七年级数学上册 第4章直线与角同步测试 沪科版
2022-2023学年沪科版数学七年级上册第4章直线与角单元检测卷 含答案
沪科版七年级数学第4章直线与角单元检测卷本卷满分150分,考试时间120分钟,请你仔细审题,认真答题!一、选择题(本大题共10小题,共40分)1.若∠A=40°,则∠A的余角的大小是( )A. 50°B. 60°C. 140°D. 160°2.下列尺规作图的语句正确的是( )A. 延长射线AB到DB. 以点D为圆心,任意长为半径画弧C. 作直线AB=3cmD. 延长线段AB至C,使AC=BC3.如图,从学校A到书店B有①、②、③、④四条路线,其中最短的路线是( )A. ①B. ②C. ③D. ④4.如图,点B相对于点A的方向是( )A. 南偏东43°B. 东偏南47°C. 西偏北47°D. 北偏西43°5.如图,点C在线段AB上,点D是线段AB的中点,AB=10,AC=7,则CD=( )A. 1B. 2C. 2.5D. 36.将一副直角三角尺按如图放置,若∠AOD=20°,则∠BOC的大小是( )A. 110°B. 120°C. 140°D. 160°7.如图,点O在直线AB上,∠COD=105°,∠2=2∠1,则∠1的度数是( )A. 60°B. 50°C. 35°D. 25°8.若∠α和∠β互补,且∠α>∠β,则下列式子:①90°−∠β;②∠α−90°;③12(∠α+∠β);④12(∠α−∠β).其中可以表示∠β的余角的有( )A. ①②B. ①②③C. ①②④D. ①②③④9.如图,当过O点画不重合的2条射线时,共组成1个角;当过O点画不重合的3条射线时,共组成3个角;当过O点画不重合的4条射线时,共组成6个角;….根据以上规律,当过O点画不重合的10条射线时,共组成个角.( )A. 28B. 36C. 45D. 5510.如图所示,已知点O是直线CD上的一点,∠AOC=30°,OB平分∠AOD,则∠BOD的度数是( )A. 75°B. 65°C. 55°D. 45°二、填空题(本大题共4小题,共20分)11.计算:45°39′+65°41′=.12.如图,∠AOC=40°,∠AOD=25°,OC是∠AOB的平分线,那么∠DOB=______.13.如图是工人师傅在砌墙时的场景.在此过程中,工人师傅运用的数学知识主要是______.14.两根木条,一根长20cm,一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为______cm.三、解答题(本大题共9小题,共90分)15.如图,已知三点A、B、C.(1)画直线AB;(2)画射线AC;(3)连接BC.16.如图,射线OC的端点O在直线AB上,∠AOC的度数比∠BOC的3倍多20°,求∠BOC的度数是多少?17.如图,点B在线段AD上,且BD=3AB,点C是线段BD的中点,若CD=6cm,求线段AC的长.18.若一个角的补角比它的余角的2倍还多70°,则这个角的度数为多少度?19..如图,点O在直线AB上,OD是∠AOC的平分线,OE是∠BOC的平分线.(1)求∠DOE的度数:(2)如果∠AOD=52°,求∠BOE的度数.20.已知线段AB=8cm,在直线AB上有一点C,且AC=4cm,点M是线段BC的中点,求线段BM的长.21.如图,∠AOC与∠BOC互为补角,∠BOC与∠BOD互为余角,且∠BOC=4∠BOD.(1)求∠BOC的度数;(2)若OE平分∠AOC,求∠BOE的度数.22.如图,已知点C在线段AB上,点M,N分别在线段AC与线段BC上,且AM=1MC,BN=2NC.2(1)若AC=9,BC=6,求线段MN的长;(2)若MC:NC=5:2,MN=7,求线段AB的长.23.(1)如图1所示,将两块不同的三角尺(∠A=60°,∠D=30°,∠B=∠E=45°)的直角顶点C叠放在一起.①若∠DCE=25°,则∠ACB=______;若∠ACB=130°,则∠DCE=______.②猜想∠ACB与∠DCE有何数量关系,并说明理由.(2)如图2所示,若两个相同的三角尺的60°角的顶点A重合在一起,则∠DAB与∠CAE有何数量关系,请说明理由.(3)已知∠AOB=α,∠COD=β(α,β都是锐角),如图3所示,∠AOD与∠BOC有何数量关系,请直接写出结果,不说明理由.答案和解析1.【答案】A2.【答案】B3.【答案】B4.【答案】D5.【答案】B6.【答案】D7.【答案】D8.【答案】C9.【答案】C10.【答案】A11.【答案】111°20′12.【答案】55°13.【答案】两点确定一条直线14.【答案】2或2215.【答案】解:如图,(1)直线AB即为所求;(2)射线AC即为所求;(3)BC即为所求.16.【答案】解:设∠BOC=x°,则∠AOC=(3x+20)°,∠AOB=∠AOC+∠BOC=x°+(3x+20)°=(4x+20)°=180°,解得x=40,答:∠BOC的度数是40°17.【答案】解:∵BD=3AB,∴设AB=x,BD=3x,∵点C是线段BD的中点,∴BC=CD=12BD=32x=6,∴32x=6,∴x=4.∴AC=AB+BC=x+32x=52x=10(cm).答:线段AC的长为10cm.18.【答案】解:设这个角的度数是x°,则它的补角为:180°−x°,余角为90°−x°,由题意,得:(180−x)−2(90−x)=70.解得:x=70.答:这个角的度数为70°.19.【答案】解:(1)∵∠AOC+∠COB=180°又∵OD是∠AOC的平分线,OE是∠COB的平分线,∴∠DOC=12∠AOC,∠COE=12∠COB,∴∠DOE=∠DOC+∠COE=12(∠AOC+∠COB)=90°;(2)∵∠DOE=90°,∴∠AOD+∠BOE=90°,∵∠AOD=52°,∴∠BOE=90°−∠AOD=38°.20.【答案】解:①当点C在线段AB上时,BC=AB−AC=8−4=4(cm),∵点M是线段BC的中点,∴BM=12BC=12×4=2(cm);②当点C在线段的反向延长线上时,BC=AB+AC=8+4=12(cm),∵点M是线段BC的中点,∴BM=12BC=12×12=6(cm),综上,线段BM的长为2cm或6cm.21.【答案】解:(1)∵∠BOC与∠BOD互为余角,∴∠BOC+∠BOD=90°.∵∠BOC=4∠BOD,∴∠BOC=45×90°=72°.(2)∵∠AOC与∠BOC互为补角,∴∠AOC+∠BOC=180°.∴∠AOC=180°−∠BOC=180°−72°=108°.∵OE平分∠AOC,∴∠COE=12∠AOC=12×108°=54°,∴∠BOE=∠COE+∠BOC=54°+72°=126°.22.【答案】解:(1)∵AM=12MC,∴CM=23AC,∵AC=9,∴CM=6,∵BN=2NC,∴CN=13BC,∵BC=6,∴CN=2,∴MN=CM+CN=6+2=8;(2)∵MC:NC=5:2,MN=7,∴MC=5,CN=2,∵AM=12MC,BN=2NC,∴AM=2.5,BN=4,∴AB=AM+MN+BN=2.5+7+4=13.5.23.【答案】155°50°【解析】解:(1)①∵∠BCE=90°,∠DCE=25°,∴∠BCD=∠BCE−∠DCE=65°,∵∠ACD=90°,∴∠ACB=∠ACD+∠BCD=90°+65°=155°;∵∠ACB=130°,∠ACD=90°,∴∠BCD=∠ACB−∠ACD=130°−90°=40°,∵∠BCE=90°,∴∠DCE=∠BCE−∠BCD=90°−40°=50°,故答案为:155°,50°;②∠ACB与∠DCE=180°,理由如下:∵∠ACB=∠ACE+∠DCE+∠DCB,∴∠ACB+∠DCE=∠ACE+∠DCE+∠DCB+∠DCE=∠ACD+∠BCE=180°;(2)∠DAB与∠CAE的数量关系是:∠DAB+∠CAE=120°.理由:∵∠DAB+∠CAE=(∠DAC+∠BAC)+∠CAE=∠DAC+∠BAC+∠CAE=∠DAC+(∠BAC+∠CAE)=∠DAC+∠BAE又∠DAC=∠BAE=60°,∴∠DAB+∠CAE=60°+60°=120°;(3)∠AOD+∠BOC=α+β,理由如下:∵∠AOD=∠AOC+∠COB+∠BOD,∴∠AOD+∠BOC=∠AOC+∠COB+∠BOD+∠BOC=∠AOB+∠COD=α+β.。
