结构动力学基础

合集下载

第十章结构动力学

第十章结构动力学

度 法
m m11
yቤተ መጻሕፍቲ ባይዱ(t) 2 y(t) 0
Fm=y(1t) m 11
l EI
二阶线性齐次常微分方程
y(t) 11 F y(t) 11[my(t)]
11

1 k11
柔 度 法
其通解为
y(t) c1 cost c2 sin t
由初始条件 y(0) y0 y(0) y0
第二,结构在动荷载作用下,产生抵抗结构加速度的 惯性力。动力计算必须考虑惯性力。
4、结构动力计算中体系的自由度
自由度的定义
确定体系中所有质量位置所需的独立几何参数,称 作体系的动力自由度数。
自由度的简化
实际结构都是无限自由度体系,这不仅导致分析困难, 而且从工程角度也没必要。常用简化方法有:
结构动力学的研究内容 结构动力学是研究工程结构的动力特性及其在动荷载
作用下的动力反应分析原理和方法的一门理论和技术学科。
结构动力学的任务 讨论结构在动力荷载作用下反应的分析的方法。
寻找结构固有动力特性、动力荷载和结构反应三者间 的相互关系,即结构在动力荷载作用下的反应规律,为结 构动力可靠性设计、保证结构的经济与安全以及结构健康 诊断提供科学依据。
或者
y
ky
F P(t)
y 2 y FP (t)
m
上式就是单自由度体系强迫振动的微分方程
1、简谐振动作用时的强迫振动
运动方程及其解
F(t)
F(t) F sin t
l
F --荷载幅值 --荷载频率
运动方程
my(t) k11y(t) F sin t

y(t) 2 y(t) F sin t m

结构动力学克拉夫

结构动力学克拉夫

结构动力学克拉夫结构动力学是一门研究结构受力、振动和变形的学科。

它是结构力学的一个重要分支,主要研究结构的静力学和动力学行为。

结构动力学的研究可以帮助工程师设计和分析结构的稳定性,预测结构的振动响应,以及提高结构的动力性能。

结构动力学的研究对象是各种类型的结构体系,包括建筑物、桥梁、塔类结构、航空航天器、汽车等。

这些结构在使用过程中会受到各种外部荷载的作用,会发生变形和振动,甚至会发生破坏。

因此,必须通过结构动力学的研究来评估结构的受力情况,以便保证结构的安全和可靠性。

结构动力学的理论基础是力学、振动学和数学分析等。

力学用来描述结构的受力情况,振动学用来描述结构的振动响应,而数学分析则是结构动力学理论的基本工具。

在结构动力学的研究中,常用的数学方法包括牛顿第二定律、拉格朗日方程、哈密顿原理等。

在结构动力学的研究中,需要对结构的质量、刚度和阻尼进行建模。

质量是指结构对外界力的响应情况,通常可以用结构的质量矩阵来描述;刚度是指结构对位移的响应情况,通常可以用结构的刚度矩阵来描述;阻尼是指结构损耗能量的能力,通常可以用结构的阻尼矩阵来描述。

通过对这些参数的建模,可以得到结构的动力学方程。

结构动力学的研究包括两个主要方面:一是结构的自由振动,即结构在没有外界荷载作用下的振动行为;二是结构的强迫振动,即结构在受到外界荷载作用下的振动行为。

通过对这两方面的研究,可以得到结构的振动特性和响应情况。

总的来说,结构动力学是一门重要的学科,它通过对结构受力、振动和变形的研究,可以帮助工程师设计和分析各种类型的结构体系。

同时,结构动力学也为其他学科的研究提供了基础和支持,促进了工程技术的发展和进步。

第二章结构动力学分析动力学基础及运动方程的建立

第二章结构动力学分析动力学基础及运动方程的建立
1 (t ) c1 c2 m1 0 u 2 (t ) c2 0 m2 u 1 k1 k 2 c2 u 2 k2 c2 u k 2 u1 0 k 2 u 2
K u P M u
动力平衡法的步骤
1)分析体系各质点所受的真实力和假想惯性力; 2)沿质点各自由度方向列出平衡方程。
动力平衡法的优点
把动力问题变成了人们所熟悉的静力问题。
2.2 运动方程的建立
2.2.2 虚位移原理
虚位移原理:如果一个平衡的体系在一组力的作用 下承受一个虚位移,即体系约束所允许的任何微小 位移,则这些力所作的总功等于零。 虚位移:满足体系约束条件的无限小位移。 理想约束:在任意虚位移下,约束反力所作虚功之 和等于零。
描述体系在运动过程中任意时刻全部质点的位置所需要的独 立几何参数的数目。
y2
y1
平面上的质点 W=2
非刚性悬臂 W=2
EI
刚性梁 W=1
四层结构 W=4
图2.1 动力自由度的确定
几个值得注意的问题
1. 弹性体系的振动自由度
描述体系的振动,需要确定体系中全部质量在任一瞬 时的位置,为此所需要的独立坐标数就是弹性体系振动的 自由度。值得注意的是:体系中集中质量的个数不一定等 于体系振动的自由度,自由度数目与计算假定有关,而与 集中质量数目和超静定次数无关。
d T T V ( ) Q j (t ) , j 1, 2, , n dt q j q j q j

