2019考研高数模拟考试题库(含答案)

合集下载

2019年考研高等数学模拟测试考题(含答案解析)

2019年考研高等数学模拟测试考题(含答案解析)
当 时, 为严格单调增加的函数,故 ,

(2)当 时,
证明:令 ,则 ,
,则 为严格单调减少的函数,故 ,即 为严格单调减少的函数,从而 ,即
10.⑴证明:不等式
证明:令 在[0,x]上应用拉格朗日定理,则 使得
即 ,因为 ,则

⑵设 证明:
证明:令 ,在[b,a]上应用拉格朗日定理,则 使得
因为 ,则 ,
.
解:原式 ①

①+②=t+c1
②-①= ln |sint+cost| +c2

2.计算 ,其中L是
(1)抛物线y2=x上从点(1,1)到点(4,2)的一段弧;
(2)从点(1,1)到点(4,2)的直线段;
(3)先沿直线从(1,1)到点(1,2),然后再沿直线到点(4,2)的折线;
(4)曲线x= 2t2+t+1,y=t2+1上从点(1,1)到点(4,2)的一段弧.
解:边际函数为:y′=abebx
弹性为: ,
增长率为: .
(3)y=xa
解:边际函数为:y′=axa-1.
弹性为: ,
增长率为:
8.下列函数在指定区间上是否满足罗尔定理的三个条件?有没有满足定理结论中的 ?
⑴ ;
⑵ ;

解:⑴ 在 上不连续,不满足罗尔定理的条件.而 ,即在(0,1)内不存在 ,使 .罗尔定理的结论不成立.
解:(1)L: ,y:1→2,故
(2)从(1,1)到(4,2)的直线段方程为x=3y-2,y:1→2

(3)设从点(1,1)到点(1,2)的线段为L1,从点(1,2)到(4,2)的线段为L2,则L=L1+L2.且

2019新版考研高数模拟测试试题(含参考答案)

2019新版考研高数模拟测试试题(含参考答案)

2019最新考研数学模拟试题(含答案)学校:__________ 考号:__________一、解答题1.用定积分的几何意义求下列积分值:10(1)2 d x x ⎰; 解:由几何意义可知,该定积分的值等于由x 轴、直线x =1、y =2x 所围成的三角形的面积,故原式=1.0(2)(0)x R >⎰ . 解:由几何意义可知,该定积分的值等于以原点为圆心,半径为R 的圆在第一象限内的面积,故原式=21π4R .2.设()()(),,,,,,w f x y z u g x z v h x y ===,求,,w w w x y z∂∂∂∂∂∂. 解:,w w w v w w u w v w w u x x v x y u y v x z u z∂∂∂∂∂∂∂∂∂∂∂∂=+=+=∂∂∂∂∂∂∂∂∂∂∂∂,3. 试求曲线e x y -=在点(0,1)及点(-1,0)处的切线方程和法线方程.解:231e e (1)3x x y x ---'=-⋅+ 012. 3x x y y ==-''=-=∞故在点(0,1)处的切线方程为:21(0)3y x -=--,即2330x y +-= 法线方程为:21(0)3y x -=-,即3220x y -+= 在点(-1,0)处的切线方程为:1x =-法线方程为:0y =4.在括号内填入适当的函数,使等式成立:⑴ d( )cos d t t =; ⑵ d( )sin d x x ω=;⑶ 1d( )d 1x x =+; ⑷ 2d( )e d x x -=; ⑸ d( )x=; ⑹ 2d( )sec 3d x x =; ⑺ 1d( )ln d x xx =; ⑻ d( )x =. 解:⑴ (sint)cos t '=d(sin )cos d t C t t ∴+=.⑵ 11(cos )(sin )sin x x x ωωωωω'-=-⋅-=1d(cos )sin d x C x x ωωω∴-+=.⑶ 1[ln(1)]1x x'+=+ 1d[ln(1)]d 1x C x x ∴++=+. ⑷ 22211(e )(2)e =e 22x x x ---'-=-⋅- 221d(e )e d 2x x C x --∴-+=. ⑸ (2)2x '=)C x∴=. ⑹ 2211(tan3)sec 33sec 333x x x '=⋅⋅= 21d(tan3)sec 3d 3x C x x ∴+=. ⑺ 21111(ln )2ln ln 22x x x x x'=⋅⋅= 211d(ln )ln d 2x C x x x∴+=. ⑻ 2(1(2)x x '--=-=d()C x ∴=.5.求由下列方程确定的隐函数()y y x =的微分d y :。

2019新版考研高等数学模拟考试题目(含答案)

2019新版考研高等数学模拟考试题目(含答案)

2019最新考研数学模拟试题(含答案) 学校:__________考号:__________一、解答题1.求由参数式2020sin d cos d t t x u u y u u ⎧=⎪⎨⎪=⎩⎰⎰所确定的函数y 对x 的导数d d y x . 解:222d d cos d cot.d d sin d yy t t t x x tt===2.求面密度为0ρ的均匀半球壳x 2+y 2+z 2=a 2(z ≥0)对于z 轴的转动惯量。

解:222::.xy z D x y a ∑=+≤d d d.sx y x y==22220022222π22000002220034222000()d d d d π()π()42π.()233xy z D a aa a I x y s a x y a r r a a r a d a r a a a r a ∑ρρρθρρπρρ=+===-=-⎡==--⎢⎣⎰⎰⎰⎰⎰⎰⎰⎰3.利用单调有界准则证明下列数列有极限,并求其极限值:1111(1)1,2,; (2)1,1,1,2,.1n n n n x xx n x xn x ++=====+=+ 证: (1)122x =<,不妨设2k x <,则12k x +<=.故对所有正整数n 有2n x <,即数列{}n x 有上界.又1n n n x x x +-=0>,又由2n x <从而10n n x x +->即1n n x x +>, 即数列{}n x 是单调递增的.由极限的单调有界准则知,数列{}n x 有极限.设lim n n x a →∞=,则a =于是22a a =,2,0a a ==(不合题意,舍去),lim 2n n x →∞∴=. (2) 因为110x =>,且111n n nx x x +=++, 所以02n x <<, 即数列有界 又 111111111(1)(1)n n n n n n n n n n x x x x x x x x x x --+---⎛⎫⎛⎫++-=-= ⎪ ⎪++++⎝⎭⎝⎭由110,10n n x x -+>+>知1n n x x +-与1n n x x --同号,从而可推得1n n x x +-与21x x -同号,而 1221131,1,022x x x x ==+=-> 故10n n x x +->, 即1n n x x +>所以数列{}n x 单调递增,由单调有界准则知,{}n x 的极限存在.设lim n n x a →∞=, 则11a a a=++, 解得1122a a +-==(不合题意,舍去). 所以1lim 2n n x →∞+=4.怎样选取a , b 的值,使f (x )在(-∞,+∞)上连续?π1,,e ,0,2(1)()(2)()π,0;sin ,.2xax x x f x f x a x x x b x ⎧+<⎪⎧<⎪==⎨⎨+≥⎩⎪+≥⎪⎩解:(1)()f x 在(,0),(0,)-∞+∞上显然连续,而00lim ()lim(),x x f x a x a ++→→=+= 00lim ()lim e 1,x x x f x --→→== 且(0)f a =, ∴当(0)(0)(0)f f f -+==,即1a =时,()f x 在0x =处连续,所以,当1a =时,()f x 在(,)-∞+∞上连续.。

2019考研高数模拟考题(含参考答案)

2019考研高数模拟考题(含参考答案)

