在直角坐标系xOy 中,已知曲线C 的方程为(x -1)2+y 2=1,直线l 的方程为x +3y -6=0.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 和直线l 的极坐标方程;(2)若点P (x ,y )在直线l 上且y >0,射线OP 与曲线C 相交于异于点O 的点Q ,求|OP ||OQ |的最小值.解 (1)由极坐标与直角坐标的互化公式x =ρcos θ,y =ρsin θ得 曲线C 的极坐标方程为ρ=2cos θ. 由题意得直线l 的极坐标方程为ρcos θ+3ρsin θ-6=0,即ρsin ⎝ ⎛⎭⎪⎫θ+π6=3.(2)设点P 的极坐标为(ρ1,θ),点Q 的极坐标为(ρ2,θ),其中0<θ<π2. 由(1)知|OP |=ρ1=6cos θ+3sin θ,|OQ |=ρ2=2cos θ. ∴|OP ||OQ |=ρ1ρ2=62cos 2θ+23sin θcos θ=61+cos 2θ+3sin 2θ=61+2sin ⎝⎛⎭⎪⎫2θ+π6.∵0<θ<π2,∴π6<2θ+π6<7π6,∴-12<sin ⎝ ⎛⎭⎪⎫2θ+π6≤1. ∴当sin ⎝ ⎛⎭⎪⎫2θ+π6=1,即θ=π6时,|OP ||OQ |取得最小值2.6.已知曲线C 1:x 2+(y -3)2=9,A 是曲线C 1上的动点,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,以极点O 为中心,将点A 绕点O 逆时针旋转90°得到点B ,设点B 的轨迹方程为曲线C 2. (1)求曲线C 1,C 2的极坐标方程;(2)射线θ=5π6(ρ>0)与曲线C 1,C 2分别交于P ,Q 两点,定点M (-4,0),求△MPQ的面积.解 (1)曲线C 1:x 2+(y -3)2=9, 即x 2+y 2-6y =0. 从而ρ2=6ρsin θ.所以曲线C 1的极坐标方程为ρ=6sin θ. 设B (ρ,θ),则A ⎝ ⎛⎭⎪⎫ρ,θ-π2,则有ρ=6sin ⎝ ⎛⎭⎪⎫θ-π2=-6cos θ.所以曲线C 2的极坐标方程为ρ=-6cos θ. (2)M 到射线θ=5π6(ρ>0)的距离为d =4sin 5π6=2,射线θ=5π6(ρ>0)与曲线C 1的交点P ⎝ ⎛⎭⎪⎫ρP ,5π6,其中,ρP =6sin 5π6=3,射线θ=5π6(ρ>0)与曲线C 2的交点Q ⎝ ⎛⎭⎪⎫ρQ ,5π6,其中,ρQ =-6cos 5π6=33,则|PQ |=|ρP -ρQ |=33-3, 则S △MPQ =12|PQ |d =33-3.。
高三文科数学第一轮复习资料汇编
第一章集合与常用逻辑用语第一节集合☆☆☆2017考纲考题考情☆☆☆自|主|排|查1.集合的含义与表示方法(1)集合的含义:研究对象叫做元素,一些元素组成的总体叫做集合。
集合中元素的性质:确定性、无序性、互异性。
(2)元素与集合的关系:①属于,记为∈;②不属于,记为∉。
(3)集合的表示方法:列举法、描述法和图示法。
(4)常用数集的记号:自然数集N,正整数集N*或N+,整数集Z,有理数集Q,实数集R。
2.集合间的基本关系A B或B A3.集合的基本运算1.认清集合元素的属性(是点集、数集或其他情形)和化简集合是正确求解集合问题的两个先决条件。
2.易忘空集的特殊性,在写集合的子集时不要忘了空集和它本身。
3.运用数轴图示法易忽视端点是实心还是空心。
4.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性\”而导致解题错误。
5.记住以下结论(1)若集合A中有n个元素,则其子集的个数为2n,真子集的个数为2n-1。
(2)A∪B=A⇔B⊆A;A∩B=A⇔A⊆B。
小|题|快|练一、走进教材1.(必修1P12B组T4改编)满足{0,1}⊆A{0,1,2,3}的集合A的个数为()A.1 B.2C.3 D.4【解析】由题意得A可为{0,1},{0,1,2},{0,1,3}。
故选C。
【答案】 C2.(必修1P12B组T1改编)已知集合A={0,1,2},集合B满足A∪B ={0,1,2},则集合B有________个。
【解析】由题意知B⊆A,则集合B有8个。
【答案】8二、双基查验1.已知集合M={-1,0,1},N={0,1,2},则M∪N=()A.{-1,0,1} B.{-1,0,1,2}C.{-1,0,2} D.{0,1}【解析】M∪N表示属于M或属于N的元素构成的集合,故M∪N ={-1,0,1,2}。
故选B。
【答案】 B2.设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=() A.[0,1]B.[0,1)C.(0,1] D.(0,1)【解析】∵x2<1,∴-1<x<1。
2023年高考数学(文科)一轮复习——导数的概念及运算
第1节导数的概念及运算考试要求 1.了解导数概念的实际背景;2.通过函数图象直观理解导数的几何意义;3.能根据导数的定义求函数y=c(c为常数),y=x,y=1x,y=x2,y=x3,y=x 的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.1.函数y=f(x)在x=x0处的导数(1)定义:称函数y=f(x)在x=x0处的瞬时变化率为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即(2)几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点(x0,f(x0))处的切线的斜率.相应地,切线方程为y-y0=f′(x0)(x-x0).2.函数y=f(x)的导函数如果函数y=f(x)在开区间(a,b)内的每一点处都有导数,当x=x0时,f′(x0)是一个确定的数,当x变化时,f′(x)便是x的一个函数,称它为f(x)的导函数(简称导数),y=f(x)的导函数有时也记作y′,即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx.3.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数) f ′(x )=0 f (x )=x α(α∈Q *) f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos__x f (x )=cos x f ′(x )=-sin__x f (x )=e x f ′(x )=e x f (x )=a x (a >0,a ≠1)f ′(x )=a x ln__a f (x )=ln xf ′(x )=1x f (x )=log a x (a >0,a ≠1)f ′(x )=1x ln a4.导数的运算法则 若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,且(f (x 0))′=0.2.⎣⎢⎡⎦⎥⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0).3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.1.思考辨析(在括号内打“√”或“×”)(1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( )(2)函数f (x )=sin(-x )的导数f ′(x )=cos x .( ) (3)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( )(4)曲线y =f (x )在某点处的切线与曲线y =f (x )过某点的切线意义是相同的.( ) 答案 (1)× (2)× (3)× (4)×解析 (1)f ′(x 0)表示y =f (x )在x =x 0处的瞬时变化率,(1)错. (2)f (x )=sin(-x )=-sin x ,则f ′(x )=-cos x ,(2)错. (3)求f ′(x 0)时,应先求f ′(x ),再代入求值,(3)错.(4)“在某点”的切线是指以该点为切点的切线,因此此点横坐标处的导数值为切线的斜率;而对于“过某点”的切线,则该点不一定是切点,要利用解方程组的思想求切线的方程,在曲线上某点处的切线只有一条,但过某点的切线可以不止一条,(4)错.2.某跳水运动员离开跳板后,他达到的高度与时间的函数关系式是h (t )=10-4.9t 2+8t (距离单位:米,时间单位:秒),则他在0.5秒时的瞬时速度为( ) A.9.1米/秒 B.6.75米/秒 C.3.1米/秒D.2.75米/秒答案 C解析 h ′(t )=-9.8t +8, ∴h ′(0.5)=-9.8×0.5+8=3.1.3.(2022·银川质检)已知函数f (x )=⎩⎨⎧x 2+2x ,x ≤0,-x 2+ax ,x >0为奇函数,则曲线f (x )在x =2处的切线斜率等于( ) A.6 B.-2C.-6D.-8答案 B解析 f (x )为奇函数,则f (-x )=-f (x ). 取x >0,得x 2-2x =-(-x 2+ax ),则a =2. 当x >0时,f ′(x )=-2x +2.∴f ′(2)=-2.4.(2020·全国Ⅲ卷)设函数f (x )=e x x +a .若f ′(1)=e4,则a =________.答案 1 解析 由f ′(x )=e x (x +a )-e x(x +a )2,可得f ′(1)=e a (1+a )2=e 4,即a (1+a )2=14,解得a =1.5.(2021·全国甲卷)曲线y =2x -1x +2在点(-1,-3)处的切线方程为________.答案 5x -y +2=0解析 y ′=⎝ ⎛⎭⎪⎪⎫2x -1x +2′=(2x -1)′(x +2)-(2x -1)(x +2)′(x +2)2=5(x +2)2, 所以k =y ′|x =-1=5(-1+2)2=5,所以切线方程为y +3=5(x +1),即5x -y +2=0.6.(易错题)设函数f (x )的导数为f ′(x ),且f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,则f ′⎝ ⎛⎭⎪⎫π4=________.答案 - 2解析 由f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,得f ′(x )=f ′⎝ ⎛⎭⎪⎫π2cos x -sin x ,则f ′⎝ ⎛⎭⎪⎫π2=f ′⎝ ⎛⎭⎪⎫π2·cos π2-sin π2,解得f ′⎝ ⎛⎭⎪⎫π2=-1,所以f ′⎝ ⎛⎭⎪⎫π4=-cos π4-sin π4=- 2.考点一 导数的运算1.下列求导运算不正确的是( ) A.(sin a )′=cos a (a 为常数)B.(sin 2x )′=2cos 2xC.(x )′=12xD.(e x -ln x +2x 2)′=e x -1x +4x 答案 A解析 ∵a 为常数,∴sin a 为常数,∴(sin a )′=0,故A 错误.由导数公式及运算法则知B 、C 、D 正确.2.若f (x )=x 3+2x -x 2ln x -1x 2,则f ′(x )=________.答案 1-1x -2x 2+2x 3解析 由已知f (x )=x -ln x +2x -1x 2.∴f ′(x )=1-1x -2x 2+2x 3.3.设f ′(x )是函数f (x )=cos xe x +x 的导函数,则f ′(0)的值为________. 答案 0 解析 因为f (x )=cos xe x+x , 所以f ′(x )=(cos x )′e x -(e x )′cos x (e x )2+1=-sin x -cos xe x +1, 所以f ′(0)=-1e 0+1=0.4.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f (1)=________. 答案 -234解析 因为f (x )=x 2+3xf ′(2)+ln x , ∴f ′(x )=2x +3f ′(2)+1x .令x =2,得f ′(2)=4+3f ′(2)+12,则f ′(2)=-94. ∴f (1)=1+3×1×⎝ ⎛⎭⎪⎫-94+0=-234.感悟提升 1.求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导.2.抽象函数求导,恰当赋值是关键,然后活用方程思想求解. 考点二 导数的几何意义 角度1 求切线的方程例1 (1)曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为________.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为________.答案 (1)3x -y =0 (2)x -y -1=0 解析 (1)y ′=3(2x +1)e x +3(x 2+x )e x =3e x (x 2+3x +1),所以曲线在点(0,0)处的切线的斜率k =e 0×3=3,所以所求切线方程为3x -y =0.(2)∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又∵f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x . ∴由⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得⎩⎪⎨⎪⎧x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0. 角度2 求曲线的切点坐标例2 (2022·皖豫名校联考)若曲线y =e x +2x 在其上一点(x 0,y 0)处的切线的斜率为4,则x 0=( ) A.2 B.ln 4 C.ln 2D.-ln 2答案 C解析 ∵y ′=e x +2,∴e x 0+2=4,∴e x 0=2,x 0=ln 2. 角度3 导数与函数图象问题例3 已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=________.答案 0解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13. ∵g (x )=xf (x ), ∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题意可知f (3)=1, ∴g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.感悟提升 1.求曲线在点P (x 0,y 0)处的切线,则表明P 点是切点,只需求出函数在P 处的导数,然后利用点斜式写出切线方程,若在该点P 处的导数不存在,则切线垂直于x 轴,切线方程为x =x 0.2.求曲线的切线方程要分清“在点处”与“过点处”的切线方程的不同.切点坐标不知道,要设出切点坐标,根据斜率相等建立方程(组)求解,求出切点坐标是解题的关键.训练1 (1)(2022·沈阳模拟)曲线f (x )=2e x sin x 在点(0,f (0))处的切线方程为( ) A.y =0 B.y =2x C.y =xD.y =-2x(2)(2021·长沙检测)如图所示,y=f(x)是可导函数,直线l:y=kx+3是曲线y=f(x)在x=1处的切线,令h(x)=f(x)x,h′(x)是h(x)的导函数,则h′(1)的值是()A.2B.1C.-1D.-3答案(1)B(2)D解析(1)∵f(x)=2e x sin x,∴f(0)=0,f′(x)=2e x(sin x+cos x),∴f′(0)=2,∴所求切线方程为y=2x.(2)由图象知,直线l经过点(1,2).则k+3=2,k=-1,从而f′(1)=-1,且f(1)=2,由h(x)=f(x)x,得h′(x)=xf′(x)-f(x)x2,所以h′(1)=f′(1)-f(1)=-1-2=-3.考点三导数几何意义的应用例4 (1)已知曲线f(x)=x ln x在点(e,f(e))处的切线与曲线y=x2+a相切,则实数a 的值为________.(2)(2022·河南名校联考)若函数f(x)=ln x+2x2-ax的图象上存在与直线2x-y=0平行的切线,则实数a的取值范围是________.答案(1)1-e(2)[2,+∞)解析(1)因为f′(x)=ln x+1,所以曲线f(x)=x ln x在x=e处的切线斜率为k=2,又f(e)=e,则曲线f (x )=x ln x 在点(e ,f (e))处的切线方程为y =2x -e. 由于切线与曲线y =x 2+a 相切,故可联立⎩⎪⎨⎪⎧y =x 2+a ,y =2x -e ,得x 2-2x +a +e =0,所以由Δ=4-4(a +e)=0,解得a =1-e. (2)∵直线2x -y =0的斜率为k =2,又曲线f (x )上存在与直线2x -y =0平行的切线,∴f ′(x )=1x +4x -a =2在(0,+∞)内有解,则a =4x +1x -2,x >0. 又4x +1x ≥24x ·1x =4,当且仅当x =12时取“=”.∴a ≥4-2=2.∴a 的取值范围是[2,+∞).感悟提升 1.处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程(组)并解出参数:(1)切点处的导数是切线的斜率;(2)切点在切线上;(3)切点在曲线上.2.利用导数的几何意义求参数范围时,注意化归与转化思想的应用.训练2 (1)(2021·洛阳检测)函数f (x )=ln x -ax 在x =2处的切线与直线ax -y -1=0平行,则实数a =( ) A.-1 B.14 C.12D.1(2)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b =________. 答案 (1)B (2)1解析 (1)∵f (x )=ln x -ax ,∴f ′(x )=1x -a .又曲线y =f (x )在x =2处切线的斜率k =f ′(2), 因此12-a =a ,∴a =14.(2)y =x 3+ax +b 的导数为y ′=3x 2+a , 可得在点(1,1)处切线的斜率为k =3+a ,又k +1=3,1+a +b =3,解得k =2,a =-1,b =3,即有2a +b =-2+3=1.公切线问题求两条曲线的公切线,如果同时考虑两条曲线与直线相切,头绪会比较乱,为了使思路更清晰,一般是把两条曲线分开考虑,先分析其中一条曲线与直线相切,再分析另一条曲线与直线相切,其中直线与抛物线相切可用判别式法. 一、共切点的公切线问题例1 设点P 为函数f (x )=12x 2+2ax 与g (x )=3a 2ln x +2b (a >0)的图象的公共点,以P 为切点可作直线l 与两曲线都相切,则实数b 的最大值为( ) A.23e 34 B.32e 34 C.43e 23D.34e 23答案 D解析 设P (x 0,y 0),由于P 为公共点, 则12x 20+2ax 0=3a 2ln x 0+2b .又点P 处的切线相同,则f ′(x 0)=g ′(x 0), 即x 0+2a =3a 2x 0,即(x 0+3a )(x 0-a )=0.又a >0,x 0>0,则x 0=a ,于是2b =52a 2-3a 2ln a .设h (x )=52x 2-3x 2ln x ,x >0, 则h ′(x )=2x (1-3ln x ).可知:当x ∈(0,e 13)时,h (x )单调递增;当x ∈(e 13,+∞)时,h (x )单调递减. 故h (x )max =h (e 13)=32e 23, 于是b 的最大值为34e 23,选D. 二、切点不同的公切线问题例2 曲线y =-1x (x <0)与曲线y =ln x 的公切线的条数为________. 答案 1解析 设(x 1,y 1)是公切线和曲线y =-1x 的切点, 则切线斜率k 1=⎝ ⎛⎭⎪⎫-1x ′|x =x 1=1x 21,切线方程为y +1x 1=1x 21(x -x 1),整理得y =1x 21·x -2x 1.设(x 2,y 2)是公切线和曲线y =ln x 的切点, 则切线斜率k 2=(ln x )′|x =x 2=1x 2,切线方程为y -ln x 2=1x 2(x -x 2),整理得y =1x 2·x +ln x 2-1.令1x 21=1x 2,-2x 1=ln x 2-1,消去x 2得-2x 1=ln x 21-1.设t =-x 1>0,即2ln t -2t -1=0,只需探究此方程解的个数.易知函数f (x )=2ln x -2x -1在(0,+∞)上单调递增,f (1)=-3<0,f (e)=1-2e >0,于是f (x )=0有唯一解,于是两曲线的公切线的条数为1.1.函数f (x )=x 2+ln x +sin x +1的导函数f ′(x )=( ) A.2x +1x +cos x +1 B.2x -1x +cos x C.2x +1x -cos xD.2x +1x +cos x答案 D解析 由f (x )=x 2+ln x +sin x +1得f ′(x )=2x +1x +cos x . 2.曲线y =x +1x -1在点(3,2)处的切线的斜率是( )A.2B.-2C.12D.-12答案 D解析 y ′=(x +1)′(x -1)-(x +1)(x -1)′(x -1)2=-2(x -1)2,故曲线在点(3,2)处的切线的斜率k =y ′|x =3=-2(3-1)2=-12. 3.(2021·安徽皖江名校联考)已知f (x )=x 3+2xf ′(0),则f ′(1)=( ) A.2 B.3C.4D.5答案 B解析 f ′(x )=3x 2+2f ′(0), ∴f ′(0)=2f ′(0),解得f ′(0)=0, ∴f ′(x )=3x 2,∴f ′(1)=3.4.(2022·豫北十校联考)已知f (x )=x 2,则过点P (-1,0),曲线y =f (x )的切线方程为( ) A.y =0 B.4x +y +4=0 C.4x -y +4=0 D.y =0或4x +y +4=0 答案 D解析 易知点P (-1,0)不在f (x )=x 2上,设切点坐标为(x 0,x 20),由f (x )=x 2可得f ′(x )=2x ,∴切线的斜率k =f ′(x 0)=2x 0. ∵切线过点P (-1,0),∴k =x 20x 0+1=2x 0,解得x 0=0或x 0=-2,∴k =0或-4,故所求切线方程为y =0或4x +y +4=0.5.(2022·昆明诊断)若直线y =ax 与曲线y =ln x -1相切,则a =( ) A.e B.1C.1eD.1e 2答案 D解析 由y =ln x -1,得y ′=1x ,设切点为(x 0,ln x 0-1),则⎩⎨⎧ax 0=ln x 0-1,a =1x 0,解得a =1e 2. 6.已知函数f (x )在R 上可导,其部分图象如图所示,设f (4)-f (2)4-2=a ,则下列不等式正确的是( )A.a <f ′(2)<f ′(4)B.f ′(2)<a <f ′(4)C.f ′(4)<f ′(2)<aD.f ′(2)<f ′(4)<a 答案 B解析 由函数f (x )的图象可知,在[0,+∞)上,函数值的增长越来越快,故该函数图象在[0,+∞)上的切线斜率也越来越大. 因为f (4)-f (2)4-2=a ,所以f ′(2)<a <f ′(4).7.函数f (x )=(2x -1)e x 的图象在点(0,f (0))处的切线的倾斜角为________. 答案 π4解析 由f (x )=(2x -1)e x , 得f ′(x )=(2x +1)e x ,∴f ′(0)=1,则切线的斜率k =1, 又切线倾斜角θ∈[0,π), 因此切线的倾斜角θ=π4.8.