《向量的概念及表示》 PPT

合集下载

向量的概念及表示

向量的概念及表示

向量的概念及表示一、知识、能力聚焦1、向量的概念(1)向量:既有方向,又有大小的量叫做向量。

【注:和量与数量的区别,表示向量的大小称为向量的模(也就是用来表示向量的有向线段的长度)】 向量 的大小称为向量的长度(或称为模),记作│ │。

(2)零向量:长度为零的向量叫做零向量,记作 。

(3)单位向量:长度等于1的向量叫单位向量。

(5)相等向量:长度相等且方向相同的两个向量叫做相等向量,若向量 和 相等,则记作 = 。

2、共线向量共线向量(也称平行向量),应注意两个向量共线但不一定相等,而两个向量相等是一定共线。

平面几何的三点共线与两个向量共线不同:首先共线向量不考虑起点,其次明确共线向量分为如下五种情况:(1)方向相同、模相等;(2)方向相同、模不等。

(3)方向相反、模相等;(4)方向相反、模不等;(5)零向量和任何向量共线。

例:把平面一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是什么? 解:因任一单位向量的始点移到同一点O 时,终点一定落在以O 为圆心,半径为1的单位圆上,反过来,单位圆上的任一点P 都对应一个单位向量 ,故构成的图形为一单位圆。

(4)平行向量:方向相同或相反的非零向量叫做平行向量。

例: 向量 、 平行,记作// 。

向量 、 、 平行,记作// // 。

(6)零向量与任一向量平行(7)相反向量:与向量 长度相等且方向相反的向量叫做 的相反向量。

记为- , 与- 互为相反向量,且规定:零向量的相反向仍是零向量。

例: 在平行四边形ABCD 中,向量 和向量 方向相同O AB a b a b OP a b a b a b c a b c a a a a a AB DC AB且长度相等; = 。

向量 和向量 长度相等但方向相反,是一对相反向量; =- 。

3、向量的表示 几何法:用有向线段来表示,即用有向线段的起点、终点来表示,如 用| |表示长度。

例: 如图,四边形ABCD 与ABDE 都是平行四边形;①用有向线段表示与向量 相等的向量; ②用有向线段表示与向量 共线的向量;解:①与 相等的向量是 、 、 。

7.1向量的概念和向量的几何表示ppt

7.1向量的概念和向量的几何表示ppt

知识应用
例2 如图:在平行四边形ABCD中,找出与向量AD共线的 非零向量.
D
A B
C
分析:共线的非零向量是所有方向相同和相反的 非零向量. 解:与向量AD共线的向量有AD,BC,DA,CB.
知识应用
例3:如图设O是正六边形ABCDEF的中心,请分别写出图中 满足下列条件的向量: (1)与向量OB相等的向量; C B (2)向量OB的负向量; (3)与向量OB共线的非零向量. D A O E (1)与向量OB相等的向量有DC,EO,FA. (2)向量OB负向量有CD,OE,AF,BO. (3)与向量OB共线的向量有DC,EO,FA, CD,OE, AF,BO .
主要概念
向量有两个要素:大小和方向 向量的大小:是表示向量的有向线段的长度,也 叫做向量的长度. AB 或 a 记作: 相等的向量: 大小相等且方向相同的向量. 注:两个向量相等与它们的位置无关.
零向量: 长度为零的向量,记作0或 AA
a
B D
它的方向不确定. A AB BA 注: 0的负向量规定为0 ; C 单位向量:长度为1的向量. 思考:两个单位向量一定是相等向量吗?
相反,或者有一个是零向量.
知识应用
例1 如图:在平行四边形ABCD中,找出与向量AB相等的 向量,以及AB的负向量. D C
A
B
分析:相等的向量即方向相同、大小相等的向量,用 有向线段表示,即为方向相同、长度相等的有向线 段.负向量即方向相反、大小相反的向量,用有向线段 表示,即为方向相反,长度相等的有向线段. 解: AB = DC - AB = BA = CD
主要概念
a长度相等且方向相反的向 负向量: 与非零向量 a 量称 的负向量, a 记作: 或称 a 的反向量.