t2
t1
(T V )dt

t2
t1
Wnc d建立体系的运动方程 体系的动能
T

1 2 12 m2 u 2 m1u 2

结构动力学基础理论

结构动力学基础理论

第四章
运动方程的建立
y (t)
单自由度 体系模型
c m k
F (t)

质量块m,用来表示结构的质量和惯性特性 自由度只有一个:水平位移y(t) 无重弹簧,刚度为 k,提供结构的弹性恢复力 无重阻尼器,阻尼系数c,表示结构的能量耗散,提供结构的阻尼力 随时间变化的荷载F(t)
单自由度体系运动方程的建立(直由度数为单元节点可发生的 独立位移未知量的总个数。 综合了集中质量法和广义坐标法的某些特点,是最灵活有效的 离散化方法,它提供了既方便又可靠的理想化模型,并特别适 合于用电子计算机进行分析,是目前最为流行的方法。 已有不少专用的或通用的程序(如SAP,ANSYS等)供结构分 析之用。包括静力、动力 和稳定分析。

代入:


单自由度无阻尼体系运动方程的解:
v(t )
0 v

sint v0 cost
(3-11)
第六章 简谐振动荷载反应
谐振荷载:
p (t )
k 1

则组合系数Ak(t)称为体系的广义坐标。
nπ x ( x ) bn sin l n 1
广义坐标 位移函数

广义坐标表示相应位移函数的幅值,是随时间变化的函数。 广义坐标确定后,可由给定的位移函数确定结构振动的位移曲线。 以广义坐标作为自由度,将无限自由度体系转化为有限个自由度。
1.3 动力荷载类型
概念:动荷载是时间的函数!
分类: 确定性荷载 动荷载 非确定性荷载
周期性荷载 非周期性荷载
确定性荷载:荷载的变化是时间的确定性函数。
FP
例如: 简谐荷载
t
FP
冲击荷载
t

结构动力学第二章

结构动力学第二章

∂T ∂V d ∂T ( )− + = Pncj (t ), & dt ∂u j ∂u j ∂u j
其中: T —— 体系的动能;
j = 1,2,L , N
V —— 体系的位能,包括应变能及任何保守力的势能; Pncj ——与 uj 相应的非保守力(包括阻尼力及任意外荷载)。
– 红色部分为引入动力自由度概念的目的,蓝色部分为实 现此目的的手段。 – 概念中的“全部”、“独立”两个条件非常关键。
• 严格来说,所以结构体系质量都是连续分布的,为无限自 由度体系,研究比较困难。但许多情况下,可以作一定的 简化,变为有限自由度体系。 • 简化并确定结构动力自由度最典型的方法:集中质量法
动能
1 & mu 2 转动质量 2
T =
1 &2 Jθ 2
1 2 V = ku 转动弹簧 2
1 &2 V = kθ θ 2
位能
1 1 & & &j T = ∑ ∑ mij u i u j = ∑ m j u 2 2 i j 2 j
V =
1 ∑ ∑ kij ui u j 2 i j

1 体系的动能:T = mu 2 & 2
粘滞(性)阻尼力可表示为:
& f D = -cu
D — 表示阻尼(damping) c — 阻尼系数(Damping coefficient)
k c
u m
f S(t) m f D(t) f I (t)
& u — 质点的运动速度
阻尼系数 c 的确定:
• 不能像结构刚度 k 那样可通过结构几何尺寸、构件尺寸等 来获得,因为 c 是反映了多种耗能因素综合影响的系数, 阻尼系数一般是通过结构原型振动试验的方法得到。 • 粘性(滞)阻尼理论仅是多种阻尼中最为简单的一种。 • 其它常用的阻尼:

