同济大学数学系《高等数学》(第6版)上册笔记和课后习题(含考研真题)详解-微分中值定理与导数的应用(
第六版同济大学高等数学上下课后答案详解
|sin x | | x | 3 求 ( ) ( ) ( ) (2) 并作出函数 y(x) 8 设 ( x) 4 6 4 | x | 0 3
的图形 解 ( ) |sin | 1 ( ) |sin | 2 ( ) |sin( )| 2 (2) 0 6 6 2 4 4 2 4 4 2 9 试证下列函数在指定区间内的单调性 (1) y x ( 1) 1 x (2)yxln x (0 ) 证明 (1)对于任意的 x1 x2( 1) 有 1x10 1x20 因为当 x1x2 时
对于映射 g YX 因为对每个 yY 有 g(y)xX 且满足 f(x)f[g(y)]Iy yy 按逆映射的定义 g 是 f 的逆映射 5 设映射 f XY AX 证明 (1)f 1(f(A))A (2)当 f 是单射时 有 f 1(f(A))A 证明 (1)因为 xA f(x)yf(A) f 1(y)xf 1(f(A)) f 1(f(A))A 所以 (2)由(1)知 f 1(f(A))A 另一方面 对于任意的 xf 1(f(A))存在 yf(A) 使 f 1(y)xf(x)y 因为 yf(A)且 f 是单射 所以 xA 这就证明了 f 1(f(A))A 因此 f 1(f(A))A 6 求下列函数的自然定义域 (1) y 3x 2 解 由 3x20 得 x 2 函数的定义域为 [ 2 , ) 3 3 (2) y 1 2 1 x 解 由 1x20 得 x1 函数的定义域为( 1)(1 1)(1 ) (3) y 1 1 x 2 x 解 由 x0 且 1x20 得函数的定义域 D[1 0)(0 1] (4) y
y1 y2
x1 x x1 x2 2 0 1 x1 1 x2 (1 x1)(1 x2 )
同济大学第六版高等数学上册课后答案全集
高等数学第六版上册课后习题答案第一章习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式.解 A ⋃B =(-∞, 3)⋃(5, +∞),A ⋂B =[-10, -5),A \B =(-∞, -10)⋃(5, +∞),A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C .证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明(1)f (A ⋃B )=f (A )⋃f (B );(2)f (A ⋂B )⊂f (A )⋂f (B ).证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B )⇔ y ∈f (A )⋃f (B ),所以 f (A ⋃B )=f (A )⋃f (B ).(2)因为y ∈f (A ⋂B )⇒∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ),所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2)⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2.因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A ⊂X . 证明:(1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )),所以 f -1(f (A ))⊃A .(2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域:(1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-. (2)211xy -=; 解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞).(3)211x xy --=; 解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1].(4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2).(5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞).(6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=; 解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3).(9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞).(10)x e y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞).7. 下列各题中, 函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2, g (x )=2lg x ;(2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f (x )=1, g (x )=sec 2x -tan 2x .解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x .(3)相同. 因为定义域、对应法则均相相同.(4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性:(1)xx y -=1, (-∞, 1); (2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时,0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数xx y -=1在区间(-∞, 1)内是单调增加的. (2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有0ln )()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2.因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), -f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加. 11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的和是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ),所以F (x )为奇函数, 即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的积是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个奇函数的积是偶函数.如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ),所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2);(2)y =3x 2-x 3;(3)2211xx y +-=; (4)y =x (x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x a a y -+=. 解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数.(2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数.(5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----, 所以f (x )是偶函数. 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);解 是周期函数, 周期为l =2π.(2)y =cos 4x ;解 是周期函数, 周期为2π=l . (3)y =1+sin πx ;解 是周期函数, 周期为l =2.(4)y =x cos x ;解 不是周期函数.(5)y =sin 2x .解 是周期函数, 周期为l =π.14. 求下列函数的反函数:(1)31+=x y 错误!未指定书签。
同济大学第六版高等数学上册课后答案全集
高等数学第六版上册课后习题答案第一章习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式.解 A ⋃B =(-∞, 3)⋃(5, +∞),A ⋂B =[-10, -5),A \B =(-∞, -10)⋃(5, +∞),A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C .证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明(1)f (A ⋃B )=f (A )⋃f (B );(2)f (A ⋂B )⊂f (A )⋂f (B ).证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B )⇔ y ∈f (A )⋃f (B ),所以 f (A ⋃B )=f (A )⋃f (B ).(2)因为y ∈f (A ⋂B )⇒∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ),所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2)⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2.因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A ⊂X . 证明:(1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )),所以 f -1(f (A ))⊃A .(2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域:(1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-. (2)211xy -=; 解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞).(3)211x xy --=; 解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1].(4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2).(5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞).(6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=; 解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3).(9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞).(10)x e y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞).7. 下列各题中, 函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2, g (x )=2lg x ;(2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f (x )=1, g (x )=sec 2x -tan 2x .解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x .(3)相同. 因为定义域、对应法则均相相同.(4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性:(1)xx y -=1, (-∞, 1); (2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时,0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数xx y -=1在区间(-∞, 1)内是单调增加的. (2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有0ln )()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2.因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), -f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加. 11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的和是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ),所以F (x )为奇函数, 即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的积是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个奇函数的积是偶函数.如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ),所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2);(2)y =3x 2-x 3;(3)2211xx y +-=; (4)y =x (x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x a a y -+=. 解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数.(2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数.(5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----, 所以f (x )是偶函数. 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);解 是周期函数, 周期为l =2π.(2)y =cos 4x ;解 是周期函数, 周期为2π=l . (3)y =1+sin πx ;解 是周期函数, 周期为l =2.(4)y =x cos x ;解 不是周期函数.(5)y =sin 2x .解 是周期函数, 周期为l =π.14. 求下列函数的反函数:(1)31+=x y 错误!未指定书签。