向量的概念及表示(公开课)

向量的概念及表示(公开课)

向量
向量
向量的表示
向量的大小 (模)
向量的方向
平行向量 共线向量) (共线向量)
零向量
单位向量
课堂小结
向量及向量符号的由来
向量最初被应用于物理学, 向量最初被应用于物理学,被称为矢 很多物理量,如力,速度,位移, 量.很多物理量,如力,速度,位移,电 场强度,磁场强度等都是向量. 场强度,磁场强度等都是向量. 大约公元前350 350年 大约公元前350年,古希腊著名学 者亚里士多德就知道了力可以表示为向 向量一词来自力学, 量.向量一词来自力学,解析几何中的有 向线段 向线段. 最先使用有向线段表示向量的是英国 大科学家牛顿 学家牛顿. 大科学家牛顿.
共线向量: 平行向量也叫做共线向量. 共线向量: 平行向量也叫做共线向量. 相反向量 : 长度相等 且方向相反的向量 叫做相反向量. 记作: 叫做相反向量. 记作: a
思考: 思考:
1,若两个向量相等,则它们的起点和终点 ,若两个向量相等, 分别重合吗? 分别重合吗? 2,向量 AB 与 CD 是共线向量,则A,B, 是共线向量, , , , C,D四点必在一直线上吗 C,D四点必在一直线上吗? 四点必在一直线上吗? 3,平行于同一个向量的两个向量平行吗? ,平行于同一个向量的两个向量平行吗? 4,若四边形 若四边形ABCD是平行四边形,则有 是平行四边形, 是平行四边形 A AB = DC 吗? B
学生活动
a
(1),如上图,设图中小正方形的边长为1,则| a |= ),如上图 设图中小正方形的边长为1 如上图,
.
(2),请在上图中画出与| a |相等的向量(要求所画向量的 请在上图中画出与| |相等的向量 相等的向量( ),请在上图中画出与 起点和终点在方格的格点处,以下要求不变). 起点和终点在方格的格点处,以下要求不变). (3),请在上图中画出模为| a |的2倍的向量. 请在上图中画出模为| |的 倍的向量. ),请在上图中画出模为 思考:观察上图中的向量,我们可将其分为模为 2 和 2 2 思考:观察上图中的向量, 两类;你能否将这些向量按照" 进行分类? 两类;你能否将这些向量按照"方向"进行分类?

向量的概念及表示ppt

向量的概念及表示ppt
20122012-3-5
良辰美景惜时如金敢与金鸡争晨晖 书山学海甘之若饴誓同峨眉共比高
高一( ) 高一(15)班欢迎您
20122012-3-5
金钱豹以5m/s的速度追赶一只以 金钱豹以 的速度追赶一只以2m/s逃跑的小狗 逃跑的小狗…… 的速度追赶一只以 逃跑的小狗
请问: 能追上小狗吗 为什么? 小狗吗? 请问:金钱豹 能追上小狗吗?为什么?
4.相等向量的定义: 长度相等且方向相同的向量 4.相等向量的定义: 相等向量的定义
A B D
uuu uuur r 记作: = DC AB
C
相反向量的定义: 相反向量的定义: 的定义
r 们 与a 长 度 r 叫 a
等,
r a
20122012-3-5
r c
r r c = -a
r r a = -c
r . 记做: a -
一、向量的定义
既有大小又有方向的量 既有大小又有方向的量 大小又有方向
向量的长度
向量的模
二、向量的表示方法
向量常用有向线段表示 ①几何表示——向量常用有向线段表示:有向线段的 几何表示 向量常用有向线段表示: 长度表示向量的大小 箭头所指的方向表示 向量的大小, 方向表示向量的方 长度表示向量的大小,箭头所指的方向表示向量的方 向。以A为起点、B为终点的向量记为: AB。 为起点、 为终点的向量记为: 为起点 为终点的向量记为 大小记着: 大小记着:│AB│
有向线段:有固定起点、大小、 有向线段 有固定起点、大小、方向 有固定起点 向量:可选任意点作为向量的起点、有大小、 向量 可选任意点作为向量的起点、有大小、有 可选任意点作为向量的起点 方向。 方向。
B D B
D
A