已知曲线f (x )=13x 3-x 2-ax +1存在两条斜率为3的切线,则实数a 的取值范围是________. 答案 (-4,+∞) 解析 f ′(x )=x 2-2x -a ,依题意知x 2-2x -a =3有两个实数解, 即a =x 2-2x -3=(x -1)2-4有两个实数解, ∴y =a 与y =(x -1)2-4的图象有两个交点, ∴a >-4.9.(2021·济南检测)曲线y =f (x )在点P (-1,f (-1))处的切线l 如图所示,则f ′(-1)+f (-1)=________.答案-2解析∵直线l过点(-2,0)和(0,-2),∴直线l的斜率f′(-1)=0+2-2-0=-1,直线l的方程为y=-x-2.则f(-1)=1-2=-1.故f′(-1)+f(-1)=-1-1=-2.10.已知函数f(x)=x3-4x2+5x-4.(1)求曲线f(x)在点(2,f(2))处的切线方程;(2)求经过点A(2,-2)的曲线f(x)的切线方程.解(1)因为f′(x)=3x2-8x+5,所以f′(2)=1,又f(2)=-2,所以曲线f(x)在点(2,f(2))处的切线方程为y-(-2)=x-2,即x-y -4=0.(2)设切点坐标为(x0,x30-4x20+5x0-4),因为f′(x0)=3x20-8x0+5,所以切线方程为y-(-2)=(3x20-8x0+5)(x-2),又切线过点(x0,x30-4x20+5x0-4),所以x30-4x20+5x0-2=(3x20-8x0+5)·(x0-2),整理得(x0-2)2(x0-1)=0,解得x0=2或x0=1,所以经过点A(2,-2)的曲线f(x)的切线方程为x-y-4=0或y+2=0.11.已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.解(1)根据题意,得f′(x)=3x2+1.所以曲线y=f(x)在点(2,-6)处的切线的斜率k=f′(2)=13,所以所求的切线方程为13x-y-32=0.(2)设切点为(x0,y0),则直线l的斜率为f′(x0)=3x20+1,所以直线l的方程为y=(3x20+1)(x-x0)+x30+x0-16.又直线l过点(0,0),则(3x20+1)(0-x0)+x30+x0-16=0,整理得x30=-8,解得x0=-2,所以y0=(-2)3+(-2)-16=-26,l的斜率k′=13,所以直线l的方程为y=13x,切点坐标为(-2,-26).12.若函数f(x)=a ln x(a∈R)与函数g(x)=x在公共点处有共同的切线,则实数a 的值为()A.4B.12 C.e2 D.e答案 C解析由已知得f′(x)=ax,g′(x)=12x,设切点横坐标为t,∴⎩⎨⎧a ln t=t,at=12t,解得t=e2,a=e2.13.曲线y=x2-ln x上的点到直线x-y-2=0的最短距离是________. 答案 2解析设曲线在点P(x0,y0)(x0>0)处的切线与直线x-y-2=0平行,则y′|x=x0=⎝⎛⎭⎪⎫2x-1x| x=x0=2x0-1x0=1.∴x0=1,y0=1,则P(1,1),则曲线y=x2-ln x上的点到直线x-y-2=0的最短距离d=|1-1-2|12+(-1)2= 2.14.(2021·宜昌质检)已知函数f(x)=1x+1+x+a-1的图象是以点(-1,-1)为对称中心的中心对称图形,g(x)=e x+ax2+bx,若曲线y=f(x)在点(1,f(1))处的切线与曲线y=g(x)在点(0,g(0))处的切线互相垂直,求a+b的值.解由y=x+1x的图象关于点(0,0)对称,且y=f(x)的图象可由y=x+1x的图象平移得到,且函数f(x)=1x+1+x+a-1=1x+1+(x+1)+a-2的图象是以点(-1,-1)为对称中心的中心对称图形,得a-2=-1,即a=1,所以f(x)=1x+1+x.对f(x)求导,得f′(x)=1-1(x+1)2,则曲线y=f(x)在点(1,f(1))处的切线斜率k1=f′(1)=1-14=3 4.对g(x)求导,得g′(x)=e x+2x+b,则曲线y=g(x)在点(0,g(0))处的切线斜率k2=g′(0)=b+1.由两曲线的切线互相垂直,得(b+1)×34=-1,即b=-73,所以a+b=1-73=-43.。
2023年高考数学(文科)一轮复习讲义——直线与圆、圆与圆的位置关系
第4节 直线与圆、圆与圆的位置关系考试要求 1.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系;2.能用直线和圆的方程解决一些简单的问题;3.初步了解用代数方法处理几何问题的思想.1.直线与圆的位置关系设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax +By +C =0,圆心C (a ,b )到直线l 的距离为d ,由⎩⎨⎧(x -a )2+(y -b )2=r 2,Ax +By +C =0消去y (或x ),得到关于x (或y )的一元二次方程,其判别式为Δ.位置关系相离相切相交图形量化方程观点 Δ<0 Δ=0 Δ>0 几何观点d >rd =rd <r2.圆与圆的位置关系设两圆的半径分别为R ,r (R >r ),两圆圆心间的距离为d ,则两圆的位置关系可用下表表示: 位置关系 外离外切相交内切内含图形量的关系d >R +rd =R +rR -r <d <R +rd =R -rd <R -r公切线条数432101.圆的切线方程常用结论(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2.(3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x +y0y=r2.2.直线被圆截得的弦长的求法(1)几何法:运用弦心距d、半径r和弦长的一半构成的直角三角形,计算弦长|AB|=2r2-d2.(2)代数法:设直线y=kx+m与圆x2+y2+Dx+Ey+F=0相交于点M,N,将直线方程代入圆的方程中,消去y,得关于x的一元二次方程,求出x M+x N和x M·x N,则|MN|=1+k2·(x M+x N)2-4x M·x N.1.思考辨析(在括号内打“√”或“×”)(1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.()(2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.()(3)如果两圆的圆心距小于两圆的半径之和,则两圆相交.()(4)若直线平分圆的周长,则直线一定过圆心.()答案(1)×(2)×(3)×(4)√解析(1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的充分不必要条件;(2)除外切外,还有可能内切;(3)两圆还可能内切或内含.2.(2021·绍兴一模)设m∈R,则“1≤m≤2”是“直线l:x+y-m=0和圆C:x2+y 2-2x -4y +m +2=0有公共点”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 答案 A解析 圆C :(x -1)2+(y -2)2=3-m ,圆心为(1,2),半径r =3-m (m <3).若直线l 与圆C 有公共点,则圆心(1,2)到直线l 的距离d =|3-m |2≤3-m ,解得1≤m <3. 因为{m |1≤m ≤2}{m |1≤m <3},所以“1≤m ≤2”是“直线l :x +y -m =0和圆C :x 2+y 2-2x -4y +m +2=0有公共点”的充分不必要条件.3.(2022·全国百校联盟质检)已知直线l :x -2y +6=0与圆C :x 2+y 2-4y =0相交于A ,B 两点,则CA →·CB →=( ) A.165 B.-165 C.125 D.-125 答案 D解析 由圆的一般方程x 2+y 2-4y =0得标准方程为x 2+(y -2)2=4,故可得圆心C (0,2),半径r =2, 联立得⎩⎪⎨⎪⎧x -2y +6=0,x 2+y 2-4y =0,解得⎩⎪⎨⎪⎧x =-2,y =2或⎩⎪⎨⎪⎧x =65,y =185.不妨设A (-2,2),B ⎝ ⎛⎭⎪⎫65,185,则CA →=(-2,0),CB →=⎝ ⎛⎭⎪⎫65,85,所以CA →·CB →=-2×65+0×85=-125.4.(2021·洛阳模拟)若圆x 2+y 2=a 2与圆x 2+y 2+ay -6=0的公共弦长为23,则a =________. 答案 ±2解析 两圆方程作差得公共弦所在直线方程为a 2+ay -6=0,原点到a 2+ay -6=0的距离为d =⎪⎪⎪⎪⎪⎪6a -a .∵公共弦长为23, ∴a 2=(3)2+⎪⎪⎪⎪⎪⎪6a -a 2,∴a 2=4,a =±2.5.(易错题)若半径为r ,圆心为(0,1)的圆和定圆(x -1)2+(y -2)2=1相切,则r 的值等于________. 答案2+1或2-1解析 由题意,定圆(x -1)2+(y -2)2=1的圆心为A (1,2),半径R =1,半径为r 的圆的圆心为B (0,1), 所以|AB |=(1-0)2+(2-1)2= 2.因为两圆相切,所以|AB |=|R -r |或|AB |=|R +r |, 即|1-r |=2或 |1+r |=2, 解得r =1±2或r =-1±2. 因为r >0,所以r=2+1或r=2-1.6.(易错题)过点A(3,5)作圆O:x2+y2-2x-4y+1=0的切线,则切线的方程为________________.答案5x-12y+45=0或x-3=0解析化圆x2+y2-2x-4y+1=0为标准方程得(x-1)2+(y-2)2=4,其圆心为(1,2),半径为2.∵|OA|=(3-1)2+(5-2)2=13>2,∴点A(3,5)在圆外.显然,当切线斜率不存在时,直线与圆相切,即切线方程为x-3=0.当切线斜率存在时,可设所求切线方程为y-5=k(x-3),即kx-y+5-3k=0.又圆心为(1,2),半径r=2,而圆心到切线的距离d=|3-2k|k2+1=2,即|3-2k|=2k2+1,∴k=512,故所求切线方程为5x-12y+45=0或x-3=0.考点一直线与圆的位置关系1.若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是()A.[-3,-1]B.[-1,3]C.[-3,1]D.(-∞,-3]∪[1,+∞)答案 C解析由题意可得,圆的圆心为(a,0),半径为2,∴|a-0+1|12+(-1)2≤2,即|a+1|≤2,解得-3≤a ≤1.2.(2022·成都诊断)直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A.相交 B.相切 C.相离D.不确定答案 A解析 法一 (代数法)由⎩⎪⎨⎪⎧mx -y +1-m =0,x 2+(y -1)2=5,消去y ,整理得(1+m 2)x 2-2m 2x +m 2-5=0,因为Δ=16m 2+20>0,所以直线l 与圆相交.法二 (几何法)由题意知,圆心(0,1)到直线l 的距离d =|-m |m 2+1<1<5,故直线l 与圆相交.法三 易得直线l 过定点(1,1), 把点(1,1)代入圆的方程有1+0<5, ∴点(1,1)在圆的内部,故直线l 与圆C 相交.3.“a =3”是“直线y =x +4与圆(x -a )2+(y -3)2=8相切”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 答案 A解析 若直线y =x +4与圆(x -a )2+(y -3)2=8相切,则有|a -3+4|2=22,即|a +1|=4,所以a =3或-5.故“a =3”是“直线y =x +4与圆(x -a )2+(y -3)2=8相切”的充分不必要条件.感悟提升判断直线与圆的位置关系的常见方法(1)几何法:利用d与r的关系.(2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.考点二圆的弦长问题例1 (1)(2022·河南名校联考)已知圆C:(x-a)2+y2=4(a≥2)与直线x-y+22-2=0相切,则圆C与直线x-y-4=0相交所得弦长为()A.1B. 2C.2D.2 2(2)已知圆x2+y2-6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1B.2C.3D.4答案(1)D(2)B解析(1)根据题意,圆C:(x-a)2+y2=4的半径r=2.圆C:(x-a)2+y2=4(a≥2)与直线x-y+22-2=0相切,则圆心C到直线x-y+22-2=0的距离为2,即|a+22-2|2=2,解得a=2或a=2-42(舍去),所以圆C的方程为(x-2)2+y2=4,则圆心C(2,0)到直线x-y-4=0的距离d=|2-4|2=2,所以圆C与直线x-y-4=0相交所得弦长为222-d2=2 2.(2)圆的方程可化为(x-3)2+y2=9,故圆心的坐标为C(3,0),半径r=3.如图,记点M(1,2),则当MC与直线垂直时,直线被圆截得的弦的长度最小,此时|MC |=22, 弦的长度l =2r 2-|MC |2=29-8=2.感悟提升 弦长的两种求法(1)代数方法:将直线和圆的方程联立方程组,消元后得到一个一元二次方程.在判别式Δ>0的前提下,利用根与系数的关系,根据弦长公式求弦长. (2)几何方法:若弦心距为d ,圆的半径长为r ,则弦长l =2r 2-d 2.训练1 (2022·南昌摸底测试)若直线x +ay -a -1=0与圆C :(x -2)2+y 2=4交于A ,B 两点,当|AB |最小时,劣弧AB 的长为( ) A.π2 B.πC.2πD.3π答案 B解析 圆C :(x -2)2+y 2=4的圆心为C (2,0),半径r =2.直线的方程可化为x -1+a (y -1)=0,可知直线恒过点D (1,1). 因为点D (1,1)的坐标满足(1-2)2+12<4, 所以点D (1,1)恒在圆C 内,且|CD |=2,易知,当CD ⊥AB 时,|AB |取得最小值,且最小值为2r 2-|CD |2=2 2.此时,劣弧AB 对应的圆心角为π2,所以劣弧AB 对应的弧长为π2×2=π. 考点三 圆的切线问题例2 (经典母题)过点P (2,4)引圆C :(x -1)2+(y -1)2=1的切线,则切线方程为________________.答案 x =2或4x -3y +4=0解析 当直线的斜率不存在时,直线方程为x =2,此时,圆心到直线的距离等于半径,直线与圆相切,符合题意;当直线的斜率存在时,设直线方程为y -4=k (x -2),即kx -y +4-2k =0.∵直线与圆相切,∴圆心到直线的距离等于半径,即d=|k -1+4-2k |k 2+(-1)2=|3-k |k 2+1=1,解得k =43,∴所求切线方程为43x -y +4-2×43=0, 即4x -3y +4=0.综上,切线方程为x =2或4x -3y +4=0.迁移1 在例2中,若点P 坐标变为⎝ ⎛⎭⎪⎫22+1,22+1,其他条件不变,求切线方程.解 易知点P ⎝ ⎛⎭⎪⎫22+1,22+1在圆C :(x -1)2+(y -1)2=1上,则k PC =22+1-122+1-1=1,∴所求切线方程的斜率为-1,则切线方程为y -⎝ ⎛⎭⎪⎫22+1=-⎣⎢⎡⎦⎥⎤x -⎝ ⎛⎭⎪⎫22+1,即x +y -2-2=0.迁移2 在例2中,已知条件不变,设两个切点为A ,B ,求切点弦AB 所在的直线方程.解 由题意得,点P ,A ,C ,B 在以PC 为直径的圆上,此圆的方程为(x -2)(x -1)+(y -4)(y -1)=0,整理得x 2+y 2-3x -5y +6=0.①圆C :(x -1)2+(y -1)2=1展开得x 2+y 2-2x -2y +1=0,② 由②-①得x +3y -5=0,即为直线AB 的方程.感悟提升 求过某点的圆的切线问题时,应首先确定点与圆的位置关系,再求切线方程.若点在圆上(即为切点),则过该点的切线只有一条;若点在圆外,则过该点的切线有两条,此时注意斜率不存在的切线.训练2 (1)过直线y =2x +3上的点作圆C :x 2+y 2-4x +6y +12=0的切线,则切线长的最小值为( )A.19B.2 5C.21D.555(2)(2021·晋中模拟)过点P (2,3)作圆C :x 2+y 2-2x =0的两条切线,切点分别为A ,B ,则P A →·PB →=________.答案 (1)A (2)32解析 (1)圆的方程可化为(x -2)2+(y +3)2=1,要使切线长最小,只需直线y =2x +3上的点和圆心之间的距离最短,此最小值即为圆心(2,-3)到直线y =2x +3的距离d ,d =|2×2+3+3|5=25,故切线长的最小值为d 2-r 2=19.(2)由x 2+y 2-2x =0得(x -1)2+y 2=1,所以圆心C (1,0),半径为1,所以|PC |=2,|P A |=|PB |=3,∠APB =60°, 所以P A →·PB →=|P A →||PB →|cos 60°=32. 考点四 圆与圆的位置关系例3 已知两圆x 2+y 2-2x -6y -1=0,x 2+y 2-10x -12y +m =0. (1)m 取何值时两圆外切? (2)m 取何值时两圆内切?(3)当m =45时,求两圆的公共弦所在直线的方程和公共弦的长. 解 因为两圆的标准方程分别为 (x -1)2+(y -3)2=11, (x -5)2+(y -6)2=61-m ,所以两圆的圆心分别为(1,3),(5,6),半径分别为11,61-m ,(1)当两圆外切时,由(5-1)2+(6-3)2=11+61-m ,得m =25+1011.(2)当两圆内切时,因为定圆半径11小于两圆圆心之间的距离5,所以61-m -11=5,解得m=25-1011.(3)由(x2+y2-2x-6y-1)-(x2+y2-10x-12y+45)=0,得两圆的公共弦所在直线的方程为4x+3y-23=0,故两圆的公共弦的长为2(11)2-(|4×1+3×3-23|42+32)2=27.感悟提升 1.判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.2.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去x2,y2项得到.训练3 (1)已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是22,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是()A.内切B.相交C.外切D.相离(2)(2022·东北三省三校联考)圆x2-4x+y2=0与圆x2+y2+4x+3=0的公切线共有()A.1条B.2条C.3条D.4条答案(1)B(2)D解析(1)由题意得圆M的标准方程为x2+(y-a)2=a2,圆心(0,a)到直线x+y=0的距离d=a2,所以2a2-a22=22,解得a=2.圆M,圆N的圆心距|MN|=2小于两圆半径之和1+2,大于两圆半径之差1,故两圆相交.(2)x2-4x+y2=0⇒(x-2)2+y2=22,圆心坐标为(2,0),半径为2;x2+y2+4x+3=0⇒(x+2)2+y2=12,圆心坐标为(-2,0),半径为1,圆心距为4,两圆半径和为3.因为4>3,所以两圆的位置关系是外离,故两圆的公切线共有4条.阿波罗尼斯圆公元前3世纪,古希腊数学家阿波罗尼斯(Apollonius)在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下结果:到两定点距离之比等于已知数的动点轨迹为直线或圆.如图,点A ,B 为两定点,动点P 满足|P A |=λ|PB |.则λ=1时,动点P 的轨迹为直线;当λ>0且λ≠1时,动点P 的轨迹为圆,后世称之为阿波罗尼斯圆.证明:设|AB |=2m (m >0),|P A |=λ|PB |,以AB 的中点为原点,直线AB 为x 轴,线段AB 的垂直平分线为y 轴,建立平面直角坐标系(图略),则A (-m ,0),B (m ,0).又设P (x ,y ),则由|P A |=λ|PB |得(x +m )2+y 2=λ(x -m )2+y 2, 两边平方并化简整理得(λ2-1)x 2-2m (λ2+1)x +(λ2-1)y 2=m 2(1-λ2).当λ=1时,x =0,轨迹为线段AB 的垂直平分线;当λ>0且λ≠1时,⎝ ⎛⎭⎪⎪⎫x -λ2+1λ2-1m 2+y 2=4λ2m 2(λ2-1)2,轨迹为以点⎝ ⎛⎭⎪⎪⎫λ2+1λ2-1m ,0为圆心,⎪⎪⎪⎪⎪⎪2λm λ2-1为半径的圆. 例1 如图所示,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4,设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使|MA |=2|MO |,求圆心C 的横坐标a 的取值范围.解 (1)联立⎩⎪⎨⎪⎧y =x -1,y =2x -4,得圆心为C (3,2). 由题意知切线的斜率存在,设切线方程为y =kx +3,圆心C 到切线的距离d =|3k +3-2|1+k2=r =1,得k =0或k =-34. 故所求切线方程为y =3或3x +4y -12=0.(2)设点M (x ,y ),由|MA |=2|MO |, 知x 2+(y -3)2=2x 2+y 2,化简得x 2+(y +1)2=4,即点M 的轨迹为以(0,-1)为圆心,2为半径的圆,可记为圆D .又因为点M 也在圆C 上,故圆C 与圆D 的关系为相交或相切,故1≤|CD |≤3,其中|CD |=a 2+(2a -3)2, 解得0≤a ≤125. 即圆心C 的横坐标a 的取值范围是⎣⎢⎡⎦⎥⎤0,125. 例2 在平面直角坐标系xOy 中,设点A (1,0),B (3,0),C (0,a ),D (0,a +2),若存在点P ,使得|P A |=2|PB |,|PC |=|PD |,则实数a 的取值范围是________. 答案 [-22-1,22-1]解析设P(x,y),则(x-1)2+y2=2·(x-3)2+y2,整理得(x-5)2+y2=(22)2,即动点P在以(5,0)为圆心,22为半径的圆上运动. 另一方面,由|PC|=|PD|知动点P在线段CD的垂直平分线y=a+1上运动,因而问题就转化为直线y=a+1与圆(x-5)2+y2=(22)2有交点.所以|a+1|≤2 2.故实数a的取值范围是[-22-1,22-1].1.(2022·兰州质检)“k=33”是“直线l:y=k(x+2)与圆x2+y2=1相切”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析若直线l与圆相切,则有|2k|k2+1=1,解得k=±33,所以“k=33”是“直线l:y=k(x+2)与圆x2+y2=1相切”的充分不必要条件.2.(2021·福州调研)已知圆x2+y2+2x-2y+a=0截直线x+y+2=0所得的弦的长度为4,则实数a的值是()A.-2B.-4C.-6D.-8答案 B解析将圆的方程化为标准方程为(x+1)2+(y-1)2=2-a,所以圆心为(-1,1),半径r=2-a,圆心到直线x+y+2=0的距离d=|-1+1+2|2=2,故r2-d2=4,即2-a-2=4,所以a=-4.3.圆x2+2x+y2+4y-3=0上到直线x+y+1=0的距离为2的点共有()A.1个B.2个C.3个D.4个答案 C解析圆的方程可化为(x+1)2+(y+2)2=8,圆心(-1,-2)到直线的距离d=|-1-2+1|=2,半径是22,结合图形(图略)可知有3个符合条件的点.24.(2021·南昌模拟)已知圆O:(x-1)2+(y-1)2=1,则下列选项所对应的图形中,与圆O相切的是()A.x2+y2=1B.