土石坝的稳定分析参考文档
土石坝稳定分析
3、孔隙水压力
粘性土在以下情况会产生孔隙水压力:①施工期;②库水位降落;③地震时附加孔隙水压力。
荷载组合 土石坝施工、蓄水和库水位降落的各个时期不同荷载下,应分别计算其稳定性。控制稳定的有施工期(包括竣工时)、稳定渗流期、库水位降落期和正常运用遇地震四种工况,应计算的内容: 施工期的上、下游坝坡; 稳定渗流期的上、下游坝坡; 水库水位降落期的上游坝坡; 正常运用遇地震的上、下游坝坡。
荷载: 1、坝体自重 坝体内浸润线以上部分按湿容重计算,下游水位以上按饱和容重,下游水位以下部分按浮容重计算。 湿容重:单位体积中土、水、空气的重量。 饱和容重:水占满了土中的空隙,单位体积内水和土的重量。 浮容重:土的有效重量,等于饱和容重-1 2、渗透压力: 动水压力方向与渗流方向相同,作用于单位土体上的渗流力可按下式计算:f=γj 式中γ为水的容重,j为渗透坡降 渗透压力对边坡稳定不利
提高稳定的工程措施
如果稳定复核后安全系数不满足设计要求,可在设计中放缓坝坡或提高土石料的填筑标准以增加坝体稳定性。
对已建土石坝,可采用下列措施: 坝脚加压重或放缓坝坡; 加强防渗、导渗措施; 加固地基
肚松衯宸&愮鐝D)? $?d悡!餯怉_x0006_扈鋹A_x0006__x0019_嘬貑 _x001B_d?啃??d怉?4_x000F_癮?0?? 2l豀/D_x000F_@既 脝??窗?_x001B_兡蓟癟鑳_x0003_D?兗?_x0001_t_x0005__x000F_穃$0嬅7D[胒_x001B_d恆_x000F_溓??様??鸙捐_x0015_賰> u:hD_x0006_j _x0004_o?3葏蓇_x0005_3繼伞銨??_x000E_3覌耺_x0003_缻D????B凓du鞁_x0006_??V悏鳆鸖@_x0004_卯嬺嬝擛吚憢_x0016_塒鼢_x0008_媀_x0004_ _x000C_?塧X_x0013_B_x0005__x0003_?6?镞P??塓 _x0015_ =?輧棵廤UQ嬹?$嬭媇-_x0004_$?痁墢?頢_x0008__x0003_S_x000C_;聈_x0014_%谶蚩魅婥? _x000C__x0001_F_x0004_?_x0003_;u _x0007_?i7,嬤;雞嶂嬇<槣郬杽_x0004_gZ]__x000E_摞?<跌u孄??餽p嬑_x0003_Jk萘秣?k贤wb#u_x001B_媜_x0001_7w兀?){鱱H秒?Y?_x0008_麐z_x0004__x0003_蟏?=??傉哙`?w{[+鶋|_x0019_渹{?饓s_x000F_詐 ?\瘙=_x0019_氙_x001B_;鹵?Y%惢_?&嬟嬸侢 }_x0007_?S?_x0003_V鄟?佹饟_x0004_j_x0001__x0015_o€h?V_x0010_孁???3黷#嬘胳幥_x0013_I€鳻聋茓_x0003_P$_x0018_?荱嬞{稠-_x0004_J_x001D_纉_x0004_焗豒ホm?u馫VI)H纞潈; 矸?揿塋!魄舩?屗塗$9鑺_x0007_锂?艍)?婋Q浣=鼖s'顆F嬈_x0003_?2w﹢聟F+]W??:脄汄y賰亥I?p礪?wa 飞;Z厬_x0010_圪╦?呂Z?????拶?騚咡譪4#涨?鞗籽?菮=PM櫶k?卌蠑?q駜`6项縠餗q鹰|U鬨滗歒?淬盭睟覙6u姮?M+/l!o~l_x0002_諉:?5?磐嵸?€錺潗 T?鈪醞3h<袳_x0006__x001A_牒_x0012_唣?罐CB?_x0010_捓铹k_x0010_挭`ぅ}~鑈p衈_x0019_聮嗌_x0006_蜞敏??l_x0008_孰PB潉?潕
土石坝各运用期的稳定分析
(7.2)
在使用 STAB 程序进行施工期边坡稳定分析时 如果使用式(7.1)进行总应力法计算 则
182
土质边坡稳定分析 原理 ⋅ 方法 ⋅ 程序
只需将孔隙水压设为零 使用 cuu 和φuu 进行常规的计算即可 如果使用式(7.2) 进行总应力 法计算 则 qcu 是一个在地基内随深度变化的数值 考虑到地基土在不同位置的变异特性 qcu 实际上是 x,y 两个坐标值的函数 因此 STAB 程序专门提供了对 qcu 进行内插的功能 7. 2. 3 有效应力法 用有效应力法进行计算时 抗剪强度由下式确定
表 7. 3 情 况 表层粘性土 12.2 19.6 14.0 表 7. 4 干容重 γd (kN/m ) 地 I 基 II 初期坝 垫层 灰体 15.9 17.0 17.0 17.6 9.0
3
十字板强度如下(单位 泥 炭 13.3 24.8 17.7
