人教版小学数学《分数除法》知识点整理归纳
人教版 六年级数学上册 第三单元《分数除法》知识点归纳 综合练习题(含答案)
第三单元《分数除法》知识互联知识导航知识点一:倒数的认识1.倒数的意义乘积是1的两个数互为倒数。
倒数具备两个条件:一是两个数;二是乘积是1。
2.互为倒数的两个数特点如果两个数都是分数,那么两个分数的分子和分母正好颠倒了位置;如果一个是整数,则另一个分数的分子是1,分母是这个整数。
3.求一个数倒数的方法(1)通过计算,乘积是1的两个数互为倒数。
(2)交换这个数的分子和分母的位置。
4.特殊的1的倒数是1,0没有倒数。
知识点二:分数除法的计算法则一个数除以一个不等于0的数,等于乘这个数的倒数。
知识点三:分数四则混合运算规律1. 只有乘、除法, 按照从左到右的顺序依次进行计算。
2. 在没有括号的算式里,既有加、减法又有乘、除法,要先算乘、除法,再算加、减法。
3. 在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。
知识点四:分数除法的应用题1.解决“已知一个数的几分之几是多少,求这个数”的问题,一般方法:方程法:(1)找出单位“1”,设未知量为x;(2)找出题中的等量关系式;(3)列出方程并解答;(4)检验并写出答案。
2. “已知比一个数多(少)几分之几的数是多少,求这数”的问题的解法:方程法:根据题中的等量关系:“单位‘1’的量×(1±几分之几)=已知量”或“单位‘1’的量±单位‘1’的量×几分之几=已知量”,设单位“1”的量为 x,列方程解答。
3. 已知两个量的和(差),其中一个量是另一个量的几分之几,求这两个量的问题的解法:有两个量都是未知的,先把谁看作单位“1”都可以,设其中一个量为未知数x,用这个量表示另一个量,然后找出等量关系,列方程解答出一个量,再解答第二个量。
4. 利用抽象的“1”解决实际问题:工程问题是分数问题的特例,工作总量与工作效率都不是具体的数,而是用抽象的分数来表示。
一般地,工作总量用单位“1”来表示,工作效率则用完成总量所需时间的倒数来表示。
六年级数学上册第2单元《分数除法》知识点整理
六年级数学上册第2单元《分数除法》知识点整理 为了能帮助广大小学生朋友们及时掌握所学知识,查字典数学网小学频道特地为大家整理了六年级数学上册第2单元分数除法知识点,希望能够切实的帮到大家,同时祝大家学业进步!六年级数学上册第2单元«分数除法»知识点整理【一】分数除法1、分数除法的意义:分数除法与整数除法的意义相同,表示两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法那么:除以一个不为0的数,等于乘这个数的倒数。
3、规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数;(2)、当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。
4、叫做中括号。
一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
【二】分数除法解决问题(未知单位1的量(用除法):单位1的几分之几是多少,求单位1的量。
)1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是的:单位1的量分率=分率对应量(2)分率前是多或少的意思:单位1的量(1 分率)=分率对应量2、解法:(建议:最好用方程解答)(1)方程:根据数量关系式设未知量为X,用方程解答。
(2)算术(用除法):分率对应量对应分率 = 单位1的量3、求一个数是另一个数的几分之几:就一个数另一个数4、求一个数比另一个数多(少)几分之几:①求多几分之几:大数小数 1 ②求少几分之几: 1 - 小数大数或①求多几分之几(大数-小数)小数②求少几分之几:(大数-小数)大数【三】比和比的应用(一)、比的意义1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
例如 15 :10 = 1510= (比值通常用分数表示,也可以用小数或整数表示)前项比号后项比值3、比可以表示两个相同量的关系,即倍数关系。
人教版六年级上数学《 分数除法》课堂笔记
《分数除法》课堂笔记以下是整理的人教版六年级数学《分数除法》的课堂笔记,供您参考:一、分数除法的意义1.分数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。
2.定义:a÷b=c表示a与b的商是c,也表示c是b的a倍。
二、分数除法的计算方法1.转化单位:将被除数改写成分数的形式,然后将除数和商相乘得到结果。
2.转化分数:将被除数和除数同时乘同一个数,使除数为整数,然后进行计算。