(x-4)2+(y-5)2=16C.x+y=1D.x-y=2答案 B解析圆O:(x-1)2+(y-1)2=1的圆心坐标为(1,1),半径r=1.对于选项A,x2+y2=1表示的是圆心坐标为(0,0),半径r1=1的圆,此圆与圆O的圆心距为12+12=2<r+r1=2,所以两圆不相切,不符合题意.对于选项B,(x-4)2+(y-5)2=16表示的是圆心坐标为(4,5),半径r2=4的圆,此圆与圆O的圆心距为(4-1)2+(5-1)2=5=r+r2=5,所以两圆相切.对于选项C,圆心(1,1)到直线x+y=1的距离为22<1,故直线x+y=1与圆O 相交.对于选项D,圆心(1,1)到直线x-y=2的距离为2>1,故直线x-y=2与圆O 相离.5.过点P(1,-2)作圆C:(x-1)2+y2=1的两条切线,切点分别为A,B,则AB 所在直线的方程为()A.y=-34 B.y=-12C.y=-32 D.y=-14答案 B解析由题意知,点P,A,C,B在以PC为直径的圆上,易求得这个圆为(x-1)2+(y+1)2=1,此圆的方程与圆C的方程作差可得AB所在直线的方程为y=-12.6.(2022·宜宾诊断)已知直线l:y=3x+m与圆C:x2+(y-3)2=6相交于A,B 两点,若∠ACB=120°,则实数m的值为()A.3+6或3- 6B.3+26或3-2 6C.9或-3D.8或-2答案 A解析由题意知圆心C(0,3)到直线l的距离d=|0-3+m|3+1=|m-3|2.因为∠ACB=120°,所以|m-3|2×2=6,解得m=3±6.7.已知圆C的圆心坐标是(0,m),半径长是r.若直线2x-y+3=0与圆C相切于点A(-2,-1),则m=________,r=________.答案-2 5解析根据题意画出图形,可知A(-2,-1),C(0,m),B(0,3),则|AB|=(-2-0)2+(-1-3)2=25,|AC|=(-2-0)2+(-1-m)2=4+(m+1)2,|BC |=|m -3|.∵直线2x -y +3=0与圆C 相切于点A ,∴∠BAC =90°,∴|AB |2+|AC |2=|BC |2.即20+4+(m +1)2=(m -3)2,解得m =-2.因此r =|AC |=4+(-2+1)2= 5.8.(2021·长春模拟)已知点P (1,2)和圆C :x 2+y 2+kx +2y +k 2=0,过点P 作圆C 的切线有两条,则实数k 的取值范围是________.答案 ⎝⎛⎭⎪⎫-233,233 解析 因为C :x 2+y 2+kx +2y +k 2=0为圆, 所以k 2+4-4k 2>0,解得-233<k <233.又过点P 作圆C 的切线有两条,所以点P 在圆的外部,故1+4+k +4+k 2>0,解得k ∈R ,综上可知-233<k <233.故k 的取值范围是⎝⎛⎭⎪⎫-233,233. 9.在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为______.答案 10 2解析 圆的标准方程为(x -1)2+(y -3)2=10,则圆心(1,3),半径r =10,圆心(1,3)与E (0,1)距离(1-0)2+(3-1)2=5.由题意知AC ⊥BD ,且|AC |=210,|BD |=210-5=25,所以四边形ABCD 的面积为S =12|AC |·|BD |=12×210×25=10 2.10.已知圆M :x 2+y 2-2ax +10ay -24=0,圆N :x 2+y 2+2x +2y -8=0,且圆M 上任意一点关于直线x +y +4=0的对称点都在圆M 上.(1)求圆M 的方程;(2)证明圆M 和圆N 相交,并求两圆公共弦的长度l .(1)解 圆M :x 2+y 2-2ax +10ay -24=0的圆心为M (a ,-5a ),∵圆M 上任意一点关于直线x +y +4=0的对称点都在圆M 上,∴直线x +y +4=0经过M ,则a -5a +4=0,解得a =1.∴圆M 的方程为x 2+y 2-2x +10y -24=0.(2)证明 ∵圆M 的圆心M (1,-5),半径r 1=52,圆N 的圆心N (-1,-1),半径r 2=10,∴|MN |=(1+1)2+(-5+1)2=2 5.∵52-10<25<52+10,∴圆M 和圆N 相交.由圆M ,圆N 的方程左右两边分别相减,得x -2y +4=0,∴两圆公共弦的直线方程为x -2y +4=0.∵M 到直线x -2y +4=0的距离d =|1+10+4|5=35, ∴公共弦长度l =2h 2-d 2=2 5.11.已知圆C 经过(2,4),(1,3)两点,圆心C 在直线x -y +1=0上,过点A (0,1)且斜率为k 的直线l 与圆C 相交于M ,N 两点.(1)求圆C 的方程;(2)①请问AM →·AN →是否为定值,若是,求出该定值,若不是,请说明理由;②若OM →·ON →=12(O 为坐标原点),求直线l 的方程.解 (1)设圆C 的方程为(x -a )2+(y -b )2=r 2,依题意,得⎩⎪⎨⎪⎧(2-a )2+(4-b )2=r 2,(1-a )2+(3-b )2=r 2,a -b +1=0,解得⎩⎪⎨⎪⎧a =2,b =3,r =1,∴圆C 的方程为(x -2)2+(y -3)2=1.(2)①AM →·AN →为定值,理由如下:过点A (0,1)作直线AT 与圆C 相切,切点为T ,易得|AT |2=7,∴AM →·AN →=|AM →|·|AN →|cos 0°=|AT |2=7.根据圆的弦切角定理及相似三角形,∴AM →·AN →为定值,且定值为7.②依题意可知,直线l 的方程为y =kx +1,设M (x 1,y 1),N (x 2,y 2),将y =kx +1代入(x -2)2+(y -3)2=1,并整理,得(1+k 2)x 2-4(1+k )x +7=0,∴x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2, ∴OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k 2+8=12,即4k (1+k )1+k 2=4,解得k =1.又当k =1时,Δ>0,∴k =1,∴直线l 的方程为y =x +1.12.(2022·宝鸡模拟)过点P (x ,y )作圆C 1:x 2+y 2=1与圆C 2:(x -2)2+(y -2)2=1的切线,切点分别为A ,B ,若|P A |=|PB |,则x 2+y 2的最小值为( )A. 2B.2C.2 2D.8 答案 B解析 由(x 2+y 2-1)-(x 2+y 2-4x -4y +7)=0得x +y -2=0,则P 点在直线l :x +y -2=0上,原点到直线l 的距离d =2,所以(x 2+y 2)min =d 2=2.13.(2022·南阳联考)阿波罗尼斯(约公元前262~公元前190年)证明过这样一个命题:平面内到两定点距离之比为常数k (k >0,且k ≠1)的点的轨迹是圆,后人将此圆称为阿氏圆.若平面内两定点A ,B 间的距离为4,动点P 满足|P A ||PB |=3,则动点P 的轨迹所围成的图形的面积为________;P A →·PB →的最大值是________. 答案 12π 24+16 3解析 以直线AB 为x 轴,线段AB 的垂直平分线为y 轴,建立平面直角坐标系, 则A (-2,0),B (2,0).设P (x ,y ),∵|P A ||PB |=3,∴(x +2)2+y 2(x -2)2+y 2=3,得x 2+y 2-8x +4=0,即(x -4)2+y 2=12,所以点P 的轨迹为圆,其面积为12π.P A →·PB →=(-2-x ,-y )·(2-x ,-y )=x 2-4+y 2=|OP |2-4,如图,当P 位于点D 时,|OP |2最大,|OP |2的最大值为(4+23)2=28+163, 故P A →·PB →的最大值是24+16 3.14.(2021·北京海淀区模拟)已知A (2,0),直线4x +3y +1=0被圆C :(x +3)2+(y -m )2=13(m <3)所截得的弦长为43,且P 为圆C 上任意一点.(1)求|P A |的最大值与最小值;(2)圆C 与坐标轴相交于三点,求以这三个点为顶点的三角形的内切圆的半径. 解 (1)∵直线4x +3y +1=0被圆C :(x +3)2+(y -m )2=13(m <3)所截得的弦长为43,∴圆心到直线的距离d =|-12+3m +1|5=(13)2-(23)2=1.∵m <3,∴m =2,∴|AC |=(-3-2)2+(2-0)2=29, ∴|P A |的最大值与最小值分别为29+13,29-13.(2)由(1)可得圆C 的方程为(x +3)2+(y -2)2=13,令x =0,得y =0或4; 令y =0,得x =0或-6,∴圆C 与坐标轴相交于三点M (0,4),O (0,0),N (-6,0),∴△MON为直角三角形,斜边|MN|=213,∴△MON内切圆的半径为4+6-2132=5-13.。
2023年高考数学(文科)一轮复习——基本不等式及其应用
第3节 基本不等式及其应用考试要求 1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题.1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b 的算术平均数,ab 称为正数a ,b 的几何平均数. 2.两个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. 3.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24(简记:和定积最大).1.b a +ab ≥2(a ,b 同号),当且仅当a =b 时取等号. 2.ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22.3.21a+1b≤ab≤a+b2≤a2+b22(a>0,b>0).4.应用基本不等式求最值要注意:“一定,二正,三相等”,忽略某个条件,就会出错.5.在利用不等式求最值时,一定要尽量避免多次使用基本不等式.若必须多次使用,则一定要保证它们等号成立的条件一致.1.思考辨析(在括号内打“√”或“×”)(1)两个不等式a2+b2≥2ab与a+b2≥ab成立的条件是相同的.()(2)函数y=x+1x的最小值是2.()(3)函数f(x)=sin x+4sin x的最小值为-5.()(4)x>0且y>0是xy+yx≥2的充要条件.()答案(1)×(2)×(3)√(4)×解析(1)不等式a2+b2≥2ab成立的条件是a,b∈R;不等式a+b2≥ab成立的条件是a≥0,b≥0.(2)函数y=x+1x的值域是(-∞,-2]∪[2,+∞),没有最小值.(4)x>0且y>0是xy+yx≥2的充分不必要条件.2.(易错题)已知x>2,则x+1x-2的最小值是()A.1B.2C.2 2D.4 答案 D解析∵x>2,∴x-2>0,∴x+1x-2=x-2+1x-2+2≥2(x-2)1x-2+2=4,当且仅当x-2=1x-2,即x=3时,等号成立.3.若x<0,则x+1x()A.有最小值,且最小值为2B.有最大值,且最大值为2C.有最小值,且最小值为-2D.有最大值,且最大值为-2 答案 D解析因为x<0,所以-x>0,x+1x=-⎣⎢⎡⎦⎥⎤-x+⎝⎛⎭⎪⎫-1x≤-2(-x)·⎝⎛⎭⎪⎫-1x=-2,当且仅当x=-1时,等号成立,所以x+1x≤-2.4.若x>0,y>0,且x+y=18,则xy的最大值为()A.9B.18C.36D.81 答案 A解析因为x+y=18,所以xy≤x+y2=9,当且仅当x=y=9时,等号成立.5.一段长为30 m的篱笆围成一个一边靠墙的矩形菜园,墙长18 m,则这个矩形的长为________m,宽为________m时菜园面积最大.答案1515 2解析设矩形的长为x m,宽为y m.则x+2y=30,所以S=xy=12x·(2y)≤12⎝⎛⎭⎪⎫x+2y22=2252,当且仅当x=2y,即x=15,y=152时取等号.6.已知a,b∈R,且a-3b+6=0,则2a+18b的最小值为________.答案 14解析 由题设知a -3b =-6,又2a>0,8b>0,所以2a+18b ≥22a·18b =2×2a -3b 2=14,当且仅当2a =18b ,即a =-3,b =1时取等号.故2a +18b 的最小值为14.考点一 利用基本不等式求最值 角度1 配凑法求最值例1 (1)已知0<x <1,则x (3-2x )的最大值为________. (2)已知x >54,则f (x )=4x -2+14x -5的最小值为________.(3)(2021·沈阳模拟)若0<x <12,则y =x 1-4x 2的最大值为________. 答案 (1)98 (2)5 (3)14解析 (1)x (3-2x )=12·2x (3-2x )≤12·⎝ ⎛⎭⎪⎫2x +3-2x 22=98, 当且仅当2x =3-2x ,即x =34时取等号. (2)∵x >54,∴4x -5>0, ∴f (x )=4x -2+14x -5=4x -5+14x -5+3≥21+3=5. 当且仅当4x -5=14x -5,即x =32时取等号. (3)∵0<x <12, ∴y =x1-4x 2=x 2(1-4x 2)=124x 2(1-4x 2)≤12·4x 2+1-4x 22=14,当且仅当4x 2=1-4x 2,即x =24时取等号,则y =x1-4x 2的最大值为14.角度2 常数代换法求最值例 2 (2022·江西九校联考)若正实数a ,b 满足a +b =1,则b 3a +3b 的最小值为________. 答案 5解析 因为a +b =1,所以b 3a +3b =b 3a +3(a +b )b =b 3a +3a b +3,因为a >0,b >0,所以b 3a +3ab +3≥2b 3a ·3a b +3=5,当且仅当b 3a =3a b ,即a =14,b =34时等号成立, 即b 3a +3b 的最小值为5. 角度3 消元法求最值例3 已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 答案 6解析 法一(换元消元法) 由已知得x +3y =9-xy , 因为x >0,y >0, 所以x +3y ≥23xy , 所以3xy ≤⎝⎛⎭⎪⎫x +3y 22, 所以13×⎝⎛⎭⎪⎫x +3y 22≥9-(x +3y ), 即(x +3y )2+12(x +3y )-108≥0,则x +3y ≤-18(舍去)或x +3y ≥6(当且仅当x =3y ,即x =3,y =1时取等号),故x+3y的最小值为6. 法二(代入消元法)由x+3y+xy=9,得x=9-3y 1+y,所以x+3y=9-3y1+y+3y=9+3y21+y=3(1+y)2-6(1+y)+121+y=3(1+y)+121+y-6≥23(1+y)·121+y-6=12-6=6,当且仅当3(1+y)=121+y,即y=1,x=3时取等号,所以x+3y的最小值为6.感悟提升利用基本不等式求最值的方法(1)知和求积的最值:“和为定值,积有最大值”.但应注意以下两点:①具备条件——正数;②验证等号成立.(2)知积求和的最值:“积为定值,和有最小值”,直接应用基本不等式求解,但要注意利用基本不等式求最值的条件.(3)构造不等式求最值:在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数1”的替换,构造不等式求解.训练1 (1)已知函数f(x)=-x2x+1(x<-1),则()A.f(x)有最小值4B.f(x)有最小值-4C.f (x )有最大值4D.f (x )有最大值-4(2)正数a ,b 满足ab =a +b +3,则a +b 的最小值为________. 答案 (1)A (2)6解析 (1)f (x )=-x 2x +1=-x 2-1+1x +1=-⎝⎛⎭⎪⎫x -1+1x +1=-⎝ ⎛⎭⎪⎫x +1+1x +1-2 =-(x +1)+1-(x +1)+2.因为x <-1,所以x +1<0,-(x +1)>0, 所以f (x )≥21+2=4, 当且仅当-(x +1)=1-(x +1),即x =-2时,等号成立. 故f (x )有最小值4.(2)∵a >0,b >0,∴ab ≤⎝ ⎛⎭⎪⎫a +b 22, 即a +b +3≤⎝ ⎛⎭⎪⎫a +b 22, 整理得(a +b )2-4(a +b )-12≥0,解得a +b ≤-2(舍)或a +b ≥6(当且仅当a =b =3时取等号). 故a +b 的最小值为6.考点二 基本不等式的综合应用例4 (1)(2022·河南名校联考)已知直线ax +2by -1=0和x 2+y 2=1相切,则ab 的最大值是( ) A.14B.12C.22D.1(2)已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( ) A.2B.4C.6D.8答案 (1)A (2)B解析 (1)圆x 2+y 2=1的圆心为(0,0),半径r =1,由直线ax +2by -1=0和x 2+y 2=1相切,得|-1|a 2+4b 2=1,则a 2+4b 2=1,又由1=a 2+4b 2≥4ab ,可得ab ≤14,当且仅当a =2b ,即a =22,b =24时等号成立,故ab 的最大值是14.(2)已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,只需求(x +y )⎝ ⎛⎭⎪⎫1x +a y 的最小值大于或等于9, ∵(x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x +ax y≥a +2a +1=(a +1)2, 当且仅当y =ax 时,等号成立, ∴(a +1)2≥9,∴a ≥4, 即正实数a 的最小值为4.感悟提升 1.当基本不等式与其他知识相结合时,往往是提供一个应用基本不等式的条件,然后利用常数代换法求最值.2.求参数的值或范围时,要观察题目的特点,利用基本不等式确定相关成立的条件,从而得到参数的值或范围.训练2 (1)若△ABC 的内角满足3sin A =sin B +sin C ,则cos A 的最小值是( ) A.23B.79C.13D.59(2)当x ∈(0,+∞)时,ax 2-3x +a ≥0恒成立,则实数a 的取值范围是________. 答案 (1)B (2)⎣⎢⎡⎭⎪⎫32,+∞解析(1)由题意结合正弦定理有3a=b+c,结合余弦定理可得:cos A=b2+c2-a22bc=b2+c2-⎝⎛⎭⎪⎫b+c322bc=89b2+89c2-29bc2bc=89b2+89c22bc-19≥2×89b×89c2bc-19=79.当且仅当b=c时等号成立.综上可得,cos A的最小值是79.(2)ax2-3x+a≥0,则a≥3xx2+1=3x+1x,x∈(0,+∞),故x+1x≥2,当且仅当x=1时等号成立,故y=3x+1x≤32,故a≥32.考点三基本不等式的实际应用例5 为了美化校园环境,园艺师在花园中规划出一个平行四边形,建成一个小花圃,如图,计划以相距6米的M,N两点为AMBN一组相对的顶点,当AMBN 的周长恒为20米时,小花圃占地面积(单位:平方米)最大为()A.6B.12C.18D.24答案 D解析设AM=x,AN=y,则由已知可得x+y=10,在△MAN中,MN=6,由余弦定理可得,cos A =x 2+y 2-622xy =(x +y )2-362xy -1=32xy -1≥32⎝ ⎛⎭⎪⎫x +y 22-1=3225-1=725, 当且仅当x =y =5时等号成立, 此时(cos A )min =725, 所以(sin A )max =1-⎝ ⎛⎭⎪⎫7252=2425,所以四边形AMBN 的最大面积为2×12×5×5×2425=24,此时四边形AMBN 是边长为5的菱形.感悟提升 1.设变量时一般要把求最大值或最小值的变量定义为函数. 2.根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. 3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.训练3 某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________吨. 答案 20解析 该公司一年购买某种货物400吨,每次都购买x 吨,则需要购买400x 次,运费为4万元/次,一年的总存储费用为4x 万元,一年的总运费与总存储费用为之和为⎝ ⎛⎭⎪⎫400x ·4+4x 万元,400x ·4+4x ≥160,当且仅当1 600x =4x ,即x =20时,一年的总运费与总存储费用之和最小.1.已知a ,b ∈R ,且ab ≠0,则下列结论恒成立的是( ) A.a +b ≥2ab B.a b +ba ≥2 C.⎪⎪⎪⎪⎪⎪a b +b a ≥2 D.a 2+b 2>2ab答案 C解析 因为a b 和b a 同号,所以⎪⎪⎪⎪⎪⎪a b +b a =⎪⎪⎪⎪⎪⎪a b +⎪⎪⎪⎪⎪⎪b a ≥2.2.若3x +2y =2,则8x +4y 的最小值为( ) A.4 B.4 2 C.2 D.2 2答案 A解析 因为3x +2y =2,所以8x +4y ≥28x ·4y =223x +2y =4,当且仅当3x +2y =2且3x =2y ,即x =13,y =12时等号成立.3.若a >0,b >0,lg a +lg b =lg(a +b ),则a +b 的最小值为( ) A.8 B.6 C.4 D.2答案 C解析 依题意ab =a +b ,∴a +b =ab ≤⎝ ⎛⎭⎪⎫a +b 22,即a +b ≤(a +b )24,∴a +b ≥4,当且仅当a =b =2时取等号, ∴a +b 的最小值为4.4.已知f (x )=x 2-2x +1x ,则f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为( )A.12 B.43C.-1D.0答案 D解析 因为x ∈⎣⎢⎡⎦⎥⎤12,3,所以f (x )=x 2-2x +1x =x +1x -2≥2-2=0,当且仅当x =1x ,即x =1时取等号.又1∈⎣⎢⎡⎦⎥⎤12,3,所以f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为0.5.某车间分批生产某种产品,每批产品的生产准备费用为800元,若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( ) A.60件 B.80件 C.100件 D.120件答案 B解析 设每批生产产品x 件,则每件产品的生产准备费用是800x 元,仓储费用是x8元,总的费用是⎝ ⎛⎭⎪⎫800x +x 8元,由基本不等式得800x +x 8≥2800x ·x 8=20,当且仅当800x=x8,即x =80时取等号.6.对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0,则实数a 的最大值为( ) A. 2 B.2 2C.4D.92答案 B解析 ∵对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0, ∴m 2+2n 2≥amn ,即a ≤m 2+2n 2mn =m n +2nm 恒成立, ∵m n +2n m ≥2m n ·2n m =22,当且仅当m n =2n m 即m =2n 时取等号,∴a ≤22,故a 的最大值为2 2.7.