沪科版七年级数学上《第四章直线与角》单元测试(含答案)
第四章直线与角单元测试一.单选题(共10题;共30分)1.如右图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的“着”相对的面上的汉字是()A. 冷B. 静C. 应D. 考2.下列说法错误的是()A. 长方体和正方体都是四棱柱B. 棱柱的侧面都是四边形C. 柱体的上下底面形状相同D. 圆柱只有底面为圆的两个面3.射线OA和射线OB是一个角的两边,这个角可记为().A. ∠AOBB. ∠BAOC. ∠OBAD. ∠OAB4.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED= AB中,一定正确的是()A. ①②③B. ①②④C. ①③④D. ②③④5.如图,一根长为10厘米的木棒,棒上有两个刻度,若把它作为尺子,量一次要量出一个长度,能量的长度共有()A.7个B.6个C.5个D.4个6.下面的几何体是圆柱的是()A. B. C. D.7.3°=()A. 180′B. 18′C. 30′D. 3′8.下列说法中,正确的是()A. 直线有两个端点B. 射线有两个端点C. 有六边相等的多边形叫做正六边形D. 有公共端点的两条射线组成的图形叫做角9.已知线段AB=5,C是直线AB上一点,BC=2,则线段AC长为()A. 7B. 3C. 3或7D. 以上都不对10.已知∠α=18°18′,∠β=18.18°,∠γ=18.3°,下列结论正确的是()A. ∠α=∠βB. ∠α<∠βC. ∠α=∠γD. ∠β>∠γ二.填空题(共8题;共28分)11.如图,根据尺规作图所留痕迹,可以求出∠ADC=________ °.12.如图,该图中不同的线段数共有________ 条.13.计算:12°24′=________°;56°33′+23°27′=________ °.14.如图,C、D是线段上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,则BD的长为________ cm15.计算:180°﹣20°40′=________.16.如图,线段AB=10cm,点C为线段AB上一点,BC=3cm,点D,E分别为AC和AB的中点,则线段DE的长为________ cm.17.已知∠1与∠2互余,∠2与∠3互补,∠1=67°12′,则∠3=________.18.0.5°=________′=________″;1800″=________°=________′.三.解答题(共7题;共42分)19.已知线段AB=5cm,回答下列问题:是否存在一点C,使它到A、B两点的距离之和等于4?20.计算:(1)22°18′×5;(2)90°﹣57°23′27″.21.如图,该图形由6个完全相同的小正方形排列而成.(1)它是哪一种几何体的表面展开图?(2)将数﹣3,﹣2,﹣1,1,2,3填入小正方形中,使得相对的面上数字互为相反数.22.(2016春•高青县期中)已知线段AB=14cm,C为线段AB上任一点,D是AC的中点,E是CB的中点,求DE的长度.23.将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.(1)如图(1)若∠BOD=35°,求∠AOC的度数,若∠AOC=135°,求∠BOD的度数。
沪科版七年级数学上册第4章 直线与角单元测试题(含答案)
图1 图22.如图3,C,D是OA上两点,E,F是OB上两点,下列各式中表示∠AOB错误的是( )图3A.∠COE B.∠AOFC.∠DOB D.∠EOF3.如图4所示,能相交的图形有( )6.下列说法正确的是( )A.射线AB与射线BA是同一条射线B.任何一个锐角的余角都比它的补角小90°C.一个角的补角一定大于这个角D.如果∠1+∠2+∠3=180°,那么∠1,∠2,∠3互为补角7.已知线段AB=6 cm,在直线AB上画线段BC,使BC=11 cm,则线段AC的长为( ) A.17 cm B.5 cmC.5 cm或11 cm D.5 cm或17 cm8.如图7所示,点O在直线l上,∠1与∠2互余,∠α=116°,则∠β的度数是( )________.15.如图9,已知∠AOB 是直角,ON 平分∠AOC ,OM 平分∠BOC ,则MON =________°.图9 图1016.如图10,点A ,B ,C 在同一直线上,H 为AC 的中点,M 为AB 的中点,N 为BC 的中点,则下列说法:①MN =HC ;②MH =(AH -HB );③MN =(AC +HB );12121图12四、解答题(共34分)19.(7分)如图13,点C ,D 在线段AB 上,D 是线段AB 的中点,AC =AD ,13=6,求线段AB 的长.22.(12分)如图15,已知数轴上A,O,B三点表示的数分别为6,0,-4,动点P从点A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是__________.(2)另一动点R从点B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P,R同时出发,P运动多长时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请说明理由;若不变,请画出图形,并求出线段MN的长度.1.[答案] B2.[答案] D3.[解析] B 第一个图形和第三个图形都可以相交.4.[解析] D ∠ABC=30°+90°=120°.故选D.5.[解析] B 因为CB=4 cm,DB=7 cm,所以DC=3 cm.又因为D为AC的中点,所以AD=DC=3 cm,所以AC=6 cm.6.[解析] B A.射线AB与射线BA端点不同,延伸方向也不同,所以不是同一条射线,故本选项说法错误;B.任何一个锐角的余角都比它的补角小90°,故本选项说法正确;C.钝角的补角小于它本身,故本选项说法错误;D.如果两个角的和等于180°(平角),那么就说这两个角互为补角,故本选项说法错误.故选B.7.[解析] D 当点C在AB的延长线上时,AC=AB+BC=17 cm;当点C在BA的延长线上时,AC=BC-AB=5 cm.故选D.8.[解析] C 因为点O在直线l上,所以∠2=180°-∠α=64°.因为∠1与∠2互余,所以∠1=90°-∠2=26°,所以∠β=180°-∠1=154°.故选C.9.[答案] 14°26′ 104°26′10.[答案] 北偏东50° 南偏东15°17.解:如图所示:18.略19.解:因为AC =AD ,所以CD =AD .1323因为CD =6,所以AD =9.因为D 是线段AB 的中点,所以AB =2×9=18.20.解:设这个角的度数为x °.由题意,得(2)设点P 运动x 秒时,在点C 处追上点R ,则AC =6x ,BC =4x .因为AC -BC =AB ,所以6x -4x =10,解得x =5,所以点P 运动5秒时追上点R .(3)线段MN 的长度不发生变化.理由如下:分两种情况:(ⅰ)当点P 在A ,B 两点之间运动时(如图①),MN =MP +NP =AP +BP =1212。
沪科版七年级上册数学第4章 直线与角含答案