同济大学第六版高等数学上册课后答案全集()
高等数学第六版上册课后习题答案第一章习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式.解 A ⋃B =(-∞, 3)⋃(5, +∞),A ⋂B =[-10, -5),A \B =(-∞, -10)⋃(5, +∞),A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C .证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明(1)f (A ⋃B )=f (A )⋃f (B );(2)f (A ⋂B )⊂f (A )⋂f (B ).证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B )⇔ y ∈f (A )⋃f (B ),所以 f (A ⋃B )=f (A )⋃f (B ).(2)因为y ∈f (A ⋂B )⇒∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ),所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2)⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2.因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A ⊂X . 证明:(1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )),所以 f -1(f (A ))⊃A .(2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域:(1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-. (2)211xy -=; 解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞).(3)211x xy --=; 解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1].(4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2).(5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞).(6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=; 解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3).(9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞).(10)x e y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞).7. 下列各题中, 函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2, g (x )=2lg x ;(2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f (x )=1, g (x )=sec 2x -tan 2x .解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x .(3)相同. 因为定义域、对应法则均相相同.(4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性:(1)xx y -=1, (-∞, 1); (2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时,0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数xx y -=1在区间(-∞, 1)内是单调增加的. (2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有0ln )()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2.因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), -f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加. 11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的和是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ),所以F (x )为奇函数, 即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的积是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个奇函数的积是偶函数.如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ),所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2);(2)y =3x 2-x 3;(3)2211xx y +-=; (4)y =x (x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x a a y -+=. 解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数.(2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数.(5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----, 所以f (x )是偶函数. 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);解 是周期函数, 周期为l =2π.(2)y =cos 4x ;解 是周期函数, 周期为2π=l . (3)y =1+sin πx ;解 是周期函数, 周期为l =2.(4)y =x cos x ;解 不是周期函数.(5)y =sin 2x .解 是周期函数, 周期为l =π.14. 求下列函数的反函数:(1)31+=x y 错误!未指定书签。
同济大学第六版高等数学上册课后答案全集()
高等数学第六版上册课后习题答案第一章习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式.解 A ⋃B =(-∞, 3)⋃(5, +∞),A ⋂B =[-10, -5),A \B =(-∞, -10)⋃(5, +∞),A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C .证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明(1)f (A ⋃B )=f (A )⋃f (B );(2)f (A ⋂B )⊂f (A )⋂f (B ).证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B )⇔ y ∈f (A )⋃f (B ),所以 f (A ⋃B )=f (A )⋃f (B ).(2)因为y ∈f (A ⋂B )⇒∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ),所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2)⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2.因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A ⊂X . 证明:(1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )),所以 f -1(f (A ))⊃A .(2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域:(1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-. (2)211xy -=; 解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞).(3)211x xy --=; 解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1].(4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2).(5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞).(6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=; 解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3).(9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞).(10)x e y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞).7. 下列各题中, 函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2, g (x )=2lg x ;(2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f (x )=1, g (x )=sec 2x -tan 2x .解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x .(3)相同. 因为定义域、对应法则均相相同.(4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性:(1)xx y -=1, (-∞, 1); (2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时,0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数xx y -=1在区间(-∞, 1)内是单调增加的. (2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有0ln )()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2.因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), -f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加. 11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的和是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ),所以F (x )为奇函数, 即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的积是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个奇函数的积是偶函数.如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ),所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2);(2)y =3x 2-x 3;(3)2211xx y +-=; (4)y =x (x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x a a y -+=. 解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数.(2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数.(5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----, 所以f (x )是偶函数. 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);解 是周期函数, 周期为l =2π.(2)y =cos 4x ;解 是周期函数, 周期为2π=l . (3)y =1+sin πx ;解 是周期函数, 周期为l =2.(4)y =x cos x ;解 不是周期函数.(5)y =sin 2x .解 是周期函数, 周期为l =π.14. 求下列函数的反函数:(1)31+=x y 错误!未指定书签。