kPa)
泥炭质软粘土 11.9 17.8(上部) 13.8(下部) 14.1(上部) 11.4(下部)
184
土质边坡稳定分析 原理 ⋅ 方法 ⋅ 程序 表 7. 2 计算方法 斯里兰卡金河土堤 BR-8 段实际滑坡的安全系数核算结果 计算条件 堤身无裂缝 填土前 实测天然地基十字 堤中心有裂缝 板强度平均值 堤中心有裂缝 堤身无裂缝 破坏前夕 实测地基十字板 堤中心有裂缝 强度平均值 堤中心有裂缝 堤身无裂缝 破坏前夕 实测地基十字板 堤中心有裂缝 强度小值平均值 堤中心有裂缝 0 堤身无裂缝 堤中心有裂缝 35° 堤中心有裂缝 0 堤身无裂缝 堤中心有裂缝 35° 堤中心有裂缝 安全系数 1.33 1.21 1.15 1.33 1.36 1.30 1.23 1.18 1.02 0.81 0.59 0.56 1.19 1.03 0.98
4.1第四章 第四节 土坝稳定分析
曲线滑裂面
(2)直线或折线滑裂面
滑裂面通过无粘性土时,滑裂面的形状可能是 直线或折线形。当坝坡干燥或全部浸入水中时滑裂 面呈直线形;当坝坡部分浸入水中时,由于水面以 上与水面以下土体的抗剪强度不同,滑裂面在水面 附近将发生偏折,呈折线形。
直线或折线滑裂面
(3)复合滑裂面
当滑裂面通过性质不同的几种土料时,可能 是由直线和曲线组成的复合形状滑裂面。
b
Ni
Wi
式中 γ1 、γ2、γ3 、γ4——分别为坝体土的湿重度、饱和重度、浮 重度和坝基土的浮重度。
h4 h3
h2
h1
Ti
(5) 抗滑力矩
对土条自重Wi分解,分解为法向分力 Ni和切向分力Ti,土条自重的法向分力为
Ni=Wicosβ
i
b
其中: β i 为第i个土条底部中点至圆心O 的连线和垂直半径的夹角。
首先由坝坡中点 a 引出的两 条射线,一条为铅直线;另一 条与坝坡成85º 角。然后以a为 圆心所做的两个圆弧,内外圆 弧的半径R如下表所示。
坝 坡 R R/H R
外 内
c d b e 850 a
1:4 1.5 3.75 1:5 2.2 4.80 1:6 3.0 5.50
1:1 0.75 1.50
1:2 0.75 1.75
②上游为设计洪水位,下游为相应的最高水位 时,在稳定渗流情况下的上、下游坝坡的稳定计算;
③水库水位正常降落时,上游坝坡的稳定计算。
2.非常运用情况(校核情况)包括以下三种情况: ① 在施工期,应对由粘性填土修筑的坝坡进行 稳定分析,这时,由于孔隙水压力没有来得及消散, 应考虑孔隙水压力的影响;
② 水库水位的非常降落,如从校核洪水位降落、 降落至死水位以下等情况下的上游坝坡稳定;
土石坝的稳定分析
本节主要介绍土石坝构造稳定中最为重要的、也是最 为常见的失稳型式:坝坡滑动稳定问题。
〔二〕土石坝坝坡滑动失稳的型式 土石坝坝坡滑动失稳,简称滑坡,其型式与坝体构造、
复式滑动面示意图
4.5.2土料抗剪强度指标的选取
土的抗剪强度指标主要指总抗剪强度指标〔凝聚力c和 内摩擦角〕和有效抗剪强度指标〔〔凝聚力和内摩擦 角〕。通常可以采用室外原位测试方法测定,或室内 剪切试验方法确定。
室内抗剪强度指标测定方法有3种:不排水剪、固结不 排水剪和排水剪。
?SL274-2001 碾压式土石坝设计标准?第8.3.5条中规 定:土的抗剪强度指标应采用三轴仪测定。对3级以下 的中坝,可用直接慢剪试验测定土的有效强度指标; 对 渗 透 系 数 很 小 〔 小 于 10 - 7cm/s〕 或 压 缩 系 数 很 小 〔小于0.2MPa-1〕的土,也可采用直接快剪试验或固 结快剪试验测定其总强度指标。
4.5.4坝坡稳定分析方法
一、圆弧滑动面稳定计算
1. 瑞典圆弧法
瑞典圆弧法是目前土石坝设计中
坝坡稳定分析的主要方法之一。该方法
简单、实用,根本能满足工程精度要求,
特别是在中小型土石坝设计中应用更为
广泛。
瑞典圆弧法
1.根本思路 假设滑动面为一个圆柱面,在剖面上表现为圆弧面。
将可能的滑动面以上的土体划分成假设干铅直土条, 不考虑土条之间作用力的影响,作用在土条上的力主 要包括:土条自重、土条底面的凝聚力和摩擦力。 瑞典圆弧法平安系数定义为:土条在滑动面上所提供 的抗滑力矩与滑动力矩之比。
例如:厚心墙坝的滑动面,通过砂性土的局部 为直线,通过粘性土的局部为圆弧;
4(3).土石坝(第四节:稳定分析)
1i
mh 2i ) sin i
12
最危险圆弧位置的确定
13
2、折线滑动法 直线滑动面:非粘性土坝完全浸水或者不浸水 时滑动面常常是平面。
K ห้องสมุดไป่ตู้ntg
β
