考研数学之高等数学 加强课讲义(四)
高等数学讲义第4集——无穷级数
幂级数的收敛半径及其求法
定理:如幂级数
anxn
n0
系数满足 lim n
an 1 an
(或 lim n
n
an
)
则(1) 0
R1
(2) 0
R
(3)
R0
注意:当 x R
a
n
x
n
的敛散性不能确定,要讨论
an
(R)n
n0
n0
例 6:求下列幂级数的收敛域
(1) n 1
3n
x
n
n1
n
一、 知识网络图
常数项级数的一般概念和性质
常数项级数交正几错 项何级 级级数 数数,与条p级件数和绝对收敛
幂级数收敛半径
幂级数函数的幂级数展开
幂级数的和函数
傅里叶级数函三数角在级对数称区间上的的傅里叶展开
二、典型错误分析
例 1、判断级数 1 是否收敛。
n1 2n 1
[错解]
∵
lim
n
h0
f
n
x
n!
0
x
x
0
n
f x0
f
x
1!
0
x
x
0
f
x
2!
0
x
x
0
2
f n x 0 x
n!
x 0 n
称为 f x在 x x 0 点的泰勒级数
特别当 x 0 0 ,则级数
f n0 x n
f 0
f 0 x
f 0 x 2
f n0 x n
h0 n!
1!
2!
n!
称为 f x的麦克劳林级数
2、函数 f x展开成泰勒级数的条件 x x 0 R
考研数学之高等数学讲义第四章(考点知识点+概念定理总结)
第四章 常微分方程§4.1 基本概念和一阶微分方程(甲) 内容要点一、基本概念1、 常微分方程和阶2、 解、通解和特解3、 初始条件4、 齐次线性方程和非齐次线性方程二、变量可分离方程及其推广1、 0)(()()(≠=y Q y Q x p dx dy )2、齐次方程:⎪⎭⎫ ⎝⎛=x y f dx dy 三、一阶线性方程及其推广1、)()(x Q y x P dxdy =+ 2、)1,0()()(≠=+ααy x Q y x P dx dy四、全微分方程及其推广(数学一)1、 yP x Q dy y x Q dx y x P ∂∂=∂∂=+满足,0),(),( 2、 yRP x RQ y x R y p x Q dy y x Q dx y x P ∂∂=∂∂∂∂≠∂∂=+)()(),(,0),(),(,使但存在§4.2 特殊的高阶微分方程(数学四不要)(甲)内容要点二、线性微分方程解的性质与结构我们讨论二阶线性微分方程解的性质与结构,其结论很容易地推广到更高阶的线性微分方程。
二阶齐次线性方程 0)()(=+'+''y x q y x p y (1) 二阶非齐次线性方程 )()()(x f y x q y x p y =+'+'' (2)1、 若)(),(21x y x y 为二阶齐次线性方程的两个特解,则它们的线性组合)()(2211x y C x y C +(21,C C 为任意常数)仍为同方程的解,特别地,当)()()(21为常数λλx y x y ≠,也即)()(21x y x y 与线性无关时,则方程的通解为)()(2211x y C x y C y +=。
2、 若()y x 为二阶非齐次线性方程的一个特解,而)()(2211x y C x y C +为对应的二阶齐次线性方程的通解(21,C C 为独立的任意常数)则1122()()()y y x C y x C y x =++是此二阶非齐次线性方程的通解。
数学强化班(武忠祥)-高数第四章 多元函数微分学
第四章 多元函数微分学第一节 重极限、连续、偏导数、全微分(概念,理论)1.重极限 A y x f y y x x =→→),(lim 00 ),(),(00y x y x →是以“任意方式”题型一:求极限常用方法:1) 利用极限性质(四则运算法则,夹逼原理);2) 消去分母中极限为零的因子(有理化,等价无穷小代换); 3) 利用无穷小量与有界变量之积为无穷小量. 例4.1求下列极限1. .||||lim2200y x y x y x ++→→ 2. 22220011limyx y x y x +-+→→3. 42200)sin(lim y x xy xy y x +→→ 解:1。
由于y x yy x x y x y y x x y x y x +=+≤+++=++≤2222220, 而0)(lim 0=+→→y x y x ,由夹逼原理知0lim2200=++→→y x y x y x . 2.方法1 将分子有理化原式.0)(2lim )11)((lim22220022222200=+=+++=→→→→y x y x y x y x y x y x y x . 方法2 当0→x ,0→y 时,222221~11y x y x -+,则 原式0)(21lim 222200=+=→→y x y x y x . 3.方法1 由于21422≤+y x xy ,即为有界量,而0s i n l i m 0=→xy x ,即为无穷小量,则原式0=.方法2 由于0s i n 21s i n 0422→≤+≤xy y x xy xy (当0→x ,0→y 时), 由夹逼原理知0sin lim 42200=+→→y x xyxy y x . 题型二 证明重极限不存在常用方法:沿两种不同路径极限不同(通常可取过点),(00y x 的直线) 例4.2 证明下列重极限不存在1) ;lim 2200y x xyy x +→→ 2) ;lim 42200y x xy y x +→→ 证明:1)取直线kx y =,让点),(y x 沿直线kx y =趋于)0,0(点,此时有2222202201lim lim k kx k x kx y x xy x x kx y +=+=+→→=. 则重极限2200limyx xyy x +→→不存在. 注:本题中的方法是证明重极限不存在的常用方法. 2)取直线kx y =,则01lim lim lim 24204423204220=+=+=+→→→=x k x k x k x x k y x xy x x x kx y . 若沿过原点的抛物线2y x =趋于)0,0(点时,就有21lim lim 444042202=+=+→→=y y y y x xy y y y x . 故 极限4220lim y x xy y x +→→不存在.2.连续 ),(),(lim 0000y x f y x f y y x x =→→例4.3 判断函数⎪⎩⎪⎨⎧=≠+=)0,0(),()0,0(),(),(22y x a y x y x xy y x f 的连续性.解 因为 y yx xy ≤+≤220,则.0lim22=+→→yx xy y x若),(,0y x f a =处处连续;若),(,0y x f a ≠除点)0,0(外处处连续。
2021年考研 -数学基础班-高等数学-第四讲-多元函数微分学
2021数学基础班-高等数学-第四讲-多元函数微分学
2021数学基础班-高等数学-第四讲-多元函数微分学
2021数学基础班-高等数学-第四讲-多元函数微分学
2021数学基础班-高等数学-第四讲-多元函数微分学
2021数学基础班-高等数学-第四讲-多元函数微分学
2021数学基础班-高等数学-第四讲-多元函数微分学
2021数学基础班-高等数学-第四讲-多元函数微分学
2021数学基础班-高等数学-第四讲-多元函数微分学
2021数学基础班-高等数学-第四讲-多元函数微分学
2021数学基础班-高等数学-第四讲-多元函数微分学
2021数学基础班-高等数学-第四讲-多元函数微分学
2021数学基础班-高等数学-第四讲-多元函数微分学
2021数学基础班-高等数学-第四讲-多元函数微分学
