第二章 投影基础知识(2-1)

合集下载

第二章 正投影的基础知识(1点和直线的投影

第二章 正投影的基础知识(1点和直线的投影

X
ax

A
O a●
H
空间点用大写字母表 示,点的投影用小写 字母表示。点“ ”不 能用“ * ”
投影面展开
不动
V
a
V


a

X
ax
A O X
ax a H

O
a
向下翻转90º

H
点的投影规律:
① aa⊥OX轴;
② aax= Aa
aax=Aa
各种位置点的投影:
(1)处于投影面上的点
投影特点:在该投影面上的投影和空间点本身重合;另一个投 影在X轴上
d
a b d
b c
b d a 如何判断?
对于特殊位置直线, 只有两个同面投影互相 平行,空间直线不一定 平行。 求出侧面投影后可知: AB与CD不平行。
求出侧面投影
⒉ 两直线相交
V a A a c
c k
C
b d K D d k
交点是两直 线的共有点
b B a c
k
d
b
H
a
c k
d b
判别方法:
若空间两直线相交,则其同面投影必 相交,且交点的投影必符合空间一点的投 影规律。
例1:习题集P10 例2:习题集P10
2-12(1) 2-13
⒊ 两直线交叉
d
投影特性:
两直线相交吗?
b
a c c
1(2 ) 3 4



为什么?

2

b d
a
1 3(4 )

三视图的对应投影规律 三视图间的位置关系
主视图(V面)

第2章 正投影基础

第2章 正投影基础

第2章正投影基础本章提要本章主要介绍投影法的基本概念和构成物体的基本几何元素点、线、面的投影特性、作图原理和方法;直线与直线、直线与平面的相对位置关系。

为解决求直线的实长和平面的实形的问题,还介绍了点、线、面的变换投影面的方法。

2.1投影法及三视图的形成2.1.1投影法在日常生活中人们注意到,当太阳光或灯光照射物体时,墙壁上或地面上会出现物体的影子。

投影法就源自这种自然现象。

如图2-1所示,平面P为投影面,不属于投影面的定点S为投影中心。

过空间点A由投影中心可引直线SA,SA为投射线。

投射线SA与投影面P的交点a,称作空间点A在投影面P上的投影。

同理,点b是空间点B在投影面P上的投影(注:空间点以大写字母表示,其投影用相应的小写字母表示)。

由此可知,投影法是投射线通过物体向预定投影面进行投影而得到图形的方法。

图2-1投影法图图2-2中心投影法2.1.2投影法的分类投影法一般分为中心投影法和平行投影法两类。

1、中心投影法投射线从投影中心出发的投影法,称为中心投影法,所得到的投影称为中心投影,如图2-2所示,通过投影中心S作出△ABC在投影面P上的投影:投射线SA、SB、SC分别与投影面P交于点a、b、c,而△abc就是△ABC在投影面P上的投影。

在中心投影法中,△ABC的投影△abc的大小随投影中心S距离△ABC的远近或者△ABC 距离投影面P的远近而变化。

因此它不适合绘制机械图样。

但是,根据中心投影法绘制的直观图立体感较强,适用于绘制建筑物的外观图。

2、平行投影法投射线相互平行的投影法,称为平行投影法,所得到的投影称为平行投影。

根据投射线与投影面的相对位置,平行投影法又分为:斜投影法和正投影法。

(1)斜投影法投射线倾斜于投影面时称为斜投影法,所得到的投影称为斜投影,如图2-3所示。

(2)正投影法投射线垂直于投影面时称为正投影法,所得到的投影称为正投影,如图2-4所示。

绘制工程图样主要用正投影,今后如不作特别说明,“投影”即指“正投影”。

第二章 正投影的基本知识

第二章  正投影的基本知识

(a)斜投影
图2-2 中心投影法
(b)正投影
1.3 正投影的基本特性
由于得到正投影的投射线相互平行,且垂直于投影面,因此正投影具有如下特 性。
实形性:当物体的某一平面(或棱线)与投影面平行时,其投影反映实形(或 实长)。如图2-4(a)中,平行于投影面的平面P的投影反映实形。
积聚性:当物体的某一平面(或棱线)与投影面垂直时,其投影积聚为一条直 线(或一个点)。如图2-4(b)中,垂直于投影面的平面Q的投影积聚为一条直线。