折线滑动面:非粘性土坝部分浸水时滑动面常 常是折线滑动面。 非粘性土石坝的坝坡-心墙坝的上、下游坝坡, 斜墙坝的下游坝坡以及上游保护层连同斜墙的 滑动常形成折线滑动面。 14
9
返回
10
四、坝坡稳定分析
1、圆弧滑动面法
w cos tg c l K w sin
i i i i i
i i
11
考虑渗透动水压力时的坝坡稳定计算 当坝体内有渗流作用时,还应考虑渗流对坝坡 稳定的影响。
K b i ( h1i m h 2i 0h wi / cos 2 i ) cos i tg 'i c i 'l i
常采用滑楔间作用 力平行滑动面假定
1
1 P1 W1 cos1tg1 W1 sin1 K
tg 2 tg 2 W2 cos 2 P1 sin( 1 2 ) W2 sin 2 P1 cos(1 2 ) K K
P1 W1 sin1 W1 cos1tg1
τ cu σtgu
有效应力法:把孔隙压力作为外荷载计算,土的 抗剪强度指标采用有效强度指标 φ ’,c’。
τ c (σ u)tg
4、地震荷载:同重力坝。
7
荷载组合(计算工况) 正常运用情况: 1.水库蓄满水时(正常蓄水位或设计洪水位) 下游坝坡的计算。 2.上游库水位最不利时上游坝坡稳定计算。 3.库水位正常降落,上游坝坡的稳定计算。
土石坝稳定分析
2019/8/29
6
荷载组合 土石坝施工、蓄水和库水位降落的各个时期不同荷
载下,应分别计算其稳定性。控制稳定的有施工期(包 括竣工时)、稳定渗流期、库水位降落期和正常运用遇 地震四种工况,应计算的内容:
9
三、稳定分析
坝坡抗滑稳定计算应采用刚体极限平衡法。对于均质 坝、厚斜墙坝和厚心墙坝,宜采用计及条块间作用力的简 化毕肖普法;对于有软弱夹层、薄斜墙、薄心墙坝的坝坡 稳定分析及任何坝型,可采用满足力和力矩平衡的摩根斯 顿-普赖斯等分析。
非均质坝体和坝基稳定安全系数的计算应考虑安全系 数的多极值特性。滑动破坏面应在不同的土层进行分析比 较,直到求得最小稳定安全系数。
13
2019/8不可压缩的,且不能传递剪力。
当土体孔隙饱和时,荷载由水来承担,孔隙受压排水 后,土粒骨架开始承担(有效应力),孔隙水所承担 的应力为孔隙应力(孔隙水应力),两者之和为总应 力。土体中有孔隙水压力后,有效应力降低,对稳定 不利。
粘性土在以下情况会产生孔隙水压力:①施工期; ②库水位降落;③地震时附加孔隙水压力。
饱和的松砂受振动或剪切而发生体积收缩,孔隙水不能立 即排出,有效应力转化为孔隙应力,砂土抗剪强度降低,砂料 随水的流动而流散。
影响因素:有效粒径小,孔隙比大,砂料均匀,受力体大, 受力猛,透水性小,易液化。美国福特派克坝380万立方米的 砂体在10分钟内流失;铁路桥因火车振动而液化。 塑性流动:
坝体或坝基剪应力超过了土料抗剪强度,变形超过弹性极 限值,坝坡或坝脚地基土被压出或隆起,坝体产生裂缝或沉陷。 软粘土坝体容易发生。
分析坝体及坝基在各种不同条件下可能产生的失稳形式, 校验其稳定性,确定坝体经济剖面。 失稳特点:
土石坝(第四节:稳定分析)
折线滑动面:非粘性土坝部分浸水时滑动面常 常是折线滑动面。 非粘性土石坝的坝坡-心墙坝的上、下游坝坡, 斜墙坝的下游坝坡以及上游保护层连同斜墙的 滑动常形成折线滑动面。
14
常采用滑楔间作用 力平行滑动面假定
1
1
P1 K W1 cos 1tg1 W1 sin1
tg2 K
W2
cos 2
有效应力法:把孔隙压力作为外荷载计算,土的抗 剪强度指标采用有效强度指标 φ’,c’。
τ c (σ u)tg
4、地震荷载:同重力坝。
7
荷载组合(计算工况) 正常运用情况:
1.水库蓄满水时(正常蓄水位或设计洪水位) 下游坝坡的计算。 2.上游库水位最不利时上游坝坡稳定计算。
3.库水位正常降落,上游坝坡的稳定计算。
渗透动水压力可用流网法求得,但总的渗透动水压 力需将各网格的渗透动水压力按向量求和,比较繁 琐,在工程中常采用替代法。
K bi (h1i 'h2i cositg'i ci 'li bi (h1i mh2i )sini
12
最危险圆弧位置的确定
13
2、折线滑动法 直线滑动面:非粘性土坝完全浸水或者不浸水 时滑动面常常是平面。
tg2 K
P1
sin(1
2 )
W2
sin2
P1
cos(1
2 )
P1 W1 sin1 W1 cos 1tg1
2
K P1 sin(1 2 )tg2 W2 cos2tg2
P1 cos(1 2 ) W2 sin 2
15
斜墙坝上游坝坡的稳定计算
最危险滑动面位置的确定
16
3、复合滑动面法
k
3.4土石坝的稳定分析.