2019最新考研数学模拟试题(含答案)学校:__________ 考号:__________一、解答题1.计算底面是半径为R 的圆,而垂直于底面一固定直径的所有截面都是等边三角形的立体体积.见图17.(17)解:以底面上的固定直径所在直线为x 轴,过该直径的中点且垂直于x 轴的直线为y 轴,建立平面直角坐标系,则底面圆周的方程为:x 2+y 2=R 2.过区间[-R ,R ]上任意一点x ,且垂直于x 轴的平面截立体的截面为一等边三角形,若设与x 对应的圆周上的点为(x ,y ),则该等边三角形的边长为2y ,故其面积等于A ()x =34()2y 2=3y 2=3()R 2-x 2 ()-R ≤x ≤R 从而该立体的体积为 V =⎠⎛-RRA ()x d x =⎠⎛-R R3()R 2-x 2d x=433R 3.2.计算0.2e 的近似值,使误差不超过310-.解:234e e 1 (01)2624x xx x x x θθ=++++<< 230.2(0.2)(0.2)e10.2 1.2213 1.22126≈+++=≈0.2444e 31(0.2)(0.2)(0.2)0.20.00020.00124248R θ⨯=⨯<⨯=⨯≈<3.求曲线y =ln x 在与x 轴交点处的曲率圆方程.解:由ln 0y xy =⎧⎨=⎩解得交点为(1,0).1112111,1 1.x x x x y xy x ===='==''=-=-故曲率中心 212(1,0)(1)312x y y x y y y y αβ=⎧''⎡⎤+==-⎪⎢⎥''⎣⎦⎪⎨'⎡⎤+⎪==-+⎢⎥⎪''⎣⎦⎩曲率半径为R =故曲率圆方程为:22(3)(2)8x y -++=.4.设总收入和总成本分别由以下两式给出:2()50.003,()300 1.1R q q q C q q =-=+其中q 为产量,0≤q ≤1000,求:(1)边际成本;(2)获得最大利润时的产量;(3)怎样的生产量能使盈亏平衡? 解:(1) 边际成本为:()(300 1.1) 1.1.C q q ''=+=(2) 利润函数为2()()() 3.90.003300() 3.90.006L q R q C q q q L q q=-=--'=-令()0L q '=,得650q = 即为获得最大利润时的产量. (3) 盈亏平衡时: R (q )=C (q ) 即 3.9q -0.003q 2-300=0 q 2-1300q +100000=0 解得q =1218(舍去),q =82.5.求下列初等函数的边际函数、弹性和增长率: (1) y =ax +b ;(其中a ,b ∈R ,a ≠0) 解:y ′=a 即为边际函数. 弹性为:1Ey axa x Ex axb ax b=⋅⋅=++, 增长率为: y aax bγ=+.(2) y =a e bx ;解:边际函数为:y ′=ab e bx 弹性为:1e ebx bx Ey ab x bx Ex a =⋅⋅=, 增长率为: e e bxy bxab b a γ==. (3) y =x a解:边际函数为:y ′=ax a -1.弹性为:11a a Ey ax x a Ex x-=⋅⋅=, 增长率为: 1.a y a ax ax xγ-==6.求下列极限问题中,能使用洛必达法则的有( ).⑴ 201sinlimsin x x x x →; ⑵ lim (1)x x k x→+∞+; ⑶ sin lim sin x x xx x→∞-+; ⑷ e e lim .e e x x xx x --→+∞-+ 解:⑴ ∵200111sin2sin coslimlim sin cos x x x x x x x x x→→-=不存在,(因1sin x ,1cos x 为有界函数) 又2001sin1limlim sin 0sin x x x x x x x→→==, 故不能使用洛必达法则. ⑶ ∵sin 1cos limlimsin 1cos x x x x xx x x→∞→∞--=++不存在, 而sin 1sin lim lim 1.sin sin 1x x x x x x xx x x→∞→∞--==++故不能使用洛必达法则.⑷ ∵e e e e e e lim lim lim e e e e e ex x x x x xxx x x x x x x x ------→+∞→+∞→+∞-+-==+-+ 利用洛必达法则无法求得其极限.而22e e 1e lim lim 1e e 1e x x xxx xx x ----→+∞→+∞--==++. 故答案选(2).7.求下列函数的最大值、最小值:254(1) (), (,0)f x x x x=-∈-∞; 解:y 的定义域为(,0)-∞,322(27)0x y x+'==,得唯一驻点x =-3 且当(,3]x ∈-∞-时,0y '<,y 单调递减;当[3,0)x ∈-时,0y '>,y 单调递增,因此x =-3为y 的最小值点,最小值为f (-3)=27. 又lim ()x f x →-∞=+∞,故f (x )无最大值.(2) () [5,1]f x x x =+∈-;解:10y '==,在(5,1)-上得唯一驻点34x =,又 53,(1)1,(5)544y y y ⎛⎫==-= ⎪⎝⎭ ,故函数()f x 在[-5,1]上的最大值为545. 42(3) 82, 13y x x x =-+-≤≤.解:函数在(-1,3)中仅有两个驻点x =0及x =2, 而 y (-1)=-5, y (0)=2, y (2)=-14, y (3)=11, 故在[-1,3]上,函数的最大值是11,最小值为-14.8.利用函数的图形的凹凸性,证明下列不等式:()1(1) (0,0,,1)22nn n x y x y x y n x y +⎛⎫>>>≠>+ ⎪⎝⎭;证明:令 ()nf x x =12(),()(1)0n n f x nx f x n n x --'''==-> ,则曲线y =f (x )是凹的,因此,x y R +∀∈,()()22f x f y x y f ++⎛⎫<⎪⎝⎭, 即 1()22nn n x y x y +⎛⎫<+ ⎪⎝⎭. 2e e (2)e ()2x yx y x y ++>≠ ;证明:令f (x )=e x()e ,()e 0x x f x f x '''==> .则曲线y =f (x )是凹的,,,x y R x y ∀∈≠则 ()()22f x f y x y f ++⎛⎫<⎪⎝⎭即 2e e e2x yx y ++<.(3) ln ln ()ln(0,0,)2x yx x y y x y x y x y ++>+>>≠ 证明:令 f (x )=x ln x (x >0)1()ln 1,()0(0)f x x f x x x'''=+=>> 则曲线()y f x =是凹的,,x y R +∀∈,x ≠y ,有()()22f x f y x y f ++⎛⎫<⎪⎝⎭即 1ln (ln ln )222x y x y x x y y ++<+,即 ln ln ()ln2x yx x y y x y ++>+.9.利用定义计算下列定积分: (1)d ();bax x a b <⎰解:将区间[a , b ]n 等分,分点为(), 1,2,,1;i i b a x a i n n-=+=- 记每个小区间1[,]i i x x -长度为,i b ax n-∆=取, 1,2,,,i i x i n ξ==则得和式211()2(1)()[()]()2nni i i i i b a b a n n f x a b a a b a n n n ξ==--+∆=+-⋅=-+∑∑ 由定积分定义得220122()(1) d lim ()lim[()]21().2nbi i an i b a n n x x f x a b a nb a λξ→→∞=-+=∆=-+=-∑⎰(2)1e d .x x ⎰解:将区间[0, 1] n 等分,分点为 (1,2,,1),i ix i n n==-记每个小区间长度1,i x n∆=取 (1,2,,),i i x i n ξ==则和式111()i nnni i i i f x enξ==∆=∑∑12101111111e d lim e lim (e e e )1e (1e )1e (e 1)lim lim 1e e 11e (e 1)1lim e 1.1i n n xn n n nn n i n nnnn n n n n x n n n nn n n →∞→∞=→∞→∞→∞==+++--==---==-∑⎰10.利用换元法求下列积分:2(1)cos()d x x x ⎰;解:原式=22211cos d sin .22x x x c =+⎰(2)x ;解:原式=12333(sin cos )d(sin cos )(sin cos ).2x x x x x x c ---=-+⎰2d (3)21xx -⎰; 解:原式=1d 112x c =+-+⎰.c =+3(4)cos d x x ⎰;解:原式=231(1sin )dsin sin sin .3x x x x c -=-+⎰(5)cos cos d 2xx x ⎰;解:原式=1133d sin sin .cos cos 232222x x x x c x ⎛⎫=+++ ⎪⎝⎭⎰ (6)sin 2cos3d x x x ⎰;解:原式=111(sin 5sin )d cos cos5.2210x x x x x c -=-+⎰2arccos (7)xx ;解:原式=2arccos 2arccos 1110d(2arccos )10.22ln10xx x c -=-⋅+⎰21ln (8)d (ln )xx x x +⎰;解:原式=21(ln )d(ln ).ln x x x x c x x-=-+⎰(9)x ;解:原式=2.c =+⎰ln tan (10)d cos sin xx x x⎰;解:原式=21ln tan d(ln tan )(ln tan ).2x x x c =+⎰5(11)e d x x -⎰;解:原式=51e 5x c --+.d (12)12xx-⎰; 解:原式=1ln .122c x -+-(13)t;解:原式=.c =-⎰102(14)tan sec d x x x ⎰;解:原式=10111tan d(tan )tan .10x x x c =+⎰2d (15)ln xx x⎰;解:原式=21(ln )d(ln ).ln x x c x--=+⎰(16)x ⎰;解:原式=ln .c =-+⎰d (17)sin cos xx x⎰;解:原式=2d d tan ln .tan tan cos tan x xc x x x x ==+⎰⎰ 2(18)e d x x x -⎰;解:原式=22211e d()e .22x x x c ----=-+⎰10(19)(4)d x x +⎰;解:原式=111(4)11x c ++. (20)⎰解:原式=123311(23)d(23)(23)32x x x c ----=--+⎰.2(21)cos()d x x x ⎰;解:原式=2211sin()sin().22d x x c =+⎰(22)x ; 解:原式=122222d 1()d()2x x a a x a x -⎛⎫ ⎪=--⎰arcsin .xa c a=⋅ d (23)e ex xx-+⎰; 解:原式=2d(e )arctane .1(e )x xx c =++⎰ ln (24)d xx x⎰; 解:原式=21ln d(ln )(ln ).2x x x c =+⎰23(25)sin cos d x x x ⎰;解:原式=223511sin (1sin )d(sin )sin sin .35x x x x x c -=-+⎰(26)⎰;解:原式32tan 444sec cos 1sin d d d(sin )tan sin sin x tt t tt t t t t t =-==⎰⎰⎰令311,3sin sin c t t=-++又cos t t ==故上式.c =+(27)d ln |1|ln(1.1tt t t c c t =-++=++(28);x 解:原式3sec 223tan d 3(sec 1)d 3tan 3x tt t t t t t c ==-=-+⎰⎰令,又3tan arccos ,t t x === 故上式33arccosc x+. (29);解:原式2tan 3sec d cos d sin sec x ttt t t t c t ===+⎰⎰令,又sec t =所以sin t =,故上式c =.(30).解:原式sin cos d sin cos x ttt t t =+⎰令① sin d sin cos tt t t +⎰②① + ② = t + c 1② - ① = ln |sin t +cos t | + c 2 故cos 1d ln sin cos sin cos 2211arcsin ln .22t t t ct t t t x c x =++++=++⎰11.求下列函数在指定点的高阶导数: ⑴()f x =求(0)f '';⑵ 21()e,x f x -=求(0)f '',(0)f ''';⑶ 6()(10),f x x =+求(5)(0)f ,(6)(0)f .解: ⑴322()(1)f x x -'==- 5223()(1)22f x x x -''=--⋅故(0)0f ''=.⑵ 21()2ex f x -'=2121()4e ()8ex x f x f x --''='''=故4(0)e f ''=,8(0)ef '''=. ⑶ 5()6(10)f x x '=+43(4)2(5)(6)()30(10)()120(10)()360(10)()720(10)()720f x x f x x f x x f x x f x ''=+'''=+=+=+= 故(5)(0)720107200f=⨯=,(6)(0)720f =12.已知曲线f (x )=x -x 2与g (x )=ax 围成的图形面积等于92,求常数a .解:如图13,解方程组⎩⎨⎧f (x )=x -x2g (x )=ax得交点坐标为(0,0),(1-a ,a (1-a ))∴D =⎠⎛01-a ()x -x 2-ax d x=⎣⎡⎦⎤12()1-a ·x 2-13x 31-a=16()1-a 3 依题意得 16()1-a 3=92得a =-2.(13)13.设()Q Q T =表示重1单位的金属从0C ︒加热到C T ︒所吸收的热量,当金属从C T ︒升温到()C T T +∆︒时,所需热量为()(),Q Q T T Q T ∆=+∆-Q ∆与T ∆之比称为T 到T T +∆的平均比热,试解答如下问题:⑴ 如何定义在C T ︒时,金属的比热; 解:0()()lim()T Q T T Q T Q T Tν∆→+∆-'==∆⑵ 当2()Q T aT bT =+(其中a , b 均为常数)时,求比热. 解:()2Q T a bT ν'==+.14.求下列曲线段的弧长:a) y 2=2x ,0≤x ≤2; 解:见图18,2yy ′=2. y ′=1y∴1+y ′2=1+1y 2.从而 (18)l =2⎠⎛021+y ′2d x =2⎠⎛21+1y 2d x=2⎠⎛021y 1+y 2d y22 =2⎠⎛021+y 2d y =y 1+y 2+ln ()y +1+y 2⎪⎪2=25+ln(2+5)b) y =ln x ,3≤x ≤8; 解:l =⎠⎛381+y ′2d x =⎠⎛381+1x 2d x =⎠⎛381+x 2x d x =⎣⎡⎦⎤1+x 2-ln 1+1+x 2x 83=1+12ln 32.c) y =⎠⎜⎛−π2xcos t d t , −π2≤t ≤π2;解:l =⎠⎜⎜⎛−π2π21+y ′2d x =⎠⎜⎜⎛−π2π21+cos x d x=⎠⎜⎜⎛−π2π22cos x 2d x =42⎠⎜⎛0π2cos x 2d x 2=42sin x 2⎪⎪⎪π2=4.15.半径为R 的球沉入水中,球的顶部与水面相切,球的密度与水相同,现将球从水中取离水面,问做功多少?解:如图21,以切点为原点建立坐标系,则圆的方程为 (x -R )2+y 2=R 2将球从水中取出需作的功相应于将[0,2R ]区间上的许多薄片都上提2R 的高度时需作功的和的极限。

2019年新考研高数模拟训练考题(含答案)

2019年新考研高数模拟训练考题(含答案)

2019最新考研数学模拟试题(含答案)学校:__________考号:__________一、解答题1.试决定曲线y =ax 3+bx 2+cx +d 中的a ,b ,c ,d ,使得x =-2处曲线有水平切线,(1,-10)为拐点,且点(-2,44)在曲线上.解:令f (x )= ax 3+bx 2+cx +d联立f (-2)=44,f ′(-2)=0,f (1)=-10,f ″(1)=0可解得a =1,b =-3,c =-24,d =16.2.利用曲线积分,求下列曲线所围成的图形的面积:(1)星形线x = a cos 3t ,y = a sin 3t ;(2)双纽线r 2 = a 2cos2θ;(3)圆x 2+y 2 = 2ax .解:(1)()()()()()2π3202π2π242222002π202π202π202d sin 3cos d sin 33sin cos d sin 2sin d 43d 1cos 41cos 2163d 1cos 2cos 4cos 2cos 416312π+d cos 2cos 61623π8L A y x a t a t t t a t t t a t t t a t t t a t t t t t a t t t a =-=-⋅-==⋅=--=--+⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰ (2)利用极坐标与直角坐标的关系x =r cos θ,y =r sin θ得cos x a =sin y a =从而x d y -y d x =a 2cos2θd θ.于是面积为:[]π24π4π24π4212d d 2cos 2d sin 22L A x y y x a a a θθθ--=⋅-===⎰⎰ (3)圆x 2+y 2=2ax 的参数方程为cos 02πsin x a a y a θθθ=+⎧≤≤⎨=⎩ 故()()[]()2π022π021d d 21d a+acos sin 2d 1cos 2πcos sin LA x y y x a a a a a θθθθθθθ=-=-=+=⋅-⎰⎰⎰3. 设212s gt =,求2d d t s t =. 解:d d s gt t =,故2d 2d t s g t ==.4.讨论下列函数在指定点的连续性与可导性: (1) sin ,0;y x x == 解:因为0,0lim 0x x y y =→==所以此函数在0x =处连续. 又00()(0)sin (0)lim lim 1,0x x f x f x f x x ---→→--'===-- 00()(0)sin (0)lim lim 1,0x x f x f x f x x +++→→-'===- (0)(0)f f -+''≠,故此函数在0x =处不可导. (2) 21sin ,0, 0;0,0,x x y x x x ⎧≠⎪==⎨⎪=⎩ 解:因为201lim sin 0(0),x x y x→==故函数在0x =处连续. 又2001sin ()(0)(0)lim lim 00x x x f x f x y x x →→-'===-,。

2019新版考研高数模拟训练考题(含解析)

2019新版考研高数模拟训练考题(含解析)