同济大学第六版高等数学上册课后答案全集
高等数学第六版上册课后习题答案第一章习题1-11.设A=(-∞,-5)⋃(5,+∞), B=[-10, 3),写出A⋃B, A⋂B, A\B及A\(A\B)的表达式.解A⋃B=(-∞, 3)⋃(5,+∞),A⋂B=[-10,-5),A\B=(-∞,-10)⋃(5,+∞),A\(A\B)=[-10,-5).2.设A、B是任意两个集合,证明对偶律: (A⋂B)C=A C ⋃B C .证明因为x∈(A⋂B)C⇔x∉A⋂B⇔ x∉A或x∉B⇔ x∈A C或x∈B C ⇔ x∈A C ⋃B C,所以(A⋂B)C=A C ⋃B C .3.设映射f : X →Y, A⊂X, B⊂X .证明(1)f(A⋃B)=f(A)⋃f(B);(2)f(A⋂B)⊂f(A)⋂f(B).证明因为y∈f(A⋃B)⇔∃x∈A⋃B,使f(x)=y⇔(因为x∈A或x∈B) y∈f(A)或y∈f(B)⇔ y∈f(A)⋃f(B),所以f(A⋃B)=f(A)⋃f(B).(2)因为y ∈f(A ⋂B)⇒∃x ∈A ⋂B , 使f(x)=y ⇔(因为x ∈A 且x ∈B) y ∈f(A)且y ∈f(B)⇒ y ∈ f(A)⋂f(B),所以 f(A ⋂B)⊂f(A)⋂f(B).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g =ο, Y I g f =ο, 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g(y)∈X , 且f(x)=f[g(y)]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f(x 1)≠f(x 2), 否则若f(x 1)=f(x 2)⇒g[ f(x 1)]=g[f(x 2)] ⇒ x 1=x 2.因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g(y)=x ∈X , 且满足f(x)=f[g(y)]=I y y =y , 按逆映射的定义, g 是f 的逆映射. 5. 设映射f : X →Y , A ⊂X . 证明:(1)f -1(f(A))⊃A ;(2)当f 是单射时, 有f -1(f(A))=A .证明 (1)因为x ∈A ⇒ f(x)=y ∈f(A) ⇒ f -1(y)=x ∈f -1(f(A)), 所以 f -1(f(A))⊃A .(2)由(1)知f -1(f(A))⊃A .另一方面, 对于任意的x ∈f -1(f(A))⇒存在y ∈f(A), 使f -1(y)=x ⇒f(x)=y . 因为y ∈f(A)且f 是单射, 所以x ∈A . 这就证明了f -1(f(A))⊂A . 因此f -1(f(A))=A .6. 求下列函数的自然定义域:(1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-. (2)211x y -=; 解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1,1)⋃(1, +∞).(3)211x xy --=; 解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1].(4)241xy -=; 解 由4-x 2>0得 |x|<2. 函数的定义域为(-2, 2).(5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞).(6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅ ⋅). (7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=; 解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3).(9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞).(10)xe y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞). 7. 下列各题中, 函数f(x)和g(x)是否相同?为什么?(1)f(x)=lg x 2, g(x)=2lg x ;(2) f(x)=x , g(x)=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f(x)=1, g(x)=sec 2x -tan 2x .解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g(x)=-x .(3)相同. 因为定义域、对应法则均相相同.(4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x)的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性:(1)xx y -=1, (-∞, 1); (2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时,0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数x x y -=1在区间(-∞, 1)内是单调增加的. (2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有 0ln)()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f(x)为定义在(-l , l)内的奇函数, 若f(x)在(0, l)内单调增加,证明f(x)在(-l, 0)内也单调增加.证明对于∀x1, x2∈(-l, 0)且x1<x2,有-x1,-x2∈(0, l)且-x1>-x2.因为f(x)在(0, l)内单调增加且为奇函数,所以f(-x2)<f(-x1),-f(x2)<-f(x1), f(x2)>f(x1),这就证明了对于∀x1, x2∈(-l, 0),有f(x1)< f(x2),所以f(x)在(-l, 0)内也单调增加.11.设下面所考虑的函数都是定义在对称区间(-l, l)上的,证明:(1)两个偶函数的和是偶函数,两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数与奇函数的乘积是奇函数.证明(1)设F(x)=f(x)+g(x).如果f(x)和g(x)都是偶函数,则F(-x)=f(-x)+g(-x)=f(x)+g(x)=F(x),所以F(x)为偶函数,即两个偶函数的和是偶函数.如果f(x)和g(x)都是奇函数,则F(-x)=f(-x)+g(-x)=-f(x)-g(x)=-F(x),所以F(x)为奇函数,即两个奇函数的和是奇函数.(2)设F(x)=f(x)⋅g(x).如果f(x)和g(x)都是偶函数,则F(-x)=f(-x)⋅g(-x)=f(x)⋅g(x)=F(x),所以F(x)为偶函数,即两个偶函数的积是偶函数.如果f(x)和g(x)都是奇函数,则F(-x)=f(-x)⋅g(-x)=[-f(x)][-g(x)]=f(x)⋅g(x)=F(x),所以F(x)为偶函数, 即两个奇函数的积是偶函数. 如果f(x)是偶函数, 而g(x)是奇函数, 则F(-x)=f(-x)⋅g(-x)=f(x)[-g(x)]=-f(x)⋅g(x)=-F(x), 所以F(x)为奇函数, 即偶函数与奇函数的积是奇函数. 12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2);(2)y =3x 2-x 3;(3)2211xx y +-=; (4)y =x(x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x a a y -+=. 解 (1)因为f(-x)=(-x)2[1-(-x)2]=x 2(1-x 2)=f(x), 所以f(x)是偶函数.(2)由f(-x)=3(-x)2-(-x)3=3x 2+x 3可见f(x)既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f(x)是偶函数.(4)因为f(-x)=(-x)(-x -1)(-x +1)=-x(x +1)(x -1)=-f(x), 所以f(x)是奇函数.(5)由f(-x)=sin(-x)-cos(-x)+1=-sin x -cos x +1可见f(x)既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----, 所以f(x)是偶函数. 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);解 是周期函数, 周期为l =2π.(2)y =cos 4x ;解 是周期函数, 周期为2π=l . (3)y =1+sin πx ;解 是周期函数, 周期为l =2.(4)y =xcos x ;解 不是周期函数.(5)y =sin 2x .解 是周期函数, 周期为l =π.14. 求下列函数的反函数:(1)31+=x y 错误!未指定书签。
同济大学第六版高等数学上册课后答案全集精编版
高等数学第六版上册课后习题答案第一章习题1−11.设A =(−∞,−5)∪(5,+∞),B =[−10,3),写出A ∪B ,A ∩B ,A \B 及A \(A \B )的表达式.解A ∪B =(−∞,3)∪(5,+∞),A ∩B =[−10,−5),A \B =(−∞,−10)∪(5,+∞),A \(A \B )=[−10,−5).2.设A 、B 是任意两个集合,证明对偶律:(A ∩B )C =A C ∪B C .证明因为x ∈(A ∩B )C ⇔x ∉A ∩B ⇔x ∉A 或x ∉B ⇔x ∈A C 或x ∈B C ⇔x ∈A C ∪B C ,所以(A ∩B )C =A C ∪B C .3.设映射f :X →Y ,A ⊂X ,B ⊂X .证明(1)f (A ∪B )=f (A )∪f (B );(2)f (A ∩B )⊂f (A )∩f (B ).证明因为y ∈f (A ∪B )⇔∃x ∈A ∪B ,使f (x )=y⇔(因为x ∈A 或x ∈B )y ∈f (A )或y ∈f (B )⇔y ∈f (A )∪f (B ),所以f (A ∪B )=f (A )∪f (B ).(2)因为y ∈f (A ∩B )⇒∃x ∈A ∩B ,使f (x )=y ⇔(因为x ∈A 且x ∈B )y ∈f (A )且y ∈f (B )⇒y ∈f (A )∩f (B ),所以f (A ∩B )⊂f (A )∩f (B ).4.设映射f :X →Y ,若存在一个映射g :Y →X ,使X I f g =ο,Y I g f =ο,其中I X 、I Y 分别是X 、Y 上的恒等映射,即对于每一个x ∈X ,有I X x =x ;对于每一个y ∈Y ,有I Y y =y .证明:f 是双射,且g 是f 的逆映射:g =f −1.证明因为对于任意的y ∈Y ,有x =g (y )∈X ,且f (x )=f [g (y )]=I y y =y ,即Y 中任意元素都是X 中某元素的像,所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2,必有f (x 1)≠f (x 2),否则若f (x 1)=f (x 2)⇒g [f (x 1)]=g [f (x 2)]⇒x 1=x 2.因此f 既是单射,又是满射,即f 是双射.对于映射g :Y →X ,因为对每个y ∈Y ,有g (y )=x ∈X ,且满足f (x )=f [g (y )]=I y y =y ,按逆映射的定义,g 是f 的逆映射.5.设映射f :X →Y ,A ⊂X .证明:(1)f −1(f (A ))⊃A ;(2)当f 是单射时,有f −1(f (A ))=A .证明(1)因为x ∈A ⇒f (x )=y ∈f (A )⇒f −1(y )=x ∈f −1(f (A )),所以f −1(f (A ))⊃A .