2)有效应力法,不计地震荷载时
k [(wicosi ubseci )tani' ci' bseci ] wisini
3)按总应力法计算时
k wicositani cili
w is ini
2、简化的毕肖普法
基本原理是:考虑了土条水平方向的作用力 (即Ei≠Ei+1≠0),忽略了竖直方向的作用 力(即令Xi=Xi+1=0)。由于忽略了竖直方向 的作用力,因此称为简化的毕肖普法。
当用计及条块间作用力的计算方法时,坝坡稳定安全系 数应不小于下表规定的数值
坝坡抗滑稳定最小安全系数
运用条件
工程
1
2
正常运用条件
1.5
1.35
非常运用条件Ⅰ 1.3
1.25
非常运用条件Ⅱ 1.2
1.15
等级 3
1.3 1.2 1.15
4、5 1.25 1.15 1.1
第8.3.11条规定
采用不计条间作用力的瑞典圆弧法计算坝 坡抗滑稳定安全系数时,对1级坝正常运用条 间最小安全系数应不小于1.30,对其他情况应 比上表规定值减小8%。
不考虑土条之间作用力的影响
计算步骤
(1)确定圆心、半径,绘制滑弧。 (2)将土体分条编号。为便于计算,土条宽取b=0.1R (圆弧半径),圆心以下的为0号土条:向上游为1,2,
3,…向下游为一1,一2,一3,…。
若采用b = 0.1R,则sinα1=0.1, cosα1=(1-0.1)……在每 个滑弧计算时均为固定值,可使计算工作简化。当端土条宽度时, 可将该土条的实际高度换算为等效高度h(h= b’h’/b)进行计算。
(2)直线和折线滑动面
非粘性土边坡中,滑动面一般为直线;当坝体 的一部分淹没在水中时,滑动面可能为折线。
土石坝工程中的坝体稳定性分析
土石坝工程中的坝体稳定性分析土石坝是一种常见的水利工程,用于调节河流水位和蓄水,具有很高的综合经济效益和社会效益。
而在土石坝的设计和建设过程中,坝体稳定性是至关重要的一个方面。
本文将对土石坝工程中的坝体稳定性进行分析,探讨影响坝体稳定性的因素和解决方法。
坝体稳定性是指土石坝在运行过程中抵御各种内外力作用而保持稳定的能力。
影响坝体稳定性的因素有很多,其中包括地质条件、水文条件、坝体材料性质等。
首先,地质条件是影响坝体稳定性的关键因素之一。
地质条件包括坝址地质构造、地质灾害、地震活动等。
不同地质条件下的土石坝工程,其坝体稳定性问题也具有差异性。
其次,水文条件也是一个重要的因素。
水文条件涉及到坝址流域的降雨情况、水位变化以及水流对坝体的冲刷等。
水文条件的变化直接影响着坝体的受力状况,从而对坝体稳定性产生影响。
最后,坝体材料性质也是影响坝体稳定性的重要因素。
土石坝的材料性质包括强度、稠度、透水性等。
坝体材料的性质直接决定了坝体在受力时的承载能力。
针对坝体稳定性问题,土石坝工程中常采用的解决方法有很多。
首先是在选址阶段进行详细的地质勘测和地质灾害评估,以尽量减少地质条件对坝体稳定性的影响。
其次是在设计阶段进行合理的水力计算和承载力计算,确保坝体在各种水文条件和荷载情况下都能够稳定运行。
同时,引入一些现代的地质工程技术,如地下水位监测、地震预警系统等,以提前掌握坝体稳定性变化的趋势,及时采取相应的措施,保证坝体的安全运行。
在土石坝工程中,坝体稳定性分析是一项复杂而重要的任务。
只有充分考虑地质、水文和材料等多方面因素,并且采取科学合理的解决方法,才能确保土石坝工程的长期安全运行。
坝体稳定性分析不仅需要依靠先进的工程技术和现代设备,更需要依靠工程师的经验和专业知识。
只有不断积累和总结经验教训,才能在土石坝工程中不断提高坝体稳定性分析的精确度和可靠性。
总之,土石坝工程中的坝体稳定性分析涉及到多个因素的综合考虑和解决。
土石坝结构稳定分析及解决建议
l】 3
,
R=K K} 磊 / ÷ :f fj . ) ( ) 1 3
h ,2 8 D1f =0 0 V 0 。 安德烈杨诺公 式) () 4
现场勘 察某水库总库 容约 2 0万 I 6 T, I 属小 ( ) 一 型水库 , 工程 等别为 I 】 , Vl 主 等
要建筑 物为 4级 。坝 型为均质土坝 ,坝 长
10 , 顶 高 程 6 .m ( 海 高 程 , 同 ) 7m 坝 40 黄 下 , 最 大坝 高 1 .m,坝 顶 长 6 .m ,坝 顶 宽 52 65 5 1 , 水 坡 面 从 死 水 位 至 坝 顶 做 有 完 整 .m 迎 的 浆 砌 石 护 坡 ,坡 比 由 下 至 上 为 l 2 5 :. ~ 115 : . ;背 水 坝 坡 为 草 皮 护 坡 ,做 有 排 水 沟 ,下 游 坡 比 由 下 至 上 为 l 2 2 ~ 1 1 :.5 : .