第10章 结构动力学基础1

第10章 结构动力学基础1

I (t )
1
(t ) 2 y (t ) 2 y (t ) y
上式中:
Pe (t ) m
f 11 1 f 1P
Pe (t )
f1P P(t ) f11
二、简谐荷载下的无阻尼受迫振动
设单自由度体系在质点上作用简谐荷载为: 不考虑阻尼,振动微分方程:
P(t ) F sin t
10.2 单自由度体系的自由振动
体系在没有外部动力荷载作用,而由初始位移(y 0) 或初始速度(v 0),或两者共同作用下引起的振动,叫做 自由振动。 一、运动微分方程 根据动静法,建立质点的运动方程,可采用两种方式: (一)刚度法:取质点隔离体为研究对象。 达朗伯定理:
F+N+I=0
建立运动方程时考虑质点所受的力有:
(1)重力 W 为静力荷载 (2)弹性恢复力 S (t ) k[ y jw y (t )] 与位移成正比,方向与位移指向相 反。k为刚度系数,其意义是使质点沿位移方向产生的单位位移时所需 R ( t ) c y (t ) 的在质点上所加的力 (3)阻尼力 与质点的速度成正比,方向与速度相反。c为 I (t ) 粘滞阻尼系数。 m y (t ) (4)惯性力 其大小为质点质量与质点加速度之积,方向与 加速度方向相反。 m S (t ) R (t ) y st m I (t ) W y(t)
例: 求图示梁频率
m1
EI=∞
m2
B
I 20
A
a 2a
kБайду номын сангаас
a
A1
I10

A
A2
B
2ak
此梁为一个自由度体系,振动达到幅值时,两质点的振幅为 A1 A2, 惯性力幅值为

结构动力学(克拉夫) 第二章 分析动力学基础

结构动力学(克拉夫) 第二章 分析动力学基础

第二章 分析动力学基础2.1 基本概念 2.1.1 约束• 定义:对非自由系各质点的位置和速度所加的几何或 运动学的限制。

N 个质点的约束方程: → → 为mi 的位置向量及速度 **弹簧支座不是约束。

• 约束的分类:*稳定(不含t → 左图) 与非稳定(含t → 右图)* 完整(不含 → )几何约束(有限约束) 与非完整(含 → )运动约束(微分约束) • 约束条件:zc=a (水平面绝对光滑)一个完整约束 *水平面粗糙,仅滚动无滑动,A 点速度为零 。

两个完整约束*若为刚性圆球,三个约束(A点两个水平方向速度为零,可证明约束微分方程不能积分成有限形式)非完整约束单向(约束方程为不等式):柔索 与双向(约束方程为等式):刚杆 工程力学中研究对象:稳定的、完整的、双 向约束• 质点系约束方程:→ (N :质点数;M 约束数) 2.1.2 自由度与广义坐标 广义坐标定义:能决定体系几何位置的、彼此独立的量广义坐标个数→空间质点系:n=3N-k;平面质点系: n=2N-k0),,,,,,(11=⋅⋅⋅⋅⋅⋅N N r r r r t f 0),,(=i i r r t f i i r r ,0),(=i i rr f 0),,(=i i rr t f Ai r0),(=i r t f i r 0),,(=i i rr t f ϕϕa x a x v C C A =⇒=−=)(0积分 lr ≤l r =0),,(1=⋅⋅⋅N k r r f )~1;~1(0)(M k N i r f i k ===x双连刚杆双质点系的约束方程:广义坐标数:广义坐标:独立参数→角度→ 振型等(见下页) 梁的挠度曲线用三角级数表示: 广义坐标→*自由度定义:在固定时刻,约束许可条件下能自由变更的 独立的坐标数目(对完整约束=广义坐标数)• 自由度数→空间质点系:n=3N-k 平面质点系:n=2N-k (N :质点数;k: 约束数) 非完整约束:(广义坐标数>系统自由度数)2.1.3 功的定义元功:A →B 过程中力作的功:对摩擦传动轮的例,由于力未移动,位移=? • 功的新定义:(传动齿轮)• 功率:2.1.4 有势力和体系的势能有势力:(1)大小和方向只决定于体系质点的位置(2)体系从位置A 移动到位置B ,力作功只决定于位置而与路径无关取体系的任意位置为“零位置O ”,从位置A 移动到零位置O 各力作的功为体系在位置A 时的势能UA(位能)。