沪科版七年级上册数学第4章直线与角含答案一、单选题(共15题,共计45分)1、下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程.其中可用基本事实“两点之间,线段最短”来解释的现象有( )A.①②B.①③C.②④D.③④2、下列说法中,正确的是()A.两条射线组成的图形叫做角B.直线l经过点A,那么点A在直线l上 C.把一个角分成两个角的射线叫角的平分线 D.若AB=BC,则点B 是线段AC的中点3、下图中标注的角可以用∠O来表示的是()A. B. C. D.4、如图中,在下列表示角的方法中正确的是()A.∠FB.∠DC.∠AD.∠B5、下列说法正确的是()A.两点之间的连线中,直线最短B.若AP=BP,则P是线段AB的中点 C.时钟8:30这一时刻,时钟上的时针和分针之间的夹角为75° D.两点之间的线段叫做这两点之间的距离6、把一条弯曲的河流改成直道,可以缩短航程,用数学知识解释其道理为()A.两点确定一条直线B.经过两点有且仅有一条直线C.直线可以向两端无限延伸D.两点之间,线段最短7、将一张长方形纸条折成如图所示的形状,BC为折痕.若∠DBA=70°,则∠ABC等于( )A.45°B.55°C.70°D.110°8、如图,在中,,以点O为圆心,2为半径的圆与交于点C,过点C作交于点D,点P是边上的动点.当最小时,的长为()A. B. C.1 D.9、如图,已知AB∥CD,则图中与∠1互补的角有()A.2个B.3个C.4个D.5个10、如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面上的字是A.设B.和C.中D.山11、如图,下列说法中错误的是()A.OC方向是南偏西25ºB.OB方向是北偏西15ºC.OA方向是北偏东30ºD.OD方向是东南方向12、如图是正方体的平面展开图,每个面上都标有一个汉字,与“国”字相对的面上的字为()A.建B.设C.美D.丽13、如图,已知,,平分,平分,则的度数是()A. B. C. D.14、已知,则的余角等于()A. B. C. D.15、如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“友”相对的面上的汉字是()A.爱B.国C.善D.诚二、填空题(共10题,共计30分)16、如图,∠1,∠2表示的角可分别用大写字母表示为________,________;∠A也可表示为________,还可以表示为________.17、“仁义礼智信孝”是我们中华民族的传统美德,小明同学将这六个字分别写在一个正方体六个表面上,这个正方体的表面展开图如图所示,那么与“孝”所在面相对的面上的字是________18、∠1的对顶角等于,∠1的余角等于________.19、A(a, 0),B(3,4)是平面直角坐标系中的两点,线段AB长度的最小值为________.20、22.5°=________°________′;12°24′=________°.21、若一个角的补角是120°,则这个角的余角是________°22、已知点A在数轴上对应的数为a,点B对应的数为b,且|a+2|+(b﹣1)2=0,A、B之间的距离记作|AB|,定义:|AB|=|a﹣b|.①线段AB的长|AB|=3;②设点P在数轴上对应的数为x,当|PA|﹣|PB|=2时,x=0.5;③若点P在A的左侧,M、N分别是PA、PB的中点,当P在A的左侧移动时|PM|+|PN|的值不变;④在③的条件下,|PN|﹣|PM|的值不变.以上①②③④结论中正确的是________(填上所有符合题意结论的序号)23、在灯塔处观测到轮船位于北偏西的方向,同时轮船在南偏东的方向,那么的大小为________.24、直线AB、CD相交于点O,∠AOC=30°,若OE⊥AB,OF平分∠DOE,则∠COF的度数为________.25、如图所示的网格是正方形网格,是网格线的交点,则与的大小关系为:________ (填“>”,“=”或“<”).三、解答题(共5题,共计25分)26、一个角的余角的3倍比这个角的补角少24°,那么这个角是多少度?27、如图,如果约定用字母S表示正方体的侧面,用T表示上面,B表示底面.请把相应的字母配置在已知加上某些面的记号的正方体的展开图中.28、已知∠α=34°26′,求∠α的余角的度数。
沪科版七年级数学上册第4章直线与角单元测试卷(解析版)
沪科版七年级数学上册第4章直线与角单元测试卷(解析版)直线与角专题注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、单选题(每题4分共40分)1.下列有关作图的叙述中,正确的是()A.延长直线AB B.延长射线OMC.延长线段AB到C,使BC=AB D.画直线AB=3cm2.一支钢笔正好与一把直尺平靠放在一起(如图),小明发现:钢笔的笔尖端(点)正好对着直尺刻度约为处,另一端(点)正好对着直尺刻度约为.钢笔的中点位置的刻度约为()A. B. C. D.3.a、b、c是同一平面内的任意三条直线,其交点有()A.1或2个B.1或2或3个C.0或1或3个D.0或1或2或3个4.如图,测量运动员跳远成绩选取的线段AB的长度,其依据是()A.两点确定一条直线 B.两点之间直线最短 C.两点之间线段最短 D.垂线段最短5.平面内有三条直线a、b、c,下列说法:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c,其中正确的是()A.只有①B.只有②C.①②都正确D.①②都不正确6.下列现象中,可以用“两点确定一条直线”来解释的有()①把弯曲的公路改直,就能缩短路程;②园林工人栽一行树,先栽首尾的两棵树;③解放军叔叔打靶瞄准;④在墙上钉木条至少要两颗钉子才能牢固.A.1个B.2个C.3个D.4个7.如图,O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2的度数是( )A.20°B.30°C.50°D.70°8.下列四个图形中,能用∠1,∠AOB,∠O三种方法表示同一个角的图形是( )A.B.C.D.9.如图,点O是直线AB上一点,OE,OF分别平分∠AOC和∠BOC,当OC的位置发生变化时(不与直线AB 重合),那么∠EOF的度数( )A.不变,都等于90°B.逐渐变大C.逐渐变小D.无法确定10.如图,直线AB,CD相交于点O,∠EOD=90°,若∠AOE=2∠AOC,则∠DOB的度数为()A.25°B.30°C.45°D.60°第II卷(非选择题)二、填空题(每题5分共20分)11.3.76°=_____度_____分_____秒;22°32′24″=_____度.12.如图,图中有________条直线,有________条射线,有________条线段.13.如图所示,将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B1,C1在同一条直线上,则∠AEF=_________________.14.如下图,在已知角内画射线,画1条射线,图中共有____个角;画2条射线,图中共有___个角;画3条射线,图中共有____个角;求画n条射线所得的角的个数是____.三、解答题(满分90分)15.计算:(1)45.4°+34°6′;(2)38°24′×4;(3)150.6°-(30°26′+59°48′).16.如图所示,已知线段AB=2 cm,点P是线段AB外一点.(1)按要求画图:①作射线PA,作直线PB;②延长线段AB至点C,使得BC=12AB,再反向延长AC至点D,使得AD=AC.(2)求出线段BD的长度.17.火车站,码头分别位于A,B两点,直线a,b分别表示铁路与河流.(1)从火车站到码头怎样走最近?(2)从码头到铁路怎样走最近?请画图并说明理由.18.如图,B、C两点把线段MN分成三部分,其比为MB:BC:CN=2:3:4,点P是MN的中点,PC=2cm,求MN的长.19.如图所示,∠1=70°,OE平分∠AOC.求∠EOC和∠BOC的度数.20.王老师到市场买菜,发现如果把10千克的菜放到秤上,指示盘上的指针转了180°,如图.第二天王老师就给同学们出了两个问题:(1)如果把0.6千克的菜放在秤上,指针转过多少角度?(2)如果指针转了7°12′,这些菜有多少千克?21.一个角的余角和它的补角之比是3︰7,求这个角是多少度?22.如图,直线AB.CD相交于点O,OE平分∠BOC,∠COF=90°.