向量的概念及向量的表示

向量的概念及向量的表示
对于任意两个向量$vec{a}$和$vec{b}$,有 $|vec{a}||vec{b}| = sqrt{vec{a} cdot vec{a} cdot vec{b} cdot vec{b}}$。
向量模的计算
定义
向量$vec{a}$的模定义为 $|vec{a}| = sqrt{sum_{i=1}^{n} a_i^2}$,其中$n$是向量的维 数,$a_i$是向量的分量。
向量坐标的运算
总结词
向量的坐标运算包括加法、数乘、向量的模等基本运算。
详细描述
设两个平面向量$overset{longrightarrow}{a} = (x_{1}, y_{1})$和 $overset{longrightarrow}{b} = (x_{2}, y_{2})$,则它们的和向量 $overset{longrightarrow}{a} + overset{longrightarrow}{b} = (x_{1} + x_{2}, y_{1} + y_{2})$;数乘运算中, $koverset{longrightarrow}{a} = (kx_{1}, ky_{1})$;向量 $overset{longrightarrow}{a}$的模为$left| overset{longrightarrow}{a} right| = sqrt{x_{1}^{2} + y_{1}^{2}}$。
计算方法
根据定义,可以通过计算向量 的分量平方和,然后取平方根 得到向量的模。
特殊情况
当向量模为0时,表示该向量 是零向量;当向量模为无穷大 时,表示该向量不存在。
向量模的应用
80%
向量长度
向量的模可以用来表示向量的长 度或大小。

高等数学向量及其运算PPT(“向量”文档)共40张可修改文字

高等数学向量及其运算PPT(“向量”文档)共40张可修改文字
a相同, 当<0时与a相反.
当=0时, |a|=0, 即a为零向量. 当=1时, 有1a=a; 当=-1时, 有(-1)a =-a.
11
•向量与数的乘积的运算规律
(1)结合律 (a)=(a)=()a;
(2)分配律 (+)a=a+a;
(a+b)=a+b.
•向量的单位化
设a0, 则向量 a 是与a同方向的单位向量,
9
的三角形是等腰三角形 .
思考: 五、向量的模、方向角、投影
“”
以OM为对角线、三条坐标轴为棱作长方体 有
例3 已知两点A(x1 y1 z1)和B(x2 y2 z2)以及实数
1
(1) 如何求在 xoy 面上与A , B 等距离之点的轨迹方程?
(2) 如何求在空间与A , B 等距离之点的轨迹方程 ?
20
任给向量r, 存在点M及xi、yj、zk, 使
则 r =OM = xi + yj + zk .
• 上式称为向量r的坐标分解式. • xi、yj、zk称为向量r沿三个坐标轴方向的分向量.
点M、向量r与三个有序x、y、z之
间有一一对应的关系
M r =OM = xi + yj + zk (x, y, z) .
在直线 AB 上求一点 M, 使 AM =MB .
解 由于
解 由于 AM =OM -OA , MB =OB-OM ,
=OM -OA , MB =OB-OM ,
因此 OM -OA=(OB-OM ) ,
从而
OM
=
1
1+
(OA+
OB)
(x,
y,
z)

向量的概念及向量的表示

向量的概念及向量的表示

空间向量基本定理及应用
空间向量基本定理
如果三个向量 a、b、c 不共面,则对 空间任一向量 p,存在一个唯一的有 序实数组 x、y、z,使得 p = xa + yb + zc。
应用
空间向量基本定理是空间向量坐标表 示的基础,它说明空间中的任一向量 都可以表示为其他三个不共面向量的 线性组合。
向量在解析几何中作用
线性组合与线性方程组的解
线性方程组可以表示为一系列向量的线性组合等于零向量的形式。线性方程组的解与这些 向量的线性相关性密切相关。当且仅当这些向量线性无关时,方程组有唯一解;否则,方 程组有无穷多解或无解。
04 向量运算及应用
加法运算及物理意义
向量加法的定义
两个向量相加,即将它们的对应 分量相加得到新的向量。
磁场强度
磁场强度是描述磁场中某点磁场力作用强弱和方向的物理量,也是一个矢量。在电磁学中,磁场强度 用向量表示,其大小等于单位电流元在该点所受磁场力的大小与电流元方向之间的夹角的正弦值的乘 积,方向遵循右手定则。
波动现象中波矢描述
• 波矢:波矢是描述波动现象中波的传播方向和波长的物理量, 是一个矢量。在波动现象中,波矢用向量表示,其大小等于波 的角频率与光速的比值,方向指向波的传播方向。波矢在波动 现象的研究中具有重要意义,例如在光的干涉、衍射等现象中 需要用到波矢的概念。
到新的向量。
几何意义
02
数乘运算在几何上表现为向量的缩放,即改变向量的长度而不
改变其方向。
物理意义
03
在物理学中,数乘运算用于描述力的缩放或速度的变化,如一
个力的大小可以通过数乘运算进行调整。
点积、叉积运算及应用
点积运算的定义
两个向量的点积是将它们的对应分量相乘后相加 得到的标量。