3.画线段图:通过画线段图来理解分数除法的意义和计算方法。
三、分数除法的应用1.解决实际问题:通过解决实际问题来加深对分数除法的理解和应用。
2.比较分数的大小:通过比较分数的大小来进一步掌握分数除法的计算方法。
四、注意事项1.分子除以自己本身的商:分子除以自己本身就是1,所以不需要再计算。
2.计算方法:计算分数除法时,可以将分子和分母同时除以相同的数,使分母变为整数,然后再进行计算。
3.约分:在计算过程中,如果分数的分子和分母有公因式,可以进行约分,使计算更加简便。
4.验算:在计算完成后,需要进行验算,以确保计算结果的正确性。
五、例题解析例题1:计算1/2÷3的结果。
解析:可以将分子和分母同时乘3,使分母变为整数,然后进行计算。
答案:1/2÷3=1/6例题2:已知a=2/3,b=3/4,求a÷b的值。
解析:可以先将被除数和除数进行转化,然后进行计算。
答案:a÷b=(2/3)÷(3/4)=8/9六、练习巩固1.练习题:课本上的练习题可以帮助学生进一步掌握分数除法的计算方法。
2.拓展练习:可以找一些生活中的实际问题,让学生通过解决实际问题来加深对分数除法的理解和应用。
人教版小学六年级数学上册分数除法相关知识点
中公教师网小编为大家整理了人教版小学六年级数学上册分数除法相关知识点,希望对大家有所帮助。
小学六年级数学上册——分数除法1.分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
2.分数除以整数(0除外),等于分数乘这个整数的倒数。
整数除以分数等于整数乘以这个分数的倒数。
3.一个数除以分数的计算法则:一个数除以分数,等于这个数乘以分数的倒数。
4.分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
5.两个数相除又叫做两个数的比。
比的前项除以后项所得的商,叫做比值。
从应用的角度理解,比可以分为同类量比和不同类量比;同类量比表示倍数关系,比的前项和后项必须单位一致;不同类量比的结果产生新的量,比的前项和后项的单位不相同。
6.比值通常用分数、小数和整数表示。
7.比的后项不能为0。
8.同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;9.根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。
10.比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
11.在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。
这种方法通常叫做按比例分配。
比的应用1、比的第一种应用:已知两个或几个数量的和,这两个或几个数量的比,求这两个或这几个数量是多少?例如:六年级有60人,男女生的人数比是5:7,男女生各有多少人?题目解析:60人就是男女生人数的和。
解题思路:第一步求每份:60÷(5+7)=5人第二步求男女生:男生:5×5=25人女生:5×7=35人。
2、比的第二种应用:已知一个数量是多少,两个或几个数的比,求另外几个数量是多少?例如:六年级有男生25人,男女生的比是5:7,求女生有多少人?全班共有多少人?题目解析:“男生25人”就是其中的一个数量。
人教版六年级上册数学第3单元 分数除法 小学六年级 第三单元《分数除法》知识总结
《分数除法》知识总结1.分数除法计算(1)分数除法的意义和分数除以整数整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。
已知两个因数的积与其中一个因数,求另一个因数,用(除法)计算。
1013103=÷的意义是:已知两个因数的积是103,其中一个因数是3,求另一个因数是多少。
分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
分数除以整数的计算方法:把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。
分数除以整数(0除外)的计算方法:(1)用分子和整数相除的商做分子,分母不变。
(2)分数除以整数,等于分数乘这个整数的倒数。
练习: 1、填空 (1)根据3565372=⨯和分数除法意义可得:=÷53356( ),=÷72356( )。
(2)把29m 长的绳子平均剪成4段,每段是29m 的( )。
(3)打字员打一份文件,打了20分钟后还剩52,平均每分钟打这份文件的( )。
2.列式计算。
(1)一个数的6倍是51,这个数是多少? (2)51的61是多少? 3.看图列式计算。