若将三投影面体系看作 直角坐标系,则可将三 个投影面当作坐标面, 三个投影轴当作坐标轴, O点当作坐标原点。
3.3 两点的相对位置
空间两点的相对位置是指两点的上下、左右及前后的相对位置关系,这由两点 的坐标差来确定。
两点的左右位置:由x坐标差XA XB确定(反映在主视图和俯视图上)。哪个 点的x坐标值大,哪个点就在左侧。
4.1 各种位置直线的投影
若空间一直线垂直于某一个投影面,则该直线必定平行于另外两个投影面,这 样的直线称为投影面垂直线。其中,垂直于H面的直线称为铅垂线,垂直于V面的直 线称为正垂线,垂直于W面的直线称为侧垂线。投影面垂直线的投影特性如表2-2所 示。
由表2-2可知,投影面垂直线的投影特性有: ① 直线在与其垂直的投影面上的投影积聚为一点; ② 该直线的另外两个投影垂直于相应的投影轴,且反映该直线的实长。
05
平面的投影
5.1 一般位置平面
若空间平面和三个投影面均处于倾斜位置,则该平面称为一般位置平面。一般 位置平面在三个投影面上的投影均为类似形,在投影图上不能直接反映空间平面与 投影面的夹角,如图2-19所示。
图2-19 一般位置平面
5.2 投影面平行面

第二章点、直线、平面的投影

第二章点、直线、平面的投影

YW
Y
YH
回节目录
18
2.特殊情况二 两点到两个投影面的距离(坐标值)相等。
YW
Y
YH
回节目录
19
§2-3 直线的投影
一、各种位置直线及投影特性
1.一般位置直线
由一般位置的两点连线构成。 该直线与三个投影面都倾斜。
β
γ
YW
α
Y YH
投影特性: 三个投影都倾斜于投影轴,每个投影既不直接
反映线段的实长,也不直接反映倾角的大小。
回节目录
32
例2-5 已知水平线AB及 正平线CD,试过定点S作 一条与它们都垂直的线SL。
例2-6 已知矩形ABCD的不 完全投影,试补全该矩形的 两面投影。
回节目录
33
§2-4 平面的投影
一、平面投影的表示法
(a)
(b)
(c)
(d)
(e)
这几种确定平面的方法是可以相互转化的
回节目录
34
二、一般位置平面及投影特性
名称
正平面
直 观 图
水平面
侧平面
投 影 图
投 1.正面投影反映实形;
1.水平投影反映实形;
1.侧面投影反映实形;
影 特
2.水平投影积聚成直线,且∥OX2.;正面投影积聚成直线,且∥OX;
2.正面投影积聚成直线,且∥OZ;
性 3.侧面投影积聚成直线,且∥OZ。 3.侧面投影积聚成直线,,且∥OYw。 3.水平投影积聚成直线, 且∥OYH。
一般位置平面:平面与三个投影面都倾斜
投影特性:投影均为类似形。
YW
回节目录
35
三、特殊位置平面及投影特性
1.投影面垂直面 垂直于一个投影面,与另外两个投影

机械制图-----第二章投影知识

机械制图-----第二章投影知识


O WX
ax

a(x,y) H
aY Y

a(x,y)
H
Z
aZ
W y ● a(y,z)
x
O
YW
aYW
aYH YH
17
整理课件
如果把三投影面体系看作是直角坐标系,把投影轴看作坐
标轴,交点看作原点O,则空间点的位置可用三坐标值表示, 形式为A(X,Y,Z)。 点的三面投影与直角坐标系的关系为<手段三维理解>: 点到W面的距离 用坐标X表示(水平投影到OY轴的距离,正投
5
整理课件
正投影法的基本性质(重点)
1.真实性
直线或者平面平行于投 影面反映实形
A
2.积聚性 直线或者平面垂直于投
影面积聚成点(线) a
3.类似性 直线或者平面倾斜于投
影面反映类似形状
BA A
B b
a(b) a
B
b P
P
6
整理课件
2.1.2 形体的三面视图
根据有关标准和规定,用正投影法绘制出的物体的投影图, 称为视图。
影到OZ的距离); 点到V面的距离 用坐标Y表示(水平投影到OX轴的距离,侧面
投影到OZ的距离) ; 点到H面的距离 用坐标Z表示(正平投影到OX轴的距离,侧面
投影到OY的距离) ; 三投影用坐标表示:a可表示为(x,y); a’可表示为(x, z);a”可表示为(y,z)
18
整理课件
例题
例2-2 已知点A的坐标为(15、10、20),求点A的三面投影。
9
整理课件
三视图的展开
为了读图识图方便,把三投影面
的展开到一个平面,这样展开在 一个平面上的三个视图,称为物 体的三面视图,简称三视图。