(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.23.如图,∠EOD=70°,射线OC,OB分别是∠AOE,∠AOD的平分线.(1)若∠AOB=20°,求∠BOC的度数;(2)若∠AOB=α,求∠BOC的度数;(3)若以OB为钟表上的时针,OC为分针,再过多长时间由B,O,C三点构成的三角形的面积第一次达到最大值?参考答案1.C【解析】【分析】根据直线、射线和线段的特点分别进行分析.【详解】A.直线本身是向两方无限延伸的,故不能延长直线AB,故此选项错误;B.射线本身是向一方无限延伸的,不能延长射线OM,可以反向延长,故此选项错误;C.延长线段AB到C,使BC=AB,说法正确,故此选项正确;D.直线本身是向两方无限延伸的,故此选项错误;故选:C【点睛】考核知识点:直线、射线和线段的定义.2.C【解析】【分析】由题意可求出水笔的长度,再求出他的一半,加上5.6即可解答.【详解】解:∵水笔的笔尖端(A点)正好对着直尺刻度约为5.6cm处,另一端(B点)正好对着直尺刻度约为20.6cm.∴水笔的长度为20.6-5.6=15(cm),水笔的一半=15÷2=7.5(cm),∴水笔的中点位置的刻度约为5.6+7.5=13.1(cm).故选择:C.【点睛】本题考查了数轴.解答此题的关键是求出水笔的长度,再求出他的一半,加上起始长度即可解答.3.D【解析】【分析】三条直线,根据两条直线的位置关系可以得出结果.【详解】三条直线的位置关系有相交和平行,相交时出现的交点可能有1或2或3个,平行时没有交点.故选D【点睛】此题重点考察学生对两条直线位置关系的理解,掌握两条直线的位置关系是解题的关键.4.D【解析】【分析】根据垂线段最短的性质解答.【详解】测量运动员跳远成绩选取的是AB的长度的依据是:垂线段最短.故选D.【点睛】本题考查的是垂线段最短的性质,熟练掌握这一性质是解题的关键.5.A【解析】【分析】根据如果两条直线都与第三条直线平行,那么这两条直线也互相平行可得①正确;根据应为同一平面内,垂直于同一条直线的两直线平行可得②错误.【详解】①若a∥b,b∥c,则a∥c,说法正确;②若a⊥b,b⊥c,则a⊥c,说法错误,应为同一平面内,若a⊥b,b⊥c,则a∥c;故选A.【点睛】此题主要考查了平行公理和垂线,关键是注意同一平面内,垂直于同一条直线的两直线平行.6.C【解析】【分析】根据两点之间,线段最短和两点确定一条直线,据此作出判断.【详解】①把弯曲的公路改直,就能缩短路程,利用了两点之间线段最短;②园林工人栽一行树,先栽首尾的两棵树,利用了两点确定一条直线;③解放军叔叔打靶瞄准,利用了两点确定一条直线;④在墙上钉木条至少要两颗钉子才能牢固,利用了两点确定一条直线,故可以用“两点确定一直线”来解释的有3个,故选C.【点睛】本题考查了直线公理、线段的性质,熟练掌握两点确定一条直线是解题的关键.7.D【解析】【分析】先根据平角的定义求出∠COB的度数,再由OD平分∠BOC即可求出∠2的度数.【详解】∵∠1=40°,∴∠COB=180°-40°=140°,∵OD平分∠BOC,∴∠2=12∠BOC=12×140°=70°.故选:D.【点睛】本题考查的是平角的定义及角平分线的定义,熟知以上知识是解答此题的关键.8.A【解析】【分析】根据角的表示方法,可得答案.【详解】解:能用∠1、∠AOB、∠O三种方法表示同一个角的图形是A中的图,B,C,D中的图都不能用∠1、∠AOB、∠O三种方法表示同一个角的图形,故选:A.【点睛】本题考查角的概念,熟记角的表示方法是解题关键.9.A【解析】【分析】由OE与OF为角平分线,利用角平分线定义得到两对角相等,由平角的定义及等式的性质即可求出所求角的度数. 【详解】∵OE、OF分别是∠AOC、∠BOC的角平分线,∴∠AOE=∠COE,∠COF=∠BOF,∵∠AOC+∠COB=∠AOE +∠COE+∠COF+∠BOF=180°,∴2(∠COE+∠COF)=180°,即∠COE+∠COF=90°,∴∠EOF=∠COE +∠COF=90°.故选A.【点睛】本题主要考查角平分线的性质和平角的定义,得出2(∠COE+∠COF)=180°是解题的关键.10.B【解析】【分析】先根据邻补角求出∠COE,再利用∠AOE=2∠AOC可求出∠AOC的度数,然后由对顶角相等即可求出∠DOB的度数.【详解】∵∠EOD=90°,∴∠COE=180°-90°=90°.∵∠AOE=2∠AOC,∴∠AOC=13∠COE=13×90°=30°,∴∠BOD=∠AOC=30°.故选B.【点睛】本题考查了邻补角的定义、对顶角的性质,熟练掌握邻补角之和等于180°,对顶角相等是解答本题的关键. 11.3 45 36 22.54【解析】分析:根据1度等于60分,1分等于60秒,由大单位转换成小单位乘以60,小单位转换成大单位除以60,按此转化即可.进行度、分、秒的转化运算,注意以60为进制.详解:3.76°=3°+0.76×60′=3°+45.6′=3°+45′+0.6×60″=3°45′36″;24″=(24÷60)″=0.4′,32′+0.4′=32.4′,32.4′=(32.4÷60)=0.54°,所以,22°32′24″=22.54°故答案为:3,45,36,22.54.点睛:本题考查了度、分、秒的换算,进行度、分、秒的转化运算,注意以60为进制.12.1912【解析】【分析】根据直线、射线、线段的定义进行求解即可得.【详解】图中有直线1条,直线AC,有射线9条,以A为端点的射线有2条,以E为端点的射线有3条,以C为端点的射线有2条,以B、F为端点的射线各有1条,有线段12条,分别为AF、FD、AD、AE、AC、EC、FE、FB、EB、BC、BD、CD,故答案为:1,9,12.【点睛】本题考查了直线、射线、线段的定义,在线段、射线的计数时,应注重分类讨论的方法计数,做到不遗漏,不重复.13.90°【解析】根据翻折的性质可得, ∠AEB=∠AEB1=12∠BOB1, ∠CEF=∠FEB1=12∠CEB1,又因为∠BOB1+∠CEB1=180°,所以∠AEF=∠AEB1+∠FEB1=12∠BOB1+12∠CEB1=1180902⨯︒=︒,故答案为: 90︒.14. 3 6 10【解析】分析:根据图形数出即可得出前三个空的答案,根据结果得出规律是.详解:∵在已知角内画射线,画1条射线,图中共有3个角=;画2条射线,图中共有6个角=;画3条射线,图中共有10个角=;…,∴画n条射线,图中共有个角,故答案为:3,6,10,.点睛:本题考查了对角的概念的应用,图形类探索与规律,关键是能根据已知图形得出规律.15.(1)79°30′;(2)153°36′;(3)60°22′.【解析】【分析】(1)两个度数相加,度与度,分与分对应相加,分的结果若满60,则转化为度;(2)一个度数与一个数相乘时,可以度,分各位分别与数相乘,结果中后面的数位满60,则转化为度;(3)两个度数相减时,应先算最后一位,后面的位上的数不够减是向前一位借数,1°=60′.【详解】(1)45.4°+34°6′=79°30′;(2)38°24′×4=152°96′=153°36′;(3)150.6°-(30°26′+59°48′)=150°36′-90°14′=60°22′.【点睛】此类题是进行度、分、秒的加法、减法计算,相对比较简单,注意以60为进制即可.在计算第三题是注意首先要把150.6°化成150°36′.16.(1)见解析;(2) 5 cm.【解析】【分析】(1)根据直线、射线和线段的定义作图即可;(2)根据线段的和差倍分即可得到结论.【详解】(1)如图所示,(2)∵AB=2 cm,BC=12 AB,∴BC=1 cm,∴AC=2+1=3 cm,∴AD=AC=3 cm,∴BD=AD+AB=5 cm.【点睛】本题考查了两点间的距离,熟练掌握直线、线段、射线的概念,正确的作出图形,灵活运用线段之间的数量关系是解题的关键17.(1)详见解析;(2)详见解析.【解析】【分析】(1)从火车站到码头的距离是点到点的距离,即两点间的距离,依据两点之间线段最短解答即可;(2)从码头到铁路的距离是点到直线的距离,依据垂线段最短解答即可.