(2)由(1)知f −1(f (A ))⊃A .另一方面,对于任意的x ∈f −1(f (A ))⇒存在y ∈f (A ),使f −1(y )=x ⇒f (x )=y .因为y ∈f (A )且f 是单射,所以x ∈A .这就证明了f −1(f (A ))⊂A .因此f −1(f (A ))=A .6.求下列函数的自然定义域:(1)23+=x y ;解由3x +2≥0得32−>x .函数的定义域为) ,32[∞+−.(2)211xy −=;解由1−x 2≠0得x ≠±1.函数的定义域为(−∞,−1)∪(−1,1)∪(1,+∞).(3)211x xy −−=;解由x ≠0且1−x 2≥0得函数的定义域D =[−1,0)∪(0,1].(4)241x y −=;解由4−x 2>0得|x |<2.函数的定义域为(−2,2).(5)x y sin =;解由x ≥0得函数的定义D =[0,+∞).(6)y =tan(x +1);解由21π≠+x (k =0,±1,±2,⋅⋅⋅)得函数的定义域为 12−+≠ππk x (k =0,±1,±2,⋅⋅⋅).(7)y =arcsin(x −3);解由|x −3|≤1得函数的定义域D =[2,4].(8)xx y 1arctan 3+−=;解由3−x ≥0且x ≠0得函数的定义域D =(−∞,0)∪(0,3).(9)y =ln(x +1);解由x +1>0得函数的定义域D =(−1,+∞).(10)x e y 1=.解由x ≠0得函数的定义域D =(−∞,0)∪(0,+∞).7.下列各题中,函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2,g (x )=2lg x ;(2)f (x )=x ,g (x )=2x ;(3)334)(x x x f −=,31)(−=x x x g .(4)f (x )=1,g (x )=sec 2x −tan 2x .解(1)不同.因为定义域不同.(2)不同.因为对应法则不同,x <0时,g (x )=−x .(3)相同.因为定义域、对应法则均相相同.(4)不同.因为定义域不同.8.设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x ,求)6(πϕ,)4(πϕ,)4(πϕ−,ϕ(−2),并作出函数y =ϕ(x )的图形.解216sin |)6(==ππϕ,22|4sin |)4(==ππϕ,22|)4sin(|)4(=−=−ππϕ,0)2(=−ϕ.9.试证下列函数在指定区间内的单调性:(1)xx y −=1,(−∞,1);(2)y =x +ln x ,(0,+∞).证明(1)对于任意的x 1,x 2∈(−∞,1),有1−x 1>0,1−x 2>0.因为当x 1<x 2时,0)1)(1(112121221121<−−−=−−−=−x x x x x x x x y y ,所以函数xx y −=1在区间(−∞,1)内是单调增加的.(2)对于任意的x 1,x 2∈(0,+∞),当x 1<x 2时,有0ln )()ln ()ln (2121221121<+−=+−+=−x x x x x x x x y y ,所以函数y =x +ln x 在区间(0,+∞)内是单调增加的.10.设f (x )为定义在(−l ,l )内的奇函数,若f (x )在(0,l )内单调增加,证明f (x )在(−l ,0)内也单调增加.证明对于∀x 1,x 2∈(−l ,0)且x 1<x 2,有−x 1,−x 2∈(0,l )且−x 1>−x 2.因为f (x )在(0,l )内单调增加且为奇函数,所以f (−x 2)<f (−x 1),−f (x 2)<−f (x 1),f (x 2)>f (x 1),这就证明了对于∀x 1,x 2∈(−l ,0),有f (x 1)<f (x 2),所以f (x )在(−l ,0)内也单调增加.11.设下面所考虑的函数都是定义在对称区间(−l ,l )上的,证明:(1)两个偶函数的和是偶函数,两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数与奇函数的乘积是奇函数.证明(1)设F (x )=f (x )+g (x ).如果f (x )和g (x )都是偶函数,则F (−x )=f (−x )+g (−x )=f (x )+g (x )=F (x ),所以F (x )为偶函数,即两个偶函数的和是偶函数.如果f (x )和g (x )都是奇函数,则F (−x )=f (−x )+g (−x )=−f (x )−g (x )=−F (x ),所以F (x )为奇函数,即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ).如果f (x )和g (x )都是偶函数,则F (−x )=f (−x )⋅g (−x )=f (x )⋅g (x )=F (x ),所以F (x )为偶函数,即两个偶函数的积是偶函数.如果f (x )和g (x )都是奇函数,则F (−x )=f (−x )⋅g (−x )=[−f (x )][−g (x )]=f (x )⋅g (x )=F (x ),所以F (x )为偶函数,即两个奇函数的积是偶函数.如果f (x )是偶函数,而g (x )是奇函数,则F (−x )=f (−x )⋅g (−x )=f (x )[−g (x )]=−f (x )⋅g (x )=−F (x ),所以F (x )为奇函数,即偶函数与奇函数的积是奇函数.12.下列函数中哪些是偶函数,哪些是奇函数,哪些既非奇函数又非偶函数?(1)y =x 2(1−x 2);(2)y =3x 2−x 3;(3)2211xxy +−=;(4)y =x (x −1)(x +1);(5)y =sin x −cos x +1;(6)2x x a a y −+=.解(1)因为f (−x )=(−x )2[1−(−x )2]=x 2(1−x 2)=f (x ),所以f (x )是偶函数.(2)由f (−x )=3(−x )2−(−x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+−=−+−−=−,所以f (x )是偶函数.(4)因为f (−x )=(−x )(−x −1)(−x +1)=−x (x +1)(x −1)=−f (x ),所以f (x )是奇函数.(5)由f (−x )=sin(−x )−cos(−x )+1=−sin x −cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=−−−−−,所以f (x )是偶函数.13.下列各函数中哪些是周期函数?对于周期函数,指出其周期:(1)y =cos(x −2);解是周期函数,周期为l =2π.(2)y =cos 4x ;解是周期函数,周期为2π=l .(3)y =1+sin πx ;解是周期函数,周期为l =2.(4)y =x cos x ;解不是周期函数.(5)y =sin 2x .解是周期函数,周期为l =π.14.求下列函数的反函数:(1)31+=x y ;解由31+=x y 得x =y 3−1,所以31+=x y 的反函数为y =x 3−1.(2)xx y +−=11;解由x x y +−=11得yy x +−=11,所以x x y +−=11的反函数为x x y +−=11.(3)dcx b ax y ++=(ad −bc ≠0);解由d cx b ax y ++=得acy b dy x −+−=,所以d cx b ax y ++=的反函数为a cx b dx y −+−=.(4)y =2sin3x ;解由y =2sin 3x 得2arcsin 31y x =,所以y =2sin3x 的反函数为2arcsin 31x y =.(5)y =1+ln(x +2);解由y =1+ln(x +2)得x =e y −1−2,所以y =1+ln(x +2)的反函数为y =e x −1−2.(6)122+=x x y .解由122+=x x y 得y y x −=1log 2,所以122+=x x y 的反函数为x x y −=1log 2.15.设函数f (x )在数集X 上有定义,试证:函数f (x )在X 上有界的充分必要条件是它在X 上既有上界又有下界.证明先证必要性.设函数f (x )在X 上有界,则存在正数M ,使|f (x )|≤M ,即−M ≤f (x )≤M .这就证明了f (x )在X 上有下界−M 和上界M .再证充分性.设函数f (x )在X 上有下界K 1和上界K 2,即K 1≤f (x )≤K 2.取M =max{|K 1|,|K 2|},则−M ≤K 1≤f (x )≤K 2≤M ,即|f (x )|≤M .这就证明了f (x )在X 上有界.16.在下列各题中,求由所给函数复合而成的函数,并求这函数分别对应于给定自变量值x 1和x 2的函数值:(1)y =u 2,u =sin x ,61π=x ,32π=x ;解y =sin 2x ,41)21(6sin 221===πy ,43)23(3sin 222===πy .(2)y =sin u ,u =2x ,81π=x ,42π=x ;解y =sin2x ,224sin )82sin(1==⋅=ππy ,12sin )42sin(2==⋅=ππy .(3)u y =,u =1+x 2,x 1=1,x 2=2;解21x y +=,21121=+=y ,52122=+=y .(4)y =e u ,u =x 2,x 1=0,x 2=1;解2x e y =,1201==e y ,e e y ==212.(5)y =u 2,u =e x ,x 1=1,x 2=−1.解y =e 2x ,y 1=e 2⋅1=e 2,y 2=e 2⋅(−1)=e −2.17.设f (x )的定义域D =[0,1],求下列各函数的定义域:(1)f (x 2);解由0≤x 2≤1得|x |≤1,所以函数f (x 2)的定义域为[−1,1].(2)f (sin x );解由0≤sin x ≤1得2n π≤x ≤(2n +1)π(n =0,±1,±2⋅⋅⋅),所以函数f (sin x )的定义域为[2n π,(2n +1)π](n =0,±1,±2⋅⋅⋅).(3)f (x +a )(a >0);解由0≤x +a ≤1得−a ≤x ≤1−a ,所以函数f (x +a )的定义域为[−a ,1−a ].(4)f (x +a )+f (x −a )(a >0).解由0≤x +a ≤1且0≤x −a ≤1得:当210≤<a 时,a ≤x ≤1−a ;当21>a 时,无解.因此当210≤<a 时函数的定义域为[a ,1−a ],当21>a 时函数无意义.18.设⎪⎩⎪⎨⎧>−=<=1|| 11|| 01|| 1)(x x x x f ,g (x )=e x ,求f [g (x )]和g [f (x )],并作出这两个函数的图形.解⎪⎩⎪⎨⎧>−=<=1|| 11|| 01|| 1)]([x x x e e e x g f ,即⎪⎩⎪⎨⎧>−=<=0 10 00 1)]([x x x x g f .⎪⎩⎪⎨⎧>=<==−1|| 1|| e 1|| )]([101)(x e x x e e x f g x f ,即⎪⎩⎪⎨⎧>=<=−1|| 1|| 11|| )]([1x e x x e x f g .19.已知水渠的横断面为等腰梯形,斜角ϕ=40°(图1−37).当过水断面ABCD 的面积为定值S 0时,求湿周L (L =AB +BC +CD )与水深h 之间的函数关系式,并指明其定义域.图1−37解ο40sin h DC AB ==,又从0)]40cot 2([21S h BC BC h =⋅++ο得h hS BC ⋅−=ο40cot 0,所以h h S L οο40sin 40cos 20−+=.自变量h 的取值范围应由不等式组h >0,040cot 0>⋅−h hS ο确定,定义域为ο40cot 00S h <<.20.收敛音机每台售价为90元,成本为60元.厂方为鼓励销售商大量采购,决定凡是订购量超过100台以上的,每多订购1台,售价就降低1分,但最低价为每台75元.(1)将每台的实际售价p 表示为订购量x 的函数;(2)将厂方所获的利润P 表示成订购量x 的函数;(3)某一商行订购了1000台,厂方可获利润多少?解(1)当0≤x ≤100时,p =90.令0.01(x 0−100)=90−75,得x 0=1600.因此当x ≥1600时,p =75.当100<x <1600时,p =90−(x −100)×0.01=91−0.01x .综合上述结果得到⎪⎩⎪⎨⎧≥<<−≤≤=1600 751600100 01.0911000 90x x x x p .(2)⎪⎩⎪⎨⎧≥<<−≤≤=−=1600 151600100 01.0311000 30)60(2x x x x x x x x p P .(3)P =31×1000−0.01×10002=21000(元).习题1−21.观察一般项x n 如下的数列{x n }的变化趋势,写出它们的极限:(1)n n x 21=;解当n →∞时,n n x 21=→0,021lim =∞→n n .(2)nx n n 1)1(−=;解当n →∞时,n x n n 1)1(−=→0,01)1(lim =−∞→nn n .(3)212nx n +=;解当n →∞时,212n x n +=→2,2)12(lim 2=+∞→nn .(4)11+−=n n x n ;解当n →∞时,12111+−=+−=n n n x n →0,111lim =+−∞→n n n .(5)x n =n (−1)n .解当n →∞时,x n =n (−1)n 没有极限.2.设数列{x n }的一般项nn x n 2cos π=.问n n x ∞→lim =?