d一 水 域 的 平均 水 深 ,d 8 ; 1m
一
风 向与 垂 直 于堤 轴 线 的法 线 的 夹
角 ,∥: 。; 0 v 水 面 上 1m 处 的 风 速 ,取 多 年 平 一 0 均 最 大 风 速 ,V 5 s 1 m/ 。
行坝体边坡稳定分析 。 本次大 坝安全 鉴定地 质勘探于 2 0 04 年 1 月进行 , 定分析采用的坝体填土物 1 稳 理 力学参数指标 取地 质试 验建议值 。主 要 计算 参数采用 值见表 2 。进行稳定分析
经计算 得坝 顶高程各个参数见表 1 。 3 根据表 1 ) 计算各工况下坝顶高程结 果 :正常运行 条件设计洪水位 6 .0 m, 221
第四节 土石坝的稳定分析
23
以上式中两端均含未知量K 值,需采用迭代法或 试算法求解。可在计算机运算。采用手工试算时, 一般可先假设K=1代入mai= k,重复到相等 2013-5-27
(3)讨论与分析
1)施工期计算 计算时,施工期的土条重为实重。地下水 位以上湿容重,以下为浮容重。 2)稳定渗流期计算 稳定渗流期应采用有效应力法计算。式中 的土条容重:浸润线至下游水位之间用饱 和容重。 3)库水位降落期计算 粘性土在库水位降落期可用总应力法计算。
1 1.5 1.3 1.2
2 1.35 1.25 1.15
3 1.3 1.2 1.15
4、5 1.25 1.15
2013-5-27 1.1
8
3.确定抗剪强度指标的计算方法
抗剪强度指标的计算方法有总应力法和 有效应力法。对于各种计算工况,土的 抗剪强度都可采用有效应力法按式(529)确定:
e C u tg C tg
w1 sin( 1 ' ) P sin(2 ' ) sin( 1 ' ) cos( 1 ' ) cos(2 ' )
P w2 sin(3 ' ) cos(2 ' ) cos(3 ' ) sin(2 ' ) sin(3 ' )
13
2013-5-27
抗剪强度指标的选取
计算工况 计算方法 土类 无粘性土 有效应力法 施工期A 粘性土 饱和度大于80 % 总应力法 粘性土 K<10-7cm/s 任何K 无粘性土 有效应力法
使用仪器 直剪仪
试验方法 S
强度指标
三轴仪
直剪仪 三轴仪 直剪仪 三轴仪 直剪仪 三轴仪 直剪仪 三轴仪
水工05-04土石坝的稳定分析
圆弧滑动计算简图
(2)分别计算各土条上的作用力对圆心的力矩Ms 1)土条自重Wi对圆心的力矩 2)渗流动水压力Wφi对圆心的力矩
Wφi=γbh2sinβi 3)地震惯性力Q、V对圆心的力矩
4)孔隙水压力μ对圆心的力矩
(3) 土条底部抗滑力对圆心的力矩Mr
(4) 求稳定安全系数Kc
3. 简化毕肖普法
第四节 土石坝的稳定分析
一、土石坝失稳破坏形式及稳定分析的目的
1.土石坝失稳破坏形式 ●坝坡坍滑 ●塑性流动 ●液化破坏
2.土石坝稳定分析的目的 ●分析坝体及坝基在各种 不同的工作条件下,可 能产生体的失稳破坏形式。 ●通过计算,校核坝的稳定安全度,从而确定合 理的经济剖面。
二、土石坝坝坡滑动面形状
(三)稳定安全系数
1.采用计及条块间作用力的 计算方法时, 坝坡的抗滑稳定安全系数应不小于表1所 规定的数值。 2.采用不计及条块间作用力的 计算坝坡 的抗滑稳定安全系数时,对1级坝正常运 用条件最小稳定安全系数应不小于1.30, 其他情况应表1所规定的数值减小8%。
表1 坝坡抗滑稳定最小安全系数
(1)滑楔法 1)计算方法
以某心墙坝的上游坝坡为例,说明滑楔法按极 限平衡理论计算安全系数的方法。
无粘性土坝坡
2)斜墙与保护层的滑动稳定计算 ●斜墙与保护层的稳定计算 方法较多,有图
解法和数解法。 ●数解法 —作用力平行滑动面法 —水平力法
(2)摩根斯顿—普赖斯法
2.复式滑动面的稳定分析 ●当滑动面通过不同土料时,常由直线与圆弧组 合的形式。 ●复式滑动面的稳定分析方法,可近似按折线法 的原则进行计算。
比较一系列滑动圆弧的Kc,最小的安全系数 Kcmin即为该计算情况的安全系数。
43土石坝第四节稳定分析【精选】
9
返回 10
四、坝坡稳定分析
1、圆弧滑动面法
K wi cositgi cili wi sini
11
考虑渗透动水压力时的坝坡稳定计算
当坝体内有渗流作用时,还应考虑渗流对坝坡 稳定的影响。
K bi (h1i hm 2i 0hwi / cos2 i )cositg'i ci 'li bi (h1i mh2i )sini
K ntg β
折线滑动面:非粘性土坝部分浸水时滑动面常 常是折线滑动面。 非粘性土石坝的坝坡-心墙坝的上、下游坝坡, 斜墙坝的下游坝坡以及上游保护层连同斜墙的 滑动常形成折线滑动面。
14