【详解】如图所示(1)沿AB走,两点之间线段最短;(2)沿BD走,垂线段最短.【点睛】本题考查了线段的性质、垂线段的性质,根据具体的问题正确判断出是点到点的距离还是点到线的距离是解答问题的关键.18.36cm.【解析】分析:根据比例设MB=2x,BC=3x,CN=4x,然后表示出MN,再根据线段中点的定义表示出PN,再根据PC=PN-CN列方程求出x,从而得解.详解:∵MB:BC:CN=2:3:4,∴设MB=2xcm,BC=3xcm,CN=4xcm,∴MN=MB+BC+CN=2x+3x+4x=9xcm,∵点P是MN的中点,∴PN=MN=xcm,∴PC=PN-CN,即x-4x=2,解得x=4,所以,MN=9×4=36cm.点睛:本题考查了两点间的距离,线段中点的定义,本题根据比例用x表示出三条线段求解更简便.19.∠EOC=55°,∠BOC=70°【解析】【分析】根据角平分线定义得∠AOE=∠EOC=12∠AOC,利用∠1与∠AOC互补,即可求出∠EOC,再根据对顶角相等求出∠BOC的度数.【详解】解:∵OE平分∠AOC,∴∠AOE=∠EOC=12∠AOC,∵∠1=70°,∴∠EOC=1180702︒-︒()=55°,∠BOC=∠1=70°(对顶角相等)【点睛】本题考查了补角的性质,角平分线的性质,属于简单题,熟悉角的基本概念是解题关键. 20.(1)10.8°;(2)0.4千克.【解析】(1)1千克的菜放到秤上,指标盘上的指针转了180 10︒(2)指标盘上的指针转了1︒,放到秤上的菜的质量为10180︒千克21.22.5°【解析】【分析】首先根据余角与补角的定义,设这个角为x,则它的余角为(90°-x),补角为(180°-x),再根据题中给出的等量关系列方程即可求解.【详解】解:设这个角的度数为x,则它的余角为(90°-x),补角为(180°-x);依题意,得:7(90°-x)=3(180°-x),解得x=22.5°;答:这个角的度数为22.5°.【点睛】此题综合考查余角与补角,解答此类题一般先用未知数表示所求角的度数,再根据一个角的余角和补角列出代数式和方程求解.22.(1)∠AOF =50°,(2)∠AOF=54°.【解析】试题分析:(1)根据角平分线的定义求出的度数,根据邻补角的性质求出的度数,根据余角的概念计算即可;(2)根据角平分线的定义和邻补角的性质计算即可.试题解析:(1)∵OE平分∠BOC,∴∴又∴(2)∵∠BOD:∠BOE=1:2,OE平分∠BOC,∴∠BOD:∠BOE:∠EOC=1:2:2,∴∴又∵∴23.(1) 35°;(2) 35°;(3) 再经过分钟由B,O,C三点构成的三角形的面积第一次达到最大值【解析】【分析】(1)由OB为∠AOD的平分线,得到∠AOD=2∠AOB,由∠AOD+∠EOD求出∠AOE的度数,再由OC 为∠AOE的平分线,利用角平分线定义得到∠AOC的度数,即可确定出∠BOC的度数;(2)同(1)一样即可表示出∠BOC的度数;(3)当OC⊥OB时面积最大,设经过t分钟,这三点构成的三角形的面积第一次达到最大值,由题意列出关于t的方程,解方程即可得.【详解】(1)∵OB为∠AOD的平分线,∠AOB=20°,∴∠AOD=2∠AOB=40°,∴∠AOE=∠AOD+∠EOD=110°,∵OC为∠AOE的平分线,∴∠AOC=∠AOE=55°,∴∠BOC=∠AOC-∠AOB=35°;(2)∵OB为∠AOD的平分线,∠AOB=α,∴∠AOD=2∠AOB=2α,∴∠AOE=∠AOD+∠EOD=70°+2α.∵OC为∠AOE的平分线,∴∠AOC=∠AOE=35°+α,∴∠BOC=∠AOC-∠AOB=35°.(3)当OC⊥OB时,B,O,C这三点构成的三角形面积最大,设经过t分钟,这三点构成的三角形的面积第一次达到最大值,由题意得:6t-0.5t=35+90,解得:t=,则再经过分钟由B,O,C三点构成的三角形的面积第一次达到最大值.【点睛】本题考查了角的计算,钟面角,角平分线定义,一元一次方程的应用等,熟练掌握角平分线定义是解本题的关键.。
七年级数学(上)(上海科技版)第4章 直线与角检测题参考答案
第4章直线与角检测题参考答案1.C 解析:∵,∴∠∠1∠290°,∴∠2=90°∠1=90°40°50°.2.B 解析:选项A和C能折成原几何体的形式,但涂颜色的面是底面与原几何体的涂颜色面的位置不一致;选项B能折叠成原几何体的形式,且涂颜色的面的位置与原几何体一致;选项D不能折叠成原几何体的形式.3.C 解析:由题意,得条直线之间交点的个数最多为(取正整数且≥2),故6条直线最多有=15(个)交点.4.C 解析:∠的补角为180°∠=115°,故选C.5.C 解析:教科书是立体图形,所以①不对,②③都是正确的,故选C.6. C 解析:因为∠1与∠2互补,所以∠1+∠2=180°.又因为∠2与∠3互余,所以∠2+∠3=90°,所以∠1+(90°-∠3)=180°,所以∠1=90°+∠3.7.D 解析:因为是顺次取的,所以AC=8 cm,因为O是线段AC的中点,所以OA=OC= 4 cm.OB=AB-OA=5-4=1(cm). 故选D.8.D 解析:①②是两点确定一条直线的体现,③④可以用“两点之间,线段最短”来解释.故选D.9.C 解析:根据线段之间的和差关系依次进行判断即可得出正确答案.正确;,正确;,而,故本选项错误;,正确.故选C.10.D 解析:180°的角是平角,所以A不正确;110°+90°180°,所以B不正确;互为余角是指两个角,所以C不正确;120°+60°=180°,所以D正确.11.2312.121°解析:根据∠AOC=∠BOD=78°,∠BOC=35°,∴∠AOB=∠AOC-∠BOC=78°-35°=43°,故∠AOD=∠AOB+∠BO D=43°+78°=121°.13.④解析:∵在所有连接两点的线中,线段最短,∴①错误;∵线段的长是点与点的距离,∴②错误;∵直线没有长度,∴说取直线的中点错误,∴③错误;∵反向延长线段,得到射线正确,∴④正确.故答案为④.14.两点确定一条直线15.45°解析:设这个角为,根据题意可得,所以,所以. 16.3 cm 或7 cm 解析:当三点按的顺序排列时,;当三点,按的顺序排列时,. 17.156°46′54″ 解析:原式=179°59′60″-23°13′6″156°46′54″. 18. 解析:.19.分析:正确区分各个几何体的特征.解:圆锥 三棱锥 圆柱 正方体 球 长方体20.解:如题图,∵ 线段AD =6 cm ,线段AC =BD =4 cm ,∴ 4462(cm)BC AC BD AD =+-=+-=.∴ 624(cm)AB CD AD BC +=-=-=.又∵ E 、F 分别是线段AB 、CD 的中点,∴ 11,22EB AB CF CD == ,∴ 111()2(cm).222EB CF AB CD AB CD +=+=+=∴ 224(cm).EF EB BC CF =++=+=答:线段EF 的长为4 cm.21.分析:(1)根据直线是向两方无限延长的画出直线即可; (2)根据射线是向一方无限延长的画出射线即可;(3)找出的中点,画出线段即可; (4)画出∠的平分线即可.解:如图所示.22.分析:(1)根据∠AOC=∠AOD+∠COD,代入数据计算即可;(2)根据∠AOD、∠COD、∠BOC、∠AOB四个角的度数和等于360°解答.解:(1)∵∠AOD=90°,∠COD=42°,∴∠AOC=∠AO D+∠COD=90°+42°=132°.(2)∵∠AOD∠COD∠BOC∠AOB360°,∴∠AOB360°∠AOD∠COD∠BOC=360°90°42°90°138°.23.解:(1)两站之间的往返车票各一种,即两种,则6个车站的票的种类数=6×5=30种. (2)个车站的票的种类数=种.24. 解:图中以为顶点且小于180°的角有,一般地,如果∠MOG小于180°,且图中一共有条射线,则角一共有:(个).。
七年级上第4章直线与角测试卷及答案沪科版
( ).