求出N ,使当n >N 时,x n 与其极限之差的绝对值小于正数ε,当ε=0.001时,求出数N .解0lim =∞→n n x .n n n x n 1|2cos ||0|≤=−π.∀ε>0,要使|x n −0|<ε,只要ε<n 1,也就是ε1>n .取]1[ε=N ,则∀n >N ,有|x n −0|<ε.当ε=0.001时,]1[ε=N =1000.3.根据数列极限的定义证明:(1)01lim 2=∞→nn ;分析要使ε=−221|01|n n ,只须ε12>n ,即ε1>n .证明因为∀ε>0,∃]1[ε=N ,当n >N 时,有ε<−|01|2n ,所以01lim 2=∞→n n .(2)231213lim =++∞→n n n ;分析要使ε<<+=−++n n n n 41)12(21|231213|,只须ε<n 41,即ε41>n .证明因为∀ε>0,∃]41[ε=N ,当n >N 时,有ε<−++|231213|n n ,所以231213lim =++∞→n n n .(3)1lim 22+∞→na n n ;分析要使ε<<++=−+=−+na n a n n a n n a n n a n 22222222)(|1|,只须ε2a n >.证明因为∀ε>0,∃][2εa N =,当∀n >N 时,有ε<−+|1|22na n ,所以1lim 22=+∞→na n n .(4)19 999.0lim =⋅⋅⋅∞→43421个n n .分析要使|0.99⋅⋅⋅9−1|ε<=−1101n ,只须1101−n <ε,即ε1lg 1+>n .证明因为∀ε>0,∃]1lg 1[ε+=N ,当∀n >N 时,有|0.99⋅⋅⋅9−1|<ε,所以19 999.0lim =⋅⋅⋅∞→43421个n n .4.a u n n =∞→lim ,证明||||lim a u n n =∞→.并举例说明:如果数列{|x n |}有极限,但数列{x n }未必有极限.证明因为a u n n =∞→lim ,所以∀ε>0,∃N ∈N ,当n >N 时,有ε<−||a u n ,从而||u n |−|a ||≤|u n −a |<ε.这就证明了||||lim a u n n =∞→.数列{|x n |}有极限,但数列{x n }未必有极限.例如1|)1(|lim =−∞→n n ,但n n )1(lim −∞→不存在.5.设数列{x n }有界,又0lim =∞→n n y ,证明:0lim =∞→n n n y x .证明因为数列{x n }有界,所以存在M ,使∀n ∈Z ,有|x n |≤M .又0lim =∞→n n y ,所以∀ε>0,∃N ∈N ,当n >N 时,有My n ε<||.从而当n >N 时,有εε=⋅<≤=−MM y M y x y x n n n n n |||||0|,所以0lim =∞→n n n y x .6.对于数列{x n },若x 2k −1→a (k →∞),x 2k →a (k →∞),证明:x n →a (n →∞).证明因为x 2k −1→a (k →∞),x 2k →a (k →∞),所以∀ε>0,∃K 1,当2k −1>2K 1−1时,有|x 2k −1−a |<ε;∃K 2,当2k >2K 2时,有|x 2k −a |<ε.取N =max{2K 1−1,2K 2},只要n >N ,就有|x n −a |<ε.因此x n →a (n →∞).习题1−31.根据函数极限的定义证明:(1)8)13(lim 3=−→x x ;分析因为|(3x −1)−8|=|3x −9|=3|x −3|,所以要使|(3x −1)−8|<ε,只须ε31|3|<−x .证明因为∀ε>0,∃εδ31=,当0<|x −3|<δ时,有|(3x −1)−8|<ε,所以8)13(lim 3=−→x x .(2)12)25(lim 2=+→x x ;分析因为|(5x +2)−12|=|5x −10|=5|x −2|,所以要使|(5x +2)−12|<ε,只须51|2|<−x .证明因为∀ε>0,∃εδ51=,当0<|x −2|<δ时,有|(5x +2)−12|<ε,所以12)25(lim 2=+→x x .(3)424lim 22−=+−−→x x x ;分析因为|)2(||2|244)4(2422−−=+=+++=−−+−x x x x x x x ,所以要使ε<−−+−)4(242x x ,只须ε<−−|)2(|x .证明因为∀ε>0,∃εδ=,当0<|x −(−2)|<δ时,有ε<−−+−)4(242x x ,所以424lim22−=+−−→x x x .(4)21241lim 321=+−−→x x x .分析因为|)21(|2|221|212413−−=−−=−+−x x x x ,所以要使ε<−+−212413x x ,只须ε21|)21(|<−−x .证明因为∀ε>0,∃εδ21=,当δ<−−<|)21(|0x 时,有ε<−+−212413x x ,所以21241lim 321=+−−→x x x .2.根据函数极限的定义证明:(1)2121lim 33=+∞→x x x ;分析因为333333||21212121x x x x x x =−+=−+,所以要使ε<+212133x x ,只须ε<3||21x ,即321||ε>x .证明因为∀ε>0,∃321ε=X ,当|x |>X 时,有ε<+212133x x ,所以2121lim 33=+∞→x x x .(2)0sin lim =+∞→x x x .分析因为xx x x x 1|sin |0sin =−.所以要使ε<−0sin x x ,只须ε<x 1,即21ε>x .证明因为∀ε>0,∃21ε=X ,当x >X 时,有ε<−0sin xx ,所以0sin lim =+∞→xx x .3.当x →2时,y =x 2→4.问δ等于多少,使当|x −2|<δ时,|y −4|<0.001?解由于当x →2时,|x −2|→0,故可设|x −2|<1,即1<x <3.要使|x 2−4|=|x +2||x −2|<5|x −2|<0.001,只要0002.05001.0|2|=<−x .取δ=0.0002,则当0<|x −2|<δ时,就有|x 2−4|<0.001.4.当x →∞时,13122→+−=x x y ,问X 等于多少,使当|x |>X 时,|y −1|<0.01?解要使01.034131222<+=−+−x x x ,只要397301.04||=−>x ,故397=X .5.证明函数f (x )=|x |当x →0时极限为零.证明因为|f (x )−0|=||x |−0|=|x |=|x −0|,所以要使|f (x )−0|<ε,只须|x |<ε.因为对∀ε>0,∃δ=ε,使当0<|x −0|<δ,时有|f (x )−0|=||x |−0|<ε,所以0||lim 0=→x x .6.求,)(x x x f =xx x ||)(=ϕ当x →0时的左﹑右极限,并说明它们在x →0时的极限是否存在.证明因为11lim lim )(lim 000===−−−→→→x x x x x x f ,11lim lim )(lim 000===+++→→→x x x x x x f ,)(lim )(lim 00x f x f x x +→→=−,所以极限)(lim 0x f x →存在.因为1lim ||lim )(lim 000−=−==−−−→→→xx x x x x x x ϕ,1lim ||lim )(lim 000===+++→→→x x x x x x x x ϕ,)(lim )(lim 00x x x x ϕϕ+→→≠−,所以极限)(lim 0x x ϕ→不存在.7.证明:若x →+∞及x →−∞时,函数f (x )的极限都存在且都等于A ,则A x f x =∞→)(lim .证明因为A x f x =−∞→)(lim ,A x f x =+∞→)(lim ,所以∀ε>0,∃X 1>0,使当x <−X 1时,有|f (x )−A |<ε;∃X 2>0,使当x >X 2时,有|f (x )−A |<ε.取X =max{X 1,X 2},则当|x |>X 时,有|f (x )−A |<ε,即A x f x =∞→)(lim .8.根据极限的定义证明:函数f (x )当x →x 0时极限存在的充分必要条件是左极限、右极限各自存在并且相等.证明先证明必要性.设f (x )→A (x →x 0),则∀ε>0,∃δ>0,使当0<|x −x 0|<δ时,有|f (x )−A |<ε.因此当x 0−δ<x <x 0和x 0<x <x 0+δ时都有|f (x )−A |<ε.这说明f (x )当x →x 0时左右极限都存在并且都等于A .再证明充分性.设f (x 0−0)=f (x 0+0)=A ,则∀ε>0,∃δ1>0,使当x 0−δ1<x <x 0时,有|f (x )−A <ε;∃δ2>0,使当x 0<x <x 0+δ2时,有|f (x )−A |<ε.取δ=min{δ1,δ2},则当0<|x −x 0|<δ时,有x 0−δ1<x <x 0及x 0<x <x 0+δ2,从而有|f (x )−A |<ε,即f (x )→A (x →x 0).9.试给出x →∞时函数极限的局部有界性的定理,并加以证明.解x →∞时函数极限的局部有界性的定理:如果f (x )当x →∞时的极限存在,则存在X >0及M >0,使当|x |>X 时,|f (x )|<M .证明设f (x )→A (x →∞),则对于ε=1,∃X >0,当|x |>X 时,有|f (x )−A |<ε=1.所以|f (x )|=|f (x )−A +A |≤|f (x )−A |+|A |<1+|A |.这就是说存在X >0及M >0,使当|x |>X 时,|f (x )|<M ,其中M =1+|A |.习题1−41.两个无穷小的商是否一定是无穷小?举例说明之.解不一定.例如,当x →0时,α(x )=2x ,β(x )=3x 都是无穷小,但32)()(lim 0=→x x x βα,)()(x x βα不是无穷小.2.根据定义证明:(1)392+−=x x y 当x →3时为无穷小;(2)xx y 1sin =当x →0时为无穷小.证明(1)当x ≠3时|3|39||2−=+−=x x x y .因为∀ε>0,∃δ=ε,当0<|x −3|<δ时,有εδ=<−=+−=|3|39||2x x x y ,所以当x →3时392+−=x x y 为无穷小.(2)当x ≠0时|0||1sin |||||−≤=x xx y .因为∀ε>0,∃δ=ε,当0<|x −0|<δ时,有εδ=<−≤=|0|1sin |||||x xx y ,所以当x →0时xx y 1sin =为无穷小.3.根据定义证明:函数xx y 21+=为当x →0时的无穷大.问x 应满足什么条件,能使|y |>104?证明分析2||11221||−≥+=+=x x x x y ,要使|y |>M ,只须M x >−2||1,即21||+<M x .证明因为∀M >0,∃21+=M δ,使当0<|x −0|<δ时,有M xx >+21,所以当x →0时,函数xx y 21+=是无穷大.取M =104,则21014+=δ.当2101|0|04+<−<x 时,|y |>104.4.求下列极限并说明理由:(1)xx x 12lim +∞→;(2)xx x −−→11lim 20.解(1)因为x x x 1212+=+,而当x →∞时x 1是无穷小,所以212lim =+∞→x x x .(2)因为x xx +=−−1112(x ≠1),而当x →0时x 为无穷小,所以111lim 20=−−→x x x .5.根据函数极限或无穷大定义,填写下表:f (x )→A f (x )→∞f (x )→+∞f (x )→−∞x →x 0∀ε>0,∃δ>0,使当0<|x −x 0|<δ时,有恒|f (x )−A |<ε.x →x 0+x →x 0−x →∞∀ε>0,∃X >0,使当|x |>X 时,有恒|f (x )|>M .x →+∞x →−∞解f (x )→A f (x )→∞f (x )→+∞f (x )→−∞x →x 0∀ε>0,∃δ>0,使当0<|x −x 0|<δ时,有恒|f (x )−A |<ε.∀M >0,∃δ>0,使当0<|x −x 0|<δ时,有恒|f (x )|>M .∀M >0,∃δ>0,使当0<|x −x 0|<δ时,有恒f (x )>M .∀M >0,∃δ>0,使当0<|x −x 0|<δ时,有恒f (x )<−M .x →x 0+∀ε>0,∃δ>0,使当0<x −x 0<δ时,有恒|f (x )−A |<ε.∀M >0,∃δ>0,使当0<x −x 0<δ时,有恒|f (x )|>M .∀M >0,∃δ>0,使当0<x −x 0<δ时,有恒f (x )>M .∀M >0,∃δ>0,使当0<x −x 0<δ时,有恒f (x )<−M .x →x 0−∀ε>0,∃δ>0,使当0<x 0−x <δ时,有恒|f (x )−A |<ε.∀M >0,∃δ>0,使当0<x 0−x <δ时,有恒|f (x )|>M .∀M >0,∃δ>0,使当0<x 0−x <δ时,有恒f (x )>M .∀M >0,∃δ>0,使当0<x 0−x <δ时,有恒f (x )<−M .x →∞∀ε>0,∃X >0,使当|x |>X 时,有恒|f (x )−A |<ε.∀ε>0,∃X >0,使当|x |>X 时,有恒|f (x )|>M .∀ε>0,∃X >0,使当|x |>X 时,有恒f (x )>M .∀ε>0,∃X >0,使当|x |>X 时,有恒f (x )<−M .x →+∞∀ε>0,∃X >0,使当x >X 时,有恒|f (x )−A |<ε.∀ε>0,∃X >0,使当x >X 时,有恒|f (x )|>M .∀ε>0,∃X >0,使当x >X 时,有恒f (x )>M .∀ε>0,∃X >0,使当x >X 时,有恒f (x )<−M .x →−∞∀ε>0,∃X >0,使当x <−X 时,有恒|f (x )−A |<ε.