2021数学基础班-高等数学-第四讲-多元函数微分学
2021数学基础班-高等数学-第四讲-多元函数微分学
2021数学基础班-高等数学-第四讲-多元函数微分学
2021数学基础班-高等数学-第四讲-多元函数微分学
2021数学基础班-高等数学-第四讲-多元函数微分学
2021数学基础班-高等数学-第四讲-多元函数微分学
2021数学基础班-高等数学-第四讲-多元函数微分学
2021数学基础班-高等数学-第四讲-多元函数微分学
2021数学基础班-高等数学-第四讲-多元函数微分学
2021数学基础班-高等数学-第四讲-多元函数微分学
2021数学基础班-高等数学-第四讲-多元函数微分学
2021数学基础班-高等数学-第四讲-多元四讲-多元函数微分学
2021数学基础班-高等数学-第四讲-多元函数微分学
高等数学强化班讲义
高等数学(强化班)讲义第一章 函数、极限、连续一、重、难点内容归纳1. 函数概念、性质1) 会讨论分段函数在“接头点”处极限、连续、导数、积分。
2) 会求分段函数的复合函数。
3) 熟悉函数的性态——单调性,奇偶性,周期性,有界性。
2. 极限1) 熟悉应用“保号性定理”。
2) 熟练求极限的方法(特别要注意运用方法的条件、技巧。
易出错的地方)。
3. 会讨论函数的连续性与间断性1) 分段函数在“接头点”处的连续性的讨论。
2) 明确函数间断性的讨论是指:① 求出全部间断点; ② 指出间断点的类型。
4. 熟悉连续函数在闭区间上的性质1) 熟练应用“零点定理,介值定理,最值定理”。
2) 会讨论方程的根(① 根的存在性,唯一性; ② 根的个数的确定)。
二、方法、技巧、题型例1 分段函数的复合<例1.1> 设⎩⎨⎧>≤-=⎩⎨⎧>≤=1||21||2)(,1||1||)(22x x x x g x x x x x f ,求))((x g f .(答:⎩⎨⎧>≤-=⎪⎩⎪⎨⎧>≤>--≤≤--=1||21||21||21||,1|2|21||,1|2|)2())((222222x x x x x x x x x x x g f 且且 )<例1.2> 设⎩⎨⎧>≤-=⎩⎨⎧>≤=2||22||2)(,1||01||1)(2x x x x g x x x f ,求))(()),((x f g x g f .(答:⎪⎩⎪⎨⎧><≤≤=2||01||03||11))((x x x x g f 或2||3≤<x ,⎩⎨⎧>≤=1||21||1))((x x x f g ) 例2 函数性态单调性 <例2.1> 求⎰-=π0d 2sin 1x x I (答:22).<例2.2> 设)(x f 连续且单调增.求证:0)(d )(0≤-⎰x xf t t f x . <例2.3> 设),0[,0)0(+∞∈∀=x f 有xx f x g x f )()(,)(=↑',证明: )(x g 单调增.奇偶性 <例2.4> 设)(x f 连续,⎰-=xt t f t x x F 0d )()2()(时,那么1)若)(x f 为奇函数,证明)(x F 为奇函数。
考研数学强化班高等数学讲义-汤家凤
考研数学强化班高等数学讲义-汤家凤(总45页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一讲 极限与连续 主要内容概括(略) 重点题型讲解一、极限问题类型一:连加或连乘的求极限问题 1.求下列极限:(1)⎪⎪⎭⎫ ⎝⎛+-++⨯+⨯∞→)12)(12(1531311lim n n n ; (2)11lim 332+-=∞→k k nk n π;(3)∑=∞→+nk n n k k 1])1(1[lim ;2.求下列极限:(1)⎪⎪⎭⎫ ⎝⎛++++++∞→n n n n n 22241241141lim ; 3.求下列极限:(1)⎪⎪⎭⎫⎝⎛++++++∞→22222212111lim n n n n n ; (2)nn nn !lim∞→; (3)∑=∞→++ni n ni n 1211lim 。
类型二:利用重要极限求极限的问题 1.求下列极限:(1))0(2cos 2cos 2cos lim 2≠∞→x x x x n n ; (2)nn n n n n 1sin )1(lim 1+∞→+; 2.求下列极限: (1)()xx xcos 1120sin 1lim -→+;(3))21ln(103sin 1tan 1lim x xx x x +→⎪⎭⎫ ⎝⎛++; (4)21cos lim x x x ⎪⎭⎫ ⎝⎛∞→;类型三:利用等价无穷小和麦克劳林公式求极限的问题1.求下列极限:(1))cos 1(sin 1tan 1lim 0x x xx x -+-+→; (2))cos 1(lim tan 0x x e e x x x --→;(3)]1)3cos 2[(1lim30-+→x x x x ; (4))tan 11(lim 220xx x -→; (5)203)3(lim x x xx x -+→;(6)设A a x x f x x =-+→1)sin )(1ln(lim,求20)(lim x x f x →。
2024考研数学李林高等数学辅导讲义解析
2024考研数学李林高等数学辅导讲义解析一、概述2024年考研数学高等数学一直是考研学子备战考试的焦点。
为帮助考生更好地掌握数学知识,提高解题能力,李林老师精心编写了高等数学辅导讲义。
本文将对李林老师的辅导讲义进行解析,帮助考生更好地理解和应用这些知识。
二、讲义内容概述李林老师的高等数学辅导讲义分为多个章节,涵盖了高等数学的各个知识点,包括微积分、多元函数、级数、常微分方程等内容。
讲义内容扎实,逻辑严谨,既包括基础知识的讲解,也包括典型例题的分析和解答,适合考生系统复习和巩固知识点。
三、微积分部分1.极限与连续讲义对极限与连续的概念进行了详细介绍,从基本概念到极限存在的条件,再到连续性的定义和性质,帮助考生理解和掌握这一重要知识点。
讲义中还包括了大量例题分析,帮助考生加深对极限与连续的理解,提高解题能力。
2.微分与微分中值定理针对微分的定义和微分中值定理等内容,讲义中提供了详细的公式推导和典型例题讲解,帮助考生掌握微分的概念和性质,熟练运用微分中值定理解决实际问题。
3.不定积分与定积分在不定积分与定积分部分,讲义重点讲解了换元积分法、分部积分法等解题技巧,并结合典型例题进行深入分析,帮助考生掌握积分的计算方法和技巧,提高解题效率。
四、多元函数部分1.多元函数的概念与性质讲义对多元函数的概念、多元函数的极限、连续性、偏导数等内容进行了系统介绍,并结合实际问题进行讲解,帮助考生理解多元函数的重要性及其在实际问题中的应用。
2.方向导数与梯度在方向导数与梯度的部分,讲义对方向导数的定义、计算方法和梯度的概念进行了详细讲解,并提供了大量例题进行分析,帮助考生掌握这一知识点的计算方法和应用技巧。
五、级数部分1.数项级数的收敛性与敛散性讲义对数项级数的收敛性与敛散性进行了全面介绍,包括正项级数的收敛判别法、一般项级数的审敛法等内容,帮助考生系统掌握级数收敛性的判别方法,提高解题能力。
2.幂级数与傅立叶级数在幂级数与傅立叶级数部分,讲义介绍了幂级数的收敛半径、函数展开成幂级数的方法,以及傅立叶级数的基本概念和性质,帮助考生理解级数在实际问题中的应用。
2024版考研数学高等数学辅导讲义
2024版考研数学高等数学辅导讲义2024年版考研数学高等数学辅导讲义我们来了解一下高等数学的基本概念。
高等数学包括了微积分和数学分析两个部分,其中微积分是高等数学的核心内容。
微积分主要研究函数的极限、导数和积分等概念及其相互关系。