(2022·河南顶级名校联考)已知各项均为正数的等比数列{a n },a 6,3a 5,a 7成等差数列,若{a n }中存在两项a m ,a n ,使得4a 1为其等比中项,则1m +4n 的最小值为( ) A.4 B.9C.23D.32答案 D解析 设各项均为正数的等比数列{a n }的公比为q ,q >0,由a 6,3a 5,a 7成等差数列,可得6a 5=a 6+a 7,即6a 1q 4=a 1q 5+a 1q 6, 解得q =2(q =-3舍去),由{a n }中存在两项a m ,a n ,使得4a 1为其等比中项,可得16a 21=a m a n =a 21·2m +n -2, 化简可得m +n =6,m ,n ∈N *, 则1m +4n =16(m +n )⎝ ⎛⎭⎪⎫1m +4n=16⎝ ⎛⎭⎪⎫5+n m +4m n ≥16⎝⎛⎭⎪⎫5+2n m ·4m n =32. 当且仅当n =2m =4时,上式取得等号. 8.已知x >0,y >0,且1x +1+1y =12,则x +y 的最小值为( ) A.3 B.5C.7D.9答案 C解析 ∵x >0,y >0,且1x +1+1y =12,∴x +1+y =2⎝ ⎛⎭⎪⎫1x +1+1y (x +1+y ) =2⎝ ⎛⎭⎪⎪⎫1+1+y x +1+x +1y ≥2⎝⎛⎭⎪⎪⎫2+2y x +1·x +1y =8,当且仅当y x +1=x +1y ,即x =3,y =4时取等号, ∴x +y ≥7,故x +y 的最小值为7.9.(2021·宜昌期末)某地为了加快推进垃圾分类工作,新建了一个垃圾处理厂,每月最少要处理300吨垃圾,最多要处理600吨垃圾,月处理成本y (单位:元)与月处理量x (单位:吨)之间的函数关系可近似表示为y =12x 2-300x +80 000,为使每吨的平均处理成本最低,该厂每月的垃圾处理量应为________吨.答案 400解析 由题意知,每吨垃圾的平均处理成本为y x =12x 2-300x +80 000x =x 2+80 000x -300,其中300≤x ≤600,又x 2+80 000x -300≥2x 2·80 000x -300=400-300=100,所以当且仅当x 2=80 000x ,即x =400吨时,每吨垃圾的平均处理成本最低. 10.(2022·兰州诊断)设a ,b ,c 均为正实数,若a +b +c =1,则1a +1b +1c ≥________. 答案 9解析 ∵a ,b ,c 均为正数,a +b +c =1, ∴1a +1b +1c =(a +b +c )⎝ ⎛⎭⎪⎫1a +1b +1c=3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫a c +c a +⎝ ⎛⎭⎪⎫c b +b c≥3+2+2+2=9,当且仅当a =b =c =13时,取等号.11.(2020·江苏卷)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________. 答案 45解析 由题意知y ≠0.由5x 2y 2+y 4=1,可得x 2=1-y 45y 2,所以x 2+y 2=1-y 45y 2+y 2=1+4y 45y 2=15⎝ ⎛⎭⎪⎫1y 2+4y 2≥15×21y 2×4y 2=45,当且仅当1y 2=4y 2,即y =±22时取等号.所以x 2+y 2的最小值为45.12.(2020·天津卷)已知a >0,b >0,且ab =1,则12a +12b +8a +b 的最小值为__________. 答案 4解析 因为a >0,b >0,ab =1,所以原式=ab 2a +ab 2b +8a +b =a +b 2+8a +b ≥2a +b 2·8a +b=4,当且仅当a +b2=8a +b,即a +b =4时,等号成立. 故12a +12b +8a +b的最小值为4.13.(2022·宜春调研)已知x >0,y >0,x +2y =3,则x 2+3yxy 的最小值为( )A.3-2 2B.22+1C.2-1D.2+1答案 B解析 x >0,y >0,x +2y =3, 则x 2+3y xy =x 2+y (x +2y )xy=x y +2yx +1≥2x y ·2yx +1=22+1. 当且仅当x =2y 时,上式取得等号, 则x 2+3yxy 的最小值为22+1.14.(2022·西安一模)《几何原本》卷2的几何代数法(以几何方法研究代数问题)成为后世西方数学家处理问题的重要依据,通过这一原理,很多代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示的图形,点F 在半圆O 上,点C 在直径AB 上,且OF ⊥AB ,设AC =a ,BC =b ,则该图形可以完成的无字证明为( )A.a +b2≥ab (a >0,b >0)B.a 2+b 2≥2ab (a >0,b >0)C.2aba +b≤ab (a >0,b >0) D.a +b 2≤a 2+b 22(a >0,b >0)答案 D解析 由图形可知OF =12AB =12(a +b ),OC =⎪⎪⎪⎪⎪⎪12(a +b )-b =⎪⎪⎪⎪⎪⎪12(a -b ),在Rt △OCF 中,由勾股定理可得 CF =⎝ ⎛⎭⎪⎫a +b 22+⎝ ⎛⎭⎪⎫a -b 22=12(a 2+b 2), ∵CF ≥OF ,∴12(a 2+b 2)≥12(a +b )(a >0,b >0).故选D.15.若a ,b ∈R ,ab >0,则a 4+4b 4+1ab 的最小值为________.答案 4解析 ∵a ,b ∈R ,ab >0, ∴a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab =4,当且仅当⎩⎨⎧a 2=2b 2,4ab =1ab ,即⎩⎪⎨⎪⎧a 2=22,b 2=24时取得等号. 16.已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意的x ∈N *,f (x )≥3恒成立,则a的取值范围是________. 答案 ⎣⎢⎡⎭⎪⎫-83,+∞解析 对任意x ∈N *,f (x )≥3,即x 2+ax +11x +1≥3恒成立,即a ≥-⎝ ⎛⎭⎪⎫x +8x +3.设g (x )=x +8x ,x ∈N *, 则g (x )=x +8x ≥42, 当且仅当x =22时等号成立, 又g (2)=6,g (3)=173, ∵g (2)>g (3),∴g (x )min =173. ∴-⎝ ⎛⎭⎪⎫x +8x +3≤-83,∴a ≥-83,故a 的取值范围是⎣⎢⎡⎭⎪⎫-83,+∞.。
2023年高考数学(文科)一轮复习——利用导数研究函数的零点问题
此时函数f(x)在区间(0,1)内没有零点. 综上,实数a的取值范围为(-∞,0).
1234
索引
2.设函数 f(x)=12x2-mln x,g(x)=x2-(m+1)x,m>0. (1)求函数 f(x)的单调区间; 解 函数f(x)的定义域为(0,+∞),
索引
题型二 根据零点个数确定参数范围
例2 (2020·全国Ⅲ卷)已知函数f(x)=x3-kx+k2. (1)讨论f(x)的单调性; 解 (1)f′(x)=3x2-k. 当k=0时,f(x)=x3, 故f(x)在(-∞,+∞)单调递增. 当k<0时,f′(x)=3x2-k>0, 故f(x)在(-∞,+∞)单调递增.
点是x0.因为x0不易求出(当然,有时是可以求出但无需求出),所以把零点x0叫 做隐零点;若x0容易求出,就叫做显零点,而后解答就可继续进行,实际上, 此解法类似于解析几何中“设而不求”的方法.
索引
例 设函数f(x)=ex-ax-2. (1)求f(x)的单调区间; 解 (1)f(x)的定义域为R,f′(x)=ex-a. 当a≤0时,f′(x)>0恒成立, 所以f(x)单调增区间为(-∞,+∞),无单调减区间. 当a>0时,令f′(x)<0,得x<ln a, 令f′(x)>0,得x>ln a, 所以f(x)的单调递减区间为(-∞,ln a),单调递增区间为(ln a,+∞).
当x∈(0,1)时,φ′(x)>0,φ(x)在(0,1)上单调递增;
当x∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上单调递减,
∴x=1是φ(x)唯一的极值点,且是极大值点,因此x=1也是φ(x)的最大值点,
2023年高考数学(文科)一轮复习——集 合
第1节集合考试要求 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题;2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中了解全集与空集的含义;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;4.理解在给定集合中一个子集的补集的含义,会求给定子集的补集;5.能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系(1)子集:若对任意x∈A,都有x∈B,则A⊆B或B⊇A.(2)真子集:若A⊆B,且集合B中至少有一个元素不属于集合A,则A B或B A.(3)相等:若A⊆B,且B⊆A,则A=B.(4)空集的性质:是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算集合的并集集合的交集集合的补集符号表示A∪B A∩B若全集为U,则集合A的补集为∁U A图形表示集合表示{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x∉A} 4.集合的运算性质(1)A∩A=A,A∩=,A∩B=B∩A.(2)A∪A=A,A∪=A,A∪B=B∪A.(3)A∩(∁U A)=,A∪(∁U A)=U,∁U(∁U A)=A.1.若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个,非空子集有2n-1个,非空真子集有2n-2个.2.注意空集:空集是任何集合的子集,是非空集合的真子集.3.A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B.4.∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).1.思考辨析(在括号内打“√”或“×”)(1)任何一个集合都至少有两个子集.()(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.()(3)若{x2,1}={0,1},则x=0,1.()(4)对于任意两个集合A,B,(A∩B)⊆(A∪B)恒成立.()答案(1)×(2)×(3)×(4)√解析(1)错误.空集只有一个子集.(2)错误.{x|y=x2+1}=R,{y|y=x2+1}=[1,+∞),{(x,y)|y=x2+1}是抛物线y=x 2+1上的点集.(3)错误.当x =1时,不满足集合中元素的互异性. 2.若集合P ={x ∈N |x ≤ 2 023},a =22,则( ) A.a ∈P B.{a }∈P C.{a }⊆P D.a ∉P答案 D解析 因为a =22不是自然数,而集合P 是不大于 2 023的自然数构成的集合,所以a ∉P ,只有D 正确.3.(2021·新高考Ⅰ卷)设集合A ={x |-2<x <4},B ={2,3,4,5},则A ∩B =( ) A.{2} B.{2,3} C.{3,4} D.{2,3,4} 答案 B解析 因为A ={x |-2<x <4},B ={2,3,4,5},所以A ∩B ={2,3}.4.(易错题)(2021·宜昌调研)集合A ={-1,2},B ={x |ax -2=0},若B ⊆A ,则由实数a 的取值组成的集合为( ) A.{-2}B.{1}C.{-2,1}D.{-2,1,0} 答案 D解析 对于集合B ,当a =0时,B =,满足B ⊆A ;当a ≠0时,B =⎩⎨⎧⎭⎬⎫2a ,又B ⊆A ,所以2a =-1或2a =2,解得a =-2或a =1.5.(2021·西安五校联考)设全集U =R ,A ={x |y =2x -x 2},B ={y |y =2x ,x ∈R },则(∁U A )∩B =( ) A.{x |x <0}B.{x |0<x ≤1}C.{x |1<x ≤2}D.{x |x >2}答案 D解析易知A={x|0≤x≤2},B={y|y>0}.∴∁U A={x|x<0或x>2},故(∁U A)∩B={x|x>2}.6.(2021·全国乙卷)设集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T =()A. B.S C.T D.Z答案 C解析法一在集合T中,令n=k(k∈Z),则t=4n+1=2(2k)+1(k∈Z),而集合S中,s=2n+1(n∈Z),所以必有T⊆S,所以S∩T=T.法二S={…,-3,-1,1,3,5,…},T={…,-3,1,5,…},观察可知,T⊆S,所以S∩T=T.,考点一集合的基本概念1.已知集合U={(x,y)|x2+y2≤1,x∈Z,y∈Z},则集合U中元素的个数为()A.3B.4C.5D.6答案 C解析当x=-1时,y=0;当x=0时,y=-1,0,1;当x=1时,y=0.所以U={(-1,0),(0,-1),(0,0),(0,1),(1,0)},共有5个元素.2.若集合A={a-3,2a-1,a2-4},且-3∈A,则实数a=________.答案0或1解析①当a-3=-3,即a=0时,此时A={-3,-1,-4},②当2a-1=-3,即a=-1时,此时A={-4,-3,-3}舍,③当a2-4=-3,即a=±1时,由②可知a=-1舍,则a=1时,A={-2,1,-3},综上,a=0或1.3.(2022·武汉调研)用列举法表示集合A={x|x∈Z且86-x∈N}=________.答案{-2,2,4,5}解析由题意x可取-2,2,4,5,故答案为{-2,2,4,5}.4.设A是整数集的一个非空子集,对于k∈A,如果k-1∉A,且k+1∉A,那么称k是A的一个“孤立元”.给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.答案 6解析依题意可知,由S的3个元素构成的所有集合中,不含“孤立元”时,这三个元素一定是连续的三个整数.∴所求的集合为{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},共6个.感悟提升 1.研究集合问题时,首先要明确构成集合的元素是什么,即弄清该集合是数集、点集,还是其他集合;然后再看集合的构成元素满足的限制条件是什么,从而准确把握集合的含义.2.利用集合元素的限制条件求参数的值或确定集合中元素的个数时,要注意检验集合中的元素是否满足互异性.考点二集合间的基本关系例1 (1)已知集合A={-1,1},B={x|ax+1=0}.若B⊆A,则实数a的所有可能取值的集合为()A.{-1}B.{1}C.{-1,1}D.{-1,0,1}(2)已知集合A ={x |-3≤x ≤4},B ={x |2m -1≤x ≤m +1},且B ⊆A ,则实数m 的取值范围是________. 答案 (1)D (2)[-1,+∞) 解析 (1)当B =时,a =0,此时,B ⊆A .当B ≠时,则a ≠0,∴B =⎩⎨⎧⎭⎬⎫x |x =-1a .又B ⊆A ,∴-1a ∈A ,∴a =±1.综上可知,实数a 所有取值的集合为{-1,0,1}. (2)∵B ⊆A ,①当B =时,2m -1>m +1,解得m >2,②当B ≠时,⎩⎪⎨⎪⎧2m -1≤m +1,2m -1≥-3,m +1≤4,解得-1≤m ≤2,综上,实数m 的取值范围[-1,+∞). 感悟提升 1.若B ⊆A ,应分B =和B ≠两种情况讨论.2.已知两个集合间的关系求参数时,关键是将两个集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系.合理利用数轴、Venn 图帮助分析及对参数进行讨论.确定参数所满足的条件时,一定要把端点值代入进行验证,否则易增解或漏解.训练1 (1)(2022·大连模拟)设集合A ={1,a ,b },B ={a ,a 2,ab },若A =B ,则a 2 022+b 2 023的值为( ) A.0 B.1 C.-2D.0或-1(2)已知集合A ={x |log 2(x -1)<1},B ={x ||x -a |<2},若A ⊆B ,则实数a 的取值范围为( ) A.(1,3)B.[1,3]C.[1,+∞)D.(-∞,3] 答案 (1)B (2)B解析 (1)集合A ={1,a ,b },B ={a ,a 2,ab }, 若A =B ,则a 2=1或ab =1.由集合互异性知a ≠1,当a =-1时, A ={1,a ,b }={1,-1,b }, B ={a ,a 2,ab }={-1,1,-b }, 有b =-b ,得b =0.∴a 2 022+b 2 023=(-1)2 022+02 023=1. 当ab =1时,集合A ={1,a ,b }, B ={a ,a 2,ab }={a ,a 2,1},有b =a 2. 又b =1a ,∴a 2=1a ,得a =1,不满足题意. 综上,a 2 022+b 2 023=1,故选B. (2)由log 2(x -1)<1,得0<x -1<2, 所以A =(1,3).由|x -a |<2得a -2<x <a +2, 所以B =(a -2,a +2).因为A ⊆B ,所以⎩⎪⎨⎪⎧a -2≤1,a +2≥3,解得1≤a ≤3.所以实数a 的取值范围为[1,3]. 考点三 集合的运算角度1集合的基本运算例2 (1)(2021·全国乙卷)已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则∁U(M∪N)=()A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}(2)(2021·西安测试)设全集U=R,M={x|y=ln(1-x)},N={x|2x(x-2)<1},那么图中阴影部分表示的集合为()A.{x|x≥1}B.{x|1≤x<2}C.{x|0<x≤1}D.{x|x≤1}答案(1)A(2)B解析(1)法一因为集合M={1,2},N={3,4},所以M∪N={1,2,3,4}. 又全集U={1,2,3,4,5},所以∁U(M∪N)={5}.故选A.法二因为∁U(M∪N)=(∁U M)∩(∁U N),∁U M={3,4,5},∁U N={1,2,5},所以∁U(M∪N)={3,4,5}∩{1,2,5}={5}.故选A.(2)题图中阴影表示的集合为(∁U M)∩N.易知M={x|x<1},N={x|0<x<2},∴(∁U M)∩N={x|1≤x<2}.角度2利用集合的运算求参数例3 (1)(2021·日照检测)已知集合A={x∈Z|x2-4x-5<0},B={x|4x>2m},若A∩B 中有三个元素,则实数m的取值范围是()A.[3,6)B.[1,2)C.[2,4)D.(2,4](2)已知集合A={x|x2-4≤0},B={x|2x+a≤0},若A∪B=B,则实数a的取值范围是()A.a <-2B.a ≤-2C.a >-4D.a ≤-4答案 (1)C (2)D解析 (1)因为x 2-4x -5<0,解得-1<x <5,则集合A ={x ∈Z |x 2-4x -5<0}={0,1,2,3,4},易知集合B ={x ⎪⎪⎪x >m2}.又因为A ∩B 中有三个元素, 所以1≤m2<2,解之得2≤m <4. 故实数m 的取值范围是[2,4). (2)集合A ={x |-2≤x ≤2},B =⎩⎨⎧⎭⎬⎫x |x ≤-a 2, 由A ∪B =B 可得A ⊆B ,作出数轴如图.可知-a2≥2,即a ≤-4.感悟提升 1.进行集合运算时,首先看集合能否化简,能化简的先化简,再研究其关系并进行运算. 2.数形结合思想的应用:(1)离散型数集或抽象集合间的运算,常借助Venn 图求解;(2)连续型数集的运算,常借助数轴求解,运用数轴时要特别注意端点是实心还是空心.训练2 (1)(2021·全国甲卷改编)设集合M ={x |0<x <4},N =⎩⎨⎧⎭⎬⎫x |13≤x <a ,且M ∩N =N ,则a 的取值范围为( ) A.a ≤13 B.a >4 C.a ≤4D.a >13(2)集合M ={x |2x 2-x -1<0},N ={x |2x +a >0},U =R .若M ∩(∁U N )=,则a 的取值范围是( )A.(1,+∞)B.[1,+∞)C.(-∞,1)D.(-∞,1] 答案 (1)C (2)B解析 (1)由M ∩N =N ,∴M ⊇N . 当N =时,即a ≤13成立; 当N ≠时,借助数轴易知13<a ≤4.综上,a ≤4.(2)易得M ={x |2x 2-x -1<0} ={x ⎪⎪⎪-12<x <1}.∵N ={x |2x +a >0}=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >-a 2,∴∁U N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤-a 2. 由M ∩(∁U N )=,则-a 2≤-12,得a ≥1.Venn 图的应用用平面上封闭图形的内部代表集合,这种图称为Venn 图.集合中图形语言具有直观形象的特点,将集合问题图形化.利用Venn 图的直观性,可以深刻理解集合的有关概念,快速进行集合的运算.例 1 设全集U ={x |0<x <10,x ∈N *},若A ∩B ={3},A ∩(∁U B )={1,5,7},(∁U A )∩(∁U B )={9},则A =________,B =________. 答案 {1,3,5,7} {2,3,4,6,8}解析 由题知U ={1,2,3,…,9},根据题意,画出Venn 图如图所示,由Venn 图易得A ={1,3,5,7},B ={2,3,4,6,8}.例2 (2020·新高考海南卷)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )A.62%B.56%C.46%D.42%答案 C解析 如图,用Venn 图表示该中学喜欢足球和游泳的学生所占的比例之间的关系,设既喜欢足球又喜欢游泳的学生占该中学学生总数的比例为x ,则(60%-x )+(82%-x )+x =96%,解得x =46%.故选C.例3 向100名学生调查对A ,B 两件事的看法,得到如下结果:赞成A 的人数是全体的35,其余不赞成;赞成B 的人数比赞成A 的人数多3人,其余不赞成.另外,对A ,B 都不赞成的人数比对A ,B 都赞成的学生人数的13多1人,则对A ,B 都赞成的学生人数为________,对A ,B 都不赞成的学生人数为________. 答案 36 13解析 由题意知赞成A 的人数为100×35=60,赞成B 的人数为60+3=63.如图,记100名学生组成的集合为U ,赞成A 的学生的全体记为集合A ,赞成B 的学生的全体记为集合B ,并设对A ,B 都赞成的学生数为x ,则对A ,B 都不赞成的人数为x 3+1,由题意,知(60-x )+(63-x )+x +x 3+1=100,解得x =36.所以对A ,B 都赞成的学生人数为36人,对A ,B 都不赞成的学生人数为13人.1.(2021·新高考Ⅱ卷)设集合U={1,2,3,4,5,6},A={1,3,6},B={2,3,4},则A∩(∁U B)=()A.{3}B.{1,6}C.{5,6}D.{1,3}答案 B解析由题设可得∁U B={1,5,6},故A∩(∁U B)={1,6}.2.(2021·郑州模拟)设集合A={x|3x-1<m},若1∈A且2∉A,则实数m的取值范围是()A.(2,5)B.[2,5)C.(2,5]D.[2,5]答案 C解析∵A={x|3x-1<m},1∈A且2∉A,∴3×1-1<m且3×2-1≥m,解得2<m≤5.3.