常采用滑楔间作用 力平行滑动面假定
1
1
P1 K W1 cos 1tg1 W1 sin1
tg2 K
3
(3)复合滑动面:厚心墙或粘土及非粘土构成的 多种土质坝形成复式滑动面。当坝基内有软弱夹层 时,滑动面不再向下深切,而沿夹层形成曲、直组 合的复式滑动。
返回 4
二、荷载及荷载组合
1、坝体自重 坝体体积与坝体土料容重的乘积。 坝体内浸润线以上部分按湿容重计算,下游水位以 上按饱和容重,下游水位以下部分按浮容重计算。
非常运用情况:
1.水库水位骤降时,上游坝坡的稳定计算。 2.施工期或竣工期上、下游坝坡的稳定计算
3.地震情况上、下游坝坡的计算 4.校核洪水位时,下游坝坡的稳定计算
返回 8
三、土料抗剪强度指标的选取
c,φ值直接关系着坝体工程量和大坝安全。 坝体稳定计算时,必须根据不同时期坝体或坝基 土的具结情况,参照规范及工程经验,选用与实 际情况接近的土料抗剪强度指标。
第五节 土石坝的稳定分析
第五节土石坝的稳定分析
一、目的
分析坝体及坝基在各种不同的工作条件下可能产生的稳定破坏形式,通过必要的力学计算,校核坝剖面的安全度,经过反复修改定出经济剖面。
确定土坝稳定性,主要指边坡的抗滑稳定。
二、坝坡的滑动面形式
坝坡的滑动面形式主要与坝体结构型式、筑坝材料和地基情况、坝的工作条件等因素有关。
1、曲线滑动面:滑动面通过粘性土部位时,
2、折线滑动面:滑动面通过非粘性土部位时;
3、复式滑动面:滑动面通过粘性土和非粘性土构成的多种土质坝时。
图6-17 坝坡坍滑破坏形式
1-坝壳或者坝体;2-防渗体;3-滑动面;4-软弱夹层
三、荷载及其组合
(一)作用力
1、自重:水上——湿容重,水下——浮容重。
2、渗透力:与渗透坡降有关。
3、孔隙水压力:总应力法和有效应力法.
4、地震力:地震区应考虑地震惯性力。
地震惯性力壳拟静力法计算。
(二)荷载组合:
正常运用:
(1)水库蓄满水(一般为正常蓄水位)形成稳定渗流时,验算下游坝坡稳定。
(2)水库水位为最不利水位时,上游坡的计算。
(3)库水位降落,使上游坡产生渗透压力时的稳定计算
非常运用:
(1)库水位骤降时的上游坝坡的计算
(2)施工期(含竣工期)考虑孔隙水压力上下游坝坡稳定计算
(3)地震情况下,上下游坝坡计算
(4)校核水位时下游坡的计算
四、稳定分析方法
强度分析法和刚体极限平衡法。
1、圆弧滑动法:针对粘性土的坝坡;
2、折线滑动法:针对非粘性土的坝坡;
图6-18 坝坡稳定计算示意图
图6-19 非粘性土坡稳定计算示意图。
4(3).土石坝(第四节:稳定分析)
常采用滑楔间作用 力平行滑动面假定
1
1 P1 W1 cos1tg1 W1 sin1 K
tg 2 tg 2 W2 cos 2 P1 sin( 1 2 ) W2 sin 2 P1 cos(1 2 ) K K
P1 W1 sin1 W1 cos1tg1
1i
mh 2i ) sin i
12
最危险圆弧位置的确定
13
2、折线滑动法 直线滑动面:非粘性土坝完全浸水或者不浸水 时滑动面常常是平面。
K ntg
β
折线滑动面:非粘性土坝部分浸水时滑动面常 常是折线滑动面。 非粘性土石坝的坝坡-心墙坝的上、下游坝坡, 斜墙坝的下游坝坡以及上游保护层连同斜墙的 滑动常形成折线滑动面。 14
9
返回
10
四、坝坡稳定分析
1、圆弧滑动面法
w cos tg c l K w sin
i i i i i
i i
11
考虑渗透动水压力时的坝坡稳定计算 当坝体内有渗流作用时,还应考虑渗流对坝坡 稳定的影响。
K b i ( h1i m h 2i 0h wi / cos 2 i ) cos i tg 'i c i 'l i
土石坝发生局部滑动后,形成滑裂面。土石坝坝 坡稳定计算首先要确定滑裂面的形状,滑裂面的 形状和坝体结构、土料及、地基性质及坝的工作 条件有关。 常见的滑裂面的形状可归纳为三种:
2
(1)曲线滑动面:滑动面顶部陡而底部渐缓,曲 面近似圆弧,多发生于粘性土中。
(2)直线或折线滑动面 :多发生于非粘性土坡, 如薄心墙坝、斜墙坝;折点一般在水面附近。
2、渗透压力 作用于单位土体上的渗流力。 动水压力方向与渗流方向相同,按下式计算: F=γwJ 渗透压力对边坡稳定不利。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.几点说明 (1)上述示例中,只将滑动体分割为两块楔形体。实际上,为更