结构动力学傅里叶变换

结构动力学傅里叶变换

结构动力学傅里叶变换全文共四篇示例,供读者参考第一篇示例:结构动力学是研究结构在受到外力作用时的变形、振动以及稳定性等问题的学科。

而傅里叶变换则是一种重要的数学工具,可用于分析结构的振动响应并识别结构的固有频率及模态形态。

结构动力学与傅里叶变换的结合,不仅可以帮助工程人员更好地理解结构的动态响应特性,还可以指导设计人员优化结构的设计,提高结构的抗震性能和安全性。

一、结构动力学基础结构动力学是一个复杂的领域,需要掌握一定的数学和物理知识。

结构动力学主要涉及结构的振动、变形和稳定性等问题。

结构在受到外力作用时会发生振动,其振动特性取决于结构的固有频率、质量、刚度和阻尼等因素。

结构动力学的研究对象包括建筑、桥梁、船舶、飞机等各种工程结构。

结构动力学的研究方法包括模态分析、频域分析、时域分析和模态综合等。

模态分析是一种常用的方法,通过对结构进行模态分解,可以得到结构的固有频率和模态形态。

频域分析则是利用傅里叶变换将结构的时域响应转换为频域响应,可以进一步分析结构的频域特性。

二、傅里叶变换原理傅里叶变换是一种将时域信号转换为频域信号的数学工具,可以将一个信号分解为不同频率的正弦和余弦波形成的谱。

傅里叶变换在处理各种信号和振动问题中得到广泛应用,而在结构动力学中,傅里叶变换可以用于分析结构的振动响应和识别结构的固有频率及模态形态。

傅里叶变换的基本原理是将时域函数f(t)分解为不同频率的正弦和余弦函数的线性组合,其数学表达式为:F(ω)=∫f(t)e^(-jωt)dtF(ω)为频率为ω的谱,f(t)为时域函数,e^(-jωt)为复指数函数。

三、结构动力学中的傅里叶变换应用结构动力学中常用的傅里叶变换方法包括离散傅里叶变换(DFT)和快速傅里叶变换(FFT)。

DFT是将一个有限长度的时域信号分解为不同频率的正弦和余弦波的线性组合,而FFT则是一种高效的计算DFT的快速算法,可以在计算上更快速地得到频域响应。

第二篇示例:结构动力学是一个研究结构在受到外部力作用时的振动和变形特性的学科。

第10章 结构动力学

第10章 结构动力学

5.与其它课程之间的关系
结构动力学以和数学为基础。 要求熟练掌握已学过的知识和数学知识(微分方程的求解)。 结构动力学作为结构抗震、抗风设计计算的基础。
2014-1-10
第10章
10.2体系的动力自由度
1.动力自由度的定义
动力问题的基本特征是需要考虑惯性力,根据达朗贝尔(D‘Alembert Jean Le Rond)原理,惯性力与质量和加速度有关,这就要求分析质量分布和质量位 移,所以,动力学一般将质量位移作为基本未知量。 确定体系中全部质量位置所需要的独立几何参数数目,成为体系的动力自由 度。
4 ( x) sin
2014-1-10

广义坐标法是一种数学简化方法
第10章
10.2体系的动力自由度
有限单元法:
可以看作是分区的广义坐标法,其要点与静力问题一样,是先把结构划分 成适当数量的区域(称为单元),然后对每一单元施行广义坐标法。详见 有限单元法参考资料,这里不再赘述。 一般地说,有限元法是最灵活有效的离散化方法,它提供了既方便又可靠 的理想化模型,并特别适合于用电子计算机进行分析,是目前最为流行的 方法,已有不少专用的或通用的程序可供结构动力学分析之用。 有限单元法也是一种数学简化方法
2014-1-10
第10章
10.1 概述
2.动力荷载及其分类
动力荷载分类方法有很多种,常见的是按动力作用随时间的变化规律来分。 周期性荷载:其特点是在多次循环中荷载相继呈现相同的时间历程。如旋 转机械装置因质量偏心而引起的离心力。 周期性荷载又可分为简谐荷载和非简谐周期荷载,所有非简谐周期荷载均 可借助Fourier级数分解成一系列简谐荷载之和。 冲击和突加载荷: 其特点是荷载的大小在极短的时间内有较大的变化。冲 击波或爆炸是冲击载荷的典型来源;吊车制动力对厂房的水平作用是典型 的突加荷载。 随机载荷:其时间历程不能用确定的时间函数而只能用统计信息描述。风 荷载和荷载均属此类。对于随机荷载,需要根据大量的统计资料制定出相 应的荷载时间历程(荷载谱)。 前两种荷载属于确定性荷载,可以从运动方程解出位移的时间历程并进一 步求出应力的时间历程。 随机荷载属于非确定性荷载,只能求出位移响应的统计信息而不能得到确 定的时间历程,因而~92层之间有一颗巨 大的‘金色大球’,由实 心钢板堆焊而成,直径约 5.4米,重达680吨,价值 400W美元。其实质是调质 阻尼器TMD(Tuned Mass Damper),作用是减轻飓 风、地震给大楼带来的震 动。