? ? ? ?811(2)一个数除以分数知识点一:一个数除以分数的计算方法:一个数除以分数,等于这个数乘分数的倒数。
知识点二:分数除法的统一计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
知识点三:商与被除数的大小关系:一个数(0除外)除以小于1的数,商大于被除数,除以1,商等于被除数,除以大于1的数,商小于被除数。
0除以任何数商都为0. 练习:1.算一算4851625÷44392213÷ 1427277⨯ 210÷ 2.填空。
(1)32的43是( ),它和32÷( )得数相同。
(2)分数除法可以转化为( )进行计算,计算过程中,转变成乘( )的倒数。
3.判断。
(1)两个真分数相除,商大于被除数。
六年级上册数学《分数除法 》分数除法 知识点整理
分数除法1、分数除法的意义乘法: 因数 × 因数 = 积; 除法: 积 ÷ 一个因数 = 另一个因数分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
例:3/4÷4/5表示已知两个因数的积是3/4和其中一个因数是4/5,求另一个因数的运算。
2、分数除法的计算法则除以一个不为0的数,等于乘这个数的倒数。
先约分在计算。
只有在乘号的两边或连乘时才能约分如:注:0不能做除数。
3、规律(分数除法比较大小时)3/5÷5/6>3/5一个数(零除外)除以比1小的数(0除外),商就大于这个数;3/5÷7/6<3/5一个数(零除外)除以比1大的数,商就小于这个数;3/5÷1=3/5任何数除以1都得任何数0÷3/5=00除以任何数都得04、混合运算:1.运算顺序:先乘除后加减,有括号的先算括号里面的。
只有加减法或只有乘除法从左往右依此计算。
2.运算定律:加法:加法交换律 a+b=b+a 加法结合律a+b+c=a+(b+c)减法:减法的性质 a-b-c=a-(b+c)乘法:乘法交换律ab=ba 乘法结合律abc=a(bc) 乘法分配律a(b+c)=ab+ac或a(b-c)=ab-ac除法:a÷b÷c=a×(b+c)3.注意:先观察,看清运算符号,思考能否用运算定律使计算变简便;不能用运算定律,按照运算顺序计算;计算时看清运算符号,按照相应的计算方法认真计算;注意在约分之后不要漏掉分子或分母;计算结束,认真验算。
5、分数除法应用题a. 1.观察题目中有没有分率,发现分率先找关键句。
(关键句是指含有分率的句子)2.找单位“1”(单位“1”是指要平均分的量,一般在“比”“相当于”“是”“占”的后面)3.分析数量关系单位“1”的量×分率= 分率对应量例:一批煤,运走3/5,正好是6吨,这批煤有多少吨?“3/5”是分率,找单位“1”,根据“运走3/5”就是“运走的是这批煤的3/5”把这批煤看做单位“1”;数量关系:一批煤×3/5=运走的;这批煤的吨数不知道,用方程解解:设这批煤有X吨3/5X=6X=6÷3/5X=6×5/3X=10例:一批煤,运走3/5,剩下6吨,这批煤有多少吨?“3/5”是分率,找单位“1”,根据“运走3/5”就是“运走的是这批煤的3/5”把这批煤看做单位“1”;数量关系:一批煤×3/5=运走的;这批煤的吨数不知道,用方程解解:设这批煤有X吨X—3/5X=62/5X=6X=6÷2/5X=6×5/2X=156.比A.意义:两个数相除又叫做两个数的比B.比各部分名称前项:后项=比值(后向不能为0)C.求比值:前项÷后项=比值前项÷比值=后项后项×比值=前项D.比和分数除法的关系比前项比号后项比值比的基本性质除法被除数除号除数商商不变性质分数分子分数线分母分数值分数基本性质E.比的基本性质:比的前项和后项都乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。
分数除法知识点总结(8篇)
分数除法知识点总结(8篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!分数除法知识点总结(8篇)作为一位优秀的人·民教师,时常会需要准备好教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。
六年级数学上册第三单元知识点
六年级数学上册第三单元知识点一、分数除法1、分数除法的意义:乘法:因数×因数 = 积除法:积÷一个因数 = 另一个因数分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的运算法则:除以一个不为0的数,等于乘那个数的倒数。
3、规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数;(2)、当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。
4、“[]”叫做中括号。