∀ε>0,∃X >0,使当x <−X 时,有恒|f (x )|>M .∀ε>0,∃X >0,使当x <−X 时,有恒f (x )>M .∀ε>0,∃X >0,使当x <−X 时,有恒f (x )<−M .6.函数y =x cos x 在(−∞,+∞)内是否有界?这个函数是否为当x →+∞时的无穷大?为什么?解函数y =x cos x 在(−∞,+∞)内无界.这是因为∀M >0,在(−∞,+∞)内总能找到这样的x ,使得|y (x )|>M .例如y (2k π)=2k πcos2k π=2k π(k =0,1,2,⋅⋅⋅),当k 充分大时,就有|y (2k π)|>M .当x →+∞时,函数y =x cos x 不是无穷大.这是因为∀M >0,找不到这样一个时刻N ,使对一切大于N 的x ,都有|y (x )|>M .例如0)22cos()22()22(=++=+ππππππk k k y (k =0,1,2,⋅⋅⋅),对任何大的N ,当k 充分大时,总有N k x >+=22ππ,但|y (x )|=0<M .7.证明:函数x x y 11=在区间(0,1]上无界,但这函数不是当x →0+时的无穷大.证明函数xx y 1sin 1=在区间(0,1]上无界.这是因为∀M >0,在(0,1]中总可以找到点x k ,使y (x k )>M .例如当221ππ+=k x k (k =0,1,2,⋅⋅⋅)时,有22)(ππ+=k x y k ,当k 充分大时,y (x k )>M .当x →0+时,函数xx y 1sin 1=不是无穷大.这是因为∀M >0,对所有的δ>0,总可以找到这样的点x k ,使0<x k <δ,但y (x k )<M .例如可取πk x k 21=(k =0,1,2,⋅⋅⋅),当k 充分大时,x k <δ,但y (x k )=2k πsin2k π=0<M .习题1−51.计算下列极限:(1)35lim22−+→x x x ;解9325235lim 222−=−+=−+→x x x .(2)13lim 223+−→x x x ;解01)3(3)3(13lim 22223=+−=+−→x x x .(3)112lim 221−+−→x x x x ;解02011lim )1)(1()1(lim 112lim 121221==+−=+−−=−+−→→→x x x x x x x x x x x .(4)xx x x x x 2324lim2230++−→;解2123124lim 2324lim 202230=++−=++−→→x x x x x x x x x x .(5)hx h x h 220)(lim −+→;解x h x h x h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=−++=−+→→→.(6))112(lim 2xx x +−∞→;解21lim 1lim 2)112(lim 22=+−=+−∞→∞→∞→x x xx x x x .(7)121lim22−−−∞→x x x x ;解2111211lim 121lim2222=−−−=−−−∞→∞→xx x x x x x x .(8)13lim 242−−+∞→x x x x x ;解013lim 242=−−+∞→x x x x x (分子次数低于分母次数,极限为零).或012111lim 13lim 4232242=−−+=−−+∞→∞→xx x x x x x x x x .(9)4586lim 224+−+−→x x x x x ;解32142412lim )4)(1()4)(2(lim 4586lim 44224=−−=−−=−−−−=+−+−→→→x x x x x x x x x x x x x .(10))12)(11(lim 2xx x −+∞→;解221)12(lim )11(lim )12)(11(lim 22=×=−⋅+=−+∞→∞→∞→x x x x x x x .(11))21 41211(lim n n +⋅⋅⋅+++∞→;解2211)21(1lim )21 41211(lim 1=−−=+⋅⋅⋅++++∞→∞→n n n n .(12)2)1( 321limn n n −+⋅⋅⋅+++∞→;解211lim 212)1(lim )1( 321lim 22=−=−=−+⋅⋅⋅+++∞→∞→∞→n n n n n n n n n n .(13)35)3)(2)(1(lim nn n n n +++∞→;解515)3)(2)(1(lim 3=+++∞→n n n n n (分子与分母的次数相同,极限为最高次项系数之比).或51)31)(21)(11(lim 515)3)(2)(1(lim 3=+++=+++∞→∞→n n n n n n n n n .(14))1311(lim 31xx x −−−→;解)1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++−+−−=++−−++=−−−→→→112lim21−=+++−=→x x x x .2.计算下列极限:(1)2232)2(2lim −+→x x x x ;解因为01602)2(lim 2322==+−→x x x x ,所以∞=−+→2232)2(2lim x x x x .(2)12lim 2+∞→x x x ;解∞=+∞→12lim 2x x x (因为分子次数高于分母次数).(3))12(lim 3+−∞→x x x .解∞=+−∞→)12(lim 3x x x (因为分子次数高于分母次数).3.计算下列极限:(1)xx x 1sin lim 20→;解01sin lim 20=→x x x (当x →0时,x 2是无穷小,而x 1sin 是有界变量).(2)xx x arctan lim ∞→.解0arctan 1lim arctan lim =⋅=∞→∞→x x x x x x (当x →∞时,x1是无穷小,而arctan x 是有界变量).4.证明本节定理3中的(2).习题1−51.计算下列极限:(1)35lim22−+→x x x ;解9325235lim 222−=−+=−+→x x x .(2)13lim 223+−→x x x ;解01)3(3)3(13lim 22223=+−=+−→x x x .(3)112lim 221−+−→x x x x ;解02011lim )1)(1()1(lim 112lim 121221==+−=+−−=−+−→→→x x x x x x x x x x x .(4)xx x x x x 2324lim2230++−→;解2123124lim 2324lim 202230=++−=++−→→x x x x x x x x x x .(5)hx h x h 220)(lim −+→;解x h x h x h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=−++=−+→→→.(6))112(lim 2xx x +−∞→;解21lim 1lim 2)112(lim 22=+−=+−∞→∞→∞→x x xx x x x .(7)121lim22−−−∞→x x x x ;解2111211lim 121lim2222=−−−=−−−∞→∞→x x x x x x x x .(8)13lim 242−−+∞→x x x x x ;解013lim 242=−−+∞→x x x x x (分子次数低于分母次数,极限为零).或012111lim 13lim 4232242=−−+=−−+∞→∞→xx x x x x x x x x .(9)4586lim 224+−+−→x x x x x ;解32142412lim )4)(1()4)(2(lim 4586lim 44224=−−=−−=−−−−=+−+−→→→x x x x x x x x x x x x x .(10))12)(11(lim 2xx x −+∞→;解221)12(lim )11(lim )12)(11(lim 22=×=−⋅+=−+∞→∞→∞→x x x x x x x .(11))21 41211(lim n n +⋅⋅⋅+++∞→;解2211)21(1lim )21 41211(lim 1=−−=+⋅⋅⋅++++∞→∞→n n n n .(12)2)1( 321limnn n −+⋅⋅⋅+++∞→;解211lim 212)1(lim )1( 321lim 22=−=−=−+⋅⋅⋅+++∞→∞→∞→n n n nn n n n n n .(13)35)3)(2)(1(lim n n n n n +++∞→;解515)3)(2)(1(lim 3=+++∞→n n n n n (分子与分母的次数相同,极限为最高次项系数之比).或51)31)(21)(11(lim 515)3)(2)(1(lim 3=+++=+++∞→∞→n n n n n n n n n .(14))1311(lim 31xx x −−−→;解)1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++−+−−=++−−++=−−−→→→112lim21−=+++−=→x x x x .2.计算下列极限:(1)2232)2(2lim −+→x x x x ;解因为01602)2(lim 2322==+−→x x x x ,所以∞=−+→2232)2(2lim x x x x .(2)12lim 2+∞→x x x ;解∞=+∞→12lim 2x x x (因为分子次数高于分母次数).(3))12(lim 3+−∞→x x x .解∞=+−∞→)12(lim 3x x x (因为分子次数高于分母次数).3.计算下列极限:(1)xx x 1sin lim 20→;解01sin lim 20=→x x x (当x →0时,x 2是无穷小,而x 1sin 是有界变量).(2)xx x arctan lim ∞→.解0arctan 1lim arctan lim =⋅=∞→∞→x x x x x x (当x →∞时,x1是无穷小,而arctan x 是有界变量).4.证明本节定理3中的(2).习题1−71.当x →0时,2x −x 2与x 2−x 3相比,哪一个是高阶无穷小?解因为02lim 2lim 202320=−−=−−→→xx x x x x x x x ,所以当x →0时,x 2−x 3是高阶无穷小,即x 2−x 3=o (2x −x 2).2.当x →1时,无穷小1−x 和(1)1−x 3,(2))1(212x −是否同阶?是否等价?解(1)因为3)1(lim 1)1)(1(lim 11lim 212131=++−++−=−−→→→x x xx x x x x x x x ,所以当x →1时,1−x 和1−x 3是同阶的无穷小,但不是等价无穷小.(2)因为1)1(lim 211)1(21lim 121=+=−−→→x x x x x ,所以当x →1时,1−x 和)1(212x −是同阶的无穷小,而且是等价无穷小.3.证明:当x →0时,有:(1)arctan x ~x ;(2)2~1sec 2x x −.证明(1)因为1tan lim arctan lim 00==→→y yx x y x (提示:令y =arctan x ,则当x →0时,y →0),所以当x →0时,arctan x ~x .(2)因为1)22sin 2(lim 22sin 2lim cos cos 1lim 2211sec lim 202202020===−=−→→→→x xx x x x x x x x x x x ,所以当x →0时,2~1sec 2x x −.4.利用等价无穷小的性质,求下列极限:(1)x x x 23tan lim 0→;(2)m n x x x )(sin )sin(lim 0→(n ,m 为正整数);(3)x x x x 30sin sin tan lim −→;(4))1sin 1)(11(tan sin lim320−+−+−→x x x x x .解(1)2323lim 23tan lim 00==→→x x x x x x .(2)⎪⎩⎪⎨⎧<∞>===→→mn m n m n x x x x mn x m n x 0 1lim )(sin )sin(lim 00.(3)21cos 21lim sin cos cos 1lim sin )1cos 1(sin lim sin sin tan lim 220203030==−=−=−→→→→x x x x x x x x x x x x x x x x .(4)因为32221)2(2~2sin tan 2)1(cos tan tan sin x x x x x x x x x −=⋅−−=−=−(x →0),23232223231~11)1(11x x x x x ++++=−+(x →0),x x x x x ~sin ~1sin 1sin 1sin 1++=−+(x →0),所以33121lim )1sin 1)(11(tan sin lim 230320−=⋅−=−+−+−→→x x x x x x x x x .5.证明无穷小的等价关系具有下列性质:(1)α~α(自反性);(2)若α~β,则β~α(对称性);(3)若α~β,β~γ,则α~γ(传递性).证明(1)1lim =αα,所以α~α;(2)若α~β,则1lim =βα,从而1lim =αβ.因此β~α;(3)若α~β,β~γ,1lim lim lim =⋅=βαγβγα.因此α~γ.习题1−81.研究下列函数的连续性,并画出函数的图形:(1)⎩⎨⎧≤<−≤≤=21 210 )(2x x x x x f ;解已知多项式函数是连续函数,所以函数f (x )在[0,1)和(1,2]内是连续的.