精确计算,可以将滑动块分割为N个楔形体滑块。此时计算相对要 复杂一些,需要采用试算法或迭代法求解安全系数。具体计算方 法详见王宏硕教授主编的《水工建筑物》。即俗称的老《水工建 筑物》。 (2)为计算简便,在楔形体分割时,均按垂直方向分割; (3)上述示例中,楔形体间的作用力方向取为DC方向。作用力方 向的选取大致有以下4种: ① 作用力为水平的; ② 作用力平行于坡面; ③ 作用力平行于滑楔体底斜面; ④ 作用力平行于坝坡面和滑楔体底斜面的平均坡度。 作用力方向选取的不同,最小安全系数的取值标准野不同。 《SL274-2001 碾压式土石坝设计规范》第8.3.12条中规定了上 述第①、④两种情况下的最小安全系数取值标准。 (4)最危险滑动面的确定 根据理论分析和工程经验,选择多个可能的滑动面进行试算。
土坝坝坡稳定分析方法之二 —简化的毕肖普法
瑞典圆弧法的主要缺点是没有考虑土条间的作用力,因 而不满足力和力矩的平衡条件,所计算出的安全系数一 般偏低。
毕肖普法是对瑞典圆弧法的改进。其基本原理是:考虑 了土条水平方向的作用力(即Ei≠Ei+1≠0),忽略了竖 直方向的作用力(即令Xi=Xi+1=0)。如图。由于忽略了 竖直方向的作用力,因此称为简化的毕肖普法。
4.5.4坝坡稳定分析方法
一、圆弧滑动面稳定计算
1. 瑞典圆弧法 瑞典圆弧法是目前土石坝设计中坝坡稳定
分析的主要方法之一。该方法简单、实用, 基本能满足工程精度要求,特别是在中小型 土石坝设计中应用更为广泛。
瑞典圆弧法
1.基本思路 假设滑动面为一个圆柱面,在剖面上表现为圆弧面。
将可能的滑动面以上的土体划分成若干铅直土条,不 考虑土条之间作用力的影响,作用在土条上的力主要 包括:土条自重、土条底面的凝聚力和摩擦力。 瑞典圆弧法安全系数定义为:土条在滑动面上所提供 的抗滑力矩与滑动力矩之比。
运行条件
拦河坝的级别
1
2
3 4、5
基本组合
1.3 1.25 1.2 1.15
特殊 校核洪水
1.2
组合 正常运用+地震
1.1
1.15 1.1 1.05 1.05 1.05 1.0
上表中的安全系数适用于采用不计条间作用力的瑞典圆弧法 计算的情况。
对于1、2级高坝以及复杂条件情况,可采用计入条间 作用力的毕肖普法或其他较为严格的方法。此时,表 中的安全系数应提高5%~10%,且对1级大坝,在正 常运用条件下的安全系数不应小于1.5。
4.5.3稳定计算情况和安全系数的采用
一、稳定计算情况 1.正常运用情况
(1)上游为正常蓄水位,下游为最低水位,或上游为设计洪水 位,下游为相应最高水位,坝内形成稳定渗流时,上下游坝 坡稳定验算。
(2)水库水位处于正常和设计水位之间范围内的正常性降落,
2.非常运用情况I
(1)施工期,考虑孔隙压力时的上下游坝坡稳定验算。 (2)水库水位非常降落,如自校核洪水降落至死水位以下,以
土料和地基的性质、坝的工作条件等密切相关。坝坡 可能的滑动型式大体上可以归纳为以下3种: (1)曲线滑动(如图所示) 曲线滑动的滑动面是一个顶部稍陡而底部渐缓的曲面, 多发生在粘性土坝坡中。在计算分析时,通常简化为 一个圆弧面。
曲线滑动示意图
(2)直线和折线滑动面(如图所示) 在均质的非粘性土边坡中,滑动面一般为直线;当坝
简化的毕肖普法
毕肖普法是目前土坝坝坡稳定分析中使 用得较多的一种方法。根据摩尔-库仑 准则、土条竖向力平衡条件以及滑动体 对圆心的力矩平衡条件,可以推导出简 化的毕肖普法的安全系数计算公式为:
上式中,两端均含有K,必须用试算法或
迭代法求解。
折线滑动面的稳定分析
1.折线滑动部位
可能发生直线、或折线、或复合面滑动 的部位包括:
关于塑性流动和液化失稳的进一步知识,请同学们参 考有关文献,如:天津大学祁庆和教授主编的《水工 建筑物》教材,以及有关《土力学》书籍。
本节主要介绍土石坝结构稳定中最为重要的、也是最 为常见的失稳型式:坝坡滑动稳定问题。
(二)土石坝坝坡滑动失稳的型式 土石坝坝坡滑动失稳,简称滑坡,其型式与坝体结构、
对Pa,从左边开始推求,因为最左边的条块的Pa=0;
土石坝的局部失稳一般表现为三种型式: 滑坡、 塑性流动、 液化
塑性流动是指由于坝体或坝基内局部地区的剪应力超 过土料的抗剪强度,变形超过弹性限值,使坝坡或坝 基发生过大的局部变形,从而引起裂缝或沉陷。塑性 流动可能发生在设计不良的软粘性土的坝体或坝基中。
液化是指饱和无粘性土体(特别是砂质土体)在动荷 载(如地震荷载)等因素的作用下,孔隙水压力突然 升高,土粒间的有效压力则随之减小,甚至趋近于零, 土体完全丧失抗剪强度和承载能力,成为如粘滞的液 体一样的现象。液化失稳一般发生在均匀细砂土的坝 体或坝基中。
及大流量快速泄空等情况下的上游坝坡稳定验算。 ’ (3)校核洪水位下有可能形成稳定渗流时的下游坝坡稳定验算。
3.非常运用情况Ⅱ 正常运用情况遇到地震时上下游坝Байду номын сангаас稳定验算。