函数的极限是微积分的基础,通过研究函数在某一点的极限,我们可以得到函数在该点的导数。
导数是函数在某一点的变化率,它具有重要的几何和物理意义。
积分是导数的逆运算,它可以求得函数的面积、体积等重要的几何量。
在高等数学的学习过程中,我们需要掌握一些重要的解题技巧。
首先是函数的性质和图像的分析。
通过对函数的性质和图像的分析,我们可以更好地理解函数的行为和特点,从而为解题提供便利。
其次是函数的导数和积分的运算法则。
掌握了导数和积分的运算法则,我们可以更快地计算函数的导数和积分。
另外,我们还需要注意一些常见的函数和定理,如三角函数、指数函数、对数函数以及洛必达法则、泰勒展开等。
除了基本概念和解题技巧,我们还需要了解一些高等数学中的重要定理和公式。
例如,微积分中的中值定理、费马定理、罗尔定理等,它们是解题过程中常用的工具。
另外,我们还需要掌握一些常见的数列和级数的性质和判别法则,如等比数列、等差数列、收敛级数、发散级数等。
在高等数学的学习中,我们还需要进行大量的习题训练。
通过解题训练,我们可以巩固所学的知识,提高解题能力。
在解题过程中,我们要注重思路和方法的灵活运用,遇到难题时要善于思考,多角度思考问题,找到解题的突破口。
总结起来,2024版考研数学高等数学辅导讲义是一本全面系统地介绍了高等数学的基本概念、解题技巧和重要定理的教材。
通过学习该讲义,考研学生可以全面掌握高等数学的知识,提高解题能力,为考研数学的复习打下坚实的基础。
希望大家能够认真学习,刻苦钻研,取得优异的成绩。
高数强化讲义
第一讲函数、极限、连续考点总结:1.复合函数2.函数的极限3.数列的极限4.无穷小的阶5.间断点类型考点解读:一、极限的基本概念及运算(一)极限的定义与性质1、定义:定义1:对于数列{}n a ,设A 为一个常数,若0ε∀>,N ∃,使当N n >时,有||n a A ε−<,则称在n →∞时,{}n a 以A 为极限,记作Aa n x =∞→lim 定义2:对于函数)(x f y =,设A 为一个常数,若0>∀ε,X ∃,使当X x >时,有|()|f x A ε−<,则称Ax f x =+∞→)(lim 定义3:对于函数)(x f y =,设A 为一个常数,若0>∀ε,1X ∃,使当1x X <时,有|()|f x A ε−<,则称Ax f x =−∞→)(lim 定义4:对于函数)(x f y =,设A 为一个常数,若0>∀ε,2X ∃,使当2||X x >时,有|()|f x A ε−<,则称Ax f x =∞→)(lim 定义5:对于函数)(x f y =,设A 为一个常数,若0>∀ε,0>∃δ,使当δ<−<||00x x 时,有|()|f x A ε−<,则称Ax f x x =→)(lim 0定义6:对于函数)(x f y =,设A 为一个常数,若0>∀ε,0>∃δ,使当),(00δ+∈x x x 时,有|()|f x A ε−<,则称0lim ()x x f x A +−=定义7:对于函数)(x f y =,设A 为一个常数,若0>∀ε,0>∃δ,使当)(00x x x ,δ−∈时,有|()|f x A ε−<,则称Ax f x x =−−)(lim 0结论:A x f x =∞→)(lim 成立的充要条件是:A x f x =+∞→)(lim 且Ax f x =−∞→)(lim A x f x x =→)(lim 0成立的充要条件是:A x f x x =−−)(lim 0且Ax f x x =+−)(lim 0注:常见需要讨论左右极限的函数①xx xx ee 10lim ,lim →∞→②xarc x x arc x x x x x 1cot lim ,1arctanlim ,cot lim ,arctan lim 00→→∞→∞→③)1(lim 2x x x x −+∞→④][x ⑤函数的分段点2.数列与函数的极限关系(1)xn →(2)若A x f x x x =∞→→)(lim 0,则对任意数列n x ,只要Ax f x x n n n n =⇒∞=∞→∞→)(lim )(lim 0【例】①n n n ∞→lim ,②xx x 1sin1lim 0→3.极限的性质(1)唯一性定理:若[]lim ()x f x →存在,则其极限值唯一。
考研高数强化知识点归纳
考研高数强化知识点归纳考研数学是许多考生在备考过程中需要重点攻克的科目之一,其中高等数学部分尤为重要。
以下是对考研高等数学强化知识点的归纳:一、函数、极限与连续性- 函数的概念、性质和类型。
- 极限的定义、性质和计算方法。
- 无穷小的比较和极限存在的条件。
- 连续性的定义、性质和间断点的类型。
二、导数与微分- 导数的定义、几何意义和物理意义。
- 基本导数公式和求导法则。
- 高阶导数的计算方法。
- 微分的概念、性质和应用。
三、中值定理与导数的应用- 罗尔定理、拉格朗日中值定理和柯西中值定理。
- 导数在函数性质研究中的应用,如单调性、凹凸性、极值问题。
- 曲线的凹凸性、拐点和渐近线。
四、不定积分与定积分- 不定积分的定义、性质和计算方法。
- 定积分的定义、几何意义和计算方法。
- 牛顿-莱布尼茨公式的应用。
- 定积分在几何和物理问题中的应用。
五、级数- 级数的收敛性判别方法,如比较判别法、比值判别法等。
- 幂级数和泰勒级数的展开。
- 函数项级数的一致收敛性。
六、多元函数微分学- 多元函数的偏导数和全微分。
- 多元函数的极值问题和拉格朗日乘数法。
- 多元函数的几何应用,如空间曲线的切线和法平面。
七、重积分与曲线积分、曲面积分- 二重积分和三重积分的计算方法。
- 曲线积分和曲面积分的计算方法。
- 格林公式、高斯公式和斯托克斯公式的应用。
八、常微分方程- 一阶微分方程的解法,如分离变量法、变量替换法等。
- 高阶微分方程的降阶方法和特殊解法。
- 线性微分方程的一般解和特征方程。
九、解析几何- 空间直线和平面的方程。
- 空间曲面的方程和性质。
结束语:考研高等数学的强化知识点归纳是考生复习过程中的重要环节。
掌握这些知识点不仅能帮助考生在考试中取得好成绩,更能为今后的学术研究和工作实践打下坚实的基础。
希望考生能够通过系统复习,不断深化对这些知识点的理解和应用,最终在考研数学中取得优异的成绩。
2016考研数学高数强化(冯敬海)
二、利用无穷小求极限:
例 12. lim
8 x 2 − 2(1 − cos 2 x ) = x →0 3x 3 + 4 tan 2 x
例 13. lim(
x →0
考ቤተ መጻሕፍቲ ባይዱ
1+ x 1 − )= 1 − e− x x
例 14. lim
x →0
e x − sin x − 1 1 − 1 − x2
3x 2 + 5 2 例 15. lim ⋅ sin = x →∞ 5 x + 3 x
(B)极大值点; (D) 不能确定。
例 44.若 f (0) = 0 连续,且 lim
x →0
(A)驻点而非极值点; (C)驻点且是极小值点;
例 45.设 lim
x →0
考
1 + f ( x )sin 2 x − 1 = 2 ,求 lim f ( x ) 。 x →0 e3 x − 1
试
8
f ( x) = 2 ,那么 f ( x ) 在 x = 0 处是( ) x2
如果 lim
2n x2 x4 n x cos x = 1 − + − + (−1) + = 2! 4! (2n)!
ln(1 + x ) = x −
x2 x3 xn + − + ( −1) n −1 + = n 2 3
点
∑ (−1)n
n =0 n
x 2 n +1 (2n + 1)!