第二节 反应谱

第二节 反应谱

绝对加速度反应谱 相对速度反应谱
相对位移反应谱
地震反应谱总结:
4、结构的最大地震反应,对于 低频结构主要取决于地面运动 最大位移。
绝对加速度反应谱 相对速度反应谱
相对位移反应谱
五、设计反应谱
设计反应谱:
地震反应谱直接用于结构的抗震设计有一定的困难,
而需专门研究可供结构抗震设计用的反应谱,称之为设计反应谱
2
T
(t
)d
max
Sa
xg max
2 1 T xg max
t 0
2 (t )
xg ( )e T
sin
2
T
(t
)d
max
yg (t ) (ms 2 )
t (s)
Elcentro 1940 (N-S) 地震记录
相对速度反应谱
Sv

x(t) max
t 0
xg ( )e (t )
sin (t
)d
max
yg (t ) (ms 2 )
Elcentro 1940 (N-S) 地震记录
t (s)
绝对加速度反应谱
2
Sa x(t) xg max T
t 0
2 (t )
xg ( )e T
sin
max
Sa x(t) xg max
t 0
xg ( )e
(t )
sin (t

)d
max
对比上两个公式,可以看出,地面最大加速度 xg (t) 对于给
定的地震时个常数,所以β—T的曲线形式与拟加速度反应谱
曲线的形状是完全一致的,只是纵坐标数值不相同。β—T 曲

在线测试题试题库及解答(第十章)结构动力学

在线测试题试题库及解答(第十章)结构动力学

在线测试题试题库及解答第十章结构动力学基础一、单项选择题1、结构的主振型与什么有关?A、质量和刚度B、荷载C、初始位移D、初始速度标准答案 A2、结构的自振频率与什么有关?A、质量和刚度B、荷载C、初始位移D、初始速度标准答案 A3、单自由度体系在简谐荷载作用下,下列哪种情况内力与位移的动力系数相同?A、均布荷载作用B、荷载作用在质点上与质点运动方向垂直C、荷载不作用在质点上D、惯性力与运动方向共线标准答案 D4、具有集中质量的体系,其动力计算自由度A、等于其集中质量数B、小于其集中质量数C、大于其集中质量数D、以上都有可能标准答案 D5、具有集中质量的体系,其动力计算自由度A、等于其集中质量数B、小于其集中质量数C、大于其集中质量数D、以上都有可能标准答案 D6、当简谐荷载作用于有阻尼的单自由度体系质点上时,若荷载频率远远大于体系的自振频率时,则此时与动荷载相平衡的主要是A、弹性恢复力B、重力C、阻尼力D、惯性力标准答案 D7、设ω为结构的自振频率,θ为荷载频率,β为动力系数下列论述正确的是A、ω越大β也越大B、θ/ω越大β也越大C、θ越大β也越大D、θ/ω越接近1,β绝对值越大标准答案 D8、如果体系的阻尼增大,下列论述错误的是A、自由振动的振幅衰减速度加快B、自振周期减小C、动力系数减小D、位移和简谐荷载的相位差变大标准答案 B9、无阻尼单自由度体系在简谐荷载作用下,共振时与动荷载相平衡的是A、弹性恢复力B、惯性力C、惯性力与弹性力的合力D、没有力标准答案 D10、有阻尼单自由度体系在简谐荷载作用下,共振时与动荷载相平衡的是A、弹性恢复力B、惯性力与弹性力的合力C、惯性力D、阻尼力标准答案 D11、当简谐荷载作用于无阻尼的单自由度体系质点上时,若荷载频率远远小于体系的自振频率时,则此时与动荷载相平衡的主要是A、弹性恢复力B、阻尼力C、惯性力D、重力标准答案 A12、一单自由度振动体系,其阻尼比为ξ,动力系数β,共振时下列结果正确的是A、ξ=0.05,β=10B、ξ=0.1,β=15C、ξ=0.15,β=20D、ξ=0.2,β=25标准答案 A13、一单自由度振动体系,由初始位移0.685cm,初始速度为零产生自由振动,振动一个周期后最大位移为0.50cm,体系的阻尼比为A、ξ=0.05B、ξ=0.10C、ξ=0.15D、ξ=0.20标准答案 A14、在低阻尼体系中不能忽略阻尼对什么的影响?A、频率B、主振型C、周期D、振幅标准答案 D15、单自由度体系受简谐荷载作用,ω为体系自振频率,θ为荷载频率,动位移 y(t)与荷载 P(t) 的关系是A、当θ/ω>1时,y(t)与P(t)同向,当θ/ω<1时,y(t)与P(t)反向。