向量的概念及表示

向量的概念及表示

在你学过的量中,哪些是数量,哪些 是向量?
问题情境 • 如图所示,用100N的力,按照不同的
方向拉一辆车,效果一样吗?
30º
建构数学
一.向量的相关概念
1、既有大小又有方向的量叫做向量。 (矢量) 2、只有大小没有方向的量叫做数量(。标量)
1、数量与向量的区别? 2、在你学过的量中,哪些是数量,哪些 是向量?
学生活动
• 例1:质量、加速度、身高、体 重、面积、体积、力、温度、 路程、位移、密度、数轴这些 量中,哪些是数量?哪些是向 量?
向量的2个要素:“大小”和“方向”
建构数学 2、向量的表示 N f
几何表示
向量常用一条有向线段来表示.

①有向线段:带有方向的线段。
②有向线段的3要素:起点、方向、长度
问题情境
• 如果要找一个物理量来刻画从学校到东 榆镇政府的位置变化,应该用哪个量?
• “位移”和“路程”这两个物理量一样 吗?
建构数学
一.向量的相关概念
1、只有大小没有方向的量叫做数量。
2、既有大小又有方向的量叫做向量。
路程
只有大小没有方向 数标量量
(只需用一个实数就可以表示的量)
位移
既有大小又有方向 向矢量


2、向量 AB 与向量 BA表示同一个向量。
3、共线向量一定在一条直线上。
4、不相等的两个向量一定不平行。
5、零向量没有方向。
6、任何两个单位向量都是平行向量。
7、起点相同终点不同的两个向量一定不共线。
8、向量就是有向线段。
向有但量向并与线非有段说向是向线向 量段的量就区的是别有形?向象线表段示,。
• 大约公元前350年,古希腊著名学 者亚里士多德就知道了力可以表示为向 量.向量一词来自力学、解析几何中的有 向线段。

空间解析几何与向量代数 ppt课件

空间解析几何与向量代数 ppt课件

z O M O N M O O A O BC C
O A xi,O B yj,O C zk
r x i y j z k (x,y,z)
k o i
j rMB y
A
此式称为向量 r 的坐标分解式 ,
x
N
xi ,y j,zk 称为 r 沿三向 个坐标量 轴方向的分向量.
ppt课件
14
机动 目录 上页 下页 返回 结束
x0
坐标面 : xoy面 z0
z轴
x0 y0
yoz面 x0
zox面y0
ppt课件
13
Hale Waihona Puke 机动 目录 上页 下页 返回 结束
2. 向量的坐标表示
在空间直角坐标系下, 任意向量 r 可用向径 OM 表示.
以 i , j,k 分别 x ,y ,z轴 表上 示,的 设点 M 单
的坐标为 M(x,y,z),则
四、利用坐标作向量的线性运算 设 a (a x ,a y,a z)b , (b x,b y,b z), 为实数,则
a b ( a x b x ,a y b y ,a z b z)
a(ax,ay,az)
平行向量对应坐标成比例:
当 a 0 时 ,
ba
ba
bx by b z ax ay a z
组成一个空间直角坐标系.
• 坐标原点

zz 轴(竖轴)

• 坐标轴

• 坐标面
• 卦限(八个) Ⅶ x
x轴(横轴)
Ⅷ ppt课件
yoz面 oxoy面


y
y轴(纵轴)