机械制图教案 第二章

机械制图教案 第二章

第二章正投影基础§2-1 投影法的概念投影法:从物体和投影的对应关系中,总结出了用投影原理在平面上表达物体形状的方法。

投影法可分为两大类:中心投影法、平行投影法。

一、中心投影法二、平行投影法1、投影法的定义及分类。

2、各类投影的方法与实质。

何谓正投影法、斜投影法?三、三视图的形成及投影规律1、三视图的形成物体是有长、宽、高三个尺度的立体。

我们要认识它,就应该从上、下、左、右、前、后各个方面去观察它,才能对其有一个完整的了解。

图3-4所示的是四个不同的物体,它们只取一个投影面上的投影,如果不附加其它说明,是不能确定各个物体的整个形状的。

要反映物体的完整形状,必须根据物体的繁简,多取几个投影面上的投影相互补充,才能把物体的形状表达清楚。

为了准确地表达物体的形状和大小,我们选取互相垂直的三个投影面。

(1)三投影面体系三面:正立投影面:简称正面用 V 表示水平投影面:简称水平面用 H 表示侧立投影面:简称侧面用 W 表示OX轴:V面与H面的交线。

OY轴:H面与W面的交线。

OZ轴:V面与W面的交线。

OX轴、OY轴、OZ轴的交点为圆点。

(2 )三视图的形成:主视图:正面投影(由物体的前方向后方投射所得到的视图)俯视图:水平面投影(由物体的上方向下投射所得到的视图)左视图:侧面投影(由物体的左方向右方投射所得到的视图)(3)三视图的展开规定正面保持不动,水平面绕OX轴向下旋转900,侧面绕OZ轴向右旋转900。

四、三视图之间的对应关系1、位置关系:主视图在上方,俯视图在主视图的正下方,左视图在左视图的正右方。

2、投影关系:主视图反映物体的长度和高度。

俯视图反映物体的长度和宽度。

左视图反映物体的高度和宽度。

主、俯视图反映了物体的同样长度(等长)。

主、左视图反映了物体的同样高度(等高)。

俯、左视图反映了物体的同样宽度(等宽)。

归纳:主视、俯视长对正...(等长)。

主视、左视高平齐...(等高)。

俯视、左视宽相等...(等宽)。

投影的基本知识2

投影的基本知识2

图2.19 点的三面投影
2.4.2点在三面投影体系中的投影规律:
(1)点的水平投影与正面投影的连线垂直于OX轴; (2)点的正面投影和侧面投影的连线垂直于OZ轴; (3)点的水平投影到OX轴的距离等于侧面投影到OZ轴的距离。 (4)点到某投影面的距离等于其在另两个投影面上的投影到相 应投影轴的距离。
图2.23 两点的相对位置
图2.24 重影点的投影
2.5 直线的正投影规律
直线的投影也可以由直线上两点的投影确定。求直线的投 影,只要作出直线上两个点的投影,再将同一投影面上两点的 投影连起来,即是直线的投影。 直线按其与投影面的相对位置不同,可以分为特殊位置的 直线和一般位置的直线,特殊位置的直线又分为投影面平行线 和投影面垂直线。
三 面 投 影 图 的 画 图 方 法
在投影图中可见轮廓画 出实线,不可见的画成 虚线; 为了准确表达形体水平 投影和侧立投影之间的 投影关系,在作图时可 以用过原点O作450斜线 的方法求的,用细线画 出。
图2.18 作形体的三面投影
2.4 点的投影
2.4.1点的三面投影
点在任意投影面上仍是点。 空间点用大写字母 (A、B….)表示; 投影用同名小写字母(a、b….)表示,H面a、b…;V面a'b' …; w面a"b"
表2.1 投影面平行线 名称 立 体 图 水平线 正平线 侧平线
投 影 图
2.5.3
投影面垂直线
垂直于一个投影面而平行于另两个投影面的直线称为投影面垂 直线。投影面垂直线也可分为: (1)铅垂线——垂直于H而平行于V和W的直线; (2)正垂线——垂直于V而平行于H和W的直线; (3)侧垂线——垂直于W而平行于H和V的直线。 投影面垂直线的投影特性: (1)投影面垂直线在垂直的投影面上的投影积聚成为一个点; (2)在另外两个投影面上的投影分别垂直于相应的投影轴,并 反映实长。