一个算式里,假如既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
二、分数除法解决问题1、解简单的“已知一个数几分之几是多少,求那个数”的解题方法⑴解方程①找出单位“1”可借助线段图,设未知量为X②找出题中的数量关系式③列出方程⑵用算术法解①找出单位“1”②找出已知量和已知量占单位“1”的几分之几③列出除法算式即:已知量÷已知量占单位“1”的几分之几=单位“1”的量2、稍复杂的“已知一个数的几分之几是多少,求那个数”的应用题⑴已知量比单位“1”的量多几分之几①解方程②算术法即:已知量÷(1+比单位“1”多的几分之几)=单位“1”的量⑵已知量比单位“1”的量少几分之几①解方程②算术法即:已知量÷(1-比单位“1”少的几分之几)=单位“1”的量3、求一个数是另一个数的几分之几:一个数÷另一个数4、求一个数比另一个数多(少)几分之几:两个数的相差量÷单位“1”的量或:①求多几分之几:大数÷小数– 1②求少几分之几: 1 - 小数÷大数三、比和比的应用(一)、比的意义1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
3、比能够表示两个相同量的关系,即倍数关系。
也能够表示两个不同量的比,得到一个新量。
小学数学重难点:六年级数学分数除法知识点、例题及练习题
小学数学重难点:六年级数学分数除法知识点、例题及练习题分数除法知识点(一)倒数1、倒数的意义:乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求倒数的方法:(原数与倒数之间不要写等号哦)(1)求分数的倒数:交换分子分母的位置。
(2)求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)求带分数的倒数:把带分数化为假分数,再求倒数。
(4)求小数的倒数:把小数化为分数,再求倒数。
3、因为1×1=1,1的倒数是1;因为找不到与0相乘得1的数0没有倒数。
4、对于任意数a(a≠0),它的倒数为1/a;非零整数a的倒数为1/a;分数b/a的倒数是a/b;5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
(二)分数除法1、分数除法的意义:分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。
3、规律(分数除法比较大小时):(1)当除数大于1,商小于被除数;(2)当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。
4、“[ ] ”叫做中括号。
一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
(三)分数除法解决问题(详细见重难点分解)(未知单位“1”的量(用除法):已知单位“1”的几分之几是多少,求单位“1”的量。
)1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”:单位“1”的量×分率=分率对应量(2)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量2、解法:(建议:最好用方程解答)(1)方程:根据数量关系式设未知量为x,用方程解答。
(2)算术(用除法):分率对应量÷对应分率 = 单位“1”的量3、求一个数是另一个数的几分之几:就用一个数÷另一个数4、求一个数比另一个数多(少)几分之几:① 求多几分之几:大数÷小数– 1② 求少几分之几:1 - 小数÷大数或①求多几分之几(大数-小数)÷小数② 求少几分之几:(大数-小数)÷大数(四)比和比的应用1、比的意义:两个数相除又叫做两个数的比。
【小学数学】六年级上册数学《分数除法》知识点
【小学数学】六年级上册数学《分数除法》知识点1、分数除法的意义乘法:因数×因数 = 积; 除法:积÷一个因数 = 另一个因数分数除法与整数除法的意义相同;表示已知两个因数的积和其中一个因数;求另一个因数的运算。
例:3/4÷4/5表示已知两个因数的积是3/4和其中一个因数是4/5;求另一个因数的运算。
2、分数除法的计算法则除以一个不为0的数;等于乘这个数的倒数。
先约分在计算。
只有在乘号的两边或连乘时才能约分如:12133 23224÷=⨯=注:0不能做除数。
3、规律(分数除法比较大小时)3/5÷5/6>3/5一个数(零除外)除以比1小的数(0除外);商就大于这个数;3/5÷7/6<3/5一个数(零除外)除以比1大的数;商就小于这个数;3/5÷1=3/5任何数除以1都得任何数0÷3/5=00除以任何数都得04、混合运算:1.运算顺序:先乘除后加减;有括号的先算括号里面的。