(2021·浙江卷)设集合A={x|x≥1},B={x|-1<x<2},则A∩B=()A.{x|x>-1}B.{x|x≥1}C.{x|-1<x<1}D.{x|1≤x<2}答案 D解析因为集合A={x|x≥1},B={x|-1<x<2},所以A∩B={x|1≤x<2}.故选D.4.(2022·河南名校联考)已知集合A={a,a2,0},B={1,2},若A∩B={1},则实数a的值为()A.-1B.0C.1D.±1答案 A解析由题意a=1或a2=1,当a =1,此时A ={1,1,0}与元素互异性矛盾,∴a =-1,故选A.5.已知集合A ={x ∈Z |y =log 5(x +1)},B ={x ∈Z |x 2-x -2<0},则( )A.A ∩B =AB.A ∪B =BC.B AD.A B答案 C解析 由x +1>0,得x >-1,∴A ={x ∈Z |x >-1}={0,1,2,3,…}.由x 2-x -2<0,得-1<x <2,∴B ={0,1},∴A ∩B =B ,A ∪B =A ,B A .6.设集合A ={(x ,y )|x +y =1},B ={(x ,y )|x -y =3},则满足M ⊆(A ∩B )的集合M 的个数是( )A.0B.1C.2D.3 答案 C解析 由⎩⎪⎨⎪⎧x +y =1,x -y =3得⎩⎪⎨⎪⎧x =2,y =-1,∴A ∩B ={(2,-1)}.由M ⊆(A ∩B ),知M =或M ={(2,-1)}. 7.(2022·太原模拟)已知集合M ={x |(x -2)2≤1},N ={y |y =x 2-1},则(∁R M )∩N =( )A.[-1,+∞)B.[-1,1]∪[3,+∞)C.[-1,1)∪(3,+∞)D.[-1,1]∪(3,+∞)答案 C解析由已知可得M={x|-1≤x-2≤1}={x|1≤x≤3},N={y|y≥-1},∴∁R M={x|x<1或x>3},∴(∁R M)∩N={x|-1≤x<1或x>3}.8.设集合A={x|(x+2)(x-3)≤0},B={a},若A∪B=A,则a的最大值为()A.-2B.2C.3D.4答案 C解析因为A={x|(x+2)(x-3)≤0},所以A={x|-2≤x≤3}.又因为B={a},且A∪B=A,所以B⊆A,所以a的最大值为3.9.(2021·合肥模拟)已知集合A={-2,-1,0,1,2},集合B={x||x-1|≤2},则A∩B=________.答案{-1,0,1,2}解析B={x|-2≤x-1≤2}={x|-1≤x≤3},又A={-2,-1,0,1,2},∴A∩B={-1,0,1,2}.10.(2021·湖南雅礼中学检测)设集合A={x|y=x-3},B={x|1<x≤9},则(∁R A)∩B =________.答案(1,3)解析因为A={x|y=x-3},所以A={x|x≥3},所以∁R A={x|x<3}.又B={x|1<x≤9},所以(∁R A)∩B=(1,3).11.已知集合A={x|y=lg(x-x2)},B={x|x2-cx<0,c>0},若A⊆B,则实数c的取值范围是________.答案[1,+∞)解析由题意知,A={x|y=lg(x-x2)}={x|x-x2>0}=(0,1),B={x|x2-cx<0,c>0}=(0,c).由A⊆B,画出数轴,如图所示,得c≥1.12.已知集合A ={a ,b ,2},B ={2,b 2,2a },若A =B ,则a +b =________.答案 34或1 解析 由A =B ,得⎩⎪⎨⎪⎧a =2a ,b =b 2或⎩⎪⎨⎪⎧a =b 2,b =2a .解⎩⎪⎨⎪⎧a =2a ,b =b 2,得⎩⎪⎨⎪⎧a =0,b =0或⎩⎪⎨⎪⎧a =0,b =1,解⎩⎪⎨⎪⎧a =b 2,b =2a ,得⎩⎪⎨⎪⎧a =0,b =0或⎩⎪⎨⎪⎧a =14,b =12,又由集合中元素的互异性,得⎩⎪⎨⎪⎧a =0,b =1或⎩⎪⎨⎪⎧a =14,b =12,所以a +b =1或a +b =34.13.若全集U ={-2,-1,0,1,2},A ={-2,2},B ={x |x 2-1=0},则图中阴影部分所表示的集合为( )A.{-1,0,1}B.{-1,0}C.{-1,1}D.{0}答案 D解析 B ={x |x 2-1=0}={-1,1},阴影部分所表示的集合为∁U (A ∪B ).又A ∪B ={-2,-1,1,2},全集U ={-2,-1,0,1,2},所以∁U (A ∪B )={0}.14.(2020·浙江卷)设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有2个元素,且S ,T满足:①对于任意的x,y∈S,若x≠y,则xy∈T;②对于任意的x,y∈T,若x<y,则yx∈S.下列命题正确的是()A.若S有4个元素,则S∪T有7个元素B.若S有4个元素,则S∪T有6个元素C.若S有3个元素,则S∪T有5个元素D.若S有3个元素,则S∪T有4个元素答案 A解析由题意,①令S={1,2,4},则T={2,4,8},此时,S∪T={1,2,4,8},有4个元素;②令S={2,4,8},则T={8,16,32},此时,S∪T={2,4,8,16,32},有5个元素;③令S={2,4,8,16},则T={8,16,32,64,128},此时,S∪T={2,4,8,16,32,64,128},有7个元素.综合①②,S有3个元素时,S∪T可能有4个元素,也可能有5个元素,可排除C,D;由③可知A正确.15.已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B=(-1,n),则m=________,n=________.答案-1 1解析A={x∈R||x+2|<3}={x∈R|-5<x<1},由A∩B=(-1,n),可知m<1,则B={x|m<x<2},画出数轴,可得m=-1,n=1.16.当两个集合有公共元素,且互不为对方的子集时,我们称这两个集合“相交”.对于集合M ={x |ax 2-1=0,a >0},N ={-12,12,1},若M 与N “相交”,则a=________.答案 1解析 M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1a ,1a ,由1a =12,得a =4,由1a=1,得a =1. 当a =4时,M =⎩⎨⎧⎭⎬⎫-12,12,此时M ⊆N ,不合题意; 当a =1时,M ={-1,1},满足题意.。
2023年高考数学(文科)一轮复习——三角函数的图象与性质
第4节 三角函数的图象与性质考试要求 1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性;2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值、图象与x 轴的交点等),理解正切函数在区间⎝ ⎛⎭⎪⎫-π2,π2内的单调性.1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )函数y =sin xy =cos xy =tan x图象定义域RR{x |x ∈R ,且 x ≠k π+π2}值域 [-1,1] [-1,1] R 最小正周期 2π 2π π 奇偶性 奇函数 偶函数 奇函数 递增区间 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2 [2k π-π,2k π] ⎝ ⎛⎭⎪⎫k π-π2,k π+π2 递减区间 ⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2 [2k π,2k π+π] 无 对称中心 (k π,0) ⎝ ⎛⎭⎪⎫k π+π2,0 ⎝ ⎛⎭⎪⎫k π2,0 对称轴方程x =k π+π2x =k π无1.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的周期T =2π|ω|,函数y =A tan(ωx +φ)的周期T =π|ω|.2.正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是12T ,相邻的对称中心与对称轴之间的距离是14T ,其中T 为周期,正切曲线相邻两对称中心之间的距离是12T ,其中T 为周期.3.对于y =tan x 不能认为其在定义域上为增函数,而是在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数.1.思考辨析(在括号内打“√”或“×”)(1)余弦函数y =cos x 的对称轴是y 轴.( ) (2)正切函数y =tan x 在定义域内是增函数.( ) (3)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( ) (4)y =sin|x |是偶函数.( ) 答案 (1)× (2)× (3)× (4)√解析 (1)余弦函数y =cos x 的对称轴有无穷多条,y 轴只是其中的一条. (2)正切函数y =tan x 在每一个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上都是增函数,但在定义域内不是单调函数,故不是增函数.(3)当k >0时,y max =k +1;当k <0时,y max =-k +1. 2.函数f (x )=-2tan ⎝ ⎛⎭⎪⎫2x +π6的定义域是( )A.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠π6B.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠-π12C.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠k π+π6(k ∈Z )D.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠k π2+π6(k ∈Z )答案 D解析 由2x +π6≠k π+π2,k ∈Z ,得x ≠k π2+π6,k ∈Z . 3.下列函数中,是奇函数的是( ) A.y =|cos x +1| B.y =1-sin x C.y =-3sin(2x +π) D.y =1-tan x答案 C解析 选项A 中的函数是偶函数,选项B ,D 中的函数既不是奇函数,也不是偶函数;因为y =-3sin(2x +π)=3sin 2x ,所以是奇函数,选C. 4.(易错题)函数y =cos 2x +sin x 的值域为( )A.[-1,1]B.⎣⎢⎡⎦⎥⎤1,54 C.⎣⎢⎡⎦⎥⎤-1,54D.[0,1]答案 C解析 y =cos 2x +sin x =-sin 2x +sin x +1=-⎝ ⎛⎭⎪⎫sin x -122+54,∴当sin x =12时,y max =54. 当sin x =-1时,y min =-1.5.函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +π4的最小正周期是________. 答案 π6.(易错题)函数y =tan ⎝ ⎛⎭⎪⎫x +π4的图象的对称中心是________.答案 ⎝ ⎛⎭⎪⎫k π2-π4,0,k ∈Z解析 由x +π4=k π2,k ∈Z ,得x =k π2-π4,k ∈Z ,∴对称中心是⎝ ⎛⎭⎪⎫k π2-π4,0,k ∈Z .考点一 三角函数的定义域和值域 1.函数y =sin x -cos x 的定义域为______. 答案 ⎣⎢⎡⎦⎥⎤2k π+π4,2k π+5π4(k ∈Z )解析 要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示. 在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π+π4≤x ≤2k π+54π,k ∈Z . 2.函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π4-cos ⎝ ⎛⎭⎪⎫x -π4的最大值为________.答案2解析 f (x )=sin ⎝ ⎛⎭⎪⎫x -π4-cos ⎝ ⎛⎭⎪⎫x -π4=2sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫x -π4-π4=2sin ⎝ ⎛⎭⎪⎫x -π2 =-2cos x ,所以当x =(2k +1)π(k ∈Z )时,f (x )max = 2.3.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2-3cos x 的最小值为________.答案 -4解析 因为f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2-3cos x =-cos 2x -3cos x =-2cos 2x -3cos x +1, 令t =cos x ,则t ∈[-1,1], 所以g (t )=-2t 2-3t +1.又函数g (t )图象的对称轴t =-34∈[-1,1],且开口向下,所以当t =1时,g (t )有最小值-4.综上,f (x )的最小值为-4.4.函数y =sin x -cos x +sin x cos x 的值域为________. 答案 ⎣⎢⎡⎦⎥⎤-12-2,1解析 设t =sin x -cos x , 则t 2=sin 2x +cos 2x -2sin x cos x , sin x cos x =1-t 22,且-2≤t ≤ 2. ∴y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-1+222. ∴函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1.感悟提升 1.求三角函数的定义域通常要解三角不等式(组),解三角不等式(组)常借助三角函数线或三角函数的图象.2.求解三角函数的值域(最值)常见的几种类型:(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值);(2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);(3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).(4)一些复杂的三角函数,可考虑利用导数确定函数的单调性,然后求最值. 考点二 三角函数的周期性、奇偶性、对称性例1 (1)(2022·成都调研)在函数①y =cos|x |,②y =|cos x |,③y =cos ⎝ ⎛⎭⎪⎫2x +π6,④y =tan ⎝ ⎛⎭⎪⎫2x -π4中,最小正周期为π的函数有( ) A.①③B.①④C.②④D.②③(2)已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,则函数g (x )=sin x +a cos x 的图象( ) A.关于点⎝ ⎛⎭⎪⎫π3,0对称B.关于点⎝ ⎛⎭⎪⎫2π3,0对称C.关于直线x =π3对称D.关于直线x =π6对称(3)(2022·西安调研)已知函数f (x )=2sin(x +θ+π3)⎝ ⎛⎭⎪⎫θ∈⎣⎢⎡⎦⎥⎤-π2,π2是偶函数,则θ的值为________.答案 (1)D (2)C (3)π6解析 (1)①y =cos|x |=cos x ,最小正周期为2π,错误;②y =|cos x |,最小正周期为π,正确;③y =cos ⎝ ⎛⎭⎪⎫2x +π6,最小正周期为2π2=π,正确;④y =tan ⎝ ⎛⎭⎪⎫2x -π4最小正周期为π2,错误.故选D.(2)由题意知f (0)=f ⎝ ⎛⎭⎪⎫π3,所以1=32a +12,a =33,所以g (x )=sin x +33cos x =233sin ⎝ ⎛⎭⎪⎫x +π6,当x =π3时,x +π6=π2,所以直线x =π3为对称轴,点⎝ ⎛⎭⎪⎫π3,0不为对称中心,A 错误,C 正确;当x =2π3时,x +π6=5π6,所以点⎝ ⎛⎭⎪⎫2π3,0不为对称中心,B 错误;当x =π6时,x +π6=π3,所以直线x =π6不为对称轴,D 错误,故选C. (3)∵函数f (x )为偶函数, ∴θ+π3=k π+π2(k ∈Z ).又θ∈⎣⎢⎡⎦⎥⎤-π2,π2,∴θ+π3=π2,解得θ=π6,经检验符合题意.感悟提升 1.求三角函数的最小正周期,一般先通过恒等变形化为y =A sin(ωx +φ)或y =A cos(ωx +φ)或y =A tan(ωx +φ)(A ,ω,φ为常数,A ≠0)的形式,再分别应用公式T =2π|ω|或T =π|ω|求解.2.三角函数型奇偶性判断除可以借助定义外,还可以借助其图象与性质,对y =A sin(ωx +φ)代入x =0,若y =0则为奇函数,若y 为最大或最小值则为偶函数.若y =A sin(ωx +φ)为奇函数,则φ=k π(k ∈Z ),若y =A sin(ωx +φ)为偶函数,则φ=π2+k π(k ∈Z ).3.对于可化为f (x )=A sin(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可.训练1 (1)(2022·河南名校联考)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2 022x +π4+cos ⎝ ⎛⎭⎪⎫2 022x -π4的最大值为M ,若存在实数m ,n ,使得对任意实数x 总有f (m )≤f (x )≤f (n )成立,则M ·|m -n |的最小值为( ) A.π2 022B.π1 011C.π505D.3π1 011(2)已知函数f (x )=cos(ωx +φ)(ω>0,|φ|<π2)的最小正周期为4π,且∀x ∈R 有f (x )≤f ⎝ ⎛⎭⎪⎫π3成立,则f (x )图象的对称中心是________,对称轴方程是________.答案 (1)B (2)⎝ ⎛⎭⎪⎫2k π+4π3,0,k ∈Z x =2k π+π3,k ∈Z解析 (1)令α=2 022x +π4,则f (x )=sin α+cos ⎝ ⎛⎭⎪⎫α-π2=sin α+sin α=2sin α=2sin ⎝ ⎛⎭⎪⎫2 022x +π4,其最小正周期T =2π2 022=π1 011.由题意可知,M =2,|m -n |min =12T ,∴M |m -n |的最小值为π1 011.故选B.(2)由f (x )=cos(ωx +φ)的最小正周期为4π,得ω=12,因为f (x )≤f ⎝ ⎛⎭⎪⎫π3恒成立,所以f (x )max =f ⎝ ⎛⎭⎪⎫π3,即12×π3+φ=2k π(k ∈Z ).又∵|φ|<π2,所以φ=-π6,故f (x )=cos ⎝ ⎛⎭⎪⎫12x -π6,令12x -π6=π2+k π(k ∈Z ),得x =4π3+2k π(k ∈Z ),故f (x )图象的对称中心为⎝ ⎛⎭⎪⎫2k π+4π3,0,k ∈Z . 令12x -π6=k π(k ∈Z ),得x =2k π+π3(k ∈Z ),故f (x )图象的对称轴方程是x =2k π+π3,k ∈Z . 考点三 三角函数的单调性 角度1 求三角函数的单调区间例2 (1)函数f (x )=cos ⎝ ⎛⎭⎪⎫x +π6(x ∈[0,π])的单调递增区间为( )A.⎣⎢⎡⎦⎥⎤0,5π6B.⎣⎢⎡⎦⎥⎤0,2π3C.⎣⎢⎡⎦⎥⎤5π6,πD.⎣⎢⎡⎦⎥⎤2π3,π (2)函数f (x )=sin ⎝⎛⎭⎪⎫-2x +π3的单调递减区间为________.答案 (1)C (2)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z )解析 (1)由2k π-π≤x +π6≤2k π,k ∈Z ,解得2k π-7π6≤x ≤2k π-π6,k ∈Z .∵x ∈[0,π],∴5π6≤x ≤π,∴函数f (x )在[0,π]的单调递增区间为⎣⎢⎡⎦⎥⎤5π6,π,故选C.(2)f (x )=sin ⎝ ⎛⎭⎪⎫-2x +π3=sin ⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫2x -π3=-sin ⎝ ⎛⎭⎪⎫2x -π3,由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z . 故所求函数的单调递减区间为 ⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ). 角度2 利用单调性比较大小例3 已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π4,则a ,b ,c 的大小关系是( ) A.a >b >c B.a >c >b C.c >a >bD.b >a >c答案 A解析 a =f ⎝ ⎛⎭⎪⎫π7=2cos 13π42,b =f ⎝ ⎛⎭⎪⎫π6=2cos π3,c =f ⎝ ⎛⎭⎪⎫π4=2cos 5π12,因为y =cos x 在[0,π]上递减, 又13π42<π3<5π12,所以a >b >c .角度3 根据三角函数的单调性求参数例4 (1)已知函数f (x )=-2sin(2x +φ)(|φ|<π),若f (x )在区间⎝ ⎛⎭⎪⎫π5,5π8上单调递增,则φ的取值范围是________.(2)(2022·山西高三测评)已知函数f (x )=sin x 2+3cos x2在(-a ,a )(a >0)上单调递增,则a 的取值范围是________. 答案 (1)⎣⎢⎡⎦⎥⎤π10,π4 (2)⎝ ⎛⎦⎥⎤0,π3 解析 (1)因为函数f (x )=-2sin(2x +φ)在区间⎝ ⎛⎭⎪⎫π5,5π8上单调递增,所以函数y =2sin(2x +φ)在区间⎝ ⎛⎭⎪⎫π5,5π8上单调递减,又因为y =2sin(2x +φ)的单调递减区间为π2+2k π≤2x +φ≤3π2+2k π,k ∈Z ,解得π4+k π-φ2≤x ≤3π4+k π-φ2,k ∈Z ,所以π4+k π-φ2≤π5,5π8≤3π4+k π-φ2,k ∈Z ,所以π10+2k π≤φ≤π4+2k π,k ∈Z ,因为|φ|<π,所以令k =0,解得π10≤φ≤π4,所以φ的取值范围是⎣⎢⎡⎦⎥⎤π10,π4.(2)f (x )=sin x 2+3cos x 2=2sin ⎝ ⎛⎭⎪⎫x 2+π3,由-π2+2k π≤x 2+π3≤π2+2k π(k ∈Z ),得-5π3+4k π≤x ≤π3+4k π(k ∈Z ),所以⎩⎪⎨⎪⎧a ≤π3,-a ≥-5π3,又a >0,所以a ∈⎝ ⎛⎦⎥⎤0,π3.感悟提升 1.已知三角函数解析式求单调区间求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,可借助诱导公式将ω化为正数,防止把单调性弄错.2.已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解.训练2 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫x 2-π6的单调递增区间是________. (2)(2022·中原名校联盟联考)若函数f (x )=3sin ⎝ ⎛⎭⎪⎫x +π10-2在区间⎣⎢⎡⎦⎥⎤π2,a 上单调,则实数a 的最大值是________.答案 (1)⎝ ⎛⎭⎪⎫2k π-2π3,2k π+4π3,k ∈Z (2)7π5 解析 (1)由-π2+k π<x 2-π6<π2+k π,k ∈Z ,得2k π-2π3<x <2k π+4π3,k ∈Z ,所以函数f (x )=tan ⎝ ⎛⎭⎪⎫x 2-π6的单调递增区间是⎝ ⎛⎭⎪⎫2k π-2π3,2k π+4π3,k ∈Z . (2)法一 令2k π+π2≤x +π10≤2k π+3π2,k ∈Z ,即2k π+2π5≤x ≤2k π+7π5,k ∈Z ,所以函数f (x )在区间⎣⎢⎡⎦⎥⎤2π5,7π5上单调递减, 所以a 的最大值为7π5.