第二章 投影的基础知识

第二章 投影的基础知识
两点间的前后相对位置可由Y坐标确定,Y坐标大者在前。 两点间的上下相对位置可由Z坐标确定,Z坐标大者在上。 由两点间的坐标差,可以确定两点间的偏移距离,如以 A点为基准,则B点在A点的右方6 mm ,前方5 mm ,上方11 mm, 如图2-16(b)所示。
第二章 投影的基本知识
图2-16 两点间的相对位置
第二章 投影的基本知识
图2-5 类似性
第二章 投影的基本知识
2.2 物体的三面视图
图2-6 一个视图不能反映物体的形状
第二章 投影的基本知识 2.2.1 三视图的形成 1. 三投影面体系
互相垂直相交的三个投影面,称为三投影面体系,如图27所示。 它们分别是:
正立投影面:直立在观察者正对面的投影面,简称正面, 用字母V表示; 水平投影面:水平位置的投影面,简称水平面,用字母 H 表示; 侧立投影面:直立在右侧面的投影面,简称侧面,用字母 W表示。
上不画投影面的边框线和投影轴,如图2-8(d)所示。
第二章 投影的基本知识
2.2.2 三视图之间的对应关系
将投影面展开到一个平面上后,各视图必须有规则的配置, 并相互之间形成一定的对应关系,如图2-9 所示。
第二章 投影的基本知识 1.位置关系 以主视图为准,俯视图在主视图的正下方,左视图在主视 图的正右方。 画三视图时必须按以上的投影关系配置。
图2-10 保持宽相等的三种画法
第二章 投影的基本知识
例2-1
以图2-11 所示物体为例,说明画三视图的方法和
步骤, 如图2-12所示。
图2-11 轴测图
第二章 投影的基本知识
图2-12 三视图的画图步骤 (a) 选主视图, 画基准线; (b) 先从主视图画起; (c) 根据尺寸关系, 逐一画全三个视图; (d) 加深、 擦去作图线, 完成三视图

《机械制图》第二章 点的投影

《机械制图》第二章 点的投影
YW
β γ
YH
投影特性: • 在平面垂直的投影面上,投影积聚为一直线。该
直线与相邻投影轴的夹角反映该平面对另两个投 影面的倾角。 • 在另外两个投影面上的投影均为类似形
回节目录
各种投影面垂直面
名称
铅垂面
直 观 图
正垂面
侧垂面

γ
α


β
γ
β α

1.水平投影积聚成与X轴倾斜的直 1.正面投影积聚成与X轴倾斜的直 1.侧面投影积聚成与Z轴倾斜的直
1.一般位置直线
由一般位置的两点连线构成。 该直线与三个投影面都倾斜。
β
γ
YW
α
Y YH
投影特性: 三个投影都倾斜于投影轴,每个投影既不直接
反映线段的实长,也不直接反映倾角的大小。
回节目录
二、特殊位置直线及特性
1.投影面平行线
由两点到一个投影面距离相等时的两 点连线构成。该直线平行于某一投影 面,对另外两个投影面都倾斜。
目前国际上使用着两种投影面体系,即第一分角和第三分角。我 国采用的是第一分角画法。
回节目录
1.三投影面体系 ⑴ 三个投影面
●正立投影面 —— 简称正面,用字母V表示。 物体在V面上的正投影图称为主视图。 ●水平投影面 —— 简称水平面,用字母H表示。 物体在H面上的正投影图称为俯视图。 ●侧立投影面 —— 简称侧面,用字母W表示。 物体在W面上的正投影图称为左视图。
第二章 点的投影
§2-1 投影法概述 §2-2 点的投影
回节目录
§2-1 投影法概述
一、投影法
投影面
P
a
A
S
投影 投射线
投射中心

工程制图第二章

工程制图第二章

X
平面或H面)
◆侧面投影面(简称侧 面或W面)
2)投影轴
OX轴 V面与H面的交线 OY轴 H面与W面的交线 OZ轴 V面与W面的交线
工程制图第二章
Z
oW
H
Y
三个投影面互相 垂直
第二章投影基础
二、视图
1. 视图的概念
利用正投影法得到的投影,即物体在V、H和W
面上的三个投影,通常称为物体的三视图。其中三
例:已知点的两个投影,求第三投影。
解法一:
a●
ax
az ●a
通过作45°线 使aaz=aax
a●
解法二:
a●
用圆规直接量
取aaz=aax
ax
a●
工程制图第二章
az
a

第二章投影基础
3. 重影点及点的相对位置 重影点:在同一条投射线上的两点,其在某投影面上的
投影重合,称这两点为该投影面的重影点。重影点的可见性
一般位置直线 的三面投影均不反 映实长及倾角的大 小,通常用直角三 角形法求其实长及 倾角的真实大小。 如例题2-3。
工程制图第二章
第二章投影基础
2. 特殊位置直线的投影特性
⑴ 投影面平行线
水平线
正平线
a
b
a b
实长 a b α γ
a b
a βγ b
实长
ba
侧平线
a b
a 实长 βα b
a
b
投 影 特 性: ① 在其平行的那个投影面上的投影反映实长,
2.教学重点难点:
1).三视图的对应关系 2).点、线、面的投影及投影规律 3).直线上点的求法 4).平面上点、直线的求法
工程制图第二章