只有加减法或只有乘除法从左往右依此计算。
2.运算定律:加法:加法交换律 a+b=b+a 加法结合律a+b+c=a+(b+c)减法:减法的性质 a-b-c=a-(b+c)乘法:乘法交换律ab=ba 乘法结合律abc=a(bc) 乘法分配律a(b+c)=ab+ac或a(b-c)=ab-ac 除法:a÷b÷c=a×(b+c)3.注意:先观察;看清运算符号;思考能否用运算定律使计算变简便;不能用运算定律;按照运算顺序计算;计算时看清运算符号;按照相应的计算方法认真计算;注意在约分之后不要漏掉分子或分母;计算结束;认真验算。
5、分数除法应用题a. 1.观察题目中有没有分率;发现分率先找关键句。
(关键句是指含有分率的句子)2.找单位“1”(单位“1”是指要平均分的量;一般在“比”“相当于”“是”“占”的后面)3.分析数量关系单位“1”的量×分率= 分率对应量例:一批煤;运走3/5;正好是6吨;这批煤有多少吨?“3/5”是分率;找单位“1”;根据“运走3/5”就是“运走的是这批煤的3/5”把这批煤看做单位“1”;数量关系:一批煤×3/5=运走的;这批煤的吨数不知道;用方程解解:设这批煤有X吨3/5X=6X=6÷3/5X=6×5/3X=10例:一批煤;运走3/5;剩下6吨;这批煤有多少吨?“3/5”是分率;找单位“1”;根据“运走3/5”就是“运走的是这批煤的3/5”把这批煤看做单位“1”;数量关系:一批煤×3/5=运走的;这批煤的吨数不知道;用方程解解:设这批煤有X吨X—3/5X=62/5X=6X=6÷2/5X=6×5/2X=156.比A.意义:两个数相除又叫做两个数的比B.比各部分名称前项:后项=比值(后向不能为0)C.求比值:前项÷后项=比值前项÷比值=后项后项×比值=前项D.比和分数除法的关系基本性质。
人教版六年级数学上册-分数除法知识点归纳
人教版六年级数学上册-分数除法知识点归纳Unit 3: n nReciprocal1.The meaning of reciprocal: Two numbers whose product is 1 are reciprocals of each other。
It is important to emphasize that reciprocal is a nship een two numbers。
and they depend on each other。
Reciprocal cannot exist alone。
(It is necessary to clarify who is the reciprocal of whom).2.Methods to find reciprocal: (1) Find the reciprocal of a n: Swap the numerator and denominator。
(2) Find the reciprocal of a whole number: Treat the whole number as a n with the denominator of 1.and then swap the numerator and denominator。
(3) Find the reciprocal of a mixed number: Convert the mixed number into an improper n。
and then find the reciprocal。
(4) Findthe reciprocal of a decimal: Convert the decimal into a n。
and then find the reciprocal.3.The reciprocal of 1 is 1 because 1×1=1.There is no reciprocal because any number multiplied by 0 is 0.(The denominator cannot be 0).4.The reciprocal of a proper n is greater than 1.The reciprocal of an improper n is less than or equal to 1.The reciprocal of a mixed number is less than 1.5.n: If a×2/3=b×1/4.what are a and b。
最新六年级上册数学《分数除法》分数除法 知识点整理
分数除法1、分数除法的意义乘法:因数×因数 = 积;除法:积÷一个因数 = 另一个因数分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
例:3/4÷4/5表示已知两个因数的积是3/4和其中一个因数是4/5,求另一个因数的运算。