x2n (−1) ∑ (2n)! n =0
2
n →∞
例 32.设数列 {xn } 满足 0 < x1 < π , xn +1 = (1)证明 lim xn 存在,并求此极限; (2) sin xn ,
高等数学考研强化规划教材
高等数学考研强化规划教材高等数学是考研数学的重点内容之一,对于准备参加考研的学生来说,掌握高等数学知识是必不可少的。
本教材旨在为考研学生提供一套系统、全面的高等数学强化规划教材,帮助学生夯实基础、提高学习效果。
以下是本教材的大纲和内容概述。
一、导数与微分1. 函数与极限1.1 数列极限1.2 函数极限1.3 极限存在准则2. 导数与求导法则2.1 导数的概念2.2 导数的运算法则2.3 高阶导数3. 微分与线性近似3.1 微分的定义3.2 微分的几何意义3.3 高阶微分与泰勒展开二、定积分与不定积分1. 定积分的概念与性质1.1 定积分的定义1.2 定积分的性质2. 不定积分与原函数2.1 不定积分的定义2.2 不定积分的基本法则2.3 定积分与不定积分的关系3. 反常积分3.1 反常积分的概念3.2 收敛与发散性质3.3 常见反常积分计算三、一元函数的级数1. 数项级数与收敛性1.1 数项级数的定义1.2 收敛级数的判定1.3 收敛级数的性质2. 幂级数与函数展开2.1 幂级数的性质2.2 幂级数的收敛半径2.3 函数的幂级数展开3. 傅里叶级数与函数逼近3.1 傅里叶级数的定义3.2 傅里叶级数的性质3.3 函数的傅里叶级数逼近四、多元函数与偏导数1. 多元函数与多元极限1.1 多元函数的定义1.2 多元极限的概念1.3 多元极限的性质2. 偏导数与全微分2.1 偏导数的定义2.2 偏导数的计算方法2.3 全微分的定义与计算3. 隐函数与方向导数3.1 隐函数的定义3.2 方向导数的概念3.3 方向导数的计算方法五、重积分与曲线积分1. 重积分的概念与性质1.1 重积分的定义1.2 重积分的性质2. 极坐标与二重积分2.1 极坐标下的积分2.2 二重积分的计算方法2.3 二重积分的应用3. 参数方程与曲线积分3.1 参数方程下的积分 3.2 曲线积分的计算方法3.3 曲线积分的应用六、空间解析几何1. 空间中的点及坐标1.1 空间中点的表示1.2 坐标系与坐标变换2. 空间中的直线与平面2.1 直线的点向式与标准式2.2 平面的点法式与一般式2.3 空间直线与平面的相交关系3. 空间曲线与曲面3.1 参数方程表示的空间曲线3.2 隐函数表示的空间曲面3.3 曲线与曲面的切线与法平面本教材的编写旨在通过系统且全面的内容安排,帮助考研学生掌握高等数学知识点,提高解题能力和应试水平。
2022考研高等数学强化讲义(重点题型解析)
2022考研高等数学强化讲义第一章函数极限连续重点题型一函数的性态【类型一与方法】有界性的判定例1下列函数无界的是 1(A )f x x x ()sin ,(0,)x =∈+∞1(B )f x x x ()sin ,(0,)x =∈+∞ 11(C )f x x ()sin ,(0,)x x =∈+∞x 0sin t(D )f x dt x (),(0,2022)t=∈∫【详解】【类型二与方法】导函数与原函数的奇偶性与周期性例2【2002,数二】设函数f x ()连续,则下列函数中,必为偶函数的是2x0()f t dt (A )∫x20()f t dt (B )∫x[0()()t f t f t dt −−](C )∫x [0()()t f t f t dt +−](D )∫【详解】重点题型二极限的概念例3【2003,数一、数二】设{a n },{b n },{c n }均为非负数列,且lim →∞a n =0n ,lim →∞b n =1n , →∞c n =∞n lim , 则必有(A )a n <b n 对任意n 成立(B )b n <c n 对任意n 成立→∞a n c n (C )极限n lim 不存在→∞b nc n (D )极限n lim 不存在【详解】例4【2014,数三】设lim →∞a a n =,且a ≠0,则当n n 充分大时有(A ) 2a a n >(B )2aa n <(C )a a n >−n 1【详解(D )a a n <+n 1】x f x g x 例5【2000,数三】设对任意的x ,总有ϕ()()()≤≤,且lim ()()0x[g x x →∞−=ϕ],则lim ()→∞x f x (A )存在且等于零(C )一定不存在【详解(B )存在但不一定为零(D )不一定存在】重点题型三函数极限的计算【类型一与方法】003sin 6()例6【2000,数二】若limx xf x x x →0+26()=0,则lim f x xx →0+为(C )36 (D )(B )6∞(A )0【详解】′′′++=3x满足初始条=()是二阶常系数微分方程例7【2002,数二】设y y x y py qy e 件y y (0)(0)0′的特解,则当x →0==时,函数 ln(1)+x y x ()2的极限(A )不存在(B )等于1 (C )等于2 (D )等于3【详解】[](1cos )ln(1tan )例8【2009,数二】求极限limsin 4x−−+x →0x x x .【详解】【类型二与方法】∞∞2(1)(21)(21)x xx x e e 例9lim e e x x →+∞+−=__________+2.【详解】1例10【2007,数三】lim (sin cos ) 2x x x 32→+∞++x x +=__________x +x 3.【详解】121(1)12ln 1x t e t dt x x例11【2014,数一、数二、数三】求极限limx →+∞t−−+∫.【详解】【类型三与方法】0 ∞1x e 例12lim ln(1)ln(1)x+x →0++=__________.【详解】【类型四与方法】∞−∞321例13求极限lim ln 2x x x x x →∞+−−1.【详解】【类型五与方法】00与∞011ln 例14【2010,数三】求极限lim 1xx x x→+∞−.【详解】【类型六与方法】1∞1x cos sin 例15【2012,数三】lim(tan )x xπ−=x →4__________.【详解】12例16求极限lim (0,)a a a a n N nx x +++ >∈x →0 nxx.【详解】重点题型四已知极限反求参数【方法】例17【1998,数二】确定常数a b c sin ,,的值,使limln(1)x b ax xt 3dtx →t 0−+=≠c c (0)∫.【详解】重点题型五数列极限的计算【类型一与方法】数列未定式例18设11,x n e 1−n nn =+−∈n N,求→∞x n n lim .【详解】【类型二与方法】通项由递推公式n n x f x +1=()给出x 例19【2002,数二】设031<<,n x n,证明数列{x +1==1,2,)n }的极限存在,并求此极限.【详解】例20【2011,数一、数二】(111ln 1I )证明:对任意正整数n ,都有1n n n<+< + ;1112n n(II )设a n nln (1,2,)=+++−=,证明数列{a n }收敛.【详解】【类型三与方法】n 项和的数列极限2sin sin 例21【1998,数一】求lim 1112n n n n ππsin π +++→∞ n +n n ++.【详解】例22【2017,数一、数二、数三】求2lim ln 1nn k kk =1→∞nn+∑.【详解】重点题型六无穷小量阶的比较【方法】例23【2002,数二】设函数f x ()在x =0的某邻域内具有二阶连续导数,且f (0)0≠,f ′(0)0≠,f ′′(0)0,,,使得当h →0≠.证明:存在唯一的一组实数λλλ123时,123()(2)(3)(0)f h f h f h f λλλ是比h 2高阶的无穷小++−.【详解】例24【2006,数二】试确定A ,B ,C 的值,使得x(1)1()e Bx Cx Ax o x++=++23,其中o x ()3是当x →0时比x 3高阶的无穷小量.【详解】−⋅⋅x x x 与ax n 为等价无穷小,求n 与a 例25【2013,数二、数三】当x →0时,1cos cos 2cos3的值.【详解】重点题型七间断点的判定x例26【2000,数二】设函数f x ()=a ebx在(,)−∞+∞+内连续,且→−∞f x =,则常数x lim ()0a b ,满足(A )a <0,b <0(C )a ≤0,b >0【详解(B )a >0,b >0(D )a ≥0,b <0】第二章一元函数微分学重点题型一导数与微分的概念例1【2000,数三】设函数f x ()在点x a =处可导,则函数 在点f x ()x a =处不可导的充分条件是 ′=且(A )f a ()0f a ()0(B )f a =()0 ′=且f a ()0 ≠′>且(C )f a ()0f a ()0′<且(D )f a >()0f a ()0<【详解】例2【2001,数一】设f (0)=0,则f (x )在x =0处可导的充要条件为 1(A )lim (1cosh)2f h →0h − 1(B )lim (1)f e −h h →0h存在 1(C )lim (sinh)存在2f h h →0h−存在1[(D )lim (2)()f h f h ]h →0h −存在【详解】2.