A . 8cm
B
.2cm
C
二、填空题(每题 2 分,共 16 分)
. 8cm或 2cm
D
. 4cm
9.已知∠ α = 30° 12′,则∠ α 的余角= ________,∠ α 的补角= ________。
10. 若从点 A 看点 B 是北偏东 60°,那么从点 B 看点 A 是________。
电子商务产业背景及地位
在我1国9年9至开8 始发展电子商务以来,他也惊人高中语文,语文试卷,计算机速13度而%蓬且, 勃正发在展以,高几速乎高各中行语各文业,都语在文电试子卷商,务计方算面机有增所长成速就度课发件展电课子件商务现在占全国总消费水平高中语文,语文试卷,计算机
XX你X选( 择高中语文,发语展文现试状卷分,析计算机商品类型
前言
随着生活高中语文,语文试卷,计算机信息化,电脑高中语文,语文试卷,计算机普及及运用,上购物已经取代了传统高中语文,语文试卷,计算机购物模式,上购物不受时间和空间高str中on语g>文,语文试卷,计算机限制以及产品多样化给予消费者更多高中语文,语文试卷,计算机便利与选择,吸引了越来越多高中语文,语文试卷,计算机消费者,高中语文,语文试卷,计算机,网络现今流行高中语文,语文试卷,计算机购物模式,因此上开店成为了一种潮流,并且越来越多高中语文,语文试卷,计算机人选择
21. MN=MC+CD+ND1=AC+CD+1 DB=1 ( AC+DB)+CD=1 ( AB— CD) +CD=17。
2
22
2
22. ∠ AOC =100°或∠ AOC =60°。
23. 15 , n(n 1) ,4950。 2
沪科版七年级上《第4章直线与角》达标检测试卷含答案
第4章达标检测卷(120分,90分钟)题号一二三总分得分一、选择题(每题4分,共40分)1.下列几何图形中为圆柱体的是()2.如图,将长方形绕它的一条边MN所在的直线旋转一周而成的几何体是()(第2题)3.如图所示,能相交的图形有()(第3题) A.1个B.2个C.3个D.4个4.如图所示,C,D是线段AB上的两点,若BC=3 cm,DB=5 c m,且D是AC的中点,则AC的长等于()A.3 cm B.4 cm C.8 cm D.10 cm(第4题)(第6题) 5.下列说法中,正确的有()①如果∠1=∠2,∠3=∠4,那么∠1=∠3;②如果∠1=∠2,∠2=∠3,那么∠1=∠3;③如果∠1是∠2的补角,∠3是∠4的补角,且∠2=∠4,那么∠1=∠3;④如果∠1是∠2的余角,∠3+∠2=90°,那么∠1=∠3.A.1个B.2个C.3个D.4个6.如图,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2的度数是()A.20°B.25°C.30°D.70°7.已知点A,B,C共线,如果线段AB=5 cm,BC=4 cm,那么A,C两点间的距离是()A.1 cm B.9 cm C.1 cm或9 cm D.2 cm或10 cm8.如图,由A测B的方向是()A.南偏东25°B.北偏西25°C.南偏东65°D.北偏西65°(第8题)(第10题) 9.在时刻8:30,时钟上的时针和分针之间的夹角为()A.85°B.75°C.70°D.60°10.如图,C、D在线段BE上,下列说法:①直线CD上以B、C、D、E为端点的线段共有6条;②图中有2对互补的角;③若∠BAE=100°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和为360°;④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B、C、D、E的距离之和最大值为15,最小值为11.其中说法正确的有() A.1个B.2个C.3个D.4个二、填空题(每题5分,共20分)11.(中考·济南)如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释这一现象的原因:________________________.12.用度分秒表示:57.32°=________°________′________″.13.如图,从A到B的最短的路线是________.(第11题)(第13题)(第14题)14.如图,∠AOB=∠COD=90°,下列说法:①∠BOC=∠AOC=∠BOD;②∠AOC =∠BOD;③∠BOC与∠AOD互补;④∠BOC的余角只有∠AOC;⑤若∠AOD=2∠BOC,则∠BOC=60°,其中一定正确的序号是________.三、解答题(17、20题每题9分,21题8分,22题10分,其余每题6分,共60分)15.计算:(1)55°25′57″+27°37′24″-16°48′22″;(2)(58°47′25″+12°36′45″)÷5.16.如图,已知∠α和∠β(∠α>∠β),求作∠AOD,使得∠AOD=2∠α-∠β.(第16题)17.若第一个角的补角比第二个角的余角的3倍少20°,而第二个角的补角比第一个角的余角的3倍多20°,求这两个角的度数.18.下面是小马虎解的一道题.题目:在同一平面上,若∠BOA=70°,∠BOC=15°,求∠AOC的度数.解:根据题意画出图形,如图所示.∠AOC=∠BOA-∠BOC=70°-15°=55°.若你是老师,会给小马虎满分吗?若会,请说明理由;若不会,请指出小马虎的错误.(第18题)19.如图,线段AD上两点B,C将AD分成2∶3∶4三部分,M是AD的中点,若MC=2,求线段AD的长.(第19题)20.如图,OB,OC是∠AOD内任意两条不同的射线,OM平分∠AOB,ON平分∠COD,若∠MON=45°,∠BOC=20°,求∠AOD的度数.(第20题)21.已知直线AB上有一点C,且AB=10 cm,BC=4 cm,M是AB的中点,N是BC 的中点,求MN的长.22.(1)如图,已知∠AOB是直角,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数;(2)若在(1)中,∠AOB=α,其他条件不变,求∠MON的度数;(3)若在(1)中,∠AOB=α,∠BOC=β,其他条件不变,求∠MON的度数;(4)你能从(1)(2)(3)中发现什么规律?(第22题)答案一、1.C 2.C 3.B 4.B 5.C 6.D 7.C 8.C 9.B 10.B 二、11.两点之间,线段最短 12.57;19;12 13.A -F -E -B14.②③⑤ 点拨:因为∠AOB =∠COD =90°,所以根据同角的余角相等,可得∠BOD =∠AOC ,但不能得到∠BOD 或∠AOC 与∠BOC 相等,故①错误,②正确;因为∠BOC +∠AOD =∠AOB +∠COD =180°,所以∠BOC 与∠AOD 互补,故③正确;∠BOC 的余角是∠BOD 或∠AOC ,故④错误;当∠AOD =2∠BOC 时,∠AOD +∠BOC =3∠BOC ,而∠AOD +∠BOC =∠AOB +∠COD =180°,所以3∠BOC =180°,即∠BOC =60°,故⑤正确.因此填②③⑤.三、15.解:(1)原式=(55°+27°-16°)+(25′+37′-48′)+(57″+24″-22″)=66°+14′+59″=66°14′59″.(2)原式=70°83′70″÷5=14°+16′+(180″+70″)÷5=14°+16′+50″=14°16′50″. 16.解:作法:如图.(1)作∠AOB =∠α;(2)以射线OB 为边,在∠AOB 的外部作∠BOC =∠α; (3)以射线OC 为边,在∠AOC 的内部作∠COD =∠β. 则∠AOD 就是所求作的角.(第16题)17.