法二 因为π2≤x ≤a ,所以π2+π10≤x +π10≤a +π10,又f (x )在⎣⎢⎡⎦⎥⎤π2,a 上单调,π2+π10<a +π10≤3π2,即π2<a ≤7π5,所以a 的最大值为7π5. 三角函数中ω的求解在三角函数的图象与性质中ω的求解是近年高考的一个热点内容,但因其求法复杂,涉及的知识点多,历来是我们复习中的难点.一、结合三角函数的单调性求解例1 若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω的取值范围是( ) A.⎣⎢⎡⎦⎥⎤0,23 B.⎣⎢⎡⎦⎥⎤0,32 C.⎣⎢⎡⎦⎥⎤23,3 D.⎣⎢⎡⎦⎥⎤32,3 答案 D解析 令π2+2k π≤ωx ≤3π2+2k π(k ∈Z ),得π2ω+2k πω≤x ≤3π2ω+2k πω,因为f (x )在⎣⎢⎡⎦⎥⎤π3,π2上单调递减, 所以⎩⎪⎨⎪⎧π2ω+2k πω≤π3,π2≤3π2ω+2k πω,得6k +32≤ω≤4k +3. 又ω>0,所以k ≥0.又6k +32≤4k +3,得0≤k ≤34.又k ∈Z ,所以k =0.即32≤ω≤3.故选D.二、结合三角函数的对称性、周期性求解例2 (2021·兰州质量预测)设函数f (x )=3sin ωx +cos ωx (ω>0),其图象的一条对称轴在区间⎝ ⎛⎭⎪⎫π6,π3内,且f (x )的最小正周期大于π,则ω的取值范围是( ) A.⎝ ⎛⎭⎪⎫12,1 B.(0,2) C.(1,2) D.[1,2) 答案 C解析 f (x )=3sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0), 令ωx +π6=k π+π2(k ∈Z ),解得x =π3ω+k πω(k ∈Z ),由于函数f (x )图象的一条对称轴在区间⎝ ⎛⎭⎪⎫π6,π3内, 因此有π6<π3ω+k πω<π3(k ∈Z )成立,即3k +1<ω<6k +2(k ∈Z ),由f (x )的最小正周期大于π,得2πω>π且ω>0,解得0<ω<2,综上可得1<ω<2.故选C.三、结合三角函数的最值求解例3 已知函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2,则ω的取值范围是________.答案 (-∞,-2]∪⎣⎢⎡⎭⎪⎫32,+∞解析 显然ω≠0.若ω>0,当x ∈⎣⎢⎡⎦⎥⎤-π3,π4时,-π3ω≤ωx ≤π4ω, 因为函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2, 所以-π3ω≤-π2,解得ω≥32.若ω<0,当x ∈⎣⎢⎡⎦⎥⎤-π3,π4时,π4ω≤ωx ≤-π3ω, 因为函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2, 所以π4ω≤-π2,解得ω≤-2.综上所述,符合条件的ω的取值范围是(-∞,-2]∪⎣⎢⎡⎭⎪⎫32,+∞.1.下列函数中,是周期函数的为( )A.f (x )=sin |x |B.f (x )=tan |x |C.f (x )=|tan x |D.f (x )=(x -1)0 答案 C解析 对于C ,f (x +π)=|tan(x +π)|=|tan x |=f (x ),所以f (x )是周期函数,其余均不是周期函数.2.(2021·西安调研)函数y =3tan ⎝ ⎛⎭⎪⎫2x +π4的定义域是( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+π2,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k 2π-π8,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k 2π+π8,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k 2π,k ∈Z 答案 C解析 要使函数有意义,则2x +π4≠k π+π2,k ∈Z ,即x ≠k 2π+π8,k ∈Z ,所以函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k 2π+π8,k ∈Z ,故选C. 3.函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +π6的图象的一条对称轴方程为( ) A.x =π6 B.x =5π12C.x =2π3D.x =-2π3答案 B解析 令2x +π6=k π(k ∈Z ),则x =k π2-π12,k ∈Z ,当k =1时,x =5π12,故选B.4.已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫2x +π6+φ⎝ ⎛⎭⎪⎫|φ|<π2为奇函数,则φ=( ) A.-π6 B.-π3 C.π6 D.π3答案 D解析 因为f (x )为奇函数,所以π6+φ=k π+π2,则φ=k π+π3,k ∈Z ,又|φ|<π2,所以φ=π3.5.若f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4,则( ) A.f (1)>f (2)>f (3)B.f (3)>f (2)>f (1)C.f (2)>f (1)>f (3)D.f (1)>f (3)>f (2)答案 A解析 由π2≤2x -π4≤3π2,可得3π8≤x ≤7π8,所以函数f (x )在区间⎣⎢⎡⎦⎥⎤3π8,7π8上单调递减,由于1<3π8<2,且3π8-1<2-3π8,故f (1)>f (2).由于3π8<2<7π8<3,且7π8-2>3-7π8,故f (2)>f (3),所以f (1)>f (2)>f (3),故选A.6.(2022·南昌模拟)已知函数f (x )=sin(2x +φ)(0<φ<π)的图象关于点B ⎝ ⎛⎭⎪⎫π6,0对称,则下列选项中能使得g (x )=cos(x +φ) 取得最大值的是( )A.x =-2π3B.x =-π6C.x =π3D.x =5π12答案 A解析 因为f (x )=sin(2x +φ)的图象关于点⎝ ⎛⎭⎪⎫π6,0对称,所以2×π6+φ=k π(k ∈Z ),得φ=k π-π3(k ∈Z ),又φ∈(0,π),所以当k =1时,φ=2π3,所以g (x )=cos(x +φ)=cos ⎝ ⎛⎭⎪⎫x +2π3取得最大值时,x +2π3=2k 1π(k 1∈Z ),得x =2k 1π-2π3(k 1∈Z ),令k 1=0得x =-2π3.故选A.7.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx -π6+1(x ∈R )的图象的一条对称轴为x =π,其中ω为常数,且ω∈(1,2),则函数f (x )的最小正周期为________.答案 6π5解析 由函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx -π6+1(x ∈R )的图象的一条对称轴为x =π,可得ωπ-π6=k π+π2,k ∈Z ,∴ω=k +23,又ω∈(1,2),∴ω=53,∴函数f (x )的最小正周期为2π53=6π5. 8.(2022·合肥调研)已知函数f (x )=⎪⎪⎪⎪⎪⎪tan ⎝ ⎛⎭⎪⎫12x -π6,则下列说法正确的是________(填序号).①f (x )的周期是π2;②f (x )的值域是{y |y ∈R ,且y ≠0};③直线x =5π3是函数f (x )图象的一条对称轴;④f (x )的单调递减区间是(2k π-2π3,2k π+π3),k ∈Z .答案 ④解析 函数f (x )的周期为2π,①错;f (x )的值域为[0,+∞),②错,当x =5π3时,12x -π6=2π3≠k π2,k ∈Z ,∴x =5π3不是f (x )的对称轴,③错;令k π-π2<12x -π6<k π,k ∈Z ,可得2k π-2π3 <x <2k π+π3,k ∈Z ,∴f (x )的单调递减区间是⎝ ⎛⎭⎪⎫2k π-2π3,2k π+π3,k ∈Z ,④正确. 9.已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤12,54 解析 由π2<x <π,ω>0得ωπ2+π4<ωx +π4<ωπ+π4,又y =sin x 的单调递减区间为⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2,k ∈Z , 所以⎩⎪⎨⎪⎧ωπ2+π4≥π2+2k π,ωπ+π4≤3π2+2k π,k ∈Z , 解得4k +12≤ω≤2k +54,k ∈Z .又由4k +12-⎝ ⎛⎭⎪⎫2k +54≤0,k ∈Z 且2k +54>0,k ∈Z ,得k =0,所以ω∈⎣⎢⎡⎦⎥⎤12,54. 10.已知函数f (x )=sin(2π-x )sin ⎝ ⎛⎭⎪⎫3π2-x -3cos 2x + 3. (1)求f (x )的最小正周期和图象的对称轴方程;(2)当x ∈⎣⎢⎡⎦⎥⎤0,7π12时,求f (x )的最小值和最大值. 解 (1)由题意,得f (x )=(-sin x )(-cos x )-3cos 2 x + 3=sin x cos x -3cos 2x + 3=12sin 2x -32(cos 2x +1)+ 3 =12sin 2x -32cos 2x +32=sin ⎝ ⎛⎭⎪⎫2x -π3+32, 所以f (x )的最小正周期T =2π2=π;令2x -π3=k π+π2(k ∈Z ),得x =k π2+5π12(k ∈Z ),故所求图象的对称轴方程为x =k π2+5π12(k ∈Z ).(2)当0≤x ≤7π12时,-π3≤2x -π3≤5π6,由函数图象(图略)可知, -32≤sin ⎝ ⎛⎭⎪⎫2x -π3≤1. 即0≤sin ⎝ ⎛⎭⎪⎫2x -π3+32≤2+32. 故f (x )的最小值为0,最大值为2+32.11.已知a >0,函数f (x )=-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1. (1)求常数a ,b 的值;(2) 求f (x )的单调区间.解 (1)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6. ∴sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1, ∴-2a sin ⎝ ⎛⎭⎪⎫2x +π6∈[-2a ,a ]. ∴f (x )∈[b ,3a +b ].又-5≤f (x )≤1,∴⎩⎪⎨⎪⎧b =-5,3a +b =1,解得⎩⎪⎨⎪⎧a =2,b =-5.(2)f (x )=-4sin ⎝ ⎛⎭⎪⎫2x +π6-1, 由-π2+2k π≤2x +π6≤π2+2k π得-π3+k π≤x ≤π6+k π,k ∈Z .由π2+2k π≤2x +π6≤32π+2k π得π6+k π≤x ≤23π+k π,k ∈Z .∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤π6+k π,23π+k π(k ∈Z ), 单调递减区间为⎣⎢⎡⎦⎥⎤-π3+k π,π6+k π(k ∈Z ). 12.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象在⎣⎢⎡⎦⎥⎤0,π4内有且仅有一条对称轴,则实数ω的取值范围是( )A.(0,5)B.(0,5]C.[1,5)D.(1,5]答案 C解析 令ωx +π4=k π+π2,x =1ω⎝ ⎛⎭⎪⎫k π+π4,k ∈Z . ∵ω>0,由题意得⎩⎪⎨⎪⎧1ω×π4≤π4,1ω×5π4>π4,解得1≤ω<5.故选C. 13.(2022·贵阳模拟)已知函数f (x )=sin x +12sin 2x ,给出下列四个命题:①函数f (x )是周期函数;②函数f (x )的图象关于原点对称; ③函数f (x )的图象过点(π,0);④函数f (x )为R 上的单调函数.其中所有真命题的序号是________. 答案 ①②③解析 因为f (x +2π)=sin(x +2π)+12sin(2x +4π)=sin x +12sin 2x =f (x ),所以2π是函数f (x )的一个周期,所以①正确;因为f (-x )=sin(-x )+12sin(-2x )=-⎝ ⎛⎭⎪⎫sin x +12sin 2x =-f (x )(x ∈R ), 所以f (x )为奇函数,其图象关于原点对称,所以②正确;因为f (π)=sin π+12sin 2π=0,所以③正确;因为f (0)=0,f ⎝ ⎛⎭⎪⎫π2=1,f (π)=0, 所以f (x )不可能是单调函数,所以④错误.14.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x +32. (1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2, 求cos(x 1-x 2)的值.解 (1)f (x )=cos x sin x -32(2cos 2x -1) =12sin 2x -32cos 2x =sin ⎝ ⎛⎭⎪⎫2x -π3. 当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时, 函数f (x )取最大值,且最大值为1.(2)由(1)知,函数f (x )图象的对称轴为x =512π+k π(k ∈Z ),∴当x ∈(0,π)时,对称轴为x =512π.又方程f (x )=23在(0,π)上的解为x 1,x 2,∴x 1+x 2=56π,则x 1=56π-x 2,∴cos(x 1-x 2)=cos ⎝ ⎛⎭⎪⎫56π-2x 2=sin ⎝ ⎛⎭⎪⎫2x 2-π3, 又f (x 2)=sin ⎝ ⎛⎭⎪⎫2x 2-π3=23, 故cos(x 1-x 2)=23.。
2023年高考数学(文科)一轮复习——同角三角函数的基本关系与诱导公式
第2节同角三角函数的基本关系与诱导公式考试要求 1.理解同角三角函数的基本关系:sin2α+cos2α=1,sin αcos α=tan α;2.能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1.(2)商数关系:sin αcos α=tan__α.2.三角函数的诱导公式公式一二三四五六角2kπ+α(k∈Z)π+α-απ-απ2-απ2+α正弦sin α-sin__α-sin__αsin__αcos__αcos__α余弦cos α-cos__αcos__α-cos__αsin__α-sin__α正切tan αtan__α-tan__α-tan__α口诀函数名改变,符号看象限函数名改变,符号看象限1.同角三角函数关系式的常用变形(sin α±cos α)2=1±2sin αcos α;sin α=tan α·cos α.2.诱导公式的记忆口诀“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.3.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.1.思考辨析(在括号内打“√”或“×”) (1)若α,β为锐角,则sin 2α+cos 2β=1.( ) (2)sin(π+α)=-sin α成立的条件是α为锐角.( ) (3)若α∈R ,则tan α=sin αcos α恒成立.( ) (4)若sin(k π-α)=13(k ∈Z ),则sin α=13.( ) 答案 (1)× (2)× (3)× (4)× 解析 (1)对任意的角α,sin 2α+cos 2α=1. (2)中对于任意α∈R ,恒有sin(π+α)=-sin α. (3)中当α的终边落在y 轴上时,商数关系不成立. (4)当k 为奇数时,sin α=13, 当k 为偶数时,sin α=-13.2.求值:cos 2 023π6=________. 答案 -32解析 cos ⎝ ⎛⎭⎪⎫337π+π6=-cos π6=-32.3.若cos α=33,则tan α=________. 答案 ±2解析 因为cos α=33, 所以sin α=±1-cos 2 α=±1-⎝ ⎛⎭⎪⎫332=±63 .故tan α=sin αcos α=±2.4.(易错题)已知sin θ+cos θ=43,θ∈⎝ ⎛⎭⎪⎫0,π4,则sin θ-cos θ的值为________.答案 -23解析:∵sin θ+cos θ=43,∴sin θcos θ=718.又∵(sin θ-cos θ)2=1-2sin θcos θ=29,θ∈⎝ ⎛⎭⎪⎫0,π4,∴sin θ-cos θ=-23.5.(2022·昆明诊断)若cos ⎝ ⎛⎭⎪⎫π3-α=15,则sin ⎝ ⎛⎭⎪⎫π6+α=________. 答案 15解析 sin ⎝ ⎛⎭⎪⎫π6+α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-α=cos ⎝ ⎛⎭⎪⎫π3-α=15. 6.(2021·沈阳模拟)已知2sin(π-α)=3sin ⎝ ⎛⎭⎪⎫π2+α,则sin 2α-12sin 2α-cos 2α=________. 答案 -113解析 由2sin(π-α)=3sin ⎝ ⎛⎭⎪⎫π2+α,得2sin α=3cos α.所以tan α=32,从而sin 2α-12sin 2α-cos 2α= sin 2α-sin αcos α-cos 2αsin 2α+cos 2α=tan 2α-tan α-1tan 2α+1=-113.考点一 诱导公式的应用1.化简:sin ⎝ ⎛⎭⎪⎫-α-3π2sin ⎝ ⎛⎭⎪⎫3π2-αtan 2(2π-α)cos ⎝ ⎛⎭⎪⎫π2-αcos ⎝ ⎛⎭⎪⎫π2+αsin (π+α)=________.答案 -1sin α解析原式=cos α(-cos α)tan2αsin α(-sin α)(-sin α)=-1sin α.2.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若sin α=13,则sin β=________.答案1 3解析由已知得α+β=π+2kπ,k∈Z.∵sin α=1 3,∴sin β=sin(π+2kπ-α)=sin α=1 3.3.(2022·皖北名校联考)sin 613°+cos 1 063°+tan(-30°)的值为________.答案-3 3解析sin 613°+cos 1 063°-tan 30°=sin(180°+73°)+cos(-17°)-tan 30°=-sin 73°+cos(-17°)-tan 30°=-cos 17°+cos 17°-33=-33.感悟提升 1.诱导公式的两个应用(1)求值:负化正,大化小,化到锐角为终了.(2)化简:统一角,统一名,同角名少为终了.2.含2π整数倍的诱导公式的应用由终边相同的角的关系可知,在计算含有2π的整数倍的三角函数式中可直接将2π的整数倍去掉后再进行运算.考点二同角三角函数基本关系及其应用角度1切弦互化例1 (1)已知α是第四象限角,tan α=-815,则sin α等于()A.1517B.-1517C.817 D.-817(2)(2021·新高考Ⅰ卷)若tan θ=-2,则sin θ(1+sin 2θ)sin θ+cos θ=( )A.-65B.-25C.25D.65答案 (1)D (2)C解析 (1)因为tan α=-815, 所以sin αcos α=-815,所以cos α=-158sin α,代入sin 2α+cos 2α=1,得sin 2α=64289, 又α是第四象限角,所以sin α=-817. (2)因为tan θ=-2,所以sin θ(1+sin 2θ)sin θ+cos θ=sin θ(sin θ+cos θ)2sin θ+cos θ=sin θ(sin θ+cos θ)=sin 2 θ+sin θcos θsin 2 θ+cos 2θ=tan 2 θ+tan θ1+tan 2θ=4-21+4=25. 角度2 sin α±cos α与sin αcos α的转化例2 若sin θ-cos θ=43,且θ∈⎝ ⎛⎭⎪⎫34π,π,则sin(π-θ)-cos(π-θ)=( )A.-23B.23C.-43D.43 答案 A解析 由sin θ-cos θ=43得1-2sin θcos θ=169,即2sin θcos θ=-79, ∴(sin θ+cos θ)2=1+2sin θcos θ=29. 又θ∈⎝ ⎛⎭⎪⎫34π,π,∴sin θ+cos θ<0,∴sin θ+cos θ=-23,则sin(π-θ)-cos(π-θ)=sin θ+cos θ=-23,故选A.感悟提升 1.(1)利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化. (2)形如a sin x +b cos xc sin x +d cos x,a sin 2x +b sin x cos x +c cos 2x 等类型可进行弦化切.2.注意公式的逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.3.应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.训练1 (1)(2022·北京市西城区模拟)已知α∈(0,π),cos α=-35,则tan α等于( ) A.34B.-34C.43D.-43(2)(2022·成都联考)在△ABC 中,sin A ·cos A =-18,则cos A -sin A 的值为( ) A.-32B.-52C.52D.±32(3)(2021·兰州诊断)已知sin α+cos α=75,则tan α=________. 答案 (1)D (2)B (3)43或34解析 (1)因为cos α=-35且α∈(0,π),所以sin α=1-cos 2α=45,所以tan α=sin αcos α=-43.(2)∵在△ABC 中,sin A ·cos A =-18, ∴A 为钝角,∴cos A -sin A <0, ∴cos A -sin A =-(cos A -sin A )2=-cos 2A +sin 2A -2sin A cos A =-1-2×⎝ ⎛⎭⎪⎫-18=-52.(3)将sin α+cos α=75两边平方得1+2sin αcos α=4925, ∴sin αcos α=1225, ∴sin αcos αsin 2α+cos 2α=tan αtan 2α+1=1225, 整理得12tan 2α-25tan α+12=0,解得tan α=43或tan α=34. 考点三 同角三角函数基本关系和诱导公式的综合应用例3 (1)(2020·全国Ⅰ卷)已知α∈(0,π),且3cos 2α-8cos α=5,则sin α=( ) A.53 B.23 C.13 D.59(2)已知cos ⎝ ⎛⎭⎪⎫π6-θ=a (|a |≤1),则cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ的值是________.答案 (1)A (2)0解析 (1)由3cos 2α-8cos α=5, 得3(2cos 2α-1)-8cos α=5, 即3cos 2α-4cos α-4=0, 解得cos α=-23或cos α=2(舍去). 