当自变量x 在x =−1处取得增量x ∆=−0.1时,相例3【2002,数二】设函数f u ()可导,y f x =()应的函数增量∆y 的线性主部为0.1,则f ′(1)=(A )−1【详解(B )0.1 (C )1 (D )0.5】例4【2004,数一、数二】设函数f x ()连续,且f ′(0)0>,则存在δ>0,使得(A )f x ()在(0,) δ内单调增加(B )f x ()在(−δ,0)内单调减少 (C )对任意的x ∈(0,δ),有f x f ()(0)>(D )对任意的x ∈(−δ,0),有f x f ()(0)>【详解】 2()(1)(2)()xx例5【2012,数一、数二、数三】设函数f x e e e n ,其中n 为正整数,则f ′(0) =−−−nx = n −1(A )(1)(1)!nn (B )−−(1)(1)!n−−−n −1(C )(1)!n −n (D )(1)!n 【详解】,0,≤ 例6【2016,数一】已知函数f x ()=x x 111<≤= x n ,1,2, +1n n n ,则(A )x =0是f x ()的第一类间断点(C )f x ()在x =0处连续但不可导【详解(B )x =0是f x ()的第二类间断点(D )f x ()在x =0处可导】重点题型二导数与微分的计算【类型一与方法】分段函数1=例7【1997,数一、数二】设函数f x ()连续,ϕ()()0x f xt dt ∫f x ,且lim()x=A (A 为常数),求ϕ′x →0()x ,x 在x =0处的连续性并讨论ϕ′().【详解】【类型二与方法】复合函数11x x ≥例8【2012,数三】设函数f x ()= <x −,y f f x =(())21,,求x edydx ==__________.【详解】【类型三与方法】隐函数−=x y =()由方程例9【2013,数一】设函数y f x y x e (1)−确定,则1lim 1→∞n n n f−=__________.【详解】y −1例10【2007,数二】已知函数f u ()具有二阶导数,且f ′=(0)1,函数y y x 1=()由方程y xe −=所确定.设z f y x =−(ln sin ),求dz dxx =0,22d zdx x =0.【详解】【类型四与方法】反函数=()在(−∞,+∞)内具有二阶导数,且y ′≠0,x x y =()是y y x 例11【2003,数一、数二】设函数y y x 的反函数=().I )试将(x x y =()所满足的微分方程2dx (sin )0d x3y x dy dy 2++=变换为y y x =()满足的微分方程;(II )求变换后的微分方程满足初始条件y (0)03=,y ′(0)=2的解.【详解】【类型五与方法】参数方程例12【2008,数二】设函数y y x 0() t ln(1)2==()由参数方程x x t =+确定,其中x t ()y u du ∫是初值问题 dx te −x−=dt20 x t =0=|0的解,求2d y 2dx .【详解】【类型六与方法】高阶导数n (0)==−ln(12)在x =0处的n 阶导数y 例13【2010,数二】函数y x ()__________.【详解】2例14【2015,数二】函数f x x ()2x在x =0处的n 阶导数f =⋅()n (0)=__________.【详解】例15【2017,数一】已知函数f x ()=1+1x2,则f (3)(0)=__________.【详解】重点题型三导数应用求切线与法线【类型一与方法】直角坐标y f x =()表示的曲线0arctan x e−t 例16【2002,数一】已知两曲线y =f (x )与y =∫2dt 在点(0,0)处的切线相同,写出此切线2 方程,并求极限lim→∞n n nf.【详解】例17【2000,数二】已知f x ()是周期为5的连续函数,它在x =0的某个领域内满足关系式(1sin )3(1sin )8()f x f x x xx 是当x →0时比x 高阶的无穷小,且f x (),其中α+−−=+α()在x =1处可导,求曲线y f x =()在点(6,(6))f 处的切线方程.【详解】=()x x t 【类型二与方法】参数方程 y y t =()表示的曲线1−t −µ02 例18【1999,数二】曲线 x e du=−22ln(2)= y t t ∫在(0,0)处的切线方程为__________.【详解】【类型三与方法】极坐标r r =()θ表示的曲线=θ例19【1997,数一】对数螺线r e 在点2,e ππ2处切线的直角坐标方程为__________.【详解】重点题型四导数应用求渐近线【方法】例20【2005,数二】曲线y =的斜渐近线方程为__________.【详解】例21【2014,数一、数二、数三】下列曲线中有渐近线的是 (A )y x x 2=+sin sin(B )y x x =+2sin x 1(C )y x =+sin x 1【详解(D )y x =+】1例22【2007,数一、数二、数三】曲线ln(1)y e x x=++渐近线的条数为(A )0 (B )1 (C )2 (D )3 【详解】重点题型五导数应用求曲率【方法】(数一、数二掌握,数三大纲不要求)22741 例23【2014,数二】曲线 x t =+=++上对应于t =1y t t的点处的曲率半径是(A (B (C )(D )【详解】重点题型六导数应用求极值与最值【方法】例24【1997,数二】已知函数y f x []2=()对一切x 满足()3()1xf x x f x e ′′′ −x .+=−若′f x x ()0(0)00=≠,则(A )f x ()(B )f x 0是f x ()的极大值()0是f x ()的极小值x f x 00是曲线(C )(,())y f x =()的拐点x f x 00也不是曲线0不是f x ()的极值,(,())y f x (D )f x ()【详解=()的拐点】[] 2例25【2000,数二】设函数f x ()满足关系式f x f x x ′′′,且f ′()()+=(0)0=,则(A )f (0)是f x ()的极大值(B )f (0)是f x ()的极小值(C )点(0,(0))f 是曲线y f x =()的拐点 (D )f (0)不是f x ()的极值,点(0,(0))f 也不是曲线y f x =()的拐点【详解】′′例26【2010,数三】设函数f x (),g x ()具有二阶导数,且g x ()0 <.若()g x a 0=是g x ()的极值,则f g x (())在x 0取极大值的一个充分条件是 (B )f a ′>()0(C )f a ″<()0(A )f a ′<()0【详解(D )f a ″>()0】322+++=60确定,求f x ()的极值=()由方程例27【2014,数一】设函数y f x y xy x y .【详解】重点题型七导数应用求凹凸性与拐点【方法】例28【2016,数二、数三】设函数f x ()在(,)−∞+∞内连续,其导函数的图形如图所示,则(A )函数f x ()有2个极值点,曲线y f x =()有2个拐点 (B )函数f x ()有2个极值点,曲线y f x =()有3个拐点 (C )函数f x ()有3个极值点,曲线y f x=()有1个拐点(D )函数f x ()有3个极值点,曲线y f x=()有2个拐点【详解】22例29【2001,数二】曲线y x x =−−(1)(3)的拐点个数为(A )0 (B )1 (C )2 (D )3【详解】 例30【2011,数一】曲线(1)(2)(3)(4)y x x x x 234=−−−−的拐点是 (B )(2,0)(C )(3,0)(D )((A )(1,0)【详解4,0)】重点题型八导数应用证明不等式【方法】例31【2000,数一、数二】设f x (),g x ()是恒大于零的可导函数,且()()()()0f x g x f x g x ′′ −<,则当a x b <<时,有(A )()()()()f x g b f b g x(B )>()()()()f x g a f a g x>(C )()()()()f x g x f b g b (D )>()()()()f x g x f a g a >【详解】 例32【2017,数一、数三】设函数f x ()可导,且f x f x ()()0′ >,则(A )f f (1)(1)(B )f f >−(1)(1)<−(C ) f f (1)(1)>−(D )f f (1)(1)<−【详解】例3【2002,数二】设0<<a b,证明不等式2ln ln a b a a b b a−<<22+−【详解】重点题型九 导数应用求方程的根【方法】例34【2003,数二】讨论曲线4ln y x k 与y x x =+4ln 4的交点个数=+.