机械制图2-正投影基础

机械制图2-正投影基础

2.4.3 直角投影定理
1.一直线平行投影面的垂直相交两直线的投影 垂直相交的两直线,当其中一条直线为投影面平行线时,则两直线 在该投影面上的投影也必定互相垂直.反之,若相交直线在某一投 影面上的投影互相垂直,且其中有一条直线为该平面的平行线,则 这两直线在空间也必定互相垂直.
设相交两直线AB⊥AC且AB‖H面.显然,直线AB垂直于平面ACca. 今ab⊥AB,则ab⊥平面AacC,因此,ab⊥ac,亦即∠bac=90.
2.1.2投影法的分类 投影法的分类
1.中心投影 投射线交于一点的投影,称为中心投影,如图2-3所示. 2.平行投影 假设将中心投影的光源移动到无限远时,投射线可以看做是互相平行的, 在这种情 况下得到的投影,称为平行投影.平行投影又可以分为正投影和斜投影两种. (1)正投影 投射线与投影面垂直时得到的投影,称为正投影. (2)斜投影 投射线与投影面倾斜时得到的投影,称为斜投影. 3.正投影的投影特性 (1)定比不变性 同一直线上两线段长度之比等于其投影长度之比. (2)平行性 两平行直线的投影一般仍互相平行,并且该两平行直 线段的长度之比等于其投影长度之比. (3)积聚性 直线变为线,面变为线. (4)真实性 反映直线的实长或平面的实形. (5)类似性 相类似的平面图形.表现为平面图形的边数,平行关 系,凹凸,直线边或曲线边投影后均保持定比不变性.
(2)两特殊位置平面相交 当相交两平面均为特殊位置平面时,则每一个平面必有一个投影有 积聚性,即可确定交线的一个投影,而另一个投影可以按照面上取 点,取线的方法作出.若相交两个平面同时垂直与=于同一投影面, 则交线必为这个投影面的垂直线.

2.4.2 直线上的点以及两直线的相对位置
1.直线上的点的特性 点在直线上,则点的投影必在该直线的同面投影上.反之,如果点 的投影均在直线的同面投影上,则点必在该直线上,否则,点不在 该直线上.

第二章 投影基础

第二章  投影基础

三面正投影展开后,即为三视图。
5
1.点的两面投影 1.点的两面投影
已知点的一个投影a
增加一个投影面,形 是不能确定其空间位置的。 成点的两面投影。
点的两面投影的展开。
6
2.点的三面投影 2.点的三面投影
投影规律 1)a′a⊥X轴
长对正
点的三面正投影
点的三面正投影的 展开
2)a′a′′⊥Z轴 高平齐 3)aax=a′′az 宽相等 (=Aa′= A点到V面的距离)
二、 各种位置平面的投影
2)投影面平行面的投影 平行于某一投影面的平面,称为投影面平行面。分别有水平面、正平 面和侧平面。
23
二、 各种位置平面的投影
3)一般位置平面的投影: 对三个投影面都倾斜的平面称为一般位置平面。
24
平面的投影
一. 平面对一个投影面的投影特性
平行
垂直
倾斜
实形性
积聚性
类似性 25
O
YW
β γ
铅垂面的投影特性: 铅垂面的投影特性: 积聚性 的投影特性
YH
1.水平投影积聚为一条倾斜线段,且该直线段与OX、 1.水平投影积聚为一条倾斜线段,且该直线段与OX、 水平投影积聚为一条倾斜线段 OX OY轴的夹角分别反映该空间平面对 轴的夹角分别反映该空间平面对V 面的倾角; OY轴的夹角分别反映该空间平面对V面、W面的倾角; 2.正面投影和侧面投影为空间平面的类似形。 2.正面投影和侧面投影为空间平面的类似形。 正面投影和侧面投影为空间平面的类似形
2. 水平线的投影特征:
1)在该水平投影面上的投影反映实长 实长;2)水平投影反映与X轴、Y轴的倾角 倾角; 实长 倾角 3)其他两面投影分别平行 平行相应的投影轴。 平行