11
机动 目录 上页 下页 返回 结束

向量的概念及表示(公开课)

向量的概念及表示(公开课)
必修 4 平面向量
蒋华中学 蒋新红
问题情境
• 如果要找一个物理量来刻画从家到学校 的位置变化,应该用哪个量?
• “位移”和“路程”这两个物理量一样 吗?
2021/6/12
2
建构数学
一.向量的相关概念
1、向量的定义:既有大小又有方向的量。
路程
只有大小没有方向 数标量量
(只需用一个实数就可以表示的量)
吗? a b
10
巩固练习
例1、如图,O是正方形ABCD对角线的交点,四边 形OAED,OCFB都是正方形,在图中所示的向量中:
(1)与 C O 相等的向量为 (2)与C O 共线的向量为
A O ;

(3)与 C O 的模相等的向量为

(4)向量 C O 与 A是否相等?答
例2:在45的方格中有一个向量AB,以图中 的格点为起点和终点作向量,其中与AB相等的 向量有多少个?与AB长度相等的共线向量有多 少个?
这两个量仅从大小上刻画了向量.
思考:
a
• 零向量有没有方向?
• 单位向量唯一吗?
• 平面直角坐标系内,所有起点在原点的单位向
量,它们终点的轨迹是什么图形?
2021/6/12
7
学生活动
记作:ab.
(1)如上图,设图中小正方形的边长为1,则| 2 2|= 。
(2)请在上图中画出与| a |相等的向量(要求所画向量的起
“a 大小”和“,方向”b 是向量的,两个c 重要方面