2、分数除法的计算法则除以一个不为0的数,等于乘这个数的倒数。
先约分在计算。
只有在乘号的两边或连乘时才能约分如:12133 23224÷=⨯=注:0不能做除数。
3、规律(分数除法比较大小时)3/5÷5/6>3/5一个数(零除外)除以比1小的数(0除外),商就大于这个数;3/5÷7/6<3/5一个数(零除外)除以比1大的数,商就小于这个数;3/5÷1=3/5任何数除以1都得任何数0÷3/5=00除以任何数都得04、混合运算:1.运算顺序:先乘除后加减,有括号的先算括号里面的。
只有加减法或只有乘除法从左往右依此计算。
2.运算定律:加法:加法交换律a+b=b+a 加法结合律a+b+c=a+(b+c)减法:减法的性质a-b-c=a-(b+c)乘法:乘法交换律ab=ba 乘法结合律abc=a(bc) 乘法分配律a(b+c)=ab+ac或a(b-c)=ab-ac 除法:a÷b÷c=a×(b+c)3.注意:先观察,看清运算符号,思考能否用运算定律使计算变简便;不能用运算定律,按照运算顺序计算;计算时看清运算符号,按照相应的计算方法认真计算;注意在约分之后不要漏掉分子或分母;计算结束,认真验算。
5、分数除法应用题a. 1.观察题目中有没有分率,发现分率先找关键句。
(关键句是指含有分率的句子)2.找单位“1”(单位“1”是指要平均分的量,一般在“比”“相当于”“是”“占”的后面)3.分析数量关系单位“1”的量×分率= 分率对应量例:一批煤,运走3/5,正好是6吨,这批煤有多少吨?“3/5”是分率,找单位“1”,根据“运走3/5”就是“运走的是这批煤的3/5”把这批煤看做单位“1”;数量关系:一批煤×3/5=运走的;这批煤的吨数不知道,用方程解解:设这批煤有X吨3/5X=6X=6÷3/5X=6×5/3X=10例:一批煤,运走3/5,剩下6吨,这批煤有多少吨?“3/5”是分率,找单位“1”,根据“运走3/5”就是“运走的是这批煤的3/5”把这批煤看做单位“1”;数量关系:一批煤×3/5=运走的;这批煤的吨数不知道,用方程解解:设这批煤有X吨X—3/5X=62/5X=6X=6÷2/5X=6×5/2X=156.比A.意义:两个数相除又叫做两个数的比B.比各部分名称前项:后项=比值(后向不能为0)C.求比值:前项÷后项=比值前项÷比值=后项后项×比值=前项D.比和分数除法的关系E.比的基本性质:比的前项和后项都乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。
六年级上册数学分数除法知识点
六年级上册数学分数除法知识点
六年级上册数学分数除法的知识点包括:
1. 分数的除法基本概念:除法是指将一个数(被除数)平均分成若干份相等的部分,
每份的数量即为分子,总份数即为分母。
2. 分数除以整数:将整数看作分母为1的分数,将分数除以整数,可以将分子与整数
相除。
3. 分数除以分数:将被除数与除数的分数化为带分数或假分数,然后将分子与分母相乘,得到一个新的分数。
4. 带分数的除法:将带分数转化为假分数,再进行分数的除法运算。
5. 分数的化简:在进行分数除法运算时,需要将分数化简到最简形式。
6. 分数除法的性质:分数除法满足除法的性质,即除法的交换律、结合律和分配律。
7. 分数除法的运算规则:分数的除法运算按照从左到右的顺序进行,先进行乘法运算,再进行分数的约分化简。
8. 解决实际问题:通过将实际问题转化为数学模型,进行分数除法运算解决实际问题。
以上是六年级上册数学分数除法的主要知识点,希望对你有帮助!如果你有需要更详
细的解释或其他问题,请告诉我。
五年级数学《分数除法》知识点
五年级数学《分数除法》知识点五年级数学《分数除法》知识点知识点是网络课程中信息传递的基本单元,研究知识点的表示与关联对提高网络课程的学习导航具有重要的作用。
以下是店铺为大家整理的五年级数学《分数除法》知识点,仅供参考,希望能够帮助大家。
五年级数学《分数除法》知识点1分数除法(一)知识点:1、分数除以整数的意义及计算方法。
分数除以整数,就是求这个数的几分之几是多少。
分数除以整数(0除外)等于乘这个数的倒数。
分数除法(二)知识点:1、一个数除以分数的意义和基本算理。
一个数除以分数的意义与整数除法的意义相同;一个数除以分数等于乘这个数的倒数。
2、掌握一个数除以分数的计算方法。
除以一个数(0除外)等于乘这个数的倒数。
3、比较商与被除数的大小。
除数小于1,商大于被除数;除数等于1。
商等于被除数;除数大于1,商小于被除数。
分数除法(三)知识点:1、列方程“求一个数的几分之几是多少”。
2、利用等式的性质解方程。
3、理解打折的含义。
如:打8折就是指现价是原价的十分之八。
五年级数学《分数除法》知识点2一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