【详解】x 1()2例35【2015,数二】已知函数xf x =+∫∫,求f x ()零点的个数.【详解】重点题型十微分中值定理证明题【类型一与方法】证明含有ξ一个点的等式1例36【1999,数三】设函数f x ()在区间[0,1]上连续,在(0,1)内可导,且f f (0)(1)0==,2f=1.试证:(12I )存在η∈,1,使f ()ηη =;(II )对于任意实数λ,必存在ξη[′∈(0,),使得f f ()()1]ξλξξ−−=.【详解】例37设f x ()在[,]a b 上连续,在(,)=,a >0.证明:存在ξ∈a b 内可导,f a ()0(,)a b ,使得f f ()()aξb ξξ−′=.【详解】例38设函数f (x )在[0,1]上连续,在(0,1)内可导,f (1)=0,证明:存在ξ∈(0,1),使得(2ξ+1)f (ξ)+ξf ′(ξ)=0.【详解】,【类型二与方法】证明含有ξη两个点的等式=,f (1)=31例39【2010,数二】设函数f x ()在闭区间[0,1]上连续,在开区间(0,1)内可导,且f (0)0.证明:存在ξ∈20,21,η∈1,1,使得f f ′′()()ξηξη+=+22.【详解】【类型三与方法】证明含有高阶导数的等式或不等式例40设f x ()在[−1,1]上有三阶连续的导数,f (1)0=,f ′−=,f (1)1(0)0ξ(1,1)=,证明∃∈−,使得f ′′′()3ξ=.【详解】第三章一元函数积分学重点题型一定积分的概念=()在区间[−−3,2],[2,3]例1【2007,数一、数二、数三】如图,连续函数y f x 上的图形分别是直径为1的上、下半圆周,在区间[−2,0],[0,2]的图形分别是直径为2的下、上半圆周.()()x=设F x f t dt ∫,则下列结论正确的是 3(A )F F 4(3)(2)=−− 5(B )F F 4(3)(2)=3(C )F F 4(3)(2)−=5(D )F F 4(3)(2)−=−−【详解】2008,数二、数三】如图,曲线段的方程为y f x =()例2【,函数f x ()在区间[0,a ]上有连续的导数,则定积分axf x dx ∫′()等于(A )曲边梯形ABOD 的面积(B )梯形ABOD 的面积(C )曲边三角形ACD 的面积(D )三角形ACD 的面积【详解】x1sin t例3【2009,数三】使不等式t∫dt x >ln 成立的x 的范围是(B )1, 2π (C ) π2,π(D )(,)(A )(0,1)【详解π+∞】40tan πxx例4【2003,数二】设I 1=∫x 4dx ,I 2=0∫tan πx dx ,则(B )1>>I I 12(A )I I 12>>1(C )I I 21>>1【详解(D )1>>I I 21】重点题型二不定积分的计算【类型一与方法】分段函数例5求∫max(,,1)32x x dx .【详解】1x2x 4+例6求+∫1dx .【详解】【类型三与方法】无理函数例7【2009,数二、数三】计算不定积分 +>∫ln 1dx x (0).【详解】ln(1)【类型四与方法】指数有理式例8【2000,数二】设f x (ln )+xx =,计算∫f x dx ().【详解】1例9求∫sin cos x x 3dx .【详解】1例10求∫++x x 1sin cosdx .【详解】(2)∫sin cos 24x xdx 例11求(.1)∫sin 4cos 2cos3x x xdx 1【详解】()1sin 4cos 2cos3(sin 6sin 2)cos3211sin 6cos3sin 2cos32211115sin 4444x x xx x x x x x xx x x x=+=+ sin 9sin 3sin =++−141111 cos9cos5cos3cos 3620124Ix x x x dx x x x x C=++−∫=−−−++(sin 9sin 5sin 3sin )(2)24211cos 211cos 4sin cos sin 2(1cos 2)1(1cos 2cos 4cos 2cos 4)161111cos 2cos 4cos 616321632x x x x x +−x x xx xx x x =⋅=+4282=+−−=+−−1111163216321111 sin 2sin 4sin 6cos 2cos 4cos 6166464192x x x dx x x x x C I =+−− ∫=+−−+ 【类型六与方法】被积函数含有对数函数、反三角函数例12求.【详解】重点题型三定积分的计算【类型一与方法】分段函数,0x x 1≥例13设f x ()= 1+1x,0 <2 1+e x(1)f x dx ,求−∫. 【详解】【类型二与方法】对称区间例14设f x (),g x ()在[−l l ,]上连续,f x f x A ()()+−=,g x ()为偶函数.(()()()lllf xg x dx A g x dx 1)证明:−=∫∫;22xsin arctan xe dx ππ(2)计算−∫;222sin1xππ−(3)计算∫【详解x dx +−e .】【类型三与方法】周期函数100+π2100x x dx sin 2(tan 1)例15 求⋅+∫.【详解】【类型四与方法】被积函数含有变限积分函数或抽象函数的导数0例16【2013,数一】计算∫x 1ln(1)t +dt ,其中f x ()=t ∫.【详解】bf x a()f xg x ()()【类型五与方法】形如+∫dx 的积分例17 求下列积分(20xe sin dx e e sin cos x x π1)+∫(2).【详解】40ln(1tan )π例18 求+∫x dx .【详解】重点题型四反常积分的计算【方法】例19【1998,数二】计算积分【详解】重点题型五反常积分敛散性的判定【方法】1x x (1)a b+∞例20【2016,数一】若反常积分+∫dx 收敛,则(A )a <1且b >1(C )a <1且a b +>1【详解(B )a >1且b >1(D )a >1且a b +>1】重点题型六变限积分函数sin ,0x x x πππ≤<例21【2013,数二】设函数f x ()= 2, 2≤≤0()()x =,F x f t dt ∫,则(A )x =π是函数F x ()的跳跃间断点(B )x =π是函数F x ()的可去间断点(C )F x ()在x =π处连续但不可导(D )F x ()在x =π处可导【详解】例22【2007,数二】设f x ()是区间0,4π上的单调,可导函数,且满足0cos sin sin cos t tf x ()f t dt tdtt t−−1()=x+∫∫其中f−1是f 的反函数,求f x ().【详解】重点题型七 定积分应用求面积【方法】例23【1998,数二】曲线y x x x 322与x 轴所围成的图形的面积A ==−++__________.【详解】66ππcos3θθ例24【2013,数二】设封闭曲线L 的极坐标方程为r =−≤≤,则L 所围平面图形的面积是__________.【详解】=−t (sin )x a t t≤≤=−(1cos )例25求摆线 y a t (02)π与x 轴所围的图形面积.【详解】重点题型八定积分应用求体积【方法】=(),使得由曲线例26【2002,数二】求微分方程xdy x y dx +−=(2)0的一个解y y x y y x =()与直线x =1,x =2以及x 轴所围成的平面图形绕x 轴旋转一周的旋转体体积最小. 【详解】例27【2003,数一】过原点作曲线y x =ln 及x 轴围成平面图形D =ln 的切线,该切线与曲线y x .(I )求D 的面积A ;(II )求D 绕直线x e 【详解=旋转一周所得旋转体的体积V .】重点题型九 定积分应用求弧长【方法】(数一、数二掌握,数三大纲不要求)例28求心形线r a a =+>θ(1cos )(0)的全长.【详解】22020002l d a a d a t dt a tdt a πππ2ππθθθ==2cos 4cos 8cos 8θ===∫∫∫∫∫重点题型十定积分应用求侧面积【方法】(数一、数二掌握,数三大纲不要求)例29过原点作曲线y =的切线,求由此曲线、切线及x 轴围成的平面图形绕x 轴旋转一周所得到的旋转体的表面积.