2019最新考研数学模拟试题(含答案)学校:__________ 考号:__________一、解答题1.求下列不定积分,并用求导方法验证其结果正确否:d (1)1e xx+⎰; 解:原式=e d 11de ln(1e ).e (1e )e 1e x x xx x x xx x c ⎛⎫==-++- ⎪++⎝⎭⎰⎰ 验证:e 1(ln(1e ))1.1e 1ex xx xx c '-++=-=++ 所以,结论成立.(2)ln(x x ⎰;解:原式=ln(ln(.x x x x x c -=-验证:ln(ln(x x x x c '⎡⎤=++⎣⎦ln(x =所以,结论成立.2(3)ln(1)d x x +⎰;解:原式=2222ln(1)2d ln(1)22arctan 1x x x x x x x x c x+-=+-+++⎰. 验证:2222222ln(1)2ln(1).ln(1)22arctan 11x x x x x x x x c x x'=++⋅-+=+⎡⎤+-++⎣⎦++ 所以,结论正确.(4)x ;解:原式=9212)arcsin (.232x x x c ++=++验证: 921arcsin (232x x '+⎡++⎢⎣211(2)32x=++==所以,结论正确.(5)sin(ln)dx x⎰;解:1sin(ln)d sin(ln)cos(ln)dx x x x x x xx=-⋅⋅⎰⎰sin(ln)cos(ln)sin(ln)dx x x x x x=--⎰所以,原式=().sin(ln)cos(ln)2xcx x+-验证:()sin(ln)cos(ln)2xcx x'⎡⎤+-⎢⎥⎣⎦()111sin(ln)cos(ln)cos(ln)sin(ln)22sin(ln).xx x x xx xx⎛⎫=+-⋅+⋅⎪⎝⎭=故结论成立.2e(6)d(e1)xxxx+⎰;解:原式=1e1d d de1e1e11ee1xx x x xxx xx x x--⎛⎫-=-+=-+⎪+++++⎝⎭⎰⎰⎰ln(1e).e1xxxc--=-+++验证:22(e1)e e eln(1e)(e1)1e(e1)e1x x x xxx x xxx xxc---'-++--⎡⎤=-=-++⎢⎥++++⎣⎦.故结论成立.23/2ln(7)d(1)xxx+⎰;解:原式=1ln d d ln(.x x x cx=-=-++⎰验证:ln(x c'⎤-+⎥⎦2223/223/2(1ln )(1)ln ln .(1)(1)x x x x x x x =++-==++所以,结论成立.sin (8)d 1cos x xx x++⎰;解:原式=2d cos d d tan ln(1cos )1cos 22cos 2xx xx x x x x -=-++⎰⎰⎰tan tan d ln(1cos )22tan ln(1cos )ln(1cos )2tan 2x xx x x xx x x c x x c=--+=++-++=+⎰验证:2221sin sin (tan )tan sec 22221cos 2cos 2cos 22x x x x x x xx c x x x x +'+=+⋅=+=+ 所以,原式成立.(9)()d xf x x ''⎰;解:原式=d ()()()d ()().x f x xf x f x x xf x f x c ''''=-=-+⎰⎰验证:[]()()()().()()f x xf x f x xf x xf x f x c ''''''''=+-=-+ 故结论成立.(10)sin d n x x ⎰ (n >1,且为正整数).解:1sin d sin dcos n n n I x x x x -==-⎰⎰1221212cos sin (1)cos sin d cos sin (1)sin d (1)sin d cos sin (1)(1)n n n n n n n nx x n x x xx x n x x n x x x x n I n I ------=-+-=-+---=-+---⎰⎰⎰ 故 1211cos sin .n n n n I x x I n n---=-+ 验证: 1211cos sin sin d n n n x x x x n n --'-⎡⎤-+⎢⎥⎣⎦⎰22222111sin cos (1)sin cos sin 111sin (1sin )sin sin sin .n n n n n n n n x x n x x x n n n n n x x x x n n n x -----=-⋅-⋅+--=--+= 故结论成立.2.求22224428u x y z x y x y z =+++-+-在点,,,1,1,1,1,1,1(000)()()O A B ---的梯度,并求梯度为零的点.解:()()()()54,2,8,2,10,6,10,6,10,3,,42-------3.设()Q Q T =表示重1单位的金属从0C ︒加热到C T ︒所吸收的热量,当金属从C T ︒升温到()C T T +∆︒时,所需热量为()(),Q Q T T Q T ∆=+∆-Q ∆与T ∆之比称为T 到T T +∆的平均比热,试解答如下问题:⑴ 如何定义在C T ︒时,金属的比热; 解:0()()lim()T Q T T Q T Q T Tν∆→+∆-'==∆⑵ 当2()Q T aT bT =+(其中a , b 均为常数)时,求比热. 解:()2Q T a bT ν'==+.4.设12()()()()0n p x f x f x f x =≠,且所有的函数都可导,证明:1212()()()()()()()()n n f x f x f x P x P x f x f x f x ''''=+++证明:1212121212()1[()()()()()()()()()]()()()()().()()()n n n n n P x f x f x f x f x f x f x f x f x f x P x P x f x f x f x f x f x f x ''''=+++'''=+++5.根据下面所给的值,求函数21y x =+的,d y y ∆及d y y ∆-: ⑴ 当1,0.1x x =∆=时; 解:2222()1(1)2210.10.10.21d 2210.10.2d 0.210.20.01.y x x x x x x y x x y y ∆=+∆+-+=∆+∆=⨯⨯+==⋅∆=⨯⨯=∆-=-=. ⑵ 当1,0.01x x =∆=时.解:222210.010.010.0201d 2210.010.02d 0.02010.020.0001.y x x x y x x y y ∆=∆+∆=⨯⨯+==⋅∆=⨯⨯=∆-=-=6.利用四阶泰勒公式,求ln1.2的近似值,并估计误差.解:23455ln(1) (01)2345(1)x x x x x x x θθ+=--+-<<+ 234(0.2)(0.2)(0.2)ln1.2ln(10.2)0.20.18227234∴=+≈-++=5555(0.2)(0.2)(0.2)7105(10.2)5n R θ-=<≈⨯+7.计算正弦曲线y =sin x 上点π,12⎛⎫⎪⎝⎭处的曲率. 解:cos ,sin y x y x '''==- .当π2x =时,0,1y y '''==- , 故 23/21.(1)y k y ''=='+8.设总收入和总成本分别由以下两式给出:2()50.003,()300 1.1R q q q C q q =-=+其中q 为产量,0≤q ≤1000,求:(1)边际成本;(2)获得最大利润时的产量;(3)怎样的生产量能使盈亏平衡? 解:(1) 边际成本为:()(300 1.1) 1.1.C q q ''=+=(2) 利润函数为2()()() 3.90.003300() 3.90.006L q R q C q q q L q q=-=--'=-令()0L q '=,得650q = 即为获得最大利润时的产量. (3) 盈亏平衡时: R (q )=C (q ) 即 3.9q -0.003q 2-300=0 q 2-1300q +100000=0 解得q =1218(舍去),q =82.9.验证:函数()lnsin f x x =在π5π[,]66上满足罗尔定理的条件,并求出相应的ξ,使()0f ξ'=.证:()l n s i f x x =在区间π5π[,]66上连续,在π5π(,)66上可导,且π5π()()l n 266f f ==-,即在π5π[,]66上满足罗尔定理的条件,由罗尔定理,至少存在一点π5π(,),66ξ∈使()0f ξ'=.事实上,由cos ()cot 0sin x f x x x '===得ππ5π(,),266x =∈故取π2ξ=,可使()0f ξ'=.10.下列函数在指定区间上是否满足罗尔定理的三个条件?有没有满足定理结论中的ξ?⑴ 2, 01,() [0,1] 0, 1, x x f x x ⎧≤<=⎨=⎩; ⑵ ()1, [0,2] f x x =-; ⑶ sin , 0π,() [0,π] . 1, 0,x x f x x <≤⎧=⎨=⎩解:⑴ ()f x 在[0,1]上不连续,不满足罗尔定理的条件.而()2(01)f x x x '=<<,即在(0,1)内不存在ξ,使()0f ξ'=.罗尔定理的结论不成立. ⑵ 1, 12,()1, 0 1.x x f x x x -≤<⎧=⎨-<<⎩(1)f '不存在,即()f x 在区间(0,2) 内不可导,不满足罗尔定理的条件.而1, 12,()1, 0 1.x f x x <<⎧'=⎨-<<⎩即在(0,2)内不存在ξ,使()0f ξ'=.罗尔定理的结论不成立.⑶ 因(0)1(π)=0f f =≠,且()f x 在区间[0,π] 上不连续,不满足罗尔定理的条件. 而()cos (0π)f x x x '=<<,取π2ξ=,使()0f ξ'=.有满足罗尔定理结论的π2ξ=. 故罗尔定理的三个条件是使结论成立的充分而非必要条件.11.⑴ 证明:不等式ln(1) (0)1xx x x x<+<>+ 证明:令()ln(1)f x x =+在[0,x]上应用拉格朗日定理,则(0,),x ξ∃∈使得()(0)()(0)f x f f x ξ'-=-即ln(1)1x x ξ+=+,因为0x ξ<<,则11x xx x ξ<<++即ln(1) (0)1xx x x x<+<>+ ⑵ 设0, 1.a b n >>>证明:11()().n n n n nb a b a b na a b ---<-<-证明:令()nf x x =,在[b ,a]上应用拉格朗日定理,则(,).b a ξ∃∈使得1(), (,)n n n a b n a b b a ξξ--=-∈因为b a ξ<<,则111()()()n n n nb a b n a b na a b ξ----<-<-,即11()().n n n n nba b a b na a b ---<-<-⑶ 设0a b >>证明:ln .a b a a ba b b--<< 证明:令()ln f x x =在[b ,a]上应用拉格朗日定理,则(,).b a ξ∃∈使得1ln ln ()a b a b ξ-=-因为b a ξ<<,所以1111, ()a b a b a b a b a bξξ--<<<-<, 即ln a b a a b a b b--<<. ⑷ 设0x >证明:112x +>证明:令()f x =[0,]x x ∈,应用拉格朗日定理,有()(0)()(0), (0,)f x f f x x ξξ'-=-∈ ()()(0)f x f x f ξ'=⋅+112x=+<+即112x +>12.利用0sin lim1x xx→=或等价无穷小量求下列极限:002000sin (1)lim ;(2)lim cot ;sin 1cos 2(3)lim ;sin arctan 3(5)lim;(6)lim 2sin ;2x x x x x n n x n mxx x nx x x x x xx →→→→→→∞-22102320020041arctan (7)lim ;(8)lim ;arcsin(12)sin arcsin 2tan sin cos cos (9)lim ;(10)lim ;sin 1cos 4(12)lim 2sin t x x x x x x x x x x x x x x x x xx x x αβ→→→→→→-----+ 222200;an ln cos ln(sin e )(13)lim ;(14)lim .ln cos ln(e )2x x x x x ax x x bx x x→→+-+-解:(1)因为当0x →时,sin ~,sin ~,mx mx nx nx 所以00sin limlim .sin x x mx mx mnx nx n→→==00002000limcos cos (2)lim cot lim cos lim 1.sin sin sin lim1cos 22sin sin (3)lim lim 2lim 2.sin sin x x x x x x x x x x x x x x x xx x xx x x x x x x x→→→→→→→→=⋅===-=== (4)因为当0x →时,2221ln(1e sin )~e sin 1~2x x x x x +,所以22200002e sin sin lim lim 2e lim 2.12x x x x x x x x x x x→→→→⎛⎫==⋅= ⎪⎝⎭ (5)因为当0x →时,arctan3~3,x x 所以00arctan 33limlim 3x x x xxx →→==.sinsin 22(6)lim 2sin lim lim .222n n n n n n n n nx xx x x x x x →∞→∞→∞=⋅==(7)因为当12x →时,arcsin(12)~12x x --,所以22111122224141(21)(21)lim lim lim lim(21) 2.arcsin(12)1212x x x x x x x x x x x x →→→→---+===-+=---- (8)因为当0x →时,22arctan ~,sin~,arcsin ~,22x xx x x x 所以 2200arctan lim lim 2sin arcsin 22x x x x xx x x →→==⋅.