2021/6/12
4
建构数学 2、向量的表示
几何表示
向量常用一条有向线N 段来表示.
i: ii:
有箭向头线所段指的的长方度向表表示示向向f 量量的的大方小向..
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:(1) Buuuu Crr, O uuA uruuu r
A
B
( 2) BCFE
u u ru u u r u u r u u r
( 3 ) 虽 然 O A //B C , 且 | O A | = | B C | ,
但 是 它 们 方 向 相 反 , 故 这 两 个 向 量 不 相 等 .
uuu r uuur OABC
合作探究:
如图:以1× 1方格纸中的格点为起点和 终点的所有向量中,可得到多少种不同 的模?有多少种不同的向量?
共有2种不同的模 共有8种不同的向量
若改为1×2的方格纸中的格点为起点 和终点的所有向量中,可得到多少种 不同的模?多少种不同的向量呢?
共有4种不同的模
共有14种不同的向量
欢迎来到: 过关竞技场
2、向量 AB 和 BA 同一个向量吗?为什么?
不是,方向不同
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交流
说明2: 有向线段与向量的区别:
有向线段:有固定起点、大小、方向
向量:可选任意点作为向量的起点、有大小、有
方向。
B
D
B
D
A
C
A
C
有向线段AB、CD是 向量 AB、CD 是同一个向量。 不同的。
A
D
u u u r u u u r
记 作 : A BD C
B
C
s
相反向量的定义:向 我 量 们 叫 把 做 与 a r a的 长 相 度 反 相 向 等 量 , . 方 记 向 做 相 反 : -的 ar
r a
r rr r
r
c=-a a = -c
c
r
r
-(-a)=?
b
三:向量之间的关系
5.共线向量与平行向量的关系:
在图中所标u 出u u r 的向量中:
E
( 1 ) 试 找 出 与 F u E u r 共 线 的 向 量 ;
( 2 ) 确 定 与 F E 相 等 的 向 量 ;
u u r u u u r ( 3 ) O A 与 B C 相 等 吗 ?
O F
D C
若 不 相 等 , 则 之 间 有 什 么 关 系 ?
湖面上有三个景点O,A,B,
(如图)一游艇将游客从
景点O送至景点A,半小时 后,游艇再将游客送至景
o
点B.从景点O到景点A有
一个位移,从景点A到景
B
点B也有一个位移。
位移和距离这两个量有 什么不同?
位移既有大小又有方向,
A
距离只有大小没有方向
合作探究:
观察下述三个量有什么区别?
m=20kg
(1)
零向量
BACK
练习 1、若两个向量在同一直线上,则这两个
向量是什么向量?
共线向量 或者说平行向量
2、共线向量一定在一条直线上吗? 不一定
BACK
练习: 在质量、重力、速度、加速度、 身高、面积、体积这些量中,哪 些是数量?哪些是向量?
数量有:质量、身高、面积、体积
向量有:重力、速度、加速度
BACK
说明3:两个特殊向量
1、零向量 :长度为 0 的向量。记作 0
2、单位向量 :长度为 1 个单位长度的向量。 0 向量大小为0,方向
不确定的。可以是任意方向 单位向量大小为1,方向 不一定相同。 单位向量可以有无数多个
思考:平面直角坐标系内,起点在原点的单位向量
它们的终点的轨迹是什么图形?
三:向量之间的关系
rrr a//b//c
a r,b r,c r 为 共 线 向 量
r a r b
r c
rr r bc a
任意一组平行向量都可以平移到同一直线上
平行向量就是共线向量
两向量的共线与平面几何里两线段的共线是否一样?
为什么?
说明:在平行向量、共线向量、相等向量 的概念中应注意零向量的特殊性
例1:已知O为正六边形ABCDEF的中心,
例2:在图中的4×5方格纸中有一个向量 AB ,
分别以图中的格点为起点和终点作向量,
(1)其中与
AB
相等的向量有多少个?
(2)与 AB长度相等的共线向量有多少个?
( AB 除外)
B
u u u r
( 1 ) 共 有 7 个 向 量 与 A B 相 等
u u u r
A
( 2 ) 共 有 1 5 个 向 量 与 A B 共 线
3.平行向量的定义:
➢方向相同或相反的非零向量叫做平行向量
➢我r 们规定零向量与任一向量平行
ra b
r 记 做 : a r//b r//cr
c
r e
ur f
ru r 那 么 e 与 f 之 间 是 什 么 关 系 ?
两向量的平行与平面几何里两线段的平行有什么区别?
三:向量之间的关系
4.相等向量的定义:长度相等且方向相同的向量
金钱豹以5m/s的速度追赶一只以2m/s逃跑的小狗……
请问:金钱豹 能追上小狗吗?为什么?
美国“小鹰”号航空母舰导弹发射处获得信息:伊拉 克的军事目标距“小鹰”号1200公里。试问只知道这一信 息导弹是否能击中目标?
答案:不能,因为 没有给定发射的方向.
1200公里
1200公里
1200公里
1200公里
★题:
1
2
3
4
5
6
★★题:
7
8
9
10
★★★题:1112 Nhomakorabea练习: 1、单位向量是否一定相等?
不一定
2、单位向量的大小是否一定相等?
一定
BACK
练习: 1、平行向量是否一定方向相同?
不一定
2、不相等的向量一定不平行吗?
不一定
BACK
练习 1、与零向量相等的向量一定是什么向量?
零向量
2、与任意向量都平行的向量是什么向量?
F=20N
(2)
V =20km/h
(3)
(2)(3)都是有大小和方向的量
靖江市刘国钧中学瞿竞泓
*
一、向量的定义 既有大小又有方向的量
向量的模
向量的长度
二、向量的表示方法
①几何表示——向量常用有向线段表示:有向线段的 长度表示向量的大小,箭头所指的方向表示向量的方 向。以A为起点、B为终点的向量记为:AB。
在下列结论中,哪些是正确的? (1)如果两个向量相等,那么它们的起点和终
点分别重合; (2)模相等的两个平行向量是相等的向量; (3)如果两个向量是单位向量,那么它们相等; (4)两个相等向量的模相等。
正确的有:(4)
练习:
1.设O为正△ABC的中心,则向量AO,BO,CO是 (B )
A.相等向量
大小记着:│AB│

A
a
②也可以表示: a b c d ….
大小记为┃a┃
说明1:
我们现在研究的向量,与起点无关,用有向线段 表示向量时,起点可以取任意位置。所以数学中 的向量也叫 自由向量
如图:他们都表示 a
a
同一个向量。
1、温度有零上和零下之分,温度是向量吗?为 什么? 不是,温度只有大小,没有方向。
相关文档
最新文档