解:设第一个、第二个角的度数分别为x ,y ,则⎩⎪⎨⎪⎧180°-x =3(90°-y )-20°,180°-y =3(90°-x )+20°,解得⎩⎪⎨⎪⎧x =50°,y =40°. 所以这两个角的度数分别为50°和40°.18.解:不会给小马虎满分.小马虎只考虑了OC 落在∠AOB 内部的情况.当OC 落在∠AOB 的外部时,∠AOC =∠BOA +∠BOC =85°.19.解:设AB 的长为2k(k >0),则BC ,CD 的长分别为3k ,4k , 所以AD =2k +3k +4k =9k.因为M 是AD 的中点,所以MD =12AD =4.5k ,所以MC =MD -CD =4.5k -4k =0.5k =2,解得k =4. 所以AD =9k =9×4=36.20.解:因为OM 平分∠AOB ,ON 平分∠COD ,所以∠AOB =2∠BOM ,∠COD =2∠CON ,所以∠AOD =∠AOB +∠COD +∠BOC =2∠BOM +2∠CON +∠BOC =2(∠BOM +∠CON)+∠BOC =2(∠MON -∠BOC)+∠BOC =2×(45°-20°)+20°=70°.21.解:分两种情况:(1)当点C 在AB 的延长线上时,因为AB =10 cm ,M 是AB 的中点,所以BM =5 cm . 因为BC =4 cm ,N 是BC 的中点,所以BN =2 cm ,所以MN =5+2=7(cm ). (2)当点C 在线段AB 上时,因为AB =10 cm ,M 是AB 的中点,所以BM =5 cm . 因为BC =4 cm ,N 是线段BC 的中点,所以BN =2 cm ,所以MN =5-2=3(cm ). 综上所述,MN 的长为7 cm 或3 cm .22.解:(1)因为∠AOB 是直角,∠BOC =30°,所以∠AOC =∠AOB +∠BOC =90°+30°=120°.因为OM 平分∠AOC , 所以∠MOC =60°.因为∠BOC =30°,ON 平分∠BOC ,所以∠NOC =15°. 所以∠MON =∠MOC -∠NOC =60°-15°=45°. (2)因为∠AOB =α,所以∠AOC =∠AOB +∠BOC =α+30°.因为OM 平分∠AOC ,所以∠MOC =α+30°2=α2+15°.因为∠BOC =30°,ON 平分∠BOC ,所以∠NOC =15°. 所以∠MON =∠MOC -∠NOC =⎝⎛⎭⎫α2+15°-15°=α2. (3)因为∠AOB =α,∠BOC =β, 所以∠AOC =∠AOB +∠BOC =α+β. 因为OM 平分∠AOC ,所以∠MOC =α+β2.因为ON 平分∠BOC ,所以∠NOC =β2.所以∠MON =∠M OC -∠NOC =α+β2-β2=α2.(4)从(1)(2)(3)中发现:∠MON 的度数只与∠AOB 的度数有关,和∠BOC 的度数无关,∠MON 的度数等于∠AOB 的度数的一半.。
沪科版七年级上册数学第4章 直线与角 含答案
沪科版七年级上册数学第4章直线与角含答案一、单选题(共15题,共计45分)1、小明从A处出发沿正东方向行驶至B处,又沿南偏东15°方向行驶至C 处,此时需把方向调整到正东方向,则小明应该()A.右转165°B.左转75°C.右转15°D.左转15°2、在直线m上顺次取A,B,C三点,已知AB=5cm.BC=3cm.则AC的长为()A.2cmB.8cmC.2cm或8cmD.15cm3、按组成面的平和曲划分,与圆锥为同一类的几何体是()A.棱锥B.棱柱C.圆柱D.长方体4、室内墙壁上挂一平面镜,小明在平面镜内看到他背后墙上时钟的示数如右图所示,则这时的实际时间应是().A.3:20B.3:40C.4:40D.8:205、已知∠A=20°18′,∠B=20°15′30″,∠C=20.25°,则度数最大的是()A.∠AB.∠BC.∠CD.无法确定6、下列说法中,正确的是()A.绝对值等于它本身的数是正数B.任何有理数的绝对值都不是负数 C.若线段AC=BC,则点C是线段AB的中点 D.角的大小与角两边的长度有关,边越长角越大7、在长方形、长方体、三角形、球、直线、圆中,有()个平面图形.A.3B.4C.5D.68、“把弯曲的河道改直,就能缩短路程”,其中蕴含的数学道理是()A.两点之间线段最短B.直线比曲线短C.两点之间直线最短D.两点确定一条直线9、如图,从A到B的四条路径中,最短的路线是()A.A﹣E﹣G﹣BB.A﹣E﹣C﹣BC.A﹣E﹣G﹣D﹣BD.A﹣E﹣F ﹣B10、下列说法中,正确的是()A.角的平分线就是把一个角分成两个角的射线B.若∠AOB= ∠AOC,则OA是∠AOC的平分线C.角的大小与它的边的长短无关D.∠CAD与∠BAC的和一定是∠BAD11、一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱12、下列说法错误的是( )A.如果两条直线都与第三条直线平行,那么这两条直线平行B.“画一条线段AB=5cm”是一个命题C.过直线外一点有且只有一条直线与这条直线平行D.两点之间,线段最短。
七年级数学上册《第四章 直线与角》单元测试卷-含答案(沪科版)
七年级数学上册《第四章 直线与角》单元测试卷-含答案(沪科版)一、选择题1.如图,下列说法错误的是( )A .点A 在直线AC 上,点B 在直线m 外 B .射线AC 与射线CA 不是同一条射线 C .直线AC 还可以表示为直线CA 或直线D .图中有直线3条,射线2条,线段1条2.把一条弯曲的河道改成直道,可以缩短航程,其中的道理可以解释为( )A .两点之间,线段最短B .过两点有且只有一条直线C .线段有两个端点D .线段可以比较大小3.如图所示,小明家相对于学校的位置,下列描述最正确的是( )A .在距离学校300米处B .在学校的东南方向C .在东偏南45°方向300米处D .在学校北偏西45°方向300米处4.如图130∠=︒,=90AOC ∠︒点B ,O ,D 在同一条直线上,∠2=( )A .120︒B .115︒C .110︒D .105︒5.如图,C 、D 是线段AB 上的点,若AB =8,CD =2,则图中以A 、C 、D 、B 为端点的所有线段的长度之和为( )A .24B .22C .20D .266.线段3cm AB =,点C 在线段AB 所在的直线上,且1cm BC =,则线段AC 的长度为( )A .4cmB .2cmC .2cm 或4cmD .1cm 或3cm7.下列说法正确的是( )A .角的大小与边的长短无关B .由两条射线组成的图形叫做角C .如果AB BC =,那么点B 是AC 的中点D .连接两点间的线段叫做这两点的距离8.如图,点O 在直线AB 上,OD 、OE 分别平分AOC ∠、BOC ∠则图中互为余角的有( )对A .1B .2C .3D .49.如图,用尺规作出了NCB AOC ∠=∠,关于作图痕迹,下列说法错误的是( )A .弧MD 是以点O 为圆心,任意长为半径的弧B .弧NE 是以点C 为圆心,DO 为半径的弧 C .弧FG 是以点E 为圆心,OD 为半径的弧 D .弧FG 是以点E 为圆心,DM 为半径的弧10.下面图形经过折叠可以围成一个棱柱的是( )A .B .C .D .二、填空题11.图中有几条 条直线.12.下列儿何体中,属于棱柱的有 (填序号).13.已知点C 是线段AB 的中点,点D 在线段CB 上,且13CD CB =,若12AD =,则DB = .14.上午8点30分时,时针与分针的夹角为 °.三、计算题15.计算: 2018'3456'1234'︒+︒-︒四、解答题16.如图是一个正方体的表面展开图,将展开图折叠成正方体后相对面上的两个数互为倒数,求282a b c -+的值.17.