结构动力学基础知识(典型例题分析)

结构动力学基础知识(典型例题分析)

分析:
图 2a
图 2b
(1)由于结构对称,质量分布对称,所以质点 m 无水平位移,只有竖向位移,此桁架为单 自由度体系。
( ) ∑ (2)
挠度系数: δ 11
=
1 EA
FN2l
=
l EA
1+
2
(3) 自振频率:ω = 1 mδ11
3. 计算图 3a 结构的自振频率,设各杆的质量不计。
图 3a
图 3b
一、自由度 1. 判断自由度的数量。
典型例题分析(动力学)
二、单自由度体系的自振频率 1. 试列出图 1a 结构的振动方程,并求出自振频率。EI=常数。
分析:
图 1a
图 1b M1
图 1c M2
(1) 质点 m 的水平位移 y 为由惯性力和动荷载共同作用引起: y = δ11 (− m&y&) + δ12 Fp (t ) 。
( M 2 = Y (2)T MY (2) = 1 4.6)⎢⎣⎡20m m0 ⎥⎦⎤⎜⎜⎝⎛ 41.6⎟⎟⎠⎞ = 22.16m
F1(t) = Y (1)T Fp (t) = (1

0.44)⎜⎜⎝⎛
Fp (t
0
)⎟⎟⎠⎞
=
Fp
(t
)
F2 (t) = Fp (t)
(6)
求正则坐标:突加荷载时ηi (t)
y2 (t) = −0.44η1(t) + 4.6η2 (t)
五、能量法求第一自振频率
1. 试用能量法求 1a 梁具有均布质量 m=q/8 的最低频率。
[ ] 已知:位移形状函数:Y (x) = q 3l 2 x2 − 5lx3 + 2x4 48EI

(完整版)结构动力学基础

(完整版)结构动力学基础

my cy ky FP (t)
§2-5 广义单自由度体系:刚体集合
➢刚体的集合(弹性变形局限于局部弹性 元件中)
➢分布弹性(弹性变形在整个结构或某些 元件上连续形成)
➢只要可假定只有单一形式的位移,使得 结构按照单自由度体系运动,就可以按 照单自由度体系进行分析。
E2-1
x
p( x,t
)
=p
x a
作用时间: 恒载 活载 作用位置: 固定荷载 移动荷载 对结构产生的动力效应: 静荷载 动荷载
静荷载: 动荷载:
大小、方向和作用点不随时间变 化或变化很缓慢的荷载。
大小、方向或作用点随时间变化 很快的荷载。
快慢标准: 是否会使结构产生显著的加速度
显著标准: 质量运动加速度所引起的惯性力 与荷载相比是否可以忽略
FP (t ) FI FD FS1 FS2 0
其中各力的大小:
惯性力: FI my 弹性力Fs=Fs1+Fs2: 位移法:柱子一端产生单位平移时的杆端剪力
1
12i
l2
柱端发生平移 y 时产生的梁-柱间剪力:
EI
12 EI FS1 l13 y
12EI
FS 2
l
3 2
y
l
等效粘滞阻尼力: FD cy
大型桥梁结构 的有限元模型
第二章 运动方程的建立
定义
在结构动力分析中,描述体系质量运动规律的数学 方程,称为体系的运动微分方程,简称运动方程。
▪ 运动方程的解揭示了体系在各自由度方向的位移 随时间变化的规律。
▪ 建立运动方程是求解结构振动问题的重要基础。 ▪ 常用方法:直接平衡法、虚功法、变分法。
8
比较:
c k