(9)因为当0x →时,2331sin ~,1cos ~,sin ~2x x x x x x -,所以 233300001tan sin sin (1cos )2lim lim lim sin sin cos cos 11lim .2cos 2x x x x x x x x x x x x xx x x →→→→⋅--==⋅== (10)因为当0x →时,sin~,sin~2222x x x x αβαβαβαβ++--,所以22002222sinsincos cos 22lim lim 222lim1().2x x x x xx xx x x xx αβαβαβαβαββα→→→+---=+--⋅⋅==-(11)因为当0x →时,~)~,x x --所以000 1.x x x →→→==-=-(12)因为当0x →时,sin ~,sin 2~2,x x x x 所以2222200222200201cos 42sin 2lim lim 2sin tan sin (2sec )2(2)8lim lim (2sec )2sec 84.lim(2sec )x x x x x x x x x x x x x x x x x x xx x →→→→→-=++⋅==++==+ (13)因为ln cos ln[1(cos 1)],ln cos ln[1(cos 1)],ax ax bx bx =+-=+- 而当0x →时,cos 10,cos 10ax bx -→-→故 ln[1(cos 1)]~cos 1,ln[1(cos 1)]~cos 1,ax ax bx bx +--+-- 又当x →0进,2222111cos ~,1cos ~,22ax a x bx b x --所以 22220000221ln cos cos 11cos 2lim lim lim lim .1ln cos cos 11cos 2x x x x a xax ax ax a bx bx bx b b x→→→→--====-- (14)因为当0x →时,222sin 0,0e exx x x →→故 222222sin sin ln ~,ln ~,11e ee e x x xx x xx x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭ 所以22222222200022222000020sin ln 1ln(sin e )ln(sin e )ln e e lim lim lim ln(e )2ln(e )ln e ln 1e sin sin sin e lim lim e lim e lim e e 1 1.x x xx x x x x x x x x x x x x x x xx x x x x x x x xx x x x x →→→→→→→⎛⎫+ ⎪+-+-⎝⎭==+-+-⎛⎫+ ⎪⎝⎭⎛⎫⎛⎫==⋅=⋅ ⎪ ⎪⎝⎭⎝⎭=⋅=13.求下列曲线的拐点:23(1) ,3;x t y t t ==+解:22223d 33d 3(1),d 2d 4y t y t x t x t +-== 令22d 0d yx=,得t =1或t =-1 则x =1,y =4或x =1,y =-4当t >1或t <-1时,22d 0d yx >,曲线是凹的,当0<t <1或-1<t <0时,22d 0d yx<,曲线是凸的,故曲线有两个拐点(1,4),(1,-4). (2) x =2a cot θ, y =2a sin 2θ. 解:32d 22sin cos 2sin cos d 2(csc )y a x a θθθθθ⋅⋅==-⋅- 222442222d 11(6sin cos 2sin )sin cos (3tan )d 2(csc )y x a a θθθθθθ=-+⋅=⋅-- 令22d 0d y x =,得π3θ=或π3θ=-, 不妨设a >0tan θ>>时,即ππ33θ-<<时,22d 0d y x >,当tan θ>tan θ<π3θ<-或π3θ>时,22d 0d y x <,故当参数π3θ=或π3θ=-时,都是y的拐点,且拐点为3,2a ⎫⎪⎭及3,2a ⎛⎫⎪⎝⎭.14.利用重要极限10lim(1)e uu u →+=,求下列极限:2221232cot 00113(1)lim ;(2)lim ;12(3)lim(13tan );(4)lim(cos 2);1(5)lim [ln(2)ln ];(6)lim.ln xx x x xx x x x x x x x x x xx x x x+→∞→∞→→→∞→+⎛⎫⎛⎫+ ⎪ ⎪-⎝⎭⎝⎭+-+-解:1112222111(1)lim lim e 1lim 11x xxx x x x x x →∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫====+++ ⎪⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦1022121553555(2)lim lim lim 1112222x x x x x x x x x x x -++→∞→∞→∞⎡⎤+⎛⎫⎛⎫⎛⎫⎛⎫==⋅++⎢⎥ ⎪ ⎪ ⎪+ ⎪---⎝⎭⎝⎭⎝⎭⎢⎥-⎝⎭⎣⎦102551051055lim e 1e .1lim 122x x x x x -→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫=⋅=⋅=+⎢⎥ ⎪+⎢⎥ ⎪-⎝⎭⎣⎦⎢⎥-⎝⎭⎣⎦ 22233112cot 323tan 23tan 000(3)lim(13tan )lim e .lim(13tan )(13tan )xx x x x x x x x →→→⎡⎤⎡⎤+===+⎢⎥+⎢⎥⎣⎦⎣⎦[][][]cos 211cos 212221cos 2121cos 2120220333ln ln cos21(cos21)03(cos21)ln 1(cos21)0cos213limlim ln 1(cos21)2sin 3limln lim (4)lim(cos 2)lim elim elim ee e x x x x x x x x xx x x x x x x x x x x x x x x x x ----→→→→⎧⎫⎪⎪⎨⎬+-⎪⎪⎩⎭→→→-+-→-⋅+--⋅=====[]1cos 212201(cos21)sin 6ln e lim 6116ee e .x x x x x -→⎧⎫⎪⎪⎨⎬+-⎪⎪⎩⎭⎛⎫-⋅⋅ ⎪-⨯⨯-⎝⎭===22222(5)lim [ln(2)ln ]lim 2ln lim 2ln 12222lim ln 2ln 1lim 12ln e 2.x x x x xxx x x x x x x x x x x →∞→∞→∞→∞→∞+⎛⎫+-=⋅⋅=+ ⎪⎝⎭⎛⎫⎛⎫⎛⎫==⋅+ ⎪ ⎪+ ⎪ ⎪⎝⎭⎝⎭⎝⎭== (6)令1x t =+,则当1x →时,0t →.1110001111limlim 1.ln ln(1)ln eln lim ln(1)lim(1)x t tt t t x tx t t t →→→→-=-=-=-=-=-+⎡⎤++⎢⎥⎣⎦15.计算下列积分(n 为正整数): (1)1;n x ⎰解:令sin x t =,d cos d x t t =, 当x =0时t =0,当x =1时t=π2, ππ12200sin cos d sin d cos n n n tx t t t t t==⎰⎰⎰由第四章第五节例8知11331π, 24221342, 253n n n n n n x n n n n n --⎧⋅⋅⋅⋅⋅⎪⎪-=⎨--⎪⋅⋅⋅⋅⎪-⎩⎰为偶数, 为奇数.(2)π240tan d .n x x ⎰解:πππ2(1)22(1)22(1)44400π2(1)411tantan d tansec d tan d 1tan d tan 21n n n n n n n I x x x x x x x xx x I I n ------==-=-=--⎰⎰⎰⎰由递推公式 1121n n I I n -+=-可得 111(1)(1)[(1)].43521n nn I n π--=---+-+-16.用定义判断下列广义积分的敛散性,若收敛,则求其值:22π11(1)sin d x x x+∞⎰; 解:原式=22ππ1111lim sin d lim coslim cos1.b bb b b x bx x →+∞→+∞→+∞⎛⎫-=== ⎪⎝⎭⎰ 2d (2);22xx x +∞-∞++⎰解:原式=02200d(1)d(1)arctan(1)arctan(1)(1)1(1)1x x x x x x +∞+∞-∞-∞+++=+++++++⎰⎰πππππ.4242⎛⎫=-+-=- ⎪⎝⎭(3)e d n x x x +∞-⎰(n 为正整数)解:原式=10e d deen x n xn xn x x x x +∞+∞+∞----+-=-⎰⎰100e d !e d !n x x n x x n x n +∞+∞---=+===⎰⎰(4)(0)a a >⎰;解:原式=00000πlim lim arcsin lim arcsin .12a a xa a εεεεεε+++--→→→⎛⎫===- ⎪⎝⎭⎰e1(5)⎰;解:原式=()e e 0110πlim arcsin(ln )lim lim arcsin .ln(e )2x εεεεεε+++--→→→===-⎰1(6)⎰.解:原式=110+⎰2121221111202lim 2lim πππlim lim 2222π.424εεεεεε++-→→→→=+⎛⎫=+=⋅+=- ⎪⎝⎭⎰⎰17.设星形线的参数方程为x =a cos 3t ,y =a sin 3t ,a >0求d) 星形线所围面积;e) 绕x 轴旋转所得旋转体的体积; f) 星形线的全长.解:(1)D =4⎠⎛0ay d x =4⎠⎜⎛π2a sin 3t d ()a cos 3t =12a 2⎠⎜⎛0π2sin 4t cos 2t d t=12a 2⎠⎜⎛0π2()sin 4t−sin 6t d t =38πa 2. (2)V x =2π⎠⎛0a y 2d x =2π⎠⎜⎛π2()a sin 3t 2d ()a cos 3t=6πa 3⎠⎜⎛0π2 sin 7t cos 2t d t=32105πa 3(3)x t ′=-3a cos 2t sin t y t ′=3a sin 2t cos t x t ′2+y t ′2=9a 2sin 2t cos 2t ,利用曲线的对称性,l =4⎠⎜⎛0π2x t ′2+ y t ′2d t =4⎠⎜⎛π2 3a sin 2t cos 2t d t=12a ⎠⎜⎛0π214sin 22t d t =6a ⎠⎜⎛0π2 sin2t d t =[]3a ()-cos2t π2=6a .18.求下列函数在[-a ,a ]上的平均值:(1)()f x=解:200111π1.arcsin 2422aa a a x y x x a a a a -⎡====+⎢⎣⎰⎰ (2) 2().f x x =解:2223001111d d .233aa a a a y x x x x x a a a -⎡⎤====⎢⎥⎣⎦⎰⎰19.将()2132f x x x =++展开成(x +4)的幂级数. 解:21113212x x x x =-++++ 而()()()011113411431314413334713nn nn n x x x x x x x ∞=∞+==+-++=-⋅+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<∑∑又()()()0101122411421214412224622nn nn n x x x x x x x ∞=∞+==+-++=-+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<-∑∑所以()()()()()2110011013244321146223n nn n n n nn n n f x x x x x x x ∞∞++==∞++==++++=-+⎛⎫=-+-<<- ⎪⎝⎭∑∑∑20.求抛物面壳221()(01)2z x y z =+≤≤的质量,此壳的面密度大小为z ρ=. 22221:():22xy z x y D x y ∑=++≤221d d ()d 2xy D M s z s x y x y ∑∑ρ===+⎰⎰⎰⎰⎰⎰12π222122225322220d (1)d 2π1)(1)(1)2π2π221)(1)(1)21553r r r r r r d r r r θ=+=+-++⎡==+-+⎢⎥⎣⎦⎰21.求面密度为0ρ的均匀半球壳x 2+y 2+z 2=a 2(z ≥0)对于z 轴的转动惯量。