已知线段AB ,延长AB 到点C ,使 14BC AB =,D 为AC 的中点,若BD=3cm ,求线段AB 的长.18.如图,若D 是AB 中点,E 是BC 中点,若8AC =,3EC =求AD 的长.解:∵E 是BC 中点,3EC =∴2BC EC == = . 又∵8AC =∴AB AC =- 8=- = . ∵D 是AB 中点∴12AD =⨯ 12=⨯ = . 五、作图题19.尺规作图(不写作法,保留作图痕迹):如图,已知α∠和β∠.求作:AOB ∠,使得α2βAOB ∠=∠-∠.六、综合题20.如图,在平面内A ,B ,C 三点.(1)画直线AB ,射线AC ,线段BC ;(2)在线段BC 上任取一点D (不同于B ,C ),连接AD ,并延长AD 至E ,使DE AD =; (3)数一数,此时图中线段共有条 .21.如图,射线OA 的方向是北偏东15°,射线OB 的方向是北偏西40°,∠AOB =∠AOC ,射线OD是OB 的反向延长线.(1)射线OC 的方向是 ; (2)若射线OE 平分∠COD ,求∠AOE 的度数.22.如图,直线AB CD ,相交于点O ,OE 平分BOD ∠ 45AOC BOC ∠∠=::.(1)求BOE ∠的度数;(2)若OF OE ⊥,求COF ∠的度数.参考答案与解析1.【答案】D【解析】【解答】解:A、点A在直线AC上,点B在直线m外,说法正确,不符合题意;B、射线AC与射线CA不是同一条射线,说法正确,不符合题意;C、直线AC还可以表示为直线CA或直线m,说法正确,不符合题意;D、图中直线有1条,线段有1条射线有2条,说法错误,符合题意;故答案为:D.【分析】根据直线、射线、线段的概念以及点与直线的位置关系进行判断.2.【答案】A【解析】【解答】解:把一条弯曲的河道改成直道,可以缩短航程,其中的道理可以解释为:两点之间,线段最短.故答案为:A.【分析】根据线段的性质,连接两点的所有线中,线段最短可得答案.3.【答案】D【解析】【解答】解:如图,∠1=90°-45°=45°∴小明家相在学校的北偏西方向300m处.故答案为:D .【分析】由题意求出∠1的度数,根据方向角的定义表述即可.4.【答案】A【解析】【解答】∵∠AOC=90°,∠1=30°,∴∠BOC=90°-30°=60°,∴∠2=180°-60°=120°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学(沪科版)上学期第4章直线与角单元测试题
(满分150)
得分
一、选择题(40分)
1.如图,把左边的图形折叠起来,它会变成右边的()
2.如图是一堆无缝钢管从三个方向看得到的图形,则这批钢管共有的根数()
A. 10
B. 11
C. 12
D. 13
3.如图,以A、B、C、D的任意一点为端点,在图中找到不同的射线条数共有()
A. 5
B. 6
C. 7
D. 8
4.下列说法中:(1)两条直线相交只有一个交点;(2)两条直线不是一定有公共点;(3)直线AB与直线BA是两条不同的直线;(4)两条不同的直线不能有两个或更多公共交点,其中正确的是()
A.(1)(2)
B.(1)(4)
C.(1)(2)(4)
D.(2)(3)(4)
5.如图,M是线段EF的中点,N是线段MF上一点,如果EF=2a,NF=b , 那么下面结论中错误的是()
A.MN a b
=- B.
1
2
MN a
= C.EM a
= D.2
EF a b
=-
6.如图,在此图中小于平角的个数为()
A. 9
B. 8
C. 7
D. 6
7.如图AOB
∠是一个平角,30,60,
AOC BOD OM
∠=∠=、ON分别是AOC
∠、
A
第3题
第2题
从左面看
从上面看
从正面看
BOD ∠的平分线,则MON ∠等于 ( )
A.
150 B. 135 C.
120 D. 45
8. 4015'的一半是 ( ) A. 20 B. 207' C. 208' D. 20730'''
9. 如图所示,由A 到B 有(1)(2)(3)三条路线,最短的路线选(1)的理由是( ) A. 因为它是直的 B. 两点确定一条直线 C. 两点之间,线段最短 D. 两点之间距离的定义
10 .在8:30时,时钟上的时针和分针之间的夹角为 ( ) A. 85 B. 75 C. 70 D. 60 二、填空题(40分)
11.下列常见的物体中,属于圆柱的有 ,属于长方体的有 (1)“健力宝”拉力罐 (2)谷堆 (3)毛笔杆 (4)砖 (5)人民英雄纪念碑主体建筑 (6)陀螺
12. 如图是一个正方体的展开图,那么这个正方体数字“1”所对的面的数字为 13. 直线上有2个点共有1条线段,有3个点共有 条线段,有4个点共有 条线段,有10个点有 条线段。
14. 如图,MN 是过点A 的直线,则图中有一个端点是A 的线段有 条,图中射线有
第7题
N
M C
D
B A
O B
C E D
A
第6题
第5题
F N
M
E
第17题
第16题
第14题
B
A
O
D
C
C
D E
B
A
O
C
B
E
D
N
M
A 6
5
432
1
第12题
条 。
15. 已知α∠与β∠互余,且90α∠=,则β∠的补角为
16.
如图,AB 、CD 相交于点O ,OB 平分DOE ∠,若60DOE ∠=,则AOC ∠的度数为 。
17. 将两块直角三角尺的直角顶点重合为如图所示的形状,若127AOD ∠=,则
BOC ∠=
18. 将标号为A 、B 、C 、D 的正方形沿下图中虚线剪开后得到标号为P 、Q 、M 、N 的四组图形,如图,试按照“哪个正方形剪开后得到哪组图形”的对应关系填空。
A 与 对应,
B 与 对应,
C 与 对应,
D 与 对应 三、作图题(30分)
19. 如图,已知线段a 、b 、c ,画一条线段,使它等于2a b c +-
20.如图所示,打台球时,用白球沿着直线方向击黑球,已知入射角的余角等于反射角的余角(注:人射角的余角和反射角的余角均指黑球前进的方向与台边所夹的锐角)。
请问黑球经过一次反弹是否会进入F 洞?请你用尺规作图来判断。
(保留作图痕迹,不写作法)
c
b a N
M Q P
D
C B A
21.如图所示,是由五个小正方形搭成的几何体,请画出从正面看和从左面看的图形
四、解答题(40分)
22.(12分) 如图,已知6AD cm =,B 是AC 的中点,2
3
CD
AC =
,求AB 、BC 、CD 的长。
23. (13分)如图,已知直线AB 、CD 、EF 相交于O 点,CD AB ⊥,AOE ∠:AOD ∠=2:5,求BOF ∠,DOF ∠的度数。
D
C B A O
F E D
C
B
A
24.(15分) 如图,已知直线AB 、CD 、EF 相交于O (1)若120,100COF AOD ∠=∠=,求AOF ∠的度数 (2)若1∠:2∠:3∠=2:3:4,求4∠的度数 (3)若20BOC BOD ∠-∠=,求AOC ∠的度数
4
321
O F
D
C
E
B
A
参考答案
1。
B 2。
B 3。
B 4。
C 5 。
B 6。
C 7。
B 8。
D 9。
C 10。
B 11。
(1)(3)(4)(5) 12。
4
13。
3 6 45 14。
4 2 15。
105 16。
30 17。
53 18。
M P Q N
19。
画一条射线,依次截取,,a b b ,在截取的线段上以一端点上截取c 20。
不能 21。
略
22。
AB=BC=1。
8 cm CD= 2.4cm 23。
36,54BOF DOF ∠=∠=
24。
① 40AOF ∠= ②460∠= ③80AOC ∠=。