在x =1处,因为f (1)=1,并且1lim )(lim 211==−−→→x x f x x ,1)2(lim )(lim 11=−=++→→x x f x x .所以1)(lim 1=→x f x ,从而函数f (x )在x =1处是连续的.综上所述,函数f (x )在[0,2]上是连续函数.(2)⎩⎨⎧>≤≤−=1|| 111 )(x x x x f .解只需考察函数在x =−1和x =1处的连续性.在x =−1处,因为f (−1)=−1,并且)1(11lim )(lim 11−≠==−−−→−→f x f x x ,)1(1lim )(lim 11−=−==++−→−→f x x f x x ,所以函数在x =−1处间断,但右连续.在x =1处,因为f (1)=1,并且1lim )(lim 11==−−→→x x f x x =f (1),11lim )(lim 11==++→→x x x f =f (1),所以函数在x =1处连续.综合上述讨论,函数在(−∞,−1)和(−1,+∞)内连续,在x =−1处间断,但右连续.2.下列函数在指出的点处间断,说明这些间断点属于哪一类,如果是可去间断点,则补充或改变函数的定义使它连续:(1)23122+−−=x x x y ,x =1,x =2;解)1)(2()1)(1(23122−−−+=+−−=x x x x x x x y .因为函数在x =2和x =1处无定义,所以x =2和x =1是函数的间断点.因为∞=+−−=→→231lim lim 2222x x x y x x ,所以x =2是函数的第二类间断点;因为2)2()1(lim lim 11−=−+=→→x x y x x ,所以x =1是函数的第一类间断点,并且是可去间断点.在x =1处,令y =−2,则函数在x =1处成为连续的.(2)x x y tan =,x =k ,2ππ+=k x (k =0,±1,±2,⋅⋅⋅);解函数在点x =k π(k ∈Z)和2ππ+=k x (k ∈Z)处无定义,因而这些点都是函数的间断点.因∞=→xx k x tan lim π(k ≠0),故x =k π(k ≠0)是第二类间断点;因为1tan lim0=→xx x ,0tan lim2=+→x x k x ππ(k ∈Z),所以x =0和2ππ+=k x (k ∈Z)是第一类间断点且是可去间断点.令y |x =0=1,则函数在x =0处成为连续的;令2 ππ+=k x 时,y =0,则函数在2ππ+=k x 处成为连续的.(3)xy 1cos 2=,x =0;解因为函数x y 1cos 2=在x =0处无定义,所以x =0是函数xy 1cos 2=的间断点.又因为xx 1cos lim 20→不存在,所以x =0是函数的第二类间断点.(4)⎩⎨⎧>−≤−=1 31 1x x x x y ,x =1.解因为0)1(lim )(lim 11=−=−−→→x x f x x ,2)3(lim )(lim 11=−=++→→x x f x x ,所以x =1是函数的第一类不可去间断点.3.讨论函数x xx x f n nn 2211lim )(+−=∞→的连续性,若有间断点,判别其类型.解⎪⎩⎪⎨⎧<=>−=+−=∞→1|| 1|| 01|| 11lim )(22x x x x x x x x x f nn n .在分段点x =−1处,因为1)(lim )(lim 11=−=−−−→−→x x f x x ,1lim )(lim 11−==++−→−→x x f x x ,所以x =−1为函数的第一类不可去间断点.在分段点x =1处,因为1lim )(lim 11==−−→→x x f x x ,1)(lim )(lim 11−=−=++→→x x f x x ,所以x =1为函数的第一类不可去间断点.4.证明:若函数f (x )在点x 0连续且f (x 0)≠0,则存在x 0的某一邻域U (x 0),当x ∈U (x 0)时,f (x )≠0.证明不妨设f (x 0)>0.因为f (x )在x 0连续,所以0)()(lim 00>=→x f x f x x ,由极限的局部保号性定理,存在x 0的某一去心邻域)(0x U ο,使当x ∈)(0x U ο时f (x )>0,从而当x ∈U (x 0)时,f (x )>0.这就是说,则存在x 0的某一邻域U (x 0),当x ∈U (x 0)时,f (x )≠0.5.试分别举出具有以下性质的函数f (x )的例子:(1)x =0,±1,±2,21±,⋅⋅⋅,±n ,n1±,⋅⋅⋅是f (x )的所有间断点,且它们都是无穷间断点;解函数x x x f ππcsc )csc()(+=在点x =0,±1,±2,21±,⋅⋅⋅,±n ,n1±,⋅⋅⋅处是间断的,且这些点是函数的无穷间断点.(2)f (x )在R 上处处不连续,但|f (x )|在R 上处处连续;解函数⎩⎨⎧∉∈−=Q Qx x x f 1 1)(在R 上处处不连续,但|f (x )|=1在R 上处处连续.(3)f (x )在R 上处处有定义,但仅在一点连续.解函数⎩⎨⎧∉−∈=Q Q x x x x x f )(在R上处处有定义,它只在x =0处连续.习题1−91.求函数633)(223−+−−+=x x x x x x f 的连续区间,并求极限)(lim 0x f x →,)(lim 3x f x −→及)(lim 2x f x →.解)2)(3()1)(1)(3(633)(223−++−+=−+−−+=x x x x x x x x x x x f ,函数在(−∞,+∞)内除点x =2和x =−3外是连续的,所以函数f (x )的连续区间为(−∞,−3)、(−3,2)、(2,+∞).在函数的连续点x =0处,21)0()(lim 0==→f x f x .在函数的间断点x =2和x =−3处,∞=−++−+=→→)2)(3()1)(1)(3(lim)(lim 22x x x x x x f x x ,582)1)(1(lim)(lim 33−=−+−=−→−→x x x x f x x .2.设函数f (x )与g (x )在点x 0连续,证明函数ϕ(x )=max{f (x ),g (x )},ψ(x )=min{f (x ),g (x )}在点x 0也连续.证明已知)()(lim 00x f x f x x =→,)()(lim 00x g x g x x =→.可以验证] |)()(|)()([21)(x g x f x g x f x −++=ϕ,] |)()(|)()([21)(x g x f x g x f x −−+=ψ.因此] |)()(|)()(21)(00000x g x f x g x f x −++=ϕ,] |)()(|)()(21)(00000x g x f x g x f x −−+=ψ.因为] |)()(|)()([21lim )(lim 00x g x f x g x f x x x x x −++=→→ϕ]|)(lim )(lim |)(lim )(lim [210000x g x f x g x f x x x x x x x x →→→→−++=] |)()(|)()([210000x g x f x g x f −++==ϕ(x 0),所以ϕ(x )在点x 0也连续.同理可证明ψ(x )在点x 0也连续.3.求下列极限:(1)52lim20+−→x x x ;(2)34)2(sin lim x x π→;(3))2cos 2ln(lim 6x x π→;(4)xx x 11lim0−+→;(5)145lim 1−−−→x x x x ;(6)a x a x a x −−→sin sin lim ;(7))(lim 22x x x x x −−++∞→.解(1)因为函数52)(2+−=x x x f 是初等函数,f (x )在点x =0有定义,所以55020)0(52lim220=+⋅−==+−→f x x x .(2)因为函数f (x )=(sin 2x )3是初等函数,f (x )在点4π=x 有定义,所以1)42(sin )4()2(sin lim 334=⋅==→πππf x x .(3)因为函数f (x )=ln(2cos2x )是初等函数,f (x )在点6π=x 有定义,所以0)62cos 2ln(6()2cos 2ln(lim 6=⋅==→πππf x x .(4))11(lim )11()11)(11(lim 11lim000++=++++−+=−+→→→x x x x x x x x x x x x 211101111lim 0=++=++=→x x .(5))45)(1()45)(45(lim 145lim11x x x x x x x x x x x x +−−+−−−=−−−→→)45)(1(44lim1x x x x x +−−−=→214154454lim 1=+−⋅=+−=→x x x .(6)ax a x a x a x a x a x a x −−+=−−→→2sin 2cos 2limsin sin lim a a a a x ax a x a x a x cos 12cos 22sin lim2cos lim =⋅+=−−+=→→.(7))())((lim )(lim 22222222x x x x x x x x x x x x x x x x x x −++−++−−+=−−++∞→+∞→1)1111(2lim )(2lim22=−++=−++=+∞→+∞→xx x x x x x x x .4.求下列极限:(1)xx e 1lim∞→;(2)xx x sin ln lim 0→;(3)2)11(lim xx x+∞→;(4)x x x 2cot 20)tan 31(lim +→;(5)21)63(lim −∞→++x x xx ;(6)xx x x x x −++−+→20sin 1sin 1tan 1lim.解(1)1lim 01lim1===∞→∞→e ee x xx x .(2)01ln )sin lim ln(sin ln lim 00===→→x x x x x x .(3)[]e e xx x x xx ==+=+∞→∞→21212)11(lim )11(lim .。
(完整word版)同济大学第六版高等数学课后答案详解全集
同济六版高等数学课后答案全集第一章习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A\B 及A\(A\B)的表达式.2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B)C =AC ⋃BC . .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明(1)f(A ⋃B)=f(A)⋃f(B);(2)f(A ⋂B)⊂f(A)⋂f(B).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中IX 、IY 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有IX x =x ; 对于每一个y ∈Y , 有IY y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.5. 设映射f : X →Y , A ⊂X . 证明:(1)f -1(f(A))⊃A ;(2)当f 是单射时, 有f -1(f(A))=A .6. 求下列函数的自然定义域:(1)23+=x y ;. (2)211x y -=; (3)211x x y --=;(4)241x y -=;(5)x y sin =; (6) y =tan(x +1);(7) y =arcsin(x -3); (8)x x y 1arctan 3+-=;. (9) y =ln(x +1);(10)x e y 1=.7. 下列各题中, 函数f(x)和g(x)是否相同?为什么?(1)f(x)=lg x2, g(x)=2lg x ;(2) f(x)=x , g(x)=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f(x)=1, g(x)=sec2x -tan2x .8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x)的图形.. 9. 试证下列函数在指定区间内的单调性:(1)x xy -=1, (-∞, 1);(2)y =x +ln x , (0, +∞).10. 设 f(x)为定义在(-l , l)内的奇函数, 若f(x)在(0, l)内单调增加, 证明f(x)在(-l , 0)内也单调增加.11. 设下面所考虑的函数都是定义在对称区间(-l , l)上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x2(1-x2);(2)y =3x2-x3;(3)2211x xy +-=;(4)y =x(x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x aa y -+= 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);.(2)y =cos 4x ;(3)y =1+sin πx ;(4)y =xcos x ;(5)y =sin2x .14. 求下列函数的反函数:(1)31+=x y 错误!未指定书签。
同济大学数学系《高等数学》笔记和课后习题(含考研真题)详解(向量代数与空间解析几何)【圣才出品】
图 8-1-3 4.利用坐标作向量的线性运算 设
,λ 为实数,则
注:当向量 时,向量 相当于
Hale Waihona Puke ,坐标表示式为5 / 77
圣才电子书 十万种考研考证电子书、题库视频学习平台
即
5.向量的模、方向角、投影 (1)向量的模 向量 r=(x,y,z),则模