结构动力学基础全文

结构动力学基础全文

2


第一章 结构动力学简述...............................................................................................................1 第二章 动力学原理.......................................................................................................................3 §2-1 约束 ....................................................................................................................................3 2-1-1 完整约束 .................................................................................... 错误!未定义书签。 2-1-2 非完整约束 ................................................................................ 错误!未定义书签。 §2-2 广义力 ................................................................................................................................3 §2-3 达朗贝(D′ALEMBERT)原理 ........................
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

m l/ 5
m l/ 5
m l/ 5
m l/ 5
0
1
2
3
4
5
l/5
0
l/5
1y = 1 1 φ1(x) 2
l/5
3
l/5
4
l/5
5
0
2 θ1 = 1 1 φ (x) 2
3
4
5
如图10-9a中,梁分为5个单元,取结点位移参数(挠度y 和转角θ)作为 广义坐标。在图10-9a中取中间四个结点的八个位移参数 y1、θ1,y2、θ2,y3、 θ3,y4、θ4 作广义坐标。
T
sin t
(10 3)
(10 4)
0 -y y T
t
y cos t
v v
y A

0
t

v
sin t
T t
0
A sin t
-A
3、结构的自振周期
由式
A

y (t ) A sin(t ) 及图,可见位移方程是一个周期函数。 2 y T 周 期: T
⑶ 是结构动力特性的重要数量标志。
泛美大厦,60层 钢结构,南北方向 的基本固有周期为 2.90秒,
大坝,400英尺高的混凝土重力坝的基 本固有周期由强迫振动试验测得在蓄水 为310英尺和345英尺十分别为0.288秒 和0.306秒,
金门大桥,金门大桥桥墩跨距1280.2米全桥总 长2737.4米的悬索桥,其横向振动的基本基本固 有周期为18.20秒,竖向振动的基本基本固有周期 为10.90秒,纵向振动的基本基本固有周期为3.81 秒,扭转振动的基本基本固有周期为4.43秒
W 1 1
⑴ 计算水平振动周期
V
A,E,I l
E,I
E,A
1 H EI
3 2 l l l ( ) ( l ) 3 2 3EI
l
WH Wl 3 TH 2 g 3EIg
⑵ 计算竖向振动周期
st
Wl EA
TV 2
st 2 g
Wl EAg
t
工程频率: f

0
1 ( Hz ) T 2
-A
2 圆频率: 2f T
计算频率和周期的几种形式:

k m
1 g m W
g st
T 2
m st 2 k g
频率和周期的讨论:
⑴ 只与结构的质量与刚度有关,与外界干扰无关; ⑵ T 与m 的平方根成正比,与k 成反比,据此可改变周期;
m m >> m梁 m +αm梁
I
m +αm柱
I
2I
厂房排架水平振动时 的计算简图 单自由度体系
y2 y1
2个自由度
2个自由度 自由度与质量数不一定相等
m1
m2
2个自由度
m3
4个自由度
v(t)
u(t)
θ(t)
水平振动时的计算体系
多自由度体系
构架式基础顶板简化成刚性块
m ( x)
无限自由度体系
x
y(x,t)
k
(d)式可以写成
y (t ) y cos t
v
由式可知,位移是由初位移 y 引起的余弦运动和由初速度v 引起的正弦运动的合成,为了便于研究合成运动, 令