2019新版考研高数模拟考试题库(含答案)

2019新版考研高数模拟考试题库(含答案)

2019最新考研数学模拟试题(含答案)学校:__________考号:__________一、解答题1.计算下列导数:2d (1)d xt x ⎰解:原式2=32d (2)d x x x ⎰解:原式32200d d d d x x x x =-=⎰⎰2.计算对坐标的曲线积分:(1)d Lxyz z ⎰,Γ为x 2+y 2+z 2=1与y =z 相交的圆,方向按曲线依次经过第Ⅰ、Ⅱ、Ⅶ、Ⅷ封限;(2)()()()222222d d d Ly z x z x y x y z -+-+-⎰,Γ为x 2+y 2+z 2=1在第Ⅰ封限部分的边界曲线,方向按曲线依次经过xOy 平面部分,yOz 平面部分和zOx 平面部分. 解:(1)Γ:2221x y z y z ⎧++=⎨=⎩ 即2221x z y z ⎧+=⎨=⎩其参数方程为:cos 2x ty tz t =⎧⎪⎪⎪=⎨⎪⎪=⎪⎩ t :0→2π 故:2π2π2202π202π0d cos d sin cos d sin 2d 1cos 4d 216xyz z t t t t t t t t t t ttΓ===-==⎰⎰(2)如图11-3所示.图11-3Γ=Γ1+Γ2+Γ3.Γ1:cos sin 0x ty t z =⎧⎪=⎨⎪=⎩t :0→π2,故()()()()()1222222π2220π3320π320d d d sin sin cos cos d sincos d 2sin d 24233y z x z x y x y zt t t t t t t tt t Γ-+-+-⎡⎤=--⋅⎣⎦=-+=-=-⋅=-⎰⎰⎰⎰又根据轮换对称性知()()()()()()1222222222222d d d 3d d d 4334y z x z x y x y z y z x z x y x y zΓΓ-+-+-=-+-+-⎛⎫=⨯- ⎪⎝⎭=-⎰⎰3.设12()()()()0n p x f x f x f x =≠,且所有的函数都可导,证明:1212()()()()()()()()n n f x f x f x P x P x f x f x f x ''''=+++ 证明:1212121212()1[()()()()()()()()()]()()()()().()()()n n n n n P x f x f x f x f x f x f x f x f x f x P x P x f x f x f x f x f x f x ''''=+++'''=+++4.求由下列方程所确定的隐函数y 的二阶导数22d d yx:⑴ 222222b x a y a b +=; ⑵ 1e yy x =+; ⑶ tan()y x y =+; ⑷ 242ln y y x +=. 解:⑴ 两边对x 求导,得22220b x a yy '+=22422223b x b y xy b y y a y a y a y'-'''⇒=-⇒=-⋅=-.⑵ 两边对x 求导,得e e y y y x y ''=+223e e (2)e ()e (3)2(2)(2)y y y y y y y y y y y y y ''----'''⇒=⇒==---. ⑶ 两边对x 求导,得2sec ()(1)y x y y ''=++2321cot ()2cot()cot()csc()(1)2cot ()csc ().y x y y x y x y x y y y x y x y '⇒=--+'''⇒=+⋅+⋅+⋅+''⇒=-+⋅+ ⑷ 两边对x 求导,得3224yy y x y''+⋅= 32322322222422321(223)(1)22(1)2[3(1)2(1)].(1)yx y y y x y x y yx yy y y x y y x y y '⇒=+''+⋅+-⋅''⇒=+++-=+5.利用麦克劳林公式,按x 乘幂展开函数23()(31)f x x x =-+. 解:因为()f x 是x 的6次多项式,所以(4)(5)(6)23456(0)(0)(0)(0)(0)()(0)(0).2!3!4!5!6!f f f f f f x f f x x x x x x ''''''=++++++计算出:(0)1,(0)9,(0)60,(0)270f f f f ''''''==-==-,(4)(5)(6)(0)720,(0)1080,(0)720.f f f ==-=故23456()193045309.f x x x x x x x =-+-+-+6.求函数e e 2x xy -+=的2n 阶麦克劳林展开式.解:2221222122212211e e [e e ][11]222!(2)!(21)!2!(2)!(21)!1e e [222]22!(2)!(21)!12!(2)n n x n n x x x n x x n n x x x x x x y x x n n n n x x x n n x x n θθθθ++---+=+=++++++-+++-++-=+⋅++++=+++21e e (01).!2(21)!x x n x n θθθ-+-+<<+60. 设()f x 在0x 的某区间上,存在有界的二阶导函数.证明:当x 在0x 处的增量h 很小时,用增量比近似一阶导数0()f x '的近似公式000()()()f x h f x f x h+-'≈,其绝对误差的量级为()O h ,即不超过h 的常数倍. 证明:0()f x h +在0x 处泰勒展开式为20000()()()() (01)2f x h f x h f x f x h h θθ''+'+=++<<,则0000()()()()2f x h f x f x h f x h h θ''+-+'-=, 又知 0()f x h M θ''+≤,故 0()22f x h Mh h θ''+≤,即000()()()f x h f x f x h+-'≈的绝对误差为()O h .7.计算0.2e 的近似值,使误差不超过310-.解:234e e 1 (01)2624x xx x x x θθ=++++<< 230.2(0.2)(0.2)e10.2 1.2213 1.22126≈+++=≈0.2444e 31(0.2)(0.2)(0.2)0.20.00020.00124248R θ⨯=⨯<⨯=⨯≈<8.一点沿对数螺线ea r ϕ=运动,它的极径以角速度ω旋转,试求极径变化率.解:d d de e .d d d a a r r a a t tϕϕϕωωϕ=⋅=⋅⋅=9.一点沿曲线2cos r a ϕ=运动,它的极径以角速度ω旋转,求这动点的横坐标与纵坐标的变化率.解: 22cos 2cos sin sin 2x a y a a ϕϕϕϕ⎧=⎨==⎩d d d 22cos (sin )2sin 2,d d d d d d 2cos 22cos .d d d x x a a t ty y a a t tϕϕϕωωϕϕϕϕωωϕϕ=⋅=⋅⋅-⋅=-=⋅=⋅=10.某人走过一桥的速度为4km ·h -1,同时一船在此人底下以8 km ·h -1的速度划过,此桥比船高200m ,求3min 后,人与船相离的速度. 解:设t 小时后,人与船相距s 公里,则d d s s t ===且120d 8.16d t st ==≈ (km ·h -1)11.计算正弦曲线y =sin x 上点π,12⎛⎫⎪⎝⎭处的曲率. 解:cos ,sin y x y x '''==- . 当π2x =时,0,1y y '''==- , 故 23/21.(1)y k y ''=='+12.设()Q Q T =表示重1单位的金属从0C ︒加热到C T ︒所吸收的热量,当金属从C T ︒升温到()C T T +∆︒时,所需热量为()(),Q Q T T Q T ∆=+∆-Q ∆与T ∆之比称为T 到T T +∆的平均比热,试解答如下问题:⑴ 如何定义在C T ︒时,金属的比热;解:0()()lim()T Q T T Q T Q T Tν∆→+∆-'==∆⑵ 当2()Q T aT bT =+(其中a , b 均为常数)时,求比热.解:()2Q T a bT ν'==+.13.对函数()sin f x x =及()cos g x x x =+在[0,]2π上验证柯西定理的正确性.验证:()f x ,()g x 在[0,]2π上连续,在(0,)2π内可导,且()1sin 0g x x '=-≠,满足柯西定理的条件.由 π()(0)()2π()()(0)2f f f g g g ξξ-'='-,得 2cos πcot()π21sin 42ξξξ==---, 故ππ2π2arctan (0,)222ξ-=-∈满足柯西定理的结论.14.求下列函数的导数:(1) y =解:y '=(2) y =解:5323y x -'=-(3) y =解:2512326y x x +-==561.6y x -'=15.计算下列积分:4(1)x ⎰;333211221313d .36222t t t t ⎛⎫⎛⎫==++ ⎪ ⎪⎝⎭⎝⎭2e 1(2)⎰解:原式=221e211).(1ln )d(1ln )x x -=++=⎰1(3)解:原式=211112⎛⎫+ ⎪-== π40sin (4)d 1sin xx x+⎰;解:原式=πππ244422000sin(1sin )sin d d tan d cos cos x x x x x x x x-=-⎰⎰⎰π40π1 2.tan 4cos x x x ⎛⎫==+-+ ⎪⎝⎭ ln3ln 2d (5)e ex xx--⎰; 解:原式=ln3ln32ln 2ln 2de 113e 1ln ln .(e )1222e 1x x x x -==-+⎰π(6)x ⎰;解:原式=πππ2π02d cos d cos d cos x x x x x x x ==-⎰⎰ππ2π02xx==(7)x ⎰;解:原式=π33π222π02d sin d sin sin d sin x x x x x x =-⎰⎰⎰ππ55222π02422.sin sin 555x x =-= 231(8)ln d x x x ⎰;解:原式=22243411111151ln d d 4ln 2.ln 44164x x x x x x =-=-⎰⎰π220(9)e cos d x x x ⎰;解:ππππ222222220e cos d e dsin e sin 2e sin d xx xx x x x xx x ==⋅-⎰⎰⎰πππ2π2π22220e 2e d cos e 2e cos 4e cos d x xx x xx x =+=+-⎰⎰所以,原式=π1(e 2)5-.120ln(1)(10)d (2)x x x +-⎰;解:原式=111000111ln(1)ln(1)d d 2212x x x x x x x ++=-⋅--+-⎰⎰101100111ln 2d 321111ln 2ln 2ln(2)ln(1)333x x x x x ⎛⎫=-+ ⎪-+⎝⎭=+-=-+⎰322d (11)2xx x +-⎰; 解:原式=3322111111d ln ln 2ln5.333122x x x x x -⎛⎫==-- ⎪-++⎝⎭⎰1(12)x ⎰; 解:原式11611d 6d (1)t 1t t t t t ⎫=-⎪++⎝⎭()67ln 26ln ln ln(1)1t t ==--+ππ3π(13)sin d 3x x ⎛⎫+ ⎪⎝⎭⎰;解:原式ππ3πcos 03x ⎛⎫=-=+ ⎪⎝⎭212(14)e d t t t -⎰;解:原式=2212122ed e 12t t t --⎛⎫-=-=- ⎪⎝⎭⎰π22π6(15)cos d u u ⎰.解:原式=ππ22ππ661π11(1cos 2)d sin 22624u u u u ⎛⎫+==+ ⎪⎝⎭⎰16.某企业投资800万元,年利率5%,按连续复利计算,求投资后20年中企业均匀收入率为200万元/年的收入总现值及该投资的投资回收期. 解:投资20年中总收入的现值为205%5%2001200800e d (1e )5%400(1e )2528.4 ()t y t --⋅-==-=-=⎰万元 纯收入现值为R =y -800=2528.4-800=1728.4(万元) 收回投资,即为总收入的现值等于投资, 故有5%200(1e )8005%12005ln =20ln =4.46 ().5%2008005%4T T -⋅-==-⨯年17.某父母打算连续存钱为孩子攒学费,设建行连续复利为5%(每年),若打算10年后攒够5万元,问每年应以均匀流方式存入多少钱? 解:设每年以均匀流方式存入x 万元,则 5=10(10)0.050e d t x t -⎰即 5=20x (e 0.5-1)0.514(e1)x =-≈0.385386万元=3853.86元.习题六18.利用柯西审敛原理判别下列级数的敛散性:(1) ()111n n n +∞=-∑;(2)1cos 2nn nx∞=∑; (3)1111313233n n n n ∞=⎛⎫+- ⎪+++⎝⎭∑. 解:(1)当P 为偶数时,()()()()122341111112311111231111112112311n n n pn n n n p U U U n n n n pn n n n pn p n p n n pn n n +++++++++++----=++++++++-+--=++++⎛⎫⎛⎫-=----- ⎪ ⎪+-+-++++⎝⎭⎝⎭<+当P 为奇数时,()()()()1223411111123111112311111112311n n n pn n n n p U U U n n n n pn n n n pn p n p n n n n +++++++++++----=++++++++-+-+=++++⎛⎫⎛⎫-=---- ⎪ ⎪+-++++⎝⎭⎝⎭<+因而,对于任何自然数P ,都有12111n n n p U U U n n++++++<<+, ∀ε>0,取11N ε⎡⎤=+⎢⎥⎣⎦,则当n >N 时,对任何自然数P 恒有12n n n p U U U ε++++++<成立,由柯西审敛原理知,级数()111n n n +∞=-∑收敛.(2)对于任意自然数P ,都有()()()1212121cos cos cos 12222111222111221121112212n n n pn n n pn n n p n p n p n U U U xn p x xn n ++++++++++++++++=+++≤+++⎛⎫- ⎪⎝⎭=-⎛⎫=- ⎪⎝⎭<于是, ∀ε>0(0<ε<1),∃N =21log ε⎡⎤⎢⎥⎣⎦,当n >N 时,对任意的自然数P 都有12n n n p U U U ε++++++<成立,由柯西审敛原理知,该级数收敛.(3)取P =n ,则()()()()()121111113113123133213223231131132161112n n n pU U U n n n n n n n n n n ++++++⎛⎫=+-+++- ⎪++++++⋅+⋅+⋅+⎝⎭≥++++⋅+≥+> 从而取0112ε=,则对任意的n ∈N ,都存在P =n 所得120n n n p U U U ε++++++>,由柯西审敛原理知,原级数发散.19.用比较审敛法判别下列级数的敛散性. (1)()()111465735n n ++++⋅⋅++;(2)22212131112131nn+++++++++++ (3)1πsin 3n n ∞=∑;(4)1n ∞=;(5)()1101nn a a∞=>+∑;(6)()1121nn ∞=-∑.解:(1)∵ ()()21135n U nn n =<++而211n n ∞=∑收敛,由比较审敛法知1n n U ∞=∑收敛. (2)∵221111n n n U n n n n++=≥=++ 而11n n ∞=∑发散,由比较审敛法知,原级数发散. (3)∵ππsinsin 33lim lim ππ1π33n nn n n n→∞→∞=⋅=而1π3n n ∞=∑收敛,故1πsin 3n n ∞=∑也收敛.(4)∵321n U n=<=而3121n n∞=∑收敛,故1n ∞=收敛.(5)当a >1时,111n n nU a a =<+,而11n n a ∞=∑收敛,故111n n a∞=+∑也收敛. 当a =1时,11lim lim022n n n U →∞→∞==≠,级数发散. 当0<a <1时,1lim lim101n nn n U a →∞→∞==≠+,级数发散.综上所述,当a >1时,原级数收敛,当0<a ≤1时,原级数发散.(6)由021lim ln 2xx x →-=知121lim ln 211nx n→∞-=<而11n n ∞=∑发散,由比较审敛法知()1121n n ∞=-∑发散.20.解:1211111R ()()(1)!2(1)!2n n n n n +++=++++=12111111()[1()](1)!222(2)(3)2n n n n n ++++++++122111111()[1()](1)!212(1)2n n n n +<++++++1111()1(1)!212(1)n n n +=+-+ 11()!(21)2n n n =+从而 111()!(21)2n n R n n +<+21.证明,若21n n U ∞=∑收敛,则1nn U n ∞=∑绝对收敛. 证:∵222211111222n n n nU U n U U n n n+=⋅≤=+⋅而由21n n U ∞=∑收敛,211n n∞=∑收敛,知 22111122n n U n ∞=⎛⎫+⋅ ⎪⎝⎭∑收敛,故1n n U n∞=∑收敛, 因而1nn U n∞=∑绝对收敛.22.将下列各周期函数展开成为傅里叶级数,它们在一个周期内的表达式分别为: (1) f (x )=1-x 2 1122x ⎛⎫-≤< ⎪⎝⎭;(2)()21,30,1,0 3.x x f x x +-≤<⎧=⎨≤<⎩解:(1) f (x )在(-∞,+∞)上连续,故其傅里叶级数在每一点都收敛于f (x ),由于f (x )为偶函数,有b n =0 (n =1,2,3,…)()()112221002112d 41d 6a f x x x x -==-=⎰⎰, ()()()()112221021222cos2n πd 41cos2n πd 11,2,πn n a f x x x x x xn n -+==--==⎰⎰所以()()12211111cos 2π12πn n f x n x n +∞=-=+∑ (-∞<x <+∞)(2) ()()303033011d 21d d 133a f x x x x x --⎡⎤==++=-⎢⎥⎣⎦⎰⎰⎰, ()()()()330330221πcos d 331π1π21cos d cos d 3333611,1,2,3,πn nn xa f x xn x n x x x x n n --==++⎡⎤=--=⎣⎦⎰⎰⎰ ()()()()33033011πsin d 331π1π21sin d sin d 333361,1,2,πn n n xb f x x n x n x x x x n n --+==++=-=⎰⎰⎰而函数f (x )在x =3(2k +1),k =0,±1,±2,…处间断,故()()()122116π6π11cos 1sin 2π3π3n n n n x n x f x n n ∞+=⎧⎫⎡⎤=-+--+-⎨⎬⎣⎦⎩⎭∑ (x≠3(2k +1),k =0,±1,±2,…)23.设f (x )是周期为2的周期函数,它在[-1,1]上的表达式为f (x )=e -x,试将f (x )展成傅里叶级数的复数形式.解:函数f (x )在x ≠2k +1,k =0,±1,±2处连续.()()()[]()()()π1π111π11211e d e e d 221e 21πe e 1121π1πsinh111πn i x l x in x l n l x n i n n c f x x xl n i n in in ------+--===-+-=⋅⋅-+-=⋅⋅-+⎰⎰故f (x )的傅里叶级数的复数形式为()()()()π21π1sinh1e 1πn in xn in f x n ∞=-∞⋅--=+∑ (x ≠2k +1,k =0,±1,±2,…)24.求如图所示的三角形脉冲函数的频谱函数.解:()202202E T E t t T f t E T E t t T ⎧+-≤≤⎪⎪=⎨⎪-<≤⎪⎩()()02022e d 22e d e d 41cos 2i t Ti t i t T F f tt E E t t E t E t T T E T T ωωωωωω+∞--∞---=⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭⎛⎫=- ⎪⎝⎭⎰⎰⎰25.设生产q 件产品的总成本C (q )由下式给出:C (q )=0.01q 3-0.6q 2+13q .(1)设每件产品的价格为7元,企业的最大利润是多少?(2)当固定生产水平为34件时,若每件价格每提高1元时少卖出2件,问是否应该提高价格?如果是,价格应该提高多少? 解:(1) 利润函数为32322()70.010.6130.010.66()0.03 1.26L q q q q q q q q L q q q =-+-=-+-'=-+-令()0L q '=,得 231206000q q -+= 即 2402000q q -+=得20q =-(舍去) 2034.q =+≈此时, 32(34)0.01340.63463496.56L =-⨯+⨯-⨯=(元) (2)设价格提高x 元,此时利润函数为2()(7)(342)(34)220379.44L x x x C x x =+--=-++令()0L x '=, 得5x =(5)121.5696.56L =>故应该提高价格,且应提高5元.26.计算下列对面积的曲面积分: (1)4d 23s z x y ∑⎛⎫++ ⎪⎝⎭⎰⎰,其中∑为平面1234x y z ++=在第I 卦限中的部分; (2)()2d 22s xy xx z ∑--+⎰⎰,其中∑为平面2x +2y +z =6在第I 卦限中的部分;(3)()d s x y z ∑++⎰⎰,其中∑为球面x 2+y 2+z 2=a 2上z ≥h (0<h <a )的部分;(4)()d s xy yz zx ∑++⎰⎰,其中∑为锥面z =被柱面x 2+y 2=2ax 所截得的有限部分; (5)()222d s Rx y ∑--⎰⎰,其中∑为上半球面z =解:(1)4:423z x y ∑=--(如图10-69所示)图10-69d d d s x y x y ==故4d 4d d d d 23331232xy xy D D s x y x y z x y ∑⎛⎫=⋅=++ ⎪⎝⎭=⨯⨯=⎰⎰⎰⎰⎰⎰(2)∑:z =6-2x -2y (如图10-70所示)。