第二章 正投影作图

第二章 正投影作图

§2—5 组合体
1.能绘制和识读组合体的三视图并 能标注尺寸。 2.通过本课题的学习,使学生具有 较高的读图能力。
组合体:
由两个或两个以上的基本体经叠加,或由一个基本体 切去若干个部分,或者既叠加又切割而形成的物体称为组 合体。
组合形式:
叠加、切割、综合。
叠加型
切割型 组合体的组合形式
综合型
一、形体分析法
去部分的三视图,并应先画切割面的积聚性投影,同时注意 切割面投影的类似性。例如,下图所示切割四棱柱三视图的
画法。
切割四棱柱三视图作图步骤
切割四棱柱
四、组合体的尺寸标注
组合体尺寸标注的基本要求是:正确、完整、清晰。
1.标注尺寸要完整
(1)定形尺寸:指确定组合体中各基本形体大小的尺寸。
组合体尺寸标注
(2)定位尺寸:指组合体某组成部分内部用以确定局部 1 结构位置的尺寸,或者用以确定组合体各组成部分相对位
根据两视图补画第三视图
2.补画三视图中所缺的图线
补画三视图中所缺的图线 补画三视图中所缺的图线
返回目录
§2—2 基本体
1.熟悉基本体结构特点。 2.能绘制基本体的三视图并能标注 尺寸。 3.能运用基本体三视图特征,正确 识读各种基本体的三视图。
平面立体 基本体 曲面立体
基 本 体
长方体 正方体 圆台 圆锥 五棱锥 球体
三、斜二轴测图 1
1. 轴间角和轴向伸缩系数
斜二轴测图
轴间角:90°、135°、135°; 轴向伸缩系数:p1=r1=1、q1=1/2。
2.斜二轴测图的画法
例一 画如图所示圆筒的斜二轴测图
圆筒两视图 圆筒斜二轴测图作图步骤
例二 1
画如图所示支座的斜二轴测图

工程制图B ! 第二章--投影原理

工程制图B ! 第二章--投影原理

一、投影的基本知识(了解)二、工程上常用的图示法(了解)三、平行投影法的基本性质(熟悉)四、三视图的形成及其投影规律(掌握)2-1 投影的基本知识投影:用光线(灯光或阳光)照射物体时,在地面上或墙面上便产生了影子,这种现象就称为投影。

象,即把光线抽象为投射线,把物体抽象为几何形体,把地面抽象为投影面,逐步形成了投影方法。

右图中,S为投影中心,A为空间点,平面P为投影面,S与A点的连线为投射线,SA的延长线与平面P的交点a,称为A点在平面P 上的投影。

这种产生图像的方法就叫做投影法。

由空间的三维形体转变为平面二维图形就是通过投影法来实现的。

因此,投影法是整个工程图学的基础。

S 投影中心a 投影A 空间点投影面P投射线投影法投影法投影法的分类中心投影法平行投影法正投影法斜投影法画透视图画斜轴测图画工程图样及正轴测图在有限距离内,由投射中心S 发射出投射线,在投影面P 上得到物体形状的投影方法称为中心投影法。

光源SCB bcP投影特性:具有较强的直观性、较好的立体感。

中心投影法投射线aA中心投影法无法反映物体表面的真实形状和大小,投射中心、物体、投影面三者之间的相对距离对投影的大小有影响。

度量性较差。

光源SA CBabc光源S A C Ba bc P物体位置改变,投影大小也改变P当投影中心S移至无限远处时,投影线都相互平行,用这种投影法得到的图形称为平行投影法。

根据投射线于投影面所成角度的不同,平行投影法又分为正投影法和斜投影法。

正投影法斜投影法正投影法:投射线与投射面垂直,故又成为直角投影法。

斜投影法:投射线与投射面倾斜。

ABC ABC abcabcPP投射线投射线投影特性正投影法:得到的投影能够完整、真实地表达物体的形状和大小,度量方便,作图简便。

因此,在工程中得到广泛应用。

斜投影法:物体与投影面距离的远近不会影响其投影的大小,但当投影线与投影面夹角变化时,其投影大小也将发生变化。

2-2 工程上常用的图示法为满足工程设计对图样的各种不同要求,需要采用不同的图示法。

第二章 投影法的基本知识

第二章 投影法的基本知识

3交叉两直线(相错)
d
b
d
1(2)
b
1(2)
B
a
a c
2
D
X
c
O
X A
a
O 1
2
b
C
c1
d
2
a
1
c
b d
凡不满足平行和相交条件的直线为交叉两直线。
在右图中,虽然ab∩cd =k,a′b′∩c′d′=k′,且 k′k⊥OX,但因AB是侧平 线,察看侧面投影,a″b″ 和c″d″虽然相交,但该交 点与k′的连线与Z轴不垂直, 故此两直线不相交。
例 过点A 作EF 线段的垂线AB。
b
f
e
X e b
a
O
a
f
2.5 平面的投影
一、平面的表示法
1. 几何元素表示平面 用几何元素表示平面有五种形式:
(1)不在一直线上的三个点; (2)一直线和直线外一点; (3)相交两直线; (4)平行两直线; (5)任意平面图形。 2.平面的迹线表示法
Aa, aax= Aa' 。
点的两面投影图 通常不画边界
2 三投影面体系的建立
Z V
X
OW
H Y
三投影面体系由V、H、W三个投影面构成。 H、V、W面将
空间分成八个分角,处在前、上、左侧的那个分角称为第 一分角。我们通常把物体放在第一分角中来研究。
点的三面投影图
Z
V a
V
Z
a
A
a
X
OWX
V SB
A
ab
YW
四、直线上的点
b
c
B
C
a
X
O