【详解】设切点为x 0(,切线方程为 )y −0x x ,代入(0,0),得x 0=2,y 0=1x故切线方程为y =2.由曲线y x =≤≤2)绕x轴旋转一周所得到的旋转体的表面积为1126S 1)πππ 1=−∫∫ 1(02)绕x 由yx x 2=≤≤轴旋转一周所得到的旋转体的表面积为0πS 2==2∫12π因此,所求旋转体的表面积为S S S =+=61).重点题型十一定积分物理应用【方法】(数一、数二掌握,数三大纲不要求)例30设星形线x a t y a t 33==cos ,sin 上每一点处线密度的大小等于该点到原点的距离的三次方,求星形线在第一象限的弧段对位于原点处的单位质点的引力.x y 处长为ds 的小段到原点的距离【详解】点(,)为r=,线密度为r 3,质量为3r ds ,其中ds a t tdt 3sin cos .32r ds 该小段对质点的引力为dF G Grds r == x ,水平分量为dF dF Gxds x r ⋅,垂直分量为ydF dF Gyds y r=⋅=,故323222cos 3sin cos 0.6,sin 3sin cos 0.6x y F Ga t a t tdt Ga F Ga t a t tdt Ga ππ=⋅==⋅=∫∫重点题型十二证明含有积分的等式或不等式【方法】()cos x=例31【2000,数二】设函数S x t dt ∫.I )当n 为正整数,且n x n (ππn S x n ≤+≤<+(1)时,证明2()<2(1);S x x ()(II )求lim x→+∞.【详解】例32【2014,数二、数三】设函数f x (),g x ()在区间[a b ,]上连续,且f x ()单调增加,0()1g x ≤≤.证明:I )(0(),,xag t dt x a x a b []≤≤−∈∫;()()()a a g t dt b()aaf x dx f xg x dx+∫≤b(II )∫∫.【详解】第四章常微分方程重点题型一一阶微分方程【类型一与方法】可分离变量y1y xx 2∆=()在任意点x 处的增量∆=+ +x 0α,且当∆→时,例1【1998,数一、数二】已知函数y y x α是∆x 的高阶无穷小,y (0)=π,则y (1)等于(B )π (C )e 4ππ(A )2π【详解(D )πe 4】例2【2002,数二】已知函数f x ()在(0,)+∞内可导,f x ()0>,→+∞f x =,且x lim ()1满足1f x hx lim h()f x () h →01=e +x,求f x ().【详解】【类型二与方法】一阶齐次例3【1999,数二】求初值问题0(0)|x =1(+−=>y dx xdy x=0的解 y .【详解】【类型三与方法】一阶线性例4【2010,数二、数三】设y y ,12是一阶线性非齐次微分方程y p x y q x′+=()()的两个特解.若,使λµy y 常数λµ12 是该方程的解,λµy y +12−是该方程对应的齐次方程的解,则(B )λ=−21,µ=−2(A )λ=21,µ=211 3,µ=31(D )λ=23,µ=32(C )λ=2【详解】22例5【2016,数一】若(1)y x =+22(1)y x =++′+=y p x y q x ()() 的两个解,则q x () +(A )3(1)x x 2x x 2(B )−+3(1)(C )1+x x 221x(D )−+x【详解】例6【1999,数三】设微分方程y y x ′−=ϕ2()2,1x ,其中ϕx ()<x =0,1>,试求在(,)−∞+∞内的连续函数y y x=(),使之在(,1)+∞内都满足所给方程,且满足条件y −∞和(1,)(0)0=.【详解】【类型四与方法】伯努利方程(数一掌握,数二、数三大纲不要求)例7求解微分方程 4y y x ′x−.【详解】令z =21,则2z z x ′x −=2,得222211dx 22x x z e x e dx Cx x C − dx +=+=∫∫∫12x Cx 32,其中C 为任意常数+.【类型五与方法】全微分方程(数一掌握,数二、数三大纲不要求)例8求解下列微分方程:22(1)(231)(2)0yyxe x dx x e y dy +−+−=;(2)2223x y x y y −34dx dy +=0.2y【详解】(1)法一:设P x y xe x (,)2312+−(,)2y,Q x y x e y =−,则PQ2xe yyx∂∂==∂∂,方程为全微分方程.u u设存在u x y (,),使得du x y dx dy P x y dx Q x y dy x y∂∂(,)=+=+(,)(,)∂∂,得y y 223u x y xe x dx x e x x y (,)(231)ϕ()=+−=+−+∫∂u由y=+x e y2y ϕ′(),得ϕ′()2∂y y=−2,方程的,ϕ()=−y y 通解为232y +−−=x e x x y C .法二:由232232(231)(2)(2()()()(22)0yy y 22)(31)(2)yyxe x dx x e y dy xe dx x e dy x dx y dyy d x e d x x d y d x e x x y +−+−=++−+−=+−+−=+−−=232y+−−=得x e x x y C .2x (2)设P x y (,)y =y x 4322y −3,Q x y (,)=,则 46P x Qy y x∂∂=−=∂∂.当y ≠0时,方程为全微分方程.2243131xyy x 122x 2 u x y xdx x C y y y−(,)2=+dy x =−++−=∫∫2233方程的通解为x y y Cy −+=.重点题型二二阶常系数线性微分方程【类型一与方法】解的性质与结构1=−32x x ,例9【2013,数二】已知y e xe y e xe 2=−x x 2,y xe 3=−2x 是某二阶常系数非齐次线性微分方程的3个解,则该方程满足条件yx =0=0,y ′x =0=1的解为y =__________.【详解】 ′′例10【2004,数二】微分方程y y x x +=++21sin 的特解形式可设为 2∗(A )(sin cos )y ax bx c x A x B x =++++ (2∗(B )sin cos )y x ax bx c A x B x =++++ 2∗(C )sin y ax bx c A x =+++2∗(D )cos y ax bx c A x =+++ 【详解】 2x′′′−+=+例11【2017,数二】微分方程y y y e x 48(1cos 2) 的特解可设为y *=22xx ++(A )Ae e B x C x (cos 2sin 2)22x x ++(B )Axe e B x C x (cos 2sin 2)22xx ++(C )Aexe B x C x (cos 2sin 2)22x x ++(D )Axe xe B x C x (cos 2sin 2)【详解】【类型二】已知微分方程的解反求微分方程11223x x 例12【2015,数一】设y e x e=+−′′′++=是二阶常系数非齐次线性微分方程y ay by ce x 的一个特解,则(A )a =−3,b =2,c =−1(C )a =−3,b =2,c =1(B )a =3,b =2,c =−1(D )a =3,b =2,c =1【详解】 【类型三】解二阶常系数线性微分方程′′′例13【2012,数一、数三】已知函数f x ()满足方程f x f x f x ()()2()0′′+−=及f x f x e ()()2+=x.(I )求f x ()的表达式;22x(II )求曲线y f x f t dt =−()()∫的拐点.【详解】重点题型三高阶常系数线性齐次微分方程【方法】例14求解微分方程y (4)−3y ′′−4y =0.【详解】特征方程为r r 42−−=340,得r 1,2=±2,r i3,4=±,方程的通解为x x −y C e C e C x C x 22cos sin =+++1234.重点题型四二阶可降阶微分方程【方法】(数一、数二掌握,数三大纲不要求)2例15求微分方程()y x y y ″+′=′满足初始条件y y (1)(1)1=′=的特解.′=,则y p 【详解】本题不含y ,令y p ′′′=2′(),原方程化简为p x p p +=,转化为反函数1dx −=dp dp ppdp px p ,得x e e pdp C p p C − =∫∫∫+=+().由p y (1)(1)1=′=,得C =0,从而xp ′=2,于是y =322,得3y x C =+1.由y (1)13221=,得C 1=31,故y x 33=+.重点题型五欧拉方程【方法】(数一掌握,数二、数三大纲不要求)2′′′++=2sin ln 例16求解微分方程x y xy y x .