2019考研高等数学模拟训练试题(含参考答案)

2019考研高等数学模拟训练试题(含参考答案)

2019最新考研数学模拟试题(含答案)学校:__________考号:__________一、解答题1.设()()()f a f c f b ==,且a c b <<,()f x ''在[a ,b ]内存在,证明:在(a ,b )内至少有一点ξ,使()0f ξ''=.证明:()f x ''在[a ,b ]内存在,故()f x 在[a ,b ]上连续,在(a ,b )内可导,且()()()f a f c f b ==,故由罗尔定理知,1(,)a c ξ∃∈,使得1()0f ξ'=,2(,)c b ξ∃∈,使得2()0f ξ'=,又()f x '在12[,]ξξ上连续,在12(,)ξξ内可导,由罗尔定理知,12(,)ξξξ∃∈,使()0f ξ''=,即在(a ,b )内至少有一点ξ,使()0f ξ''=.2.求下列微分方程满足所给初始条件的特解:00(1)430,6,10x x y y y y y ==''''-+===;解:特征方程为 2430r r -+=解得 121,3r r ==通解为 312e e x x y c c =+312e 3e x x y c c '=+由初始条件得 121122643102c c c c c c +==⎧⎧⇒⎨⎨+==⎩⎩ 故方程所求特解为 34e 2e x x y =+.00(2)440,2,0;x x y y y y y ==''''++===解:特征方程为 24410r r ++=解得 1212r r ==- 通解为 1212()e x y c c x -=+22121e 22x x y c c c -⎛⎫'=-- ⎪⎝⎭由初始条件得 11221221102c c c c c =⎧=⎧⎪⇒⎨⎨=-=⎩⎪⎩故方程所求特解为 12(2)e x y x -=+.00(3)4290,0,15;x x y y y y y ==''''++===解:特征方程为 24290r r ++=解得 1,225r i =-±通解为 212e (cos5sin 5)x y c x c x -=+22112e [(52)cos5(52)sin 5]x y c c x c c x -'=-+--由初始条件得 112120052153c c c c c ==⎧⎧⇒⎨⎨-==⎩⎩ 故方程所求特解为 23e sin 5x y x -=.00(4)250,2,5x x y y y y =='''+===.解:特征方程为 2250r +=解得 1,25r i =±通解为 12cos5sin 5y c x c x =+125sin 55cos5y c x c x '=-+由初始条件得 112222551c c c c ==⎧⎧⇒⎨⎨==⎩⎩ 故方程所求特解为 2cos5sin 5y x x =+.3.设()()f x x a x ϕ=-,其中a 为常数,()x ϕ为连续函数,讨论()f x 在x a =处的可导性.解:()()()()()lim lim ()()()()()()lim lim ()x a x a x a x a f x f a x a x f a a x a x a f x f a a x x f a a x a x aϕϕϕϕ++--+→→-→→--'===----'===---. 故当()0a ϕ=时,()f x 在x a =处可导,且()0f a '= 当()0a ϕ≠时,()f x 在x a =处不可导.4.试求过点(3,8)且与曲线2y x =相切的直线方程.解:曲线上任意一点(,)x y 处的切线斜率为2k x =.因此过(3,8)且与曲线相切的直线方程为:82(3)y x x -=-,且与曲线的交点可由方程组解得282(3)y x x y x -=-⎧⎨=⎩ 为(2,4),(4,16)即为切点.故切线方程为:44(2),168(4).y x y x -=--=-。

2019新版考研高等数学模拟考试试题(含答案解析)

2019新版考研高等数学模拟考试试题(含答案解析)

2019最新考研数学模拟试题(含答案)学校:__________考号:__________一、解答题1.a , b , c 取何实数值才能使201lim sin x b x t c x ax →=-⎰ 成立. 解:因为0x →时,sin 0x ax -→而该极限又存在,故b =0.用洛必达法则,有220000,1,lim lim 2cos cos lim 2, 1.sin x x x a x x x x a x a a x→→→≠⎧⎪==⎨--=-=⎪-⎩ 所以 1,0,2a b c ===-或 1,0,0a b c ≠==.2.当Σ为xOy 面内的一个闭区域时,曲面积分()d d ,,R x y x y z ∑⎰⎰与二重积分有什么关系? 解:因为Σ:z =0,在xOy 面上的投影区域就是Σ故()()d d d d ,,,,0R x y R x y x y z x y ∑∑=±⎰⎰⎰⎰当Σ取的是上侧时为正号,Σ取的是下侧时为负号.3.求n 次多项式1101n n n n y a x a xa x a --=++++的n 阶导数. 解: 1()()1()()()()0100()()()()=()=!n n n n n n n n n n n y a x a x a x a a x a n --=++++⋅ 4.设()ln(1)f x x =+,求()().n fx 解:()1(1)!(ln )(1)n n nn x x --=-⋅ ()()1(1)!()[ln(1)](1)(1)n n n nn f x x x --∴=+=-⋅+.5.求下列函数的高阶导数:⑴ e sin ,x y x =⋅求(4)y; ⑵ 22e ,x y x =⋅求(6)y ; ⑶ 2sin ,y x x =⋅求(80)y .解:⑴e sin e cos e (sin cos )x x xy x x x x '=⋅+⋅=+(4)e (sin cos )e (cos sin )2cos e 2e (cos sin )2e (cos sin )2e (sin cos )=4e sin x x xx x x x y x x x x x y x x y x x x x x''=++-=⋅'''=-=-+---⑵ 6(6)2(6)260(e )()i x i i i y C x -==∑22(6)22(5)22(4)622524222(e )6()(e )15()(e )2e 622e 1522e 32e (21215)x x x x x xx x x x x x x x '''=++=+⋅⋅+⋅⋅=++⑶ 80(80)2()(80)800()(sin )i i i i y C x x -==∑2(80)(79)(78)22(sin )802(sin )31602(sin )πππsin(80)+160sin (79)6320sin (78)222sin 160cos 6320sin .x x x x x x x x x x x x x x x =+⋅⋅+⋅⋅=⋅+⋅⋅+⋅++⋅=--6.球的半径以速率v 改变,球的体积与表面积以怎样的速率改变?解: 324d π,π,.3d r V r A r v t=== 2d d d 4πd d d d d d 8πd d d V V r r v t r t A A r r v t r t=⋅=⋅=⋅=⋅7.一点沿曲线2cos r a ϕ=运动,它的极径以角速度ω旋转,求这动点的横坐标与纵坐标的变化率.解: 22cos 2cos sin sin 2x a y a a ϕϕϕϕ⎧=⎨==⎩ d d d 22cos (sin )2sin 2,d d d d d d 2cos 22cos .d d d x x a a t t y y a a t tϕϕϕωωϕϕϕϕωωϕϕ=⋅=⋅⋅-⋅=-=⋅=⋅=8.求下列初等函数的边际函数、弹性和增长率:(1) y =ax +b ;(其中a ,b ∈R ,a ≠0)解:y ′=a 即为边际函数.弹性为: 1Ey ax a x Ex ax b ax b =⋅⋅=++,。

2019考研高等数学模拟考试题目(含答案解析)

2019考研高等数学模拟考试题目(含答案解析)

2019最新考研数学模拟试题(含答案)学校:__________考号:__________一、解答题1.计算底面是半径为R 的圆,而垂直于底面一固定直径的所有截面都是等边三角形的立体体积.见图17.(17)解:以底面上的固定直径所在直线为x 轴,过该直径的中点且垂直于x 轴的直线为y 轴,建立平面直角坐标系,则底面圆周的方程为:x 2+y 2=R 2.过区间[-R ,R ]上任意一点x ,且垂直于x 轴的平面截立体的截面为一等边三角形,若设与x 对应的圆周上的点为(x ,y ),则该等边三角形的边长为2y ,故其面积等于A ()x =34()2y 2=3y 2=3()R 2-x 2 ()-R ≤x ≤R 从而该立体的体积为 V =⎠⎛-R R A ()x d x =⎠⎛-R R 3()R 2-x 2d x=433R 3.2.求下列函数在所示点的导数:(1)()sin cos t f t t ⎛⎫= ⎪⎝⎭,在点π4t =; 解:()π4f ⎛⎫⎪'= ⎝ (2)()22,x y g x y x y +⎛⎫= ⎪ ⎪+⎝⎭,在点()(),1,2x y =;解:()111,224g ⎛⎫= ⎪⎝⎭(3)sin cos u v u T u v v v ⎛⎫⎛⎫ ⎪= ⎪ ⎪⎝⎭ ⎪⎝⎭,在点π1uv ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;解:1010101T -⎛⎫⎛⎫⎪'=- ⎪ ⎪π⎝⎭ ⎪⎝⎭(4)2222232ux yv x x y w x y y⎧=-⎪=-⎨⎪=-⎩在点()3,2-.解:6266362-⎛⎫⎪- ⎪ ⎪--⎝⎭3.已知()f x ''存在,求22d d yx :⑴ 2()y f x =; ⑵ ln ()y f x =.解:⑴ 22()y xf x ''=222222()22()2()4()y f x x xf x f x x f x '''''=+⋅'''=+⑵ ()()f x y f x ''=22()()[()]()f x f x f x y f x '''-''=4.设函数()f x 在[,]a b 上连续,在(,)a b 内可导,且lim(),x a f x A +→'=试证:()f a A +'=. 证明:()()()lim x a f x f a f a x a ++→-'=-()lim lim ()1x a x a f x f x A ++→→''===.5.球的半径以速率v 改变,球的体积与表面积以怎样的速率改变? 解: 324d π,π,.3d rV r A r v t ===2d d d 4πd d d d d d 8πd d d VVrr vt r t A A rr v t r t =⋅=⋅=⋅=⋅。