1、被除数÷除数=被除数×除数的倒数。
2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:①除以大于1的数,商小于被除数:a÷b=c当b>1时,c(a≠0)②除以小于1的数,商大于被除数:a÷b=c当b<1时,c>a(a≠0b≠0)③除以等于1的数,商等于被除数:a÷b=c当b=1时,c=a三、分数除法混合运算运算顺序:①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。
人教版六年级上册数学 第3单元 《分数除法》归纳总结
三、 圆一、 认识圆1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O 表示。
它到圆上任意一点的距离都相等.3、半径:连接圆心到圆上任意一点的线段叫做半径。
一般用字母r 表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d 表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。
所有的半径都相等,所有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的21。
用字母表示为:d =2r 或r =2d 8、轴对称图形: 如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
(经过圆心的任意一条直线或直径所在的直线)9、长方形、正方形和圆都是对称图形,都有对称轴。
这些图形都是轴对称图形。
10、只有1一条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是: 长方形只有3条对称轴的图形是: 等边三角形只有4条对称轴的图形是: 正方形;有无数条对称轴的图形是: 圆、圆环。
二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。
用字母C 表示。
2、圆周率实验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。
发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。
3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π(pai)表示。
(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。
圆周率π是一个无限不循环小数。
在计算时,一般取π ≈ 3.14。
(2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。
(3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
五年级数学分数除法的知识点归纳
五年级数学分数除法的知识点归纳五年级数学分数除法的知识点归纳【知识要点】倒数知识点:1、发现倒数的特征并理解倒数的意义。
如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。
倒数是对两个数来说的,并不是孤立存在的。
2、求倒数的方法。
把这个数的`分子和分母调换位置。
3、1的倒数仍是1;0没有倒数。
0没有倒数,是因为在分数中,0不能做分母。
分数除法(一)知识点:1、分数除以整数的意义及计算方法。
分数除以整数,就是求这个数的几分之几是多少。
分数除以整数(0除外)等于乘这个数的倒数。
分数除法(二)知识点:1、一个数除以分数的意义和基本算理。
一个数除以分数的意义与整数除法的意义相同;一个数除以分数等于乘这个数的倒数。
2、掌握一个数除以分数的计算方法。
除以一个数(0除外)等于乘这个数的倒数。
3、比较商与被除数的大小。
除数小于1,商大于被除数;除数等于1。
商等于被除数;除数大于1,商小于被除数。
分数除法(三)知识点:1、列方程求一个数的几分之几是多少。
2、利用等式的性质解方程。
3、理解打折的含义。
如:打8折就是指现价是原价的十分之八。
数学与生活粉刷墙壁知识点:1、明确我们在粉刷教室墙壁时必须知道的条件。
2、根据实际情况进行计算相应的面积。
折叠:知识点:1、体会立体图形与展开图形之间的关系,发展空间观念。
2、能正确判断平面展开图所对应的简单立体图形。
【五年级数学分数除法的知识点归纳】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级上册数学知识点
第三单元 分数除法