=t,原方程转化为【详解】令x e D D y Dy y t (1)−++=2sin ,即2d y2+dty t =2sin .特征方程为r 2+=10,得λ=±i ,齐次方程的通解为y C t C t =+12cos sin .∗=+(cos sin ),代入方程,得A =−1,B =0,故令y t A t B t y t t ∗=−cos .因此原方程的通解为12y C x C x x x cos ln sin ln ln cos ln =+−⋅.重点题型六差分方程【方法】(数三掌握,数一、数二大纲不要求)+1−=⋅2t的通解为__________例17【1997,数三】差分方程t t y y t . 【详解】齐次方程的通解为y C t =.令t y At B *=+()2t,代入方程,得A =1,B =−2,故t y t*=−(2)2t.因此原方程的通解为y C t t =+−(2)2t. 2y y x x 5的通解为__________例18【2018,数三】差分方程∆−=. 【详解】121121()()()22x x x x x x x x x x x y y y y y y y y y y y ++++++∆=∆∆=∆−=−−−=−+原方程化简为y y x x ++21−=25,转化为y y x x x =2x+1−=25.齐次方程的通解为y C .令x y A x*=,代入方程,得A =−5,故y x *=−5.因此原方程的通解为y C x =−25.重点题型七变量代换求解二阶变系数线性微分方程2例19【2005,数二】用变量代换x t t =<<cos (0)x y xy y ′′′π化简微分方程(1)−−+=0,并求其x =0=,y ′满足y |1|2x =0=的特解.【详解】重点题型八微分方程综合题【类型一】综合导数应用2001,数二】设L 是一条平面曲线,其上任意一点P x y x 例20【(,)(0)>到坐标原点的距离,恒等于该点处的切线在y 轴上的截距,且L 经过点 12,0,求曲线L 的方程.【详解】【类型二】综合定积分应用例21【2009,数三】设曲线y f x=(),其中f x ()是可导函数,且f x ()0>.已知曲线y f x=()与直线y =0,x =1及x t t =>(1)所围成的曲边梯形绕x 轴旋转一周所得的立体体积值是该曲边梯形面积值的πt 倍,求该曲线的方程.【详解】【类型三】综合变限积分例22【()()()1xx−f x t dt x t f t dt e x 2016,数三】设函数f x ()连续,且满足−=−+−∫∫,求f x ().【详解】【类型四】综合多元复合函数x例23【2014,数一、数二、数三】设函数f u ()具有二阶连续导数,z f e y =(cos )满足 ∂∂22z e y e 2x x z z+=+(4cos )∂∂x y22=,f ′若f (0)0(0)0=,求f u ()的表达式.【详解】【类型五】综合重积分例24【1997,数三】设函数f t ()在[0,+∞)上连续,且满足方程x y t 222f t e 4πt f dxdy 2+≤4 ()=+∫∫求f t ().【详解】第五章多元函数微分学重点题型一多元函数的概念【方法】例1【2007,数二】二元函数f x y (,)在点(0,0)处可微的一个充分条件是 ](A )(,)(0,0)lim(,)(0,0)0x y [f x y f →−=f x f (B )lim(,0)(0,0)x x →0− f y f =0,且lim(0,)(0,0)yy →0−=0(C)(,)limx y→=0[f x f (D )lim (,0)(0,0)0x x ],且′′x →0−=lim (0,)(0,0)0f y f y y ′′y →0−=【详解】例2【2012,数一】如果函数f x y (,)在点(0,0)处连续,那么下列命题正确的是f x y (A )若极限lim (,)x yx →0存在,则f x y (,)在点(0,0)y →0+处可微 f x y (B )若极限lim (,)x y22x →0存在,则f x y (,)在点(0,0)y →0+处可微f x y (C )若f x y (,)在点(0,0)处可微,则极限lim (,)x y x →0y →0+存在f x y (D )若f x y (,)在点(0,0)处可微,则极限lim (,)x y22x →0y →0+存在【详解】例3【2012,数二】设函数f x y (,)可微,且对任意x y ,都有∂f x y x(,)>0,∂f x y (,)<0,则使不等∂y∂式f x y f x y 1122(,)(,)<成立的一个充分条件是(A )x x 12 ,y y >12(B )x x <12,y y >12>(C )x x 12<,y y 12(D )x x <12<,y y 12>【详解】例4【2012,数三】设连续函数z f x y =(,)满足x →0y →=0,则dz (0,1)=__________.【详解】重点题型二多元复合函数求偏导数与全微分【方法】例5【2001,数一】设函数z =f (x ,y )在点(1,1)处可微,且f (1,1)1=,∂(1,1)xf=2∂,∂(1,1)yf =3∂,x f x f x x ϕ()(,(,))=,求dx ϕ3dx ()x =1.【详解】例6【2011,数一、数二】设z f xy yg x =(,()),其中函数f 具有二阶连续偏导数,函数g x ()可导,且在x =1处取得极值g (1)1=,求2x 11y z==∂∂∂x y.【详解】重点题型三多元隐函数求偏导数与全微分【方法】例7【2005,数一】设有三元方程xy −z ln y +e xz =1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程 (A )只能确定一个具有连续偏导数的隐函数z z x y =(,)(B )可确定两个具有连续偏导数的隐函数x x y z =(,)和z z x y =(,)(C )可确定两个具有连续偏导数的隐函数y y x z =(,)和z z x y =(,)(D )可确定两个具有连续偏导数的隐函数x x y z =(,)和y y x z =(,)【详解】例8【1999,数一】设y y x =(),z z x =()是由方程z xf x y =+()和F x y z (,,)0=所确定的函数,dz其中f 和F 分别具有一阶连续导数和一阶连续偏导数,求dx.【详解】重点题型四变量代换化简偏微分方程【方法】例9【2010,数二】设函数u f x y 222=(,)具有二阶连续偏导数,且满足等式2241250u u ux y∂∂∂++=∂∂x y ∂∂.确定a bξη∂2u=0,的值,使等式在变换ξ=+x ay ,η=+x by 下简化为∂∂.【详解】重点题型五求无条件极值【方法】222(,)例10【2003,数一】已知函数f x y (,)在点(0,0)的某个邻域内连续,且lim()f x y xyx yx →0y →0−=1+,则(A )点(0,0)不是f x y (,)的极值点(B )点(0,0)是f x y (,)的极大值点(C )点(0,0)是f x y (,)的极小值点(D )根据所给条件无法判别点(0,0)是否为f x y (,)的极值点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、在一高为4m 的椭圆底柱形容器内储存某种液体,并将容器水平放置。
如果椭圆方程为2214
x y +=,问: (1)液面在y(11y -≤≤)处时,容器内液体的体积V 与y 的函数关系是什么?
(2)如果容器内储满了液体后,以每分钟0.16m 3的速率将液体从容器顶端抽出,当液面在y=0时,液面下降的速率是每分钟多少m ?
(3)如果液体的密度为1N/m 3,抽完全部液体需作多少功?
2、设函数32ln(1) 0arcsin 1()12 0sin 6x x x x x f x e x x x x x -⎧+<⎪-⎪⎪=⎨++-⎪>⎪⎪⎩
,121arctan ()1x x e x g x e =+,求0lim [()]x f g x → 3、2lim (arctan arctan ),01
n a a n a n n →∞->+ 4、设f(x)在[0,1]上连续,证明:存在()0,1ξ∈,使得
1
201()()3f x dx f ξξ=-+⎰ 5
、222max x dx -⎧⎫⎪⎨⎪⎩⎰ 6、一块1000kg 的冰块要被吊起30m 高,而这块冰以0.02kg/s 的速度溶化,假设冰块以0.1m/s 的速度被吊起,吊索的线密度为4kg/m 。
求把这块冰吊到指定高度需作的功。
(设重力加速度为10m/s 2)
7、求微分方程2x y y y xe '''++=的通解。