sin t
(10 3)
y A sin ,
(10-3)式改写成
y(t ) Asin(t )
2
v
A cos

似设为
dy 应为零。 根据上述位移边界条件,挠度曲线近 dx
y( x) x2 (a1 a2 x
an xn1 )
x
y
这样,就简化为有限自由度体系。
⑶ 有限元法:
有限单元法可以看作为广 义坐标的一种特殊应用。将结 构分成若干个单元。单元的结 点位移作为基本未知量(广义 坐标)。整个结构的位移曲线 则借助于给定的形状函数叠加 而得。
y(t ) FI (t ) my
my y 0
k
1 k
可得与刚度法相同的方程
刚度法常用于刚架类结构,柔度法常用于梁式结构。
2、自由振动微分方程的解
my ky 0
改写为
y
k y 0 m
2 y 0 y
(d )
2 其中
通过以上步骤,梁即转化为具有八个自由度的体系。可看出,有限元法 综合了集中质量法和广义坐标法的某些特点。
§10-2 单自由度体系的自由振动
自由振动:体系在振动过程中没有动荷载的作用。 自由振动产生原因:体系在初始时刻(t = 0)受到外界的干扰。
静平衡位置
m 获得初位移y
研究单自由度体系的自由振动重要性在于:
例10-3、计算图示刚架的频率和周期。 m EI1=
I I h
6 EI h2 6 EI h2
12 EI h3
1
6 EI h2 6 EI h2
k
12 EI h3
由截面平衡条件:
24EI k 3 h
k 24EI m m h3
每个结点位移参数只在相邻两个单元内引起挠度。在图10-9 b 和 c中分别 给出结点位移参数 y1 和θ1 相应的形状函数φ1(x) 和φ2(x)。 梁的挠度可用八个广义坐标及其形状函数表示如下:
y( x) y1 1 ( x) 1 2 ( x)
y4 7 ( x) 4 8 ( x)
(4)自由度为1的体系称作单自由度体系; 自由度大于1的体系称作多(有限)自由度体系; 自由度无限多的体系为无限自由度体系自由度。
⑵ 广义坐标法: 假定结构的位移曲线用一系列已知且满足边界条件的位移函数之和来表 示。如具有分布质量 m 的简支梁是一个具有无限自由度的体系,简支梁的挠 n 度曲线可用三角级数来表示: k x
k m
它是二阶线性齐次微分方程,其一般解为:
y(t ) C1 sin t C2 cos t
积分常数C1,C2 由初始条件确定。
y
m
y(t ) C1 sin t C2 cos t
y (0) y 设 t = 0 时: (0) v y
(d )
C2 y v C 1
t
⑵ 冲击荷载: 短时内急剧增大或急剧减小。(如爆炸荷载) FP FP (t)
FP tr FP
t
tr
t
⑶ 随机荷载: 荷载在将来任一时刻的数值无法事先确定。称为非确定性荷载,或称为随
机荷载(如地震荷载、风荷载)。
3、动力计算中体系的自由度 确定体系上全部质量位置所需独立参数的个数称为体系的振动自由度。 实际结构的质量都是连续分布的,严格地说来都是无限自由度体系。计算困 难,常作简化如下: ⑴ 集中质量法 把连续分布的质量集中为几个质点,将一个无限自由度的问题简化成有限自 由度问题。
y ( x, t ) ak (t )sin
k 1
l
用几条函数曲线来描述体系的振动曲线就称它是几个自由度体系,其中 kx 是根据边界约束条件选取的函数,称为形状函数。 sin l ak (t) — 称广义坐标,为一组待定参数,其个数即为自由度数,若式中所 需确定的参数a k 只取有限项,则简支梁被简化为有限 x y(x,t) 自由度体系。 ( 此法可将无限自由度体系简化为有限 自由度体系) 如右图所示烟囱原来也是一个具有无限自由度的 体系,由于底部是固定端,因此 x = 0 处,挠度 y 及转
例10-1、计算图示结构的频率和周期。 m
EI
l 2
1
l 2
1

2 EI
2 l l3 1 l l ( ) ( ) 3 4 48EI 2 4 2
l 4
1 48EI 2 ml 3 , T 2 3 m ml 48EI
H
例10-2、图示结构杆顶有重物,其重量为W,分别求水平和竖向振动的周期。
(10 4)
它表示合成运动仍是一个简谐运动。其中A 和 可由下式确定
振幅 相位角
v 2 A y y tg 1 v

(10 5a、b)
y (t ) y cos t
y y

v
y(t ) Asin(t )
⑴ 刚度法:研究作用于被隔离的质量上的力,建立平衡方程。 如图所示的悬臂立柱顶部有一重物,质量为m。设柱本身质量比 m 小得 多,可忽略不计。因此,体系只有一个自由度。 y y 设由于外界干扰,质点 m 离开 m m 静止的平衡位置。干扰消失后,由
弹簧模型
k
质点的水平位移为 y (t)。 my 取质量 m 在振动中位置为 y 时的状态作隔离体,其上作用有惯 y 性力 my ,与加速度 反向;弹性力 (t ) y 与位移 ky (t ) 反向。 动力平衡法(达朗伯原理):考虑质点上力系的平衡
W=1
8) W=1
9)
W=13
****自由度为1的体系称作单自由度体系; 自由度大于1的体系称作多(有限)自由度体系; 自由度无限多的体系为无限自由度体系。
确定动力计算自由度时应注意以下几点:
(1)弹性支座不减少动力自由度。
(2)为减少动力自由度,梁与刚架不计轴向变形。
(3)自由度数与质点个数无关,但不大于质点个数的 2倍。
按变化规律及其作用特点可分为:
⑴ 周期荷载: 荷载随时间作周期性变化。最简单也是最重要的一种称为简谐荷载,荷 载FP (t )随时间t 的变化规律可用正弦或余弦函数表示,如转动电机的偏心力。 其他的周期荷载可称为非简谐性的周期荷载。
相关文档
最新文档