又因为α∈(0,π), 所以sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫-232=53.故选A. (2)∵cos ⎝ ⎛⎭⎪⎫5π6+θ=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-θ=-cos ⎝ ⎛⎭⎪⎫π6-θ=-a ,sin ⎝ ⎛⎭⎪⎫2π3-θ=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫π6-θ=cos ⎝ ⎛⎭⎪⎫π6-θ=a , ∴cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=0.感悟提升 1.利用同角三角函数关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式进行变形.注意角的范围对三角函数值符号的影响.2.用诱导公式求值时,要善于观察所给角之间的关系,利用整体代换的思想简化解题过程.常见的互余关系有π3-α与π6+α,π3+α与π6-α,π4+α与π4-α等,常见的互补关系有π6-θ与5π6+θ,π3+θ与2π3-θ,π4+θ与3π4-θ等.训练2 (1)已知θ为第四象限角,sin θ+3cos θ=1,则tan θ=________; (2)已知tan ⎝ ⎛⎭⎪⎫π6-α=33,则tan ⎝ ⎛⎭⎪⎫5π6+α=________.答案 (1)-43 (2)-33解析 (1)由(sin θ+3cos θ)2=1=sin 2θ+cos 2 θ, 得6sin θcos θ=-8cos 2 θ, 又因为θ为第四象限角,所以cos θ≠0, 所以6sin θ=-8cos θ,所以tan θ=-43.(2)∵⎝ ⎛⎭⎪⎫π6-α+⎝ ⎛⎭⎪⎫5π6+α=π,∴tan ⎝ ⎛⎭⎪⎫5π6+α=tan ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-α=-tan ⎝ ⎛⎭⎪⎫π6-α=-33.1.sin 1 050°等于( ) A.12 B.-12C.32D.-32答案 B解析 sin 1 050°=sin(3×360°-30°) =-sin 30°=-12.2.若角α的终边在第三象限,则cos α1-sin 2 α+2sin α1-cos 2α的值为( ) A.3 B.-3C.1D.-1答案 B解析 由角α的终边在第三象限,得sin α<0,cos α<0,故原式=cos α|cos α|+2sin α|sin α|=cos α-cos α+2sin α-sin α=-1-2=-3,故选B. 3.已知α是第四象限角,sin α=-1213,则tan(π+α)等于( ) A.-513 B.513C.-125D.125答案 C解析 因为α是第四象限角,sin α=-1213, 所以cos α=1-sin 2 α=513,故tan(π+α)=tan α=sin αcos α=-125. 4.已知sin α-cos α=54,则sin 2α=( ) A.-916 B.-716 C.716 D.916答案 A解析 ∵(sin α-cos α)2=1-2sin αcos α=1-sin 2α,∴sin 2α=1-⎝ ⎛⎭⎪⎫542=-916.5.已知3sin(π+θ)=cos(2π-θ),|θ|<π2,则θ等于( ) A.-π6 B.-π3C.π6D.π3答案 A解析 ∵3sin(π+θ)=cos(2π-θ),∴-3sin θ=cos θ,∴tan θ=-33,∵|θ|<π2,∴θ=-π6.6.若3sin α+cos α=0,则1cos 2α+2sin αcos α的值为 ( )A.103B.53C.23D.-2 答案 A解析 由3sin α+cos α=0,得tan α=-13,则1cos 2 α+2sin αcos α=sin 2 α+cos 2 αcos 2 α+2sin αcos α =tan 2α+11+2tan α=19+11-23=103. 7.若θ∈⎝ ⎛⎭⎪⎫π2,π,则1-2sin (π+θ)sin ⎝ ⎛⎭⎪⎫3π2-θ=( )A.sin θ-cos θB.cos θ-sin θC.±(sin θ-cos θ)D.sin θ+cos θ答案 A 解析 1-2sin (π+θ)sin ⎝ ⎛⎭⎪⎫3π2-θ=1-2sin θcos θ=(sin θ-cos θ)2=|sin θ-cos θ|, 又∵θ∈⎝ ⎛⎭⎪⎫π2,π,∴sin θ-cos θ>0, 所以原式=sin θ-cos θ.8.(2022·太原调研)已知3sin ⎝ ⎛⎭⎪⎫33π14+α=-5cos ⎝ ⎛⎭⎪⎫5π14+α,则tan ⎝ ⎛⎭⎪⎫5π14+α等于( ) A.-53 B.-35 C.35 D.53 答案 A解析 由3sin ⎝ ⎛⎭⎪⎫33π14+α=-5cos ⎝ ⎛⎭⎪⎫5π14+α,得sin ⎝ ⎛⎭⎪⎫5π14+α=-53cos ⎝ ⎛⎭⎪⎫5π14+α,所以tan ⎝ ⎛⎭⎪⎫5π14+α=sin ⎝ ⎛⎭⎪⎫5π14+αcos ⎝ ⎛⎭⎪⎫5π14+α=-53cos ⎝ ⎛⎭⎪⎫5π14+αcos ⎝ ⎛⎭⎪⎫5π14+α=-53. 9.(2022·合肥模拟)已知tan(π-α)=2,则sin α+cos αsin α-cos α=________.答案 13解析 由tan(π-α)=2,得tan α=-2,则sin α+cos αsin α-cos α=tan α+1tan α-1=-2+1-2-1=13.10.已知k ∈Z ,则sin (k π-α)cos [(k -1)π-α]sin [(k +1)π+α]cos (k π+α)的值为________. 答案 -1解析 当k =2n (n ∈Z )时,原式=sin (2n π-α)cos [(2n -1)π-α]sin [(2n +1)π+α]cos (2n π+α)=sin (-α)cos (-π-α)sin (π+α)cos α=-sin α(-cos α)-sin α cos α=-1. 当k =2n +1(n ∈Z )时,原式=sin [(2n +1)π-α]cos [(2n +1-1)π-α]sin [(2n +1+1)π+α]cos [(2n +1)π+α]=sin (π-α)cos αsin αcos (π+α)=sin αcos αsin α(-cos α)=-1. 综上,原式=-1.11.已知α为钝角,sin ⎝ ⎛⎭⎪⎫π4+α=34,则sin ⎝ ⎛⎭⎪⎫π4-α=________,cos ⎝ ⎛⎭⎪⎫α-π4=________. 答案 -74 34解析 sin ⎝ ⎛⎭⎪⎫π4-α=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4-α =cos ⎝ ⎛⎭⎪⎫π4+α, ∵α为钝角,∴34π<π4+α<54π.∴cos ⎝ ⎛⎭⎪⎫π4+α<0.∴cos ⎝ ⎛⎭⎪⎫π4+α=-1-⎝ ⎛⎭⎪⎫342=-74. cos ⎝ ⎛⎭⎪⎫α-π4=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫α-π4=sin ⎝ ⎛⎭⎪⎫π4+α=34. 12.若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为________. 答案 1- 5解析 由题意知sin θ+cos θ=-m 2,sin θcos θ=m 4,又(sin θ+cos θ)2=1+2sin θcos θ,∴m 24=1+m 2,解得m =1±5,又Δ=4m 2-16m ≥0,∴m ≤0或m ≥4,∴m =1- 5.13.已知角α和β的终边关于直线y =x 对称,且β=-π3,则sin α等于( ) A.-32 B.32 C.-12 D.12答案 D解析 终边在直线y =x 上的角为k π+π4(k ∈Z ),因为角α和β的终边关于直线y=x 对称,所以α+β=2k π+π2(k ∈Z ).又β=-π3,所以α=2k π+5π6(k ∈Z ),即得sin α=sin ⎝ ⎛⎭⎪⎫2k π+5π6=12. 14.已知α为锐角,且2tan(π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α=( )A.355B.377C.31010D.13答案 C解析 由已知得⎩⎪⎨⎪⎧3sin β-2tan α+5=0,tan α-6sin β-1=0.消去sin β,得tan α=3,∴sin α=3cos α,代入sin 2α+cos 2α=1,化简得sin 2α=910,则sin α=31010(α为锐角).15.已知函数f (x )=a sin(πx +α)+b cos(πx +β),且f (4)=3,则f (2 023)的值为________.答案 -3解析 因为f (x )=a sin(πx +α)+b cos(πx +β),所以f (4)=a sin(4π+α)+b cos(4π+β)=a sin α+b cos β=3,所以f (2 023)=a sin(2 023π+α)+b cos(2 023π+β)=a sin(π+α)+b cos(π+β)=-a cos α-b cos β=-3.16.已知2θ是第一象限角,且sin 4θ+cos 4θ=59,那么tan θ=________. 答案 22解析 因为sin 4θ+cos 4θ=59,所以(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=59. 所以sin θcos θ=23,所以sin θcos θsin 2θ+cos 2θ=23, 即tan θ1+tan 2θ=23,解得tan θ=2或tan θ=22. 又因为2θ为第一象限角,所以2k π<2θ<2k π+π2,k ∈Z .所以k π<θ<π4+k π,k ∈Z .所以0<tan θ<1.所以tan θ=22.。
2023年高考数学(文科)一轮复习——等差数列及其前n项和
第2节 等差数列及其前n 项和考试要求 1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.4.了解等差数列与一次函数的关系.1.等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列. 数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数).(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b 2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2. 3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(5)若S n 为等差数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列.1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.4.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).1.思考辨析(在括号内打“√”或“×”)(1)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( )(2)等差数列{a n }的单调性是由公差d 决定的.( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )(4)等差数列的前n 项和公式是常数项为0且关于n 的二次函数.( ) 答案 (1)√ (2)√ (3)× (4)×解析 (3)若公差d =0,则通项公式不是n 的一次函数.(4)若公差d =0,则前n 项和不是n 的二次函数.2.(2022·南宁一模)记S n 为等差数列{a n }的前n 项和,若a 1=1,S 3=92,则数列{a n }的通项公式a n =( )A.nB.n +12C.2n -1D.3n -12答案 B解析 设等差数列{a n }的公差为d ,则S 3=3a 1+3×22d =3+3d =92,解得d =12,∴a n =1+(n -1)×12=n +12.3.(2021·宝鸡二模)已知{a n }是等差数列,满足3(a 1+a 5)+2(a 3+a 6+a 9)=18,则该数列的前8项和为( )A.36B.24C.16D.12答案 D解析 由等差数列性质可得a 1+a 5=2a 3,a 3+a 6+a 9=3a 6,所以3×2a 3+2×3a 6=18,即a 3+a 6=3,所以S 8=8(a 1+a 8)2=8(a 3+a 6)2=12. 4.在等差数列{a n }中,若a 1+a 2=5,a 3+a 4=15,则a 5+a 6=( )A.10B.20C.25D.30答案 C解析 等差数列{a n }中,每相邻2项的和仍然构成等差数列,设其公差为d ,若a 1+a 2=5,a 3+a 4=15,则d =15-5=10,因此a 5+a 6=(a 3+a 4)+d =15+10=25.5.一物体从1 960 m 的高空降落,如果第1秒降落4.90 m ,以后每秒比前一秒多降落9.80 m ,那么经过________秒落到地面.答案 20解析 设物体经过t 秒降落到地面.物体在降落过程中,每一秒降落的距离构成首项为4.90,公差为9.80的等差数列.所以4.90t +12t (t -1)×9.80=1 960,即4.90t 2=1 960,解得t =20.6.(易错题)在等差数列{a n }中,|a 3|=|a 9|,公差d <0,则使数列{a n }的前n 项和S n 取最大值的正整数n 的值是________.答案 5或6解析 ∵|a 3|=|a 9|,∴|a 1+2d |=|a 1+8d |,可得a 1=-5d ,∴a 6=a 1+5d =0,且a 1>0,∴a 5>0,故S n 取最大值时n 的值为5或6.考点一 等差数列的基本运算1.记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( )A.a n =2n -5B.a n =3n -10C.S n =2n 2-8nD.S n =12n 2-2n答案 A解析 设首项为a 1,公差为d .由S 4=0,a 5=5可得⎩⎪⎨⎪⎧a 1+4d =5,4a 1+6d =0,解得⎩⎪⎨⎪⎧a 1=-3,d =2.所以a n =-3+2(n -1)=2n -5,S n =n ×(-3)+n (n -1)2×2=n 2-4n . 2.(2022·太原调研)已知等差数列{a n }的前n 项和为S n ,若S 8=a 8=8,则公差d =( )A.14B.12C.1D.2 答案 D解析 ∵S 8=a 8=8,∴a 1+a 2+…+a 8=a 8,∴S 7=7a 4=0,则a 4=0.∴d =a 8-a 48-4=2. 3.(2020·全国Ⅱ卷)记S n 为等差数列{a n }的前n 项和.若a 1=-2,a 2+a 6=2,则S 10=________.答案 25解析 设等差数列{a n }的公差为d ,则a 2+a 6=2a 1+6d =2×(-2)+6d =2.解得d =1.所以S 10=10×(-2)+10×92×1=25.4.(2019·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.已知S 9=-a5.(1)若 a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.解 (1)设{a n }的公差为d .由S 9=-a 5可知9a 5=-a 5,所以a 5=0.因为a 3=4,所以d =a 5-a 32=0-42=-2,所以a n =a 3+(n -3)×(-2)=10-2n ,因此{a n }的通项公式为a n =10-2n .(2)由(1)得a 5=0,因为a 1>0,所以等差数列{a n }单调递减,即d <0,a 1=a 5-4d =-4d ,S n =n (n -9)d 2, a n =-4d +d (n -1)=dn -5d ,因为S n ≥a n ,所以nd (n -9)2≥dn -5d , 又因为d <0,所以1≤n ≤10.感悟提升 1.等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.考点二 等差数列的判定与证明例1 (2021·全国甲卷)已知数列{a n }的各项均为正数,记S n 为{a n }的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n }是等差数列;②数列{S n }是等差数列;③a 2=3a 1.注:若选择不同的组合分别解答,则按第一个解答计分.解 ①③⇒②.已知{a n }是等差数列,a 2=3a 1.设数列{a n }的公差为d ,则a 2=3a 1=a 1+d ,得d =2a 1,所以S n =na 1+n (n -1)2d =n 2a 1. 因为数列{a n }的各项均为正数, 所以S n =n a 1, 所以S n +1-S n =(n +1)a 1-n a 1=a 1(常数),所以数列{S n }是等差数列. ①②⇒③.已知{a n }是等差数列,{S n }是等差数列.设数列{a n }的公差为d ,则S n =na 1+n (n -1)2d =12n 2d +⎝ ⎛⎭⎪⎫a 1-d 2n . 因为数列{S n }是等差数列,所以数列{S n }的通项公式是关于n 的一次函数,则a1-d2=0,即d=2a1,所以a2=a1+d=3a1.②③⇒①.已知数列{S n}是等差数列,a2=3a1,所以S1=a1,S2=a1+a2=4a1.设数列{S n}的公差为d,d>0,则S2-S1=4a1-a1=d,得a1=d2,所以S n=S1+(n -1)d=nd,所以S n=n2d2,所以n≥2时,a n=S n-S n-1=n2d2-(n-1)2d2=2d2n-d2,对n=1也适合,所以a n=2d2n-d2,所以a n+1-a n=2d2(n+1)-d2-(2d2n-d2)=2d2(常数),所以数列{a n}是等差数列.感悟提升 1.证明数列是等差数列的主要方法:(1)定义法:对于n≥2的任意自然数,验证a n-a n-1为同一常数.即作差法,将关于a n-1的a n代入a n-a n-1,再化简得到定值.(2)等差中项法:验证2a n-1=a n+a n-2(n≥3,n∈N*)都成立.2.判定一个数列是等差数列还常用到的结论:(1)通项公式:a n=pn+q(p,q为常数)⇔{a n}是等差数列.(2)前n项和公式:S n=An2+Bn(A,B为常数)⇔{a n}是等差数列.问题的最终判定还是利用定义.训练1 (2021·全国乙卷)设S n为数列{a n}的前n项和,b n为数列{S n}的前n项积,已知2S n+1b n=2.(1)证明:数列{b n}是等差数列;(2)求{a n}的通项公式.(1)证明因为b n是数列{S n}的前n项积,所以n ≥2时,S n =b n b n -1, 代入2S n +1b n =2可得,2b n -1b n +1b n=2, 整理可得2b n -1+1=2b n ,即b n -b n -1=12(n ≥2).又2S 1+1b 1=3b 1=2,所以b 1=32, 故{b n }是以32为首项,12为公差的等差数列.(2)解 由(1)可知,b n =32+12(n -1)=n +22,则2S n +2n +2=2,所以S n =n +2n +1, 当n =1时,a 1=S 1=32,当n ≥2时,a n =S n -S n -1=n +2n +1-n +1n =-1n (n +1). 故a n =⎩⎪⎨⎪⎧32,n =1,-1n (n +1),n ≥2. 考点三 等差数列的性质及应用角度1 等差数列项的性质例2 (1)设S n 为等差数列{a n }的前n 项和,且4+a 5=a 6+a 4,则S 9等于( )A.72B.36C.18D.9 (2)在等差数列{a n }中,若a 5+a 6=4,则log 2(2a 1·2a 2·…·2a 10)=( )A.10B.20C.40D.2+log 25答案 (1)B (2)B解析 (1)∵a 6+a 4=2a 5,∴a 5=4,∴S 9=9(a 1+a 9)2=9a 5=36. (2)由等差数列的性质知a 1+a 10=a 2+a 9=a 3+a 8=a 4+a 7=a 5+a 6=a 4,则2a 1···2a 10=2a 1+a 2+…+a 10=25(a 5+a 6)=25×4,所以log 2(2a 1·2a 2·…·2a 10)=log 225×4=20. 角度2 等差数列前n 项和的性质例3 (1)已知等差数列{a n }的前n 项和为S n .若S 5=7,S 10=21,则S 15等于( )A.35B.42C.49D.63(2)(2020·全国Ⅱ卷)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块.向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A.3 699块B.3 474块C.3 402块D.3 339块答案 (1)B (2)C解析 (1)在等差数列{a n }中,S 5,S 10-S 5,S 15-S 10成等差数列,即7,14,S 15-21成等差数列,所以7+(S 15-21)=2×14,解得S 15=42.(2)设每一层有n 环,由题可知从内到外每环之间构成公差d =9,a 1=9的等差数列.由等差数列的性质知S n ,S 2n -S n ,S 3n -S 2n 成等差数列,且(S 3n -S 2n )-(S 2n -S n )=n 2d ,则9n 2=729,得n =9,则三层共有扇面形石板S 3n =S 27=27×9+27×262×9=3 402(块).角度3 等差数列前n 项和的最值例4 等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大?解 法一 设公差为d .由S 3=S 11,可得3a 1+3×22d =11a 1+11×102d ,即d =-213a 1.从而S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1, 因为a 1>0,所以-a 113<0.故当n =7时,S n 最大.法二 易知S n =An 2+Bn 是关于n 的二次函数,由S 3=S 11,可知S n =An 2+Bn 的图象关于直线n =3+112=7对称. 由解法一可知A =-a 113<0,故当n =7时,S n 最大.法三 设公差为d .由解法一可知d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a 1+(n -1)⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0, 解得6.5≤n ≤7.5,故当n =7时,S n 最大.法四 设公差为d .由S 3=S 11,可得2a 1+13d =0, 即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0, 又由a 1>0,S 3=S 11可知d <0,所以a 7>0,a 8<0,所以当n =7时,S n 最大.感悟提升 1.项的性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .2.和的性质:在等差数列{a n }中,S n 为其前n 项和,则(1)S 2n =n (a 1+a 2n )=…=n (a n +a n +1);(2)S 2n -1=(2n -1)a n .