一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
1、被除数÷除数=被除数×除数的倒数。
例53÷3=53×31=51 3÷53=3×3
5=5 2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律: ①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c<a (a ≠0)
②除以小于1的数,商大于被除数:a÷b=c 当b<1时,c>a (a ≠0 b ≠0)
③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a
三、分数除法混合运算
1、混合运算用梯等式计算,等号写在第一个数字的左下角。
2、运算顺序:
①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。
加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
注:(a±b )÷c=a÷c±b÷c
四、比:两个数相除也叫两个数的比
1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
注:连比如:3:4:5读作:3比4比5
2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20=2012=12÷20=5
3=0.6 12∶20读作:12比20 注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比也可以写成分数的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
3、化简比:化简之后结果还是一个比,不是一个数。
(1)、 用比的前项和后项同时除以它们的最大公约数。
(2)、 两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
也可以求出比值再写成比的形式。
(3)、 两个小数的比,向右移动小数点的位置,也是先化成整数比。
4、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
5
分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
五、分数除法和比的应用
1、已知单位“1”的量用乘法。
例:甲是乙的5
3,乙是25,求甲是多少?即: 甲=乙×53(15×5
3=9) 2、未知单位“1”的量用除法。
例: 甲是乙的5
3,甲是15,求乙是多少?即: 甲=乙×53(15÷5
3=25)(建议列方程答) 3、分数应用题基本数量关系(把分数看成比)
(1)甲是乙的几分之几?
甲=乙×几分之几 (例:甲是15的53,求甲是多少?15×5
3=9) 乙=甲÷几分之几 (例:9是乙的53,求乙是多少?9÷5
3=15) 几分之几=甲÷乙 (例:9是15的几分之几?9÷15=5
3)(“是”字相当“÷”号,乙是单位“1”)
(2)甲比乙多(少)几分之几?
A 差÷乙=乙
差(“比”字后面的量是单位“1”的量)(9比15少几分之几?(15-9)÷15 B 多几分之几是:乙甲–1 (例: 15比9少几分之几?15÷9=915-1=35–1=3
2) C 少几分之几是:1–乙甲 (例:9比15少几分之几?1-9÷15=1–159=1–53=5
2) D 甲=乙±差=乙±乙×乙差=乙±乙×几几=乙(1±几几) (例:甲比15少52,求甲是多少?15–15×5
2
=15×(1–5
2)=9(多是“+”少是“–”) E 乙=甲÷(1±几几 )(例:9比乙少52,求乙是多少?9÷(1-52)=9 ÷5
3=15) 4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。
例如:已知甲乙的和是56,甲、乙的比3∶5,求甲、乙分别是多少?
方法一:56÷(3+5)=7 甲:3×7=21 乙:5×7=35
方法二:甲:56×533+=21 乙:56×5
35+=35 例如:已知甲是21,甲、乙的比3∶5,求乙是多少?
方法一:21÷3=7 乙:5×7=35
方法二:甲乙的和21÷533+=56 乙:56×5
35+=35 方法二:甲÷乙=53 乙=甲÷53=21÷5
3=35 5、画线段图:(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。
(2)分析数量关系。
(3)找等量关系。
(4)列方程。
注:两个量的关系画两条线段图,部分和整体的关系画一条线段图。