工程制图-2-1投影法基本知识

工程制图-2-1投影法基本知识

普通高等教育“十一五”国家级规划教材
1. 直角三投影面体系的建立
对于复杂物体必须采用多面正投影图才能表达物体的空 间形状,工程上普遍采用三面正投影图,简称三视图。
物体空间投影情况
物体的三视图
普通高等教育“十一五”国家级规划教材
1. 直角三投影面体系的建立
直角三投影面体系由三个相互垂直的投影面所组成。
普通高等教育“十一五”国家级规划教材
三、三视图的形成及其对应关系
1. 直角三投影面体系的建立 2. 三视图的形成 3. 三视图之间的对应关系
普通高等教育“十一五”国家级规划教材
1. 直角三投影面体系的建立
V b' B1 B2 B3
图投影不能确定点 的空间位置;同样物体 的一面投影,有时甚至 两面投影也不能确定物 体的空间形状。
正立投影面简称正面,用V表示
水平投影面简称水平面,用H表示
侧立投影面简称侧面,用W表示
三个投影面的交线OX、OY、OZ 称为投影轴,也互相垂直,分别 代表长、宽、高三个方向。
三根投影轴交于一点O,称为原点。
普通高等教育“十一五”国家级规划教材
2. 三视图的形成
普通高等教育“十一五”国家级规划教材
2.投影法的分类
普通高等教育“十一五”国家级规划教材
二、正投影的基本特征
1. 点的正投影法特征 2. 直线、平面的正投影法特征
普通高等教育“十一五”国家级规划教材
1. 点的正投影法特征
在投影面和空间点确定的情况下,点的投影唯一。然而,在投影 面和点的投影确定的情况下,空间点的位置不唯一
普通高等教育“十一五”国家级规划教材 2. 直线、平面的正投影法特征
普通高等教育“十一五”国家级规划教材

第二章投影作图的基本定理与方法

第二章投影作图的基本定理与方法

第二章 投影作图的基本定理与方法知识点:四个定理和面上取点取线、线面平行、面面平行、线面相交求交点、面面相交求交线、线面垂直、面面垂直、直角三角形求直线实长等作图方法。

点线面综合问题解题方法。

难点:线面相交求交点、面面相交求交线、线面垂直、面面垂直作图方法。

点线面综合问题解题方法。

时间:8学时讲课内容:§2-1导言在第一章中,我们仅仅解决了点、直线、平面这些几何元素的投影表达问题。

或者说仅解决了图示问题。

而对它们之间的几何关系及其定位和度量,例如从属问题、平行问题、相交问题、垂直问题以及长短、大小、角度、距离等的度量等等,尚需进一步研究。

此外,为区分投影重合时所产生的遮挡现象(如居前的将挡住在后的,居左的将挡住在右的,居上的将挡住在下的),也有必要对投影图进行可见性判定,分清可见的与不可见的。

如直线的可见的投影部分以粗实线画出,而不可见的投影部分则以虚线表达。

凡此,可称为重影问题。

以上这些问题,无疑是进行投影作图——图解的主要问题。

本章所要讨论的,正是投影作图的几个基本投影定理以及几个主要的投影作图方法。

应用初等几何的知识,配合这些投影作图的定理和方法,也就在纸平面上取得了自由权,可以准确无误地解决一些定位严谨逻辑的空间逻辑思维方法。

§2-2从属问题一.属于直线的点设体系空间有一线段AB 。

若K 点属于AB直线,那么由图2-1可以容易看到:1.K 点的投影(k ,k ′,k ″)也必定属于AB 的投影(ab ,a ′b ′,a ″b ″); 图2-1 直线上的点2.同时,由于平行投影法的各投射线互相平行的结果,根据初等几何学的“平行线之间所截得的各对应线段成比例”的 定理(平行截切定理),有:AK ∶KB=ak ∶kb=a ′k ′∶k ′b ′=a ″k ″∶k ″b ″若K 点不属于直线AB ,我们由图2-1可以得到如下结论,即理:(见图2-2)[定理1]——若点在(属于) 若 K ∈AB ,则 k ∈ab ,k ′∈a ′b ′,k ″∈a ″b ″ 且 KB AK =kb ak =''''b k k a =""""b k k a这一定理,是一切从属问题乃至相交问题的基础。