2019考研高等数学模拟训练试题(含解析)

2019考研高等数学模拟训练试题(含解析)

2019最新考研数学模拟试题(含答案) 学校:__________ 考号:__________一、解答题1.设y =f (x )在x =x 0的某邻域内具有三阶连续导数,如果00()0,()0f x f x '''==,而0()0f x '''≠,试问x =x 0是否为极值点?为什么?又00(,())x f x 是否为拐点?为什么? 答:因00()()0f x f x '''==,且0()0f x '''≠,则x =x 0不是极值点.又在0(,)U x δ中,000()()()()()()f x f x x x f x x f ηη''''''''''=+-=-,故()f x ''在0x 左侧与0()f x '''异号,在0x 右侧与0()f x '''同号,故()f x 在x =x 0左、右两侧凹凸性不同,即00(,())x f x 是拐点.2.求下列隐函数的导数:⑴ 3330x y axy +-=; ⑵ ln()x y xy =;⑶ e e 10y x x y -=; ⑷ 22ln()2arctany x y x +=; ⑸ e x y xy +=解:⑴ 两边求导,得:2233330x y y ay axy ''+⋅--=解得 22ay x y y ax-'=-. ⑵ 两边求导,得:11ln()()y xy y y xy xy ''=+⋅+ 解得 (ln ln 1)x y y x x y -'=++. ⑶ 两边求导,得:e e e e 0y y x x x y y y ''+⋅++=解得 e e =e ey xy x y y x +'-+. ⑷ 两边求导,得:222211(22)21()y x y x yy y x y x x'-'⋅+=⋅⋅++ 解得 =x y y x y+'-. ⑸ 两边求导,得:e (1)x y y xy y +''+=+解得 e =e x y x yy y x ++-'-.3.用对数求导法求下列函数的导数:⑴y = 解:1(ln )[ln(2)4ln(3)5ln(1)]2y y y y x x x '''=⋅=⋅++--+45(3)145[](1)2(2)31x x x x x -=--++-+ ⑵ cos (sin );x y x =解: 2cos (ln )(cos ln sin )1 [(sin )ln sin cos cos ]sin cos (sin )(sin ln sin )sin x y y y y x x y x x x x x x x x x x'''==⋅=-+⋅⋅=- ⑶2x y = 解:211(ln )[2ln(3)ln(5)ln(4)]22111 ].32(5)2(4)x y y y y x x x x x x x '''==++-+--=+--++-4.求下列函数在指定点的高阶导数:⑴()f x =求(0)f ''; ⑵ 21()e ,x f x -=求(0)f '',(0)f ''';⑶ 6()(10),f x x =+求(5)(0)f ,(6)(0)f .。

2019新版考研高等数学模拟考试考题(含答案解析)

2019新版考研高等数学模拟考试考题(含答案解析)
证:令 ,由 在 上连续知, 在 上连续,且
若 则 都是方程 的根,
若 ,则 ,由零点定理知,至少 ,使 ,
即 ,即 是方程 的根,
综上所述,方程 在 内至少有一根.
15.设星形线的参数方程为x=acos3t,y=asin3t,a>0求
d)星形线所围面积;
e)绕x轴旋转所得旋转体的体积;
f)星形线的全长.
(3)函数在x=(2n+1)π (n∈z)处间断,在间断点处,级数收敛于0,当x≠(2n+1)π时,由f(x)为奇函数,有an=0,(n=0,1,2,…)
所以
(x≠(2n+1)π,n∈z)
(4)因为 作为以2π为周期的函数时,处处连续,故其傅里叶级数收敛于f(x),注意到f(x)为偶函数,有bn=0(n=1,2,…),
2019最新考研数学模拟试题(含答案)
学校:__________姓名:__________班级:__________考号:__________
题号

总分
得分
一、解答题
1.求下列各曲线所围图形的面积:
(1)与x2+y2=8(两部分都要计算);
解:如图D1=D2
解方程组得交点A(2,2)
(1)
∴,

(2)与直线y=x及x=2;
(9)极坐标曲线ρ=asin3φ;
解:

(9)
(10)ρ=2acosφ;
解:

(10)
2.设 ,求 .
解:
3.设 ,其中a为常数, 为连续函数,讨论 在 处的可导性.
解:
.
故当 时, 在 处可导,且
当 时, 在 处不可导.
4.试求过点(3,8)且与曲线 相切的直线方程.

2019新版考研高等数学模拟考试考题(含答案)

2019新版考研高等数学模拟考试考题(含答案)