(3)依次k 项和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列.3.求等差数列前n 项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项,或者利用性质求其正负转折项,便可求得和的最值;(2)利用公差不为零的等差数列的前n 项和S n =An 2+Bn (A ,B 为常数,A ≠0)为二次函数,通过二次函数的性质求最值.训练2 (1)(2021·洛阳质检)记等差数列{a n }的前n 项和为S n ,若S 17=272,则a 3+a 9+a 15=( )A.24B.36C.48D.64(2)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 020,S 2 0202 020-S 2 0142 014=6,则S 2 023等于( )A.2 023B.-2 023C.4 046D.-4 046(3)设等差数列{a n }满足a 1=1,a n >0(n ∈N *),其前n 项和为S n ,若数列{S n }也为等差数列,则S n +10a 2n的最大值是________. 答案 (1)C (2)C (3)121解析 (1)因为数列{a n }是等差数列,其前n 项和为S n ,所以S 17=272=a 1+a 172×17=2a 92×17=17a 9,∴a 9=16,所以a 3+a 9+a 15=3a 9=48.(2)∵⎩⎨⎧⎭⎬⎫S n n 为等差数列,设公差为d ′, 则S 2 020 2 020-S 2 0142 014=6d ′=6,∴d ′=1,首项为S 11=-2 020,∴S 2 0232 023=-2 020+(2 023-1)×1=2,∴S 2 023=2 023×2=4 046,故选C.(3)设数列{a n }的公差为d ,依题意得2S 2=S 1+S 3,∴22a 1+d =a 1+3a 1+3d ,把a 1=1代入求得d =2,∴a n =1+(n -1)×2=2n -1,S n =n +n (n -1)2×2=n 2,∴S n +10a 2n =(n +10)2(2n -1)2=⎝ ⎛⎭⎪⎪⎫n +102n -12=⎣⎢⎡⎦⎥⎤12(2n -1)+2122n -12=14⎝ ⎛⎭⎪⎫1+212n -12≤121.∴S n +10a 2n 的最大值是121.1.在等差数列{a n }中,3a 5=2a 7,则此数列中一定为0的是() A.a 1 B.a 3 C.a 8 D.a 10答案 A解析 设{a n }的公差为d (d ≠0),∵3a 5=2a 7,∴3(a 1+4d )=2(a 1+6d ),得a 1=0.2.(2021·重庆二模)已知公差不为0的等差数列{a n }中,a 2+a 4=a 6,a 9=a 26,则a 10=( )A.52B.5C.10D.40答案 A解析 设公差为d ,由已知得⎩⎪⎨⎪⎧a 1+d +a 1+3d =a 1+5d ,a 1+8d =(a 1+5d )2,由于d ≠0,故a 1=d =14,所以a 10=14+14×9=52.3.已知数列{a n }满足5an +1=25·5an ,且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)=() A.-3 B.3 C.-13 D.13答案 A解析 数列{a n }满足5an +1=25·5an ,∴a n +1=a n +2,即a n +1-a n =2,∴数列{a n }是等差数列,公差为2.∵a 2+a 4+a 6=9,∴3a 4=9,a 4=3.∴a 1+3×2=3,解得a 1=-3.∴a 5+a 7+a 9=3a 7=3×(-3+6×2)=27,则log 13(a 5+a 7+a 9)=log 1333=-3.故选A.4.(2022·太原一模)在数列{a n }中,a 1=3,a m +n =a m +a n (m ,n ∈N *),若a 1+a 2+a 3+…+a k =135,则k =( )A.10B.9C.8D.7 答案 B解析 令m =1,由a m +n =a m +a n 可得a n +1=a 1+a n ,所以a n +1-a n =3, 所以{a n }是首项为a 1=3,公差为3的等差数列,a n =3+3(n -1)=3n ,所以a 1+a 2+a 3+…+a k =k (a 1+a k )2=k (3+3k )2=135. 整理可得k 2+k -90=0,解得k =9或k =-10(舍).5.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( )A.65B.176C.183D.184答案 D解析 根据题意可知每个孩子所得棉花的斤数构成一个等差数列{a n },其中d =17,n =8,S 8=996.由等差数列前n 项和公式可得8a 1+8×72×17=996,解得a 1=65.由等差数列通项公式得a 8=65+(8-1)×17=184.则第八个孩子分得斤数为184.6.(2021·全国大联考)在等差数列{a n }中,若a 10a 9<-1,且它的前n 项和S n 有最大值,则使S n >0成立的正整数n 的最大值是( )A.15B.16C.17D.14答案 C解析 ∵等差数列{a n }的前n 项和有最大值,∴等差数列{a n }为递减数列, 又a 10a 9<-1,∴a 9>0,a 10<0, ∴a 9+a 10<0,又S 18=18(a 1+a 18)2=9(a 9+a 10)<0, 且S 17=17(a 1+a 17)2=17a 9>0. 故使得S n >0成立的正整数n 的最大值为17.7.设S n 为等差数列{a n }的前n 项和,若S 6=1,S 12=4,则S 18=________. 答案 9解析 在等差数列中,S 6,S 12-S 6,S 18-S 12成等差数列,∵S 6=1,S 12=4,∴1,3,S 18-4成公差为2的等差数列,即S 18-4=5,S 18=9.8.等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于________. 答案 3727解析 a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727. 9.(2021·西安一模)已知数列{a n }的前n 项和为S n ,满足a 1=32,a 2=2,2(S n +2+S n )=4S n +1+1,则数列{a n }的前16项和S 16=________.答案 84解析 将2(S n +2+S n )=4S n +1+1变形为(S n +2-S n +1)-(S n +1-S n )=12,即a n +2-a n+1=12,又a 1=32,a 2=2,∴a 2-a 1=12符合上式,∴{a n }是首项a 1=32,公差d =12的等差数列,∴S 16=16×32+16×152×12=84.10.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 2a 4=65,a 1+a 5=18.(1)求数列{a n }的通项公式;(2)是否存在常数k ,使得数列{S n +kn }为等差数列?若存在,求出常数k ;若不存在,请说明理由.解 (1)设公差为d .∵{a n }为等差数列,∴a 1+a 5=a 2+a 4=18,又a 2a 4=65,∴a 2,a 4是方程x 2-18x +65=0的两个根,又公差d >0,∴a 2<a 4,∴a 2=5,a 4=13.∴⎩⎪⎨⎪⎧a 1+d =5,a 1+3d =13,∴⎩⎪⎨⎪⎧a 1=1,d =4,∴a n =4n -3. (2)由(1)知,S n =n +n (n -1)2×4=2n 2-n , 假设存在常数k ,使数列{S n +kn }为等差数列. 由S 1+k +S 3+3k =2S 2+2k , 得1+k +15+3k =26+2k ,解得k =1. ∴S n +kn =2n 2=2n ,当n ≥2时,2n -2(n -1)=2,为常数,∴数列{S n +kn }为等差数列.故存在常数k =1,使得数列{S n +kn }为等差数列. 11.设数列{a n }的各项都为正数,其前n 项和为S n ,已知对任意n ∈N *,S n 是a 2n 和a n 的等差中项.(1)证明:数列{a n }为等差数列;(2)若b n =-n +5,求{a n ·b n }的最大项的值并求出取最大值时n 的值.(1)证明 由已知可得2S n =a 2n +a n ,且a n >0,当n =1时,2a 1=a 21+a 1,解得a 1=1.当n ≥2时,有2S n -1=a 2n -1+a n -1,所以2a n =2S n -2S n -1=a 2n -a 2n -1+a n -a n -1,所以a 2n -a 2n -1=a n +a n -1,即(a n +a n -1)(a n -a n -1)=a n +a n -1,因为a n +a n -1>0,所以a n -a n -1=1(n ≥2).故数列{a n }是首项为1,公差为1的等差数列.(2)解 由(1)可知a n =n ,设c n =a n ·b n ,则c n =n (-n +5)=-n 2+5n=-⎝ ⎛⎭⎪⎫n -522+254, 因为n ∈N *,所以n =2或3,c 2=c 3=6,因此当n =2或n =3时,{a n ·b n }取最大项,且最大项的值为6.12.(2020·新高考山东卷)将数列{2n -1}与{3n -2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为__________.答案 3n 2-2n解析 法一(观察归纳法) 数列{}2n -1的各项为1,3,5,7,9,11,13,…;数列{3n -2}的各项为1,4,7,10,13,….现观察归纳可知,两个数列的公共项为1,7,13,…,是首项为1,公差为6的等差数列, 则a n =1+6(n -1)=6n -5.故其前n 项和为S n =n (a 1+a n )2=n (1+6n -5)2=3n 2-2n . 法二(引入参变量法) 令b n =2n -1,c m =3m -2,b n =c m ,则2n -1=3m -2,即3m =2n +1,m 必为奇数.令m =2t -1,则n =3t -2(t =1,2,3,…).a t =b 3t -2=c 2t -1=6t -5,即a n =6n -5.以下同法一.13.(2022·衡水模拟)已知在数列{a n }中,a 6=11,且na n -(n -1)a n +1=1,则a n =______;a 2n +143n 的最小值为________.答案 2n -1 44解析 na n -(n -1)a n +1=1,∴(n +1)a n +1-na n +2=1,两式相减得na n -2na n +1+na n +2=0,∴a n +a n +2=2a n +1,∴数列{a n }为等差数列.当n =1时,由na n -(n -1)a n +1=1得a 1=1,由a 6=11,得公差d =2,∴a n =1+2(n -1)=2n -1,∴a 2n +143n =(2n -1)2+143n=4n +144n -4≥24n ·144n -4=44, 当且仅当4n =144n ,即n =6时等号成立.14.等差数列{a n }中,公差d <0,a 2+a 6=-8,a 3a 5=7.(1)求{a n }的通项公式;(2)记T n 为数列{b n }前n 项的和,其中b n =|a n |,n ∈N *,若T n ≥1 464,求n 的最小值.解 (1)∵等差数列{a n }中,公差d <0,a 2+a 6=-8, ∴a 2+a 6=a 3+a 5=-8,又∵a 3a 5=7,∴a 3,a 5是一元二次方程x 2+8x +7=0的两个根,且a 3>a 5, 解方程x 2+8x +7=0,得a 3=-1,a 5=-7,∴⎩⎪⎨⎪⎧a 1+2d =-1,a 1+4d =-7,解得a 1=5,d =-3. ∴a n =5+(n -1)×(-3)=-3n +8.(2)由(1)知{a n }的前n 项和S n =5n +n (n -1)2×(-3)=-32n 2+132n . ∵b n =|a n |,∴b 1=5,b 2=2,b 3=|-1|=1,b 4=|-4|=4, 当n ≥3时,b n =|a n |=3n -8.当n <3时,T 1=5,T 2=7;当n ≥3时,T n =-S n +2S 2=3n 22-13n 2+14.∵T n ≥1 464,∴T n =3n 22-13n 2+14≥1 464,即(3n-100)(n+29)≥0,解得n≥100,3∴n的最小值为34.。
高考文科数学一轮复习:对数与对数函数
夯实双基·自主梳理
题型考向·层级突破
练习测评·课时作业
夯实双击 自主梳理
1.对数的概念 如果 ax=N(a>0,且 a≠1),那么 x 叫作以 a 为底 N 的对数,记作 xx=logaN ,其中 a 叫作对数的底数,N 叫作真数.
夯实双基·自主梳理
题型考向·层级突破
练习测评·课时作业
2.对数的性质、换底公式与运算性质 (1)对数的性质:①alogaN= NN ; ②logaab=b(a>0,且a≠1).
值域: RR
当 x=1 时,y=0,即过定点 (1(1,,00))
当 x>1 时, y>0 ; 当 x>1 时, y<0 性质 当 0<x<1 时, yy<<00 当 0<x<1 时, yy>>00
在(0,+∞)上是 增增函函数数 在(0,+∞)上是 减减函函数数
夯实双基·自主梳理
题型考向·层级突破
夯实双基·自主梳理
题型考向·层级突破
练习测评·课时作业
(3)对数函数 y=logax(a>0 且 a≠1)的图象过定点(1,0),且过点(a,1), 1a,-1,函数图象只在第一、四象限.(√ )
(4)函数 y=ln11+ -xx与 y=ln(1+x)-ln(1-x)的定义域相同.(√ ) 解析 函数 y=ln11+ -xx的定义域为(-1,1),而函数 y=ln(1+x)-ln(1 -x)的定义域也为(-1,1). (5)若 logam<logan,则 m<n.(×)
夯实双基·自主梳理
题型考向·层级突破
练习测评·课时作业
(①3)换对底数公的式重:要公lol式gobgNN=lloo=ggaaNb (a,b 均大于零且不等于 1); ②logab=log1ba,推广 logab·logbc·logcd= lolgogad d .
2023年高考数学(文科)一轮复习课件——平面向量基本定理及坐标表示
诊断自测
1.思考辨析(在括号内打“√”或“×”)
(1)平面内的任何两个向量都可以作为一组基底.( × )
(2)设a,b是平面内的一组基底,若实数λ1,μ1,λ2,μ2满足λ1a+μ1b=λ2a+
μ2b,则λ1=λ2,μ1=μ2.( √ )
(3)若 a=(x1,y1),b=(x2,y2),则 a∥b 的充要条件可以表示成xx12=yy12.( × )
索引
5.(易错题)已知 A(-1,3),B(2,-1),则与向量A→B共线的单位向量是 ___±__35_,__-__54________. 解析 ∵A→B=(2,-1)-(-1,3)=(3,-4), ∴|A→B|=5.故与向量A→B共线的单位向量坐标为±35,-54.
索引
8 6.(2021·全国乙卷)已知向量a=(2,5),b=(λ,4),若a∥b,则λ=____5____.
1.(2021·西安调研)在平面直角坐标系中,O 为坐标原点,O→A= 23,21,若O→A绕
点 O 逆时针旋转 60°得到向量O→B,则O→B=( A )
A.(0,1)
B.(1,0)
C. 23,-12
D.12,-
3 2
解析 ∵O→A= 23,12,∴O→A与 x 轴的夹角为 30°,
依题意,向量O→B与 x 轴的夹角为 90°,
索引
感悟提升
1.两平面向量共线的充要条件有两种形式: (1)若a=(x1,y1),b=(x2,y2),则a∥b的充要条件是x1y2-x2y1=0; (2)若a∥b(b≠0),则a=λb. 2.向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当 两向量的坐标均非零时,也可以利用坐标对应成比例来求解.
索引
2023年高考数学(文科)一轮复习课件——等比数列及其前n项和
(2)求a1a2-a2a3+…+(-1)n-1anan+1. 解 易知(-1)n-1anan+1=(-1)n-1·22n+1, 则数列{(-1)n-122n+1}公比为-4. 故a1a2-a2a3+…+(-1)n-1·anan+1 =23-25+27-29+…+(-1)n-1·22n+1 =23[1-1(+-4 4)n]=85[1-(-4)n] =85-(-1)n·225n+3.
索引
感悟提升
1.证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于 选择题、填空题中的判定;若证明某数列不是等比数列,则只要证明存 在连续三项不成等比数列即可. 2.在利用递推关系判定等比数列时,要注意对n=1的情形进行验证.
索引
训练1 已知数列{an}的前n项和为Sn,且an+Sn=n. (1)设cn=an-1,求证:{cn}是等比数列; 证明 ∵an+Sn=n①, ∴an+1+Sn+1=n+1②. ②-①得an+1-an+an+1=1, 所以2an+1=an+1, ∴2(an+1-1)=an-1,又a1+a1=1, 因所为以aaan+1n=-1-1211,=∴12,a1-∴1c=cn+n1-=2112≠. 0, 故{cn}是以 c1=a1-1=-21为首项,12为公比的等比数列.
(2)等比中项:如果 a,G,b 成等比数列,那么 G 叫做 a 与 b 的等比中项.那么Ga =Gb ,
即 G2=__a_b_.
索引
2. 等比数列的通项公式及前n项和公式 (1)若等比数列{an}的首项为a1,公比是q,则其通项公式为an=__a_1q_n_-_1__; 通项公式的推广:an=amqn-m. a1(1-qn) (2)等比数列的前 n 项和公式:当 q=1 时,Sn=na1;当 q≠1 时,Sn=____1_-__q___ =a11--aqnq.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三文科数学模拟试卷
一、选择题
1.已知集合A ={}|2x x <,B ={}|320x x ->,则( ) A .A I B =3|2x x ⎧⎫<⎨⎬⎩
⎭
B .A I B =∅
C .A U B 3|2x x ⎧⎫=<⎨⎬⎩⎭
D .A U B=R
2.下列有关命题的叙述错误的是( ) A. 若p q ∧为假命题,则,p q 均为假命题
B. 命题“32,10x R x x ∀∈--≤”的否定是“32,10x R x x ∃∈-->”
C. 2>x 是2
11<x
的充分不必要条件
D. 若p ⌝是q 的必要条件,则p 是q ⌝的充分条件 3.设非零向量a ,b 满足+=-a b a b ,则( ) A .a ⊥b
B .=a b
C .a ∥b
D .>a b
4.下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( ) A.R x x y ∈=,2cos B.0|,|log 2≠∈=x R x x y 且
C.R x e e y x x ∈-=-,2
D.
R x x y ∈+=,13 5.若函数)(x f y =是函数x
y 3=的反函数,则=)2
1(f ( )
A 2log 3-
B 2log 3
C 3
D 9
6.设首项为1,公比为32的等比数列{}n a 的前n 项和为n
S ,则( )
A.12-=n n
a S
B. 23-=n n a S
C.n n a S 34-=
D.n n a S 23-=
7.函数sin21cos x
y x
=
-的部分图像大致为
8.已知函数()ln ln(2)f x x x =+-,则( ) A .()f x 在(0,2)单调递增
B .()f x 在(0,2)单调递减
C .y =()f x 的图像关于直线x =1对称
D .y =()f x 的图像关于点(1,0)对称 9.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。
已知sin sin (sin cos )0B A C C +-=,
a =2,c 2,则C =( ) A .
π
12
B .
π6
C .
π4
D .
π3
10.若将函数
)
4
2sin(22)(π-=x x f 的图像向左平移ϕ个单位长度,所得图象关于
点(0,0)对称,则ϕ的最小正值是( ) A 4
3π B 8
3π C 4
π D 8
π
11.设x,y 满足约束条件⎪⎩
⎪
⎨⎧≤-+≥-+≥0320320
y x y x x ,),2,1(),,(=+=→→b x m y a 且→→b
a //,则m 的
最小值为( )
A 1
B 2
C 2
1 D 3
1
12.奇函数)(x f 的定义域为R. 若)2(+x f 为偶函数,且1)1(=f ,则=+)9()8(f f ( ) A. -2 B -1 C 0 D 1 二、填空
13.若角α的终边上有一点P (3,4),则)2
3cos()2sin()sin()cos(απ
πααππα-⋅-⋅--=
________.
14. 已知幂函数)(x f y =的图象经过点)2
2
,
21(,则=+)5(lg )2(lg f f . 15. 定义在R 上的函数)(x f 满足).(2)1(x f x f =+若当10≤≤x 时,)1()(x x x f -=,则当01≤≤-x 时,=)(x f . 16. 16.函数⎪⎩⎪⎨⎧≤++->-=0
,320
,2|ln |)(2
x x x x x x f 的零点个数为 .
三、解答题
17.在ABC ∆中,内角
A ,B,C
所对的边分别为c b a ,,.已知
)(5,sin 4sin 222c b a ac B b A a --==
(1)求A cos 的值 (2)求)2sin(A B -的值
18.已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (1)求n a 及n S ;(2)令n b = 2
1
1
n a -(n ∈N *),求数列{}n b 的前n 项和n T .
19.经市场调查,某旅游城市在过去的一个月内(以30天计),第t 天(1≤t ≤30,t ∈N ﹢)的旅游人数f (t )(万人)近似地满足f (t )=4+ t
1
,而人均消费g (t )(元)近似地满足g (t )=120-|t-20|. (1)求该城市的旅游日收益w (t )(万元)与时间t (1≤t ≤30,t ∈N ﹢)的
函数关系式;
(2)求该城市旅游日收益的最小值. 20.已知函数 (I )求函数()f x 的最小正周期; (Ⅱ)将函数()f x 的图象向右平移
6
π
个单位长度,再向下平移a (0a >)个单位长度后得到函数()g x 的图象,且函数()g x 的最大值为2. (ⅰ)求函数()g x 的解析式;
(ⅱ)证明:存在无穷多个互不相同的正整数0x ,使得()00g x >
21. 设函数f (x )=e 2x -a ln x .
(1) 讨论f (x )的导函数f ′(x )零点的个数;
(2) 证明:当a >0时,f (x )≥2a +a ln 2
a
.
(
)2
cos 10cos 222x x x
f x =+
22. 设函数|1|2|1|)(+--=x x x f 的最大值为m. (1)求m
(2)若m c b a c b a =+++∞∈2222),,0(,,,求bc ab +的最大值。