二、抗滑稳定安全系数的采用
规范一:《DL5180-2003 水电枢纽工程等级划分及设 计安全标准》
按瑞典圆弧法计算时的容许最小抗滑稳定安全系数
4.5土石坝的稳定分析
4.5.1、概述
(一)土石坝的失稳型式 分析:
土石坝依靠土体颗粒之间的摩擦力来维持稳定。摩尔认为: 土体的破坏,主要是剪切破坏,即:一旦土体内任一平面上 的剪应力达到或超过了土体的抗剪强度时,土体就发生破坏。
土石坝体积肥大,如果土石坝的局部稳定性能能得到保证, 则其整体稳定性也就能得到保证。因此,土石坝的稳定性问 题主要是局部稳定问题。如果局部稳定得不到保证,或者局 部失稳现象得不到控制,任其逐渐发展,也可能导致整体失 稳破坏。
动面的稳定安全系数为
抗滑力 Gtg cl
K 滑动力 Pa Pn
求Pa和Pn,可以采用试算法。
(1)将土体abf和土体cde分别分成若干条块(图中分
为3块),假设各条块间的推力近似为水平。
(2)先拟定一个安全系数K,推求各条块对下一条块 的推力。土体abf作用于土体bcef的推力为Pa;土体 cde作用于土体bcef的推力为Pn。
形体作用在ADC楔形体上的滑动力)、土 体自重在滑动面AD上产生的摩擦力。
则ADE楔形体沿AD滑动方向的极限平衡 方程为:
1 KC
W2con 2tg2
1 KC
P sin(1
2 )tg2
W2
s in
Pcon(1
2)
0
(4-44)
联立式(4-43)和式(4-44),可求得滑动体的
安全系数K和土块间的作用力P。
按简化毕肖普法计算时的容许最小抗滑 稳定安全系数见课本P119 表4-9
《SL274-2001 碾压式土石坝设计规范》第 8.3.11条还规定:采用不计条间作用力的瑞典 圆弧法计算坝坡抗滑稳定安全系数时,对1级 坝正常运用条间最小安全系数应不小于1.30, 对其他情况应比上表规定值减小8%。
《SL274-2001 碾压式土石坝设计规范》第 8.3.12条还规定:采用滑楔法进行稳定计算时, 如假设滑楔之间作用力平行于坡面和滑底斜面 的平均坡度,安全系数应满足上表中的规定; 若假设滑楔之间作用力为水平方向,安全系数 应满足上述第8.3.11条的规定。
① 对BCDE楔形体
其作用力主要有:楔形体自重W1、平行于DC的两土块 之间的作用力P(ADC楔形体对BCDE楔形体的抗滑力)、
土体自重在滑动面DC上产生的摩擦力。
则BCDE楔形体沿DC滑动方向的极限平衡方程为
P W1 sin1
1 K
W1con1tg1
0
(4-43)
② 对ADE楔形体
其作用力主要有:楔形体自重W2、平 行于DC的两土块之间的作用力P(BCDE楔
① 发生在非粘性土的坝坡中。例如:心 墙坝的上、下游坝坡,斜墙坝的下游坝 坡,等;
② 发生在两种不同材料的接触面。例如: 斜墙坝的上游保护层滑动,斜墙坝的上 游保护层连同斜墙一起滑动,等。
2.稳定计算方法
采 用 滑 楔 法 分 析 计 算 。 如 图 , ADC 为 滑 动 面 (对上游坝坡,折点一般在上游水位对应处), 从折点铅直向DE将滑动土体分为两部分:BCDE 楔形体和ADE楔形体。
体的一部分淹没在水中时,滑动面可能为折线。 在不同土料的分界面,也可能发生直线或折线滑动。
直线和折线滑动面示意图
(3)复式滑动面(如图所示) 复式滑动面是同时具有粘性土和非粘性土的
土坝中常出现的滑动面型式。复式滑动面比较 复杂,穿过粘性土的局部地段可能为曲线面, 穿过非粘性土的局部地段则可能为平面或折线 面。在计算分析时,通常根据实际情况对滑动 面的形状和位置进行适当的简化。
规范二:《SL274-2001 碾压式土石坝 设计规范》
《SL274-2001 碾压式土石坝设计规范》 第8.3.9条规定:对于均质坝、厚斜墙坝 和厚心墙坝,宜采用计及条间作用的简 化毕肖普法;对于有软弱夹层、薄斜墙 坝的坝坡稳定分析及其他任何坝型,可 采用满足力和力矩平衡的摩根斯顿-普 赖斯等滑楔法。
瑞典圆弧法安全系数K的计算公式为:
k
[(w i c os i
ubsec
i
)tan
' i
Ci' bseci ]
w i sin i
3)按总应力法计算时,瑞典圆弧法安全系
数K为: k wicosi tani Ci bseci}
w i sin i
《SL274-2001 碾压式土石坝设计规范》第8.3.2条规定:土石 坝各种工况,土体的抗剪强度均应采用有效应力法;粘性土施 工期和粘性土库水位降落期,应同时采用总应力法。(这主要 是粘性土的孔隙率比较小的缘故)。 第8.3.3条还规定:对以粗粒料填筑的高坝,特别是高面板堆石 坝,还应考虑其非线性抗剪强度指标问题。