2019最新考研数学模拟试题(含答案) 学校:__________ 考号:__________一、解答题1.证明:(1) 120lim 0;n n x →∞=⎰ 证明:当102x ≤≤时,0,n n x ≤≤ 于是1112200110d (),12n n x x n +≤≤=⋅+⎰⎰ 而111lim ()0,12n n n +→∞⋅=+ 由夹逼准则知:120lim 0.n n x →∞=⎰ (2) π40lim sin d 0.n n x x →∞=⎰证明:由中值定理得π440ππsin d sin (0)sin ,44n n x x ξξ=⋅-=⎰其中π0,4ξ≤≤ 故π40πlim sin d lim sin 0 ( 0sin 1).4n n n n x x ξξ→∞→∞==≤<⎰2.求下各微分方程的通解:(1)22e x y y y '''+-=;解: 2210r r +-=1211,2r r ∴=-= 得相应齐次方程的通解为 1212e e x xy c c -=+令特解为*e x y A =,代入原方程得 2e e e 2e x x x x A A A +-=,解得1A =, 故*e x y =,故原方程通解为 212e e e xx x y c c -=++. 2(2)25521y y x x '''+=--;解:2250r r +=1250,2r r ==- 对应齐次方程通解为 5212ex y c c -=+ 令*2()y x ax bx c =++, 代入原方程得222(62)5(32)521ax b ax bx c x x ++++=--比较等式两边系数得137,,3525a b c ==-= 则 *321373525y x x x =-+ 故方程所求通解为 532212137e 3525x y c c x x x -⎛⎫=++-+ ⎪⎝⎭. (3)323e x y y y x -'''++=;解:2320r r ++=121,2r r =-=-,对应齐次方程通解为 212e e x x y c c --=+令*()e xy x Ax B -=+代入原方程得 (22)e 3e x x Ax B A x --++=解得 3,32A B ==- 则 *23e 32x y x x -⎛⎫=-⎪⎝⎭ 故所求通解为 22123e e e 32x x x y c c x x ---⎛⎫=++- ⎪⎝⎭. (4)25e sin 2x y y y x '''-+=;解:2250r r -+=1,212r i =±相应齐次方程的通解为12e (cos 2sin 2)x y c x c x =+令*e (cos 2sin 2)x y x A x B x =+,代入原方程并整理得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019最新考研数学模拟试题(含答案)学校:__________考号:__________一、解答题1.一平面曲线过点(1,0),且曲线上任一点(x , y )处的切线斜率为2x -2,求该曲线方程.解:依题意知:22y x '=-两边积分,有22y x x c =-+又x =1时,y =0代入上式得c =1,故所求曲线方程为221y x x =-+.2.设()()(),,,,,,w f x y z u g x z v h x y ===,求,,w w w x y z∂∂∂∂∂∂. 解:,w w w v w w u w v w w u x x v x y u y v x z u z∂∂∂∂∂∂∂∂∂∂∂∂=+=+=∂∂∂∂∂∂∂∂∂∂∂∂,3.球的半径以速率v 改变,球的体积与表面积以怎样的速率改变?解: 324d π,π,.3d r V r A r v t=== 2d d d 4πd d d d d d 8πd d d V V r r v t r t A A r r v t r t=⋅=⋅=⋅=⋅4.一点沿曲线2cos r a ϕ=运动,它的极径以角速度ω旋转,求这动点的横坐标与纵坐标的变化率.解: 22cos 2cos sin sin 2x a y a a ϕϕϕϕ⎧=⎨==⎩d d d 22cos (sin )2sin 2,d d d d d d 2cos 22cos .d d d x x a a t t y y a a t tϕϕϕωωϕϕϕϕωωϕϕ=⋅=⋅⋅-⋅=-=⋅=⋅=5.计算抛物线y =4x -x 2在它的顶点处的曲率.解:y =-(x -2)2+4,故抛物线顶点为(2,4)当x =2时, 0,2y y '''==- ,故 23/22.(1)y k y ''=='+6.求曲线y =ln x 在与x 轴交点处的曲率圆方程.解:由ln 0y x y =⎧⎨=⎩解得交点为(1,0). 1112111,1 1.x x x x y x y x ===='==''=-=- 故曲率中心 212(1,0)(1)312x y y x y y y y αβ=⎧''⎡⎤+==-⎪⎢⎥''⎣⎦⎪⎨'⎡⎤+⎪==-+⎢⎥⎪''⎣⎦⎩曲率半径为R =故曲率圆方程为:22(3)(2)8x y -++=.7.设总收入和总成本分别由以下两式给出:2()50.003,()300 1.1R q q q C q q =-=+其中q 为产量,0≤q ≤1000,求:(1)边际成本;(2)获得最大利润时的产量;(3)怎样的生产量能使盈亏平衡?解:(1) 边际成本为:()(300 1.1) 1.1.C q q ''=+=(2) 利润函数为2()()() 3.90.003300() 3.90.006L q R q C q q q L q q=-=--'=- 令()0L q '=,得650q =即为获得最大利润时的产量.(3) 盈亏平衡时: R (q )=C (q )即 3.9q -0.003q 2-300=0q 2-1300q +100000=0解得q =1218(舍去),q =82.8.利用洛必达法则求下列极限:⑴ πsin 3lim tan 5x x x →; ⑵ 3π2ln sin lim (2)x x x π→-; ⑶ 0e 1lim (e 1)x x x x x →---; ⑷ sin sin lim x a x a x a→--; ⑸ lim m mn n x a x a x a →--; ⑹ 1ln(1)lim cot x x arc x→+∞+; ⑺ 0ln lim cot x x x +→; ⑻ 0lim sin ln x x x +→; ⑼ 0e 1lim()e 1x x x x →--; ⑽ 01lim(ln )x x x+→; ⑾ 2lim (arctan )πx x x →+∞⋅; ⑿ 10lim(1sin )x x x →+; ⒀ 0lim[ln ln(1)]x x x +→⋅+; ⒁lim )x x →+∞; ⒂ sin 0e e lim sin x x x x x →--; ⒃ 210sin lim()x x x x→; ⒄ 1101lim[(1)]e x x x x →+.解:⑴ 原式=2π3cos33lim 5sec 55x x x →=-. ⑵ 原式=2ππ221cot 1csc 1lim lim 4π-2428x x x x x →→--=-=--. ⑶ 原式=000e 1e 11lim lim lim e 1e 2e e 22x x x x x x x x x x x x →→→-===-+++. ⑷ 原式=cos lim cos 1x a x a →=. ⑸ 原式=11lim m m n n x a mx m a nx n---→=. ⑹ 原式=22221()11lim lim 111x x x x x x x x x →+∞→+∞⋅-++==+-+. ⑺ 原式=22001sin lim lim 0csc x x x x x x++→→=-=-. ⑻ 原式=001ln lim lim 0csc csc cot x x x x x x x++→→==-⋅.⑼ 原式22200e e e e lim =lim (e 1)x x x x x x x x x x x →→----=-202e e 1=lim 2x x x x→-- 204e e 3=lim 22x x x →-=. ⑽ 原式=0lim(1ln )xx x +→- 令(1ln )xy x =- 00020011()ln(1ln )1ln lim ln lim lim 111 lim lim 011ln x x x x x x x x y x xx x x+++++→→→→→⋅---==-===-- ∴原式=00lim e 1x y +→==. ⑾ 令2(arctan )πx y x =⋅,则 2222211lnln arctan πarctan 1lim ln lim lim 1112 lim arctan 1πx x x x x x x y x xx x x →+∞→+∞→+∞→+∞+⋅+==-=-⋅=-+ ∴原式=2πe -.⑿ 令1(1sin )x y x =+,则000cos ln(1sin )1sin limln lim lim 11x x x xx x y x →→→++=== ∴原式=e =e '.⒀ 原式00ln lim(ln )lim 1x x x x x x ++→→=⋅=0021=lim =lim()01x x x x x++→→-=- ⒁原式lim x x→+∞= 2234232311111=lim (1)(23)=33x x x x x x x x ----→+∞+++⋅++⋅⒂ 原式sin sin 0e (e 1)lim sin x x x x x x -→-=-sin 00e (sin )=lim =e =1sin x x x x x x→⋅-- ⒃ 令12sin ()x x y x =,则 200023002220011cos ln sin ln sin lim ln lim lim 2cos sin cos sin lim lim 2sin 2cos sin cos 1 lim lim .666x x x x x x x x x x xx y x xx x x x x x x x x x x x x x x x →→→→→→→--==--==---===- ∴原式=16e -.⒄ 令111[(1)]e x x y x =+,则11ln [ln(1)1]x y x x=+- 2000011ln(1)1lim ln lim lim 2111 lim .212x x x x x x xy x x x →→→→-+-+===-=-+9.设21lim 51x x mx n x →++=-,求常数m , n 的值. 解:要使21lim 51x x mx n x →++=-成立,则21lim()0x x mx n →++=,即10m n ++= 又2112lim lim 2511x x x mx n x m m x →→+++==+=- 得3,4m n ==-10.求下列函数的极值:(1) 223y x x =-+;解: 22y x '=-,令0y '=,得驻点1x =.又因20y ''=>,故1x =为极小值点,且极小值为(1)2y =.(2) 3223y x x =-;解: 266y x x '=-,令0y '=,得驻点120,1x x ==, 126y x ''=-,010,0x x y y ==''''<>,故极大值为(0)0y =,极小值为(1)1y =-.(3) 3226187y x x x =--+;解: 2612186(3)(1)y x x x x '=--=-+,令0y '=,得驻点121,3x x =-=. 1212y x ''=-,130,0x x y y =-=''''<>,故极大值为(1)17y -=,极小值为(3)47y =-.(4) ln(1)y x x =-+;解: 1101y x'=-=+,令0y '=,得驻点0x =. 201,0(1)x y y x =''''=>+,故(0)0y =为极大值. (5) 422y x x =-+;解: 32444(1)y x x x x '=-+=-,令0y '=,得驻点1231,0,1x x x =-==. 210124, 0,0,x x y x y y =±=''''''=-+<>故(1)1y ±=为极大值,(0)0y =为极小值.(6) y x =+解: 1y '=-,令0y '=,得驻点13,4x =且在定义域(,1]-∞内有一不可导点21x =,当34x >时, 0y '<;当34x <时, 0y '>,故134x =为极大值点,且极大值为35()44y =. 因为函数定义域为1x ≤,故1x =不是极值点. (7)y =解:y '=,令0y '=,得驻点125x =.当125x >时, 0y '<;当125x <,0y '>,故极大值为12()5y =(8) 223441x x y x x ++=++; 解: 2131x y x x +=+++,22(2)(1)x x y x x -+'=++, 令0y '=,得驻点122,0x x =-=.2223(22)(1)2(21)(2)(1)x x x x x x y x x --+++++''=++200,0x x y y =-=''''><,故极大值为(0)4y =,极小值为8(2)3y -=. (9) e cos x y x =;解: e (cos sin )x y x x '=-,令0y '=,得驻点ππ (0,1,2,)4k x k k =+=±±. 2e sin x y x ''=-,ππ2π(21)π440,0x k x k y y =+=++''''<>,故2π2π 4k x k =+为极大值点,其对应的极大值为π2π42()e 2k k y x +=;21π(21)π 4k x k +=++为极小值点,对应的极小值为π(21)π421()e 2k k y x +++=-. (10) 1xy x =;解: 11211ln (ln )x x x y x x x x x-''==, 令0y '=,得驻点e x =. 当e x >时, 0y '<,当e x <时, 0y '>, 故极大值为1e (e)e y =.(11) 2e ex x y -=+; 解: 2e e x x y -'=-,令0y '=,得驻点ln 22x =-. ln 222e e ,0x x x y y -=-''''=+>,故极小值为ln 2()2y -=. (12) 232(1)y x =--;解:y '=. y 的定义域为(,)-∞+∞,且y 在x =1处不可导,当x >1时0y '<,当x <1时, 0y '>,故有极大值为(1)2y =. (13) 1332(1)y x =-+;解:y '=.无驻点.y 在1x =-处不可导,但y '恒小于0,故y 无极值. (14) tan y x x =+.解: 21sec 0y x '=+>, y 为严格单调增加函数,无极值点.11.设12()()()()0n p x f x f x f x =≠,且所有的函数都可导,证明: 1212()()()()()()()()n n f x f x f x P x P x f x f x f x ''''=+++ 证明: 1212121212()1[()()()()()()()()()]()()()()() .()()()n n n n n P x f x f x f x f x f x f x f x f x f x P x P x f x f x f x f x f x f x ''''=+++'''=+++12.问a ,b 为何值时,点(1,3)为曲线y =ax 3+bx 2的拐点?解:y′=3ax 2+2bx , y″=6ax +2b 依题意有3620a b a b +=⎧⎨+=⎩解得 39,22a b =-=. 13.垂直向上抛一物体,其上升高度与时间t 的关系式为:21()10(m),2h t t gt =-求: ⑴ 物体从t =1(s)到t =1.2(s)的平均速度:解:11112 1.4410(1.2)(1)220.78 (m s )1.210.2g g h h v --⨯-+-===-⋅- ⑵ 速度函数v (t );解:()()10v t h t gt '==-.⑶ 物体何时到达最高.解:令()100h t gt '=-=,得10 (s)t g =, 即物体到达最高点的时刻为10 s.t g=14.用分部积分法求下列不定积分:2(1)sin d x x x ⎰;解:原式=222dcos cos 2cos d cos 2dsin x x x x x x x x x x x -=-+⋅=-+⎰⎰⎰2cos 2sin 2cos .x x x x x c =-+++(2)e d x x x -⎰;解:原式=de e e d e e .x x x x x x x x x c ------=-+=--+⎰⎰(3)ln d x x x ⎰;解:原式=222211111ln d ln d ln 22224x x x x x x x x x c ⋅=-=-+⎰⎰. 2(4)arctan d x x x ⎰;解:原式=3332111arctan d arctan d 3331x x x x x x x =-+⎰⎰ 322111arctan ln(1).366x x x x c =-+++ (5)arccos d x x ⎰;解:原式=arccos arccos x x x x x c +=.2(6)tan d x x x ⎰;解:原式=22211(sec 1)d d tan tan tan d 22x x x x x x x x x x x -=-=--⎰⎰⎰ 21tan ln .cos 2x x x c x =+-+ (7)e cos d x x x -⎰;解:e cos d e dsin e sin e sin d x x x x x x x x x x ----==⋅+⎰⎰⎰e sin e dcos e sin e cos e cos d x x x x x x x x x x x -----=-=--⎰⎰ ∴原式=1e (sin cos ).2x x x c --+ (8)sin cos d x x x x ⎰;解:原式=1111sin 2d d cos 2cos 2cos 2d 2444x x x x x x x x x =-=-+⎰⎰⎰ 11cos 2sin 248x x x c =-++. 32(ln )(9)d x x x⎰; 解:原式=332111(ln )d (ln )3(ln )d x x x x x x ⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭⎰⎰32131(ln )(ln )6ln d x x x x x x ⎛⎫=--- ⎪⎝⎭⎰ 321366(ln )(ln )ln .x x x c x x x x=----+(10)x . 解:原式tan 23sec d .x a t a t t =⎰又 32sec d sec (tan 1)d tan d(sec )sec d t t t t t t t t t =+=+⎰⎰⎰⎰ 3tan sec sec d ln sec tan t t t t t t =⋅-++⎰所以 311sec d tan sec ln sec tan 22t t t t c t t '=+++⎰ 故11ln .22x c x =+15.用定义判断下列广义积分的敛散性,若收敛,则求其值:22π11(1)sin d x x x+∞⎰; 解:原式=22ππ1111lim sin d lim cos lim cos 1.bb b b b x bx x →+∞→+∞→+∞⎛⎫-=== ⎪⎝⎭⎰ 2d (2);22x x x +∞-∞++⎰ 解:原式=002200d(1)d(1)arctan(1)arctan(1)(1)1(1)1x x x x x x +∞+∞-∞-∞+++=+++++++⎰⎰πππππ.4242⎛⎫=-+-=- ⎪⎝⎭ 0(3)e d n x x x +∞-⎰ (n 为正整数)解:原式=1000e d de e n x n x n x n x x x x +∞+∞+∞----+-=-⎰⎰1000e d !e d !n x x n x x n x n +∞+∞---=+===⎰⎰0(4)(0)aa >⎰; 解:原式=00000πlim lim arcsin lim arcsin .12a a x a a εεεεεε+++--→→→⎛⎫===- ⎪⎝⎭⎰e 1(5)⎰;解:原式=()e e 0110πlim arcsin(ln )lim lim arcsin .ln(e )2x εεεεεε+++--→→→===-⎰1(6)⎰.解:原式=110+⎰22122111202lim 2lim πππlim lim 2222π.424εεεεε++-→→→→=+⎛⎫=+=⋅+=- ⎪⎝⎭⎰16.已知sin πd 2x x x +∞=⎰,求: 0sin cos (1)d ;x xx x+∞⎰解:(1)原式=001sin(2)1sin πd(2)d .2224x t x t x t +∞+∞==⎰⎰22sin (2) d .x x x+∞⎰解:222002200200020000sin 1cos 2d d 21cos 2d d 22111d cos 2d 2211111d cos 2dcos2222111sin 2cos 2d2222ππ0.22x x x x x xx x x x x x x x xx x x x x xx x xx x x +∞+∞+∞+∞+∞+∞+∞+∞+∞+∞+∞-==-=+=+⋅-⎡⎤=-+⋅+⎢⎥⎣⎦=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰17.(1)解:112xn n=∞相当于P 级数中P x = 当1P >时112p n n =∞收敛,1P ≤时,112pn n =∞发散.从而当1x >时,112x n n =∞收敛,1x ≤时,112xn n =∞发散. 从而112xn n =∞的收敛域为(1,)+∞ 从而111(1)2n x n n+=∞-的收敛域为(0,1)(1,)+∞. (2)解:当1x >时,112x n n =∞收敛,则111(1)2n xn n+=∞-收敛. 当0x ≤时,111(1)2n x n n+=∞-发散,(0)n U当01x <<时,111(1)2n x n n+=∞-收敛.(莱布尼兹型级数)18.将下列函数f (x )展开为傅里叶级数: (1)()()πππ42x f x x =--<<(2)()()sin 02πf x x x =≤≤解:(1) ()ππ0-ππ11ππcos d d ππ422x a f x nx x x -⎛⎫==-= ⎪⎝⎭⎰⎰ []()ππππ-π-πππ1π11cos d cos d x cos d π4242π1sin 001,2,4n x a nx x nx x nx xnx n n--⎛⎫=-=- ⎪⎝⎭=-==⎰⎰⎰()ππππ-π-π1π11sin d sin d xsin d π4242π11n n x b nx x nx x nx x n-⎛⎫=-=- ⎪⎝⎭=-⋅⎰⎰⎰故()()1πsin 14n n nxf x n∞==+-∑ (-π<x <π)(2)所给函数拓广为周期函数时处处连续, 因此其傅里叶级数在[0,2π]上收敛于f (x ),注意到f (x )为偶函数,有b n =0,()ππ0πππ011cos0d sin d ππ24sin d ππa f x x x x x x x --====⎰⎰⎰()()()()()()ππ0ππ02222cos d sin cos d ππ1sin 1sin 1d π211π10,1,3,5,4,2,4,6,π1n na f x nx x x nx xn x n x x n n n n -===+--⎡⎤⎣⎦-⎡⎤=+-⎣⎦-=⎧⎪-=⎨=⎪-⎩⎰⎰⎰所以()()2124cos2ππ41n nx f x n ∞=-=+-∑ (0≤x ≤2π)19.求下列函数的傅里叶积分:(1)()e ,00,0t t f t t -⎧≥=⎨<⎩(2)()1,101,010,t f t t --<<⎧⎪=<<⎨⎪⎩其他解:(1)()()02e d e e d 1111i t t i t Ff t t t i i ωωωωωω+∞+∞----∞==⋅-==++⎰⎰()()2220111e d e d 2π2π11cos sin d 2π11cos sin d π1i ti t i f F t t t t t t t ωωωωωωωωωωωωωωω+∞+∞-∞-∞+∞-∞+∞-==++=++=+⎰⎰⎰⎰ (2) ()()()()110e d d e d e 21cos i t i t i t F f tt t t i ωωωωωω+∞--∞---==+--=⎰⎰⎰()()()()()()()()01121cos e d e d 2π2π11cos d cos sin π1sin 1cos d π2sin 1cos d 0,1πi ti t f F t i t i t i t t t ωωωωωωωωωωωωωωωωωωωω+∞+∞-∞-∞+∞-∞+∞-∞+∞-==-=+-=-=≠⎰⎰⎰⎰⎰20.求面密度为0ρ的均匀半球壳x 2+y 2+z 2=a 2(z ≥0)对于z 轴的转动惯量。

相关文档
最新文档