2 正投影基础

2 正投影基础

α

b
a●
直线垂直于投影面 投影重合为一点 积 聚 性
直线平行于投影面 投影反映线段实长 ab=AB
直线倾斜于投影面 投影比空间线段短 ab=ABcosα
上页 下页 返回
⒉ 直线在三个投影面中的投影特性
正平线(平行于V面)
投影面平行线 侧平线(平行于W面) 平行于某一投影面而
水平线(平行于H面) 统称特殊位置直线 与其余两投影面倾斜
上页
下页
返回
投影法
平行投影法
斜投影法
S
S
正投影法
P
P
投射线沿 S 方向相互平行
三、正投影法特性(1)
1、积聚性
当直线或平面垂直于某投影面时,直线或平面在该投影面 上的投影积聚为一点或一直线,直线或平面上任意一个点或点 和直线的投影均积聚在该点或直线上。
垂 直 垂 直
投影积聚为一点
投影积聚为直线
三、正投影法特性(2)
c●

a (c )

A、C为哪个投 影面的重影点 呢?
上页
下页
返回
2.4直线的投影
两点确定一条直线,将两 点的同名投影用直线连接, 就得到直线的同名投影。 一、直线的投影特性
⒈ 直线对一个投影面的投影特性
A● M● B● a≡b≡m

a●


a

b
b
a● b
● ●
B ● A●

B
A● b a●
(3) 三视图中,除了整体保持“三等”关系外,每一局部也 保持“三等”关系,其中特别要注意的是俯.左视图的对应, 在度量宽相等时,度量基准必须一致,度量方向必须一致。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
济南大学图学中心
济南大学图学中心
本章要求
1.掌握三面正投影的形成及规律; 2.掌握正等轴测图和斜二等轴测图的画法;
济南大学图学中心
基本内容
第一节 第二节 第三节 第四节
投影的概念及其分类 工程中常用的投影图 三面正投影图的形成及投影规律 轴测投影图的形成及画法
济南大学图学中心
第二章 投影基本知识
于平投 投行射 影且线 面倾互
斜相
斜投影法
思考:
1 沿投影方向移动物体,其正投影的大小变不变?
2 物体的投影有否可能反映某一个面的实形?
济南大学图学中心
济南大学图学中心
§2.1 投影的概念及其分类
济南大学图学中心
§2.1 投影的概念及其分类
一、 投影的概念 二、 投影的分类
济南大学图学中心
§2.1 投影的概念及其分类
一、投影法的概念
目的:在只有两个尺度的图纸上,准确表达出三个尺度才能严格确定的物体;
根据该图形,能准确推导出物体的形状及其各组成部分的相对位置;
承影面
济南大学图学中心
§2.1 投影的概念及其分类
二、投影法的分类——中心投影法
投影特性
中心投影应用—2J三点透视图
中心投影法得到的投影一般不反映形体的真实大小。
度量性较差,作图复杂。
济南大学图学中心
§2.1 投影的概念及其分类
二、投影法的分类——平行投影法
于平投 投行射 影且线 面垂互Biblioteka 直相正投影法投影面
光线
投射线
影子
物体
光源
图3-1 产生影子的自然现象
投影(图)
形体
S
投射中心
图3-2 投影的概念(中心投影法)
济南大学图学中心
§2.1 投影的概念及其分类
一、投影法的概念 投影法: 投射线通过物体,向选定的面投射,并在该面上得到图形的方法。
投射中心: 所有投射线的起源点。 投射线: 发自投射中心且通过物体
上各点的直线。 投影面: 在投影法中得到投影的面。
投影(图): 根据投影法所得到的图形。
济南大学图学中心
§2.1 投影的概念及其分类
二、投影法的分类
画透视图
画斜轴测图
中心投影法
投影方法
斜投影法
画标高图 及正轴测图
平行投影法
单面投影
正投影法
多面投影
画工程图样
济南大学图学中心
§2.1 投影的概念及其分类
二、投影法的分类——中心投影法
投射中心 物体
投影面
投射线 投影
物体位置改 变,投影大 小也改变
思考: 1 在中心投影下,投影能否反映物体的真实大小?
2 当物体沿投影面的法线方向移动时,其投影大小变不变?
济南大学图学中心
§2.1 投影的概念及其分类
二、投影法的分类——中心投影法
中心投影应用—电冰箱两点透视图
相关文档
最新文档