(2)两点距离公式
设点
6 / 77
圣才电子书 十万种考研考证电子书、题库视频学习平台
(2)性质
①
;
②a·b=0⇔a⊥b(a、b 都为非零向量).
(3)运算规律
①交换律 a·b=b·a;
②分配律(a+b)·c=a·c+b·c;
③结合律
.
(4)两向量夹角余弦的坐标表示式
2.两向量的向量积 (1)定义
①当 a、b、c 组成右手系时,α 为锐角,[abc]为正; ②当 a、b、c 组成左手系时,α 为钝角,[abc]为负. (5)a、b、c 共面⇔混合积[abc]=0,即
9 / 77
圣才电子书
十万种考研考证电子书、题库视频学习平台
ax ay az bx by bz 0 cx cy cz
2 / 77
圣才电子书 十万种考研考证电子书、题库视频学习平台
个平面上,称这 k 个向量共面.
2.向量的线性运算
(1)向量的加法
①定义
设有两个向量 a 与 b,任取一点 A,作
,再以 B 为起点,作
,连接
AC(图 8-1-2),则
向量
称为向量 a 与 b 的和,记作 a+b,即 c=a+b.
设 a (ax , ay , az ), b (bx , by , bz ), c (cx , cy , cz ) ,则 ax ay az
(NEW)同济大学数学系《工程数学—线性代数》(第6版)笔记和课后习题(含考研真题)详解
目 录第1章 行列式1.1 复习笔记1.2 课后习题详解1.3 考研真题详解第2章 矩阵及其运算2.1 复习笔记2.2 课后习题详解2.3 考研真题详解第3章 矩阵的初等变换与线性方程组3.1 复习笔记3.2 课后习题详解3.3 考研真题详解第4章 向量组的线性相关性4.1 复习笔记4.2 课后习题详解4.3 考研真题详解第5章 相似矩阵及二次型5.1 复习笔记5.2 课后习题详解5.3 考研真题详解第6章 线性空间与线性变换6.1 复习笔记6.2 课后习题详解6.3 考研真题详解第1章 行列式1.1 复习笔记一、二阶与三阶行列式1二阶行列式定义 将四个数,,,按一定位置,排成二行二列的数表:则表达式就是数表的二阶行列式,并记作2三阶行列式定义 设有9个数排成3行3列的数表记该式称为数表所确定的三阶行列式.二、全排列和对换1全排列把n个不同的元素排成一列,称为这n个元素的全排列.n个不同元素的所有排列的种数,通常用P n表示.(1)逆序数定义对于n个不同的元素,先规定各元素之间有一个标准次序(例如,个不同的自然数,可规定由小到大为标准次序),于是在这n个元素的任一排列中,当某两个元素的先后次序与标准次序不同时,就说构成1个逆序.一个排列中所有逆序的总数称为这个排列的逆序数.(2)分类逆序数是奇数的排列称为奇排列,逆序数是偶数的排列称为偶排列.(3)逆序数的计算设n个元素为1至n这n个自然数,并规定由小到大为标准次序.设为这n个自然数的一个排列,考虑元素,如果比p i大的且排在p i前面的元素有t i个,则称p i这个元素的逆序数为t i.全体元素的逆序数的总和即是这个排列的逆序数.2对换(1)定义对换是在排列中,将任意两个元素对调,其余元素不动.将相邻两个元素对换称为相邻对换.(2)性质①排列中的任意两个元素对换,排列改变奇偶性.②奇排列对换成标准排列的对换次数为奇数,偶排列对换成标准排列的对换次数为偶数.三、n阶行列式1定义称为n阶行列式,简记作,其中数a ij为行列式D的第(i,j)元素.2两类典型的n阶行列式(1)下三角形行列式(2)对角行列式3行列式的性质(1)行列式与它的转置行列式相等.(2)对换行列式的两行(列),行列式变号.(3)如果行列式有两行(列)元素成比例,则此行列式等于零.(4)行列式的某一行(列)中所有的元素都乘同一数k,等于用数k乘此行列式.(5)若行列式的某一行(列)的元素都是两数之和,则可以将该行列式拆分成两个行列式之和.(6)把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变.四、行列式按行(列)展开1余子式与代数余子式在n阶行列式中,把(i,j)元a ij所在的第i行和第j列划去后,留下来的n -1阶行列式称为(i,j)元a ij的余子式,记作M ij,记A ij称为(i,j)元a ij的代数余子式.2定理行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即或 3范德蒙德行列式4代数余子式的推论行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.即或5代数余子式的重要性质或.1.2 课后习题详解1利用对角线法则计算下列三阶行列式:2按自然数从小到大为标准次序,求下列各排列的逆序数:(1)1 2 3 4;(2)4 1 3 2;(3)3 4 2 1;(4)2 4 1 3;(5)13…(2n-1)24…(2n);(6)13…(2n-1)(2n)(2n-2)…2.解:(1)此排列为标准排列,其逆序数为0;(2)此排列的首位元素4的逆序数为0,第2位元素1的逆序数为1,第3位元素3的逆序数为1,末位元素2的逆序数为2,故它的逆序数为0+1+1+2=4;(3)此排列的前两位元素的逆序数均为0,第3位元素2的逆序数为2;末位元素1的逆序数为3,故它的逆序数为0+0+2+3=5;(4)此排列的从首位元素到末位元素的逆序数依次为0,0,2,1,因此它的逆序数为0+0+2+1=3;(5)此排列中前n位元素的逆序数均为0.第n+1位元素2与它前面的n -1个数构成逆序对,所以它的逆序数为n-1;同理可知,第n+2位元素4的逆序数为n-2……末位元素2n的逆序数为0.因此该排列的逆序数为(6)此排列的前n+1位元素的逆序数均为0;第n+2位元素(2n-2)的逆序数为2;第n+3位元素2n-4与它前面的2n-3,2n-1,2n,2n-2构成逆序对,所以它的逆序为4,……,末位元素2的逆序数为2(n-1),因此该排列的逆序数为3写出四阶行列式中含有因子的项.解:根据行列式定义可知,此项必定还含有分别位于第3行和第4行的某两元素,而它们又分别位于第2列和第4列,即a32和a44或a34和a42.又因排列1324与1342的逆序数分别为1与2,所以此行列式中含有的项为与4计算下列各行列式:解:(1)(2);(3)(4)(5)(6)5求解下列方程:其中a,b,c互不相等.因此方程的解为.(2)根据题意,方程左式为4阶范德蒙德行列式,则有因a,b,c互不相等,因此方程的解为6证明:(2)将左式按第1列拆开可以得到因此有其中于是因此,(5)方法一 按第1列展开得方法二 按最后一行展开得7设n阶行列式,把D上下翻转、或逆时针旋转、或依副对角线翻转,依次得证明证:(1)通过对换行将D1变换成D,从而可找出D1与D的关系:D1的最后一行是D的第1行,把它依次与前面的行交换,直至换到第1行,共进行n-1次交换;这时最后一行是D的第2行,把它依次与前面的行交换,直至换到第2行,共进行n-2次交换……直至最后一行是D 的第n-1行,再通过一次交换将它换到第n-1行,这样就把D1变换成D,共进行次交换,故.(2)计算D2:观察可知,D2的第1,2,…,n行恰好依次是D的第n,n-1,…,1列,因此若把D2上下翻转得,则的第1,2,…,n行依次是D的第1,2,…,n列,即.于是由(1)有(3)计算D3:观察可知,若把D3逆时针旋转90°得,则的第1,2,…n列恰好是D的第n,n-1,…,1列,于是再把左右翻转就得到D.由(1)、(2)有8计算下列各行列式(D k为k阶行列式):,其中对角线上元素都是a,未写出的元素都是0;;;提示:利用范德蒙德行列式的结果.,其中未写出的元素都是0;;,其中a ij=|i-j|;,其中解:(1)方法一 化D n为上三角形行列式上式中最后那个行列式为上三角形行列式;方法二 把D n按第二行展开,由于D n的第二行除对角线元素外全为零,因此有,即于是有 (2)利用各列的元素之和相同,把从第二行起的各行全部加到第一行,再提取公因式.(3)把所给行列式上下翻转,即为范德蒙德行列式,若再将它左右翻转,由于上下翻转与左右翻转所用交换次数相等,因此行列式经上下翻转再左右翻转,即相当于转180°,其值不变.于是按范德蒙德行列式的结果可得(4)可用递推法即有递推公式另外,归纳基础为,利用这些结果可递推得(5)把第一行除外的所有行都加到第一行,并提取第一行的公因子,得(6)(7)可将原行列式化为上三角形行列式,需从第2行起,各行均减去第1行,得行列式其中.于是9设,D的(i,j)元的代数余子式记作A ij,求.解:求,则等于用1,3,-2,2替换D的第3行对应元素所得行列式,即1.3 考研真题详解一、选择题行列式等于( ).[数一、数二、数三 2014研]A. B.C. D.【答案】B【解析】二、填空题1阶行列式 [数一 2015研]【答案】【解析】将阶行列式按第一行展开2设是三阶非零矩阵,为A的行列式,A ij为a ij的代数余子式,若,则|A|=______.[数一、数二、数三 2013研]【答案】-1【解析】由可知,故3设A,B为3阶矩阵,且.[数二、数三2010研]【答案】3【解析】因为所以第2章 矩阵及其运算2.1 复习笔记一、线性方程组和矩阵1线性方程组(1)n元非齐次线性方程组设有n个未知数m个方程组的线性方程组当常数项不全为零时,该方程组称为n元非齐次线性方程组.(2)n元齐次线性方程组含有n个未知数m个方程组的线性方程组称为n元齐次线性方程组.2矩阵(1)定义由m×n个数a ij(i=1,2,…,m;j=1,2,…,n)排成的m行n列的数表称为m行n列矩阵,简称m×n矩阵.记为(2)分类①实矩阵 矩阵元素都为实数的矩阵.②复矩阵 矩阵元素为复数的矩阵.③行矩阵/列矩阵 又称行向量/列向量,只有一行(列)的矩阵.④n阶方阵 行数与列数都等于n的矩阵称为n阶方阵.⑤零矩阵 元素都是零的矩阵.⑥对角矩阵 对角线以外的元素都是0的方阵.⑦单位矩阵 对角线上元素都为1的对角矩阵.二、矩阵的运算1矩阵的加法(1)定义设有两个m×n矩阵A=(a ij)和B=(b ij),则矩阵A与B的和记作A+B,规定为注意:只有当两个矩阵是同型矩阵时,这两个矩阵才能进行加法运算.(2)运算规律设A,B,C都是m×n矩阵,则①A+B=B+A;②(A+B)+C=A+(B+C);③设矩阵A=(a ij),记:-A=(-a ij),-A称为矩阵A的负矩阵,显然有A+(-A)=0,由此规定矩阵的减法为:A-B=A+(-B).2数与矩阵相乘(1)定义数λ与矩阵A的乘积记作λA或Aλ,规定为(2)运算规律设A、B为m×n矩阵,λ、μ为数,则①(λμ)A=λ(μA);②(λ+μ)A=λA+μA;③λ(A+B)=λA+λB.3矩阵与矩阵相乘(1)定义设A=(a ij)是一个m×s矩阵,B=(b ij)是一个s×n矩阵,则规定矩阵A 与矩阵B的乘积是一个m×n矩阵C=(c ij),其中并把此乘积记为C=AB.(2)运算规律①(AB)C=A(BC);②(AB)=(A)B=A(B)(其中λ为数);③A(B+C)=AB+AC,(B+C)A=BA+CA;④EA=AE=A;⑤.(3)注意①只有当第一个矩阵(左矩阵)的列数等于第二个矩阵(右矩阵)的行数时,两个矩阵才能相乘.②矩阵的乘法一般不满足交换律,即在一般情形下,AB≠BA.③对于两个n阶方阵A,B,若AB=BA,则称方阵A与B是可交换的.④若有两个矩阵A,B,满足AB=0,不能得出A=0或B=0的结论;若A≠0,而A(X-Y)=0也不能得出X=Y的结论.三、矩阵的转置1定义把矩阵A的行换成同序数的列得到一个新矩阵,称为A的转置矩阵,记作A T.2转置运算(1)(A T)T=A;(2)(A+B)T=A T+B T;(3)(λA)T=λA T;(4)(AB)T=B T A T.3对称矩阵设A为n阶方阵,如果满足A T=A,即a ij=a ji(i,j=1,2…,n),则称A为对称矩阵.四、方阵的行列式1定义由n阶方阵A的元素所构成的行列式(各元素的位置不变),称为方阵A 的行列式,记作detA或|A|.2由A确定|A|的运算规律假设A、B为n阶方阵,λ为数:(1)|A T|=|A|;(2)|λA|=λn|A|;(3)|AB|=|A||B|.3伴随矩阵行列式|A|的各个元素的代数余子式A ij所构成的如下的矩阵称为矩阵A的伴随矩阵,简称伴随阵.一般地,五、逆矩阵1定义对于n阶矩阵A,如果有一个n阶矩阵B,使AB=BA=E,则称矩阵A是可逆的,并把矩阵B称为A的逆矩阵,A又称B的逆矩阵,简称逆阵.2性质(1)若矩阵A是可逆的,则A的逆矩阵是唯一的.(2)若矩阵A可逆,则|A|≠0.(3)若|A|≠0,又称A为非奇异矩阵,则矩阵A可逆,且,其中A*为矩阵A的伴随矩阵.若|A|=0,称A为奇异矩阵,A不可逆.(4)A为可逆矩阵的充要条件是|A|≠0.3逆矩阵运算规律:(1)若A可逆,则A-1也可逆,且;(2)若A可逆,数λ≠0,则λA可逆,且(3)若A、B为同阶矩阵且均可逆,则AB也可逆,且;(4)若AB=E(或BA=E),则B=A-1.六、克拉默法则含有n个未知数x1,x2,…,x n的n个线性方程的方程组 (2-1-1)它的解可以用n阶行列式表示,即有克拉默法则:如果线性方程组(2-1-1)的系数矩阵A的行列式不等于零,即则方程组(2-1-1)有唯一解其中A j(j=1,2,…,n)是把系数矩阵A中第j列的元素用方程组右端的常数项代替后所得到的n阶矩阵,即七、矩阵分块法1定义将矩阵A用若干条纵线和横线分成许多个小矩阵,每一个小矩阵称为A的子块,以子块为元素的形式上的矩阵称为分块矩阵.2矩阵分块法(1)设矩阵A与B的行数相同、列数相同,采用相同的分块法,有其中A ij与B ij的行数相同、列数相同,则(2)设,λ为数,则.(3)设A为m×l矩阵,B为l×n矩阵,分块成其中A i1,A i2,…,A it的列数分别等于B1j,B2j,…,B tj的行数,则其中(4)设,则(5)设A为n阶方阵,若A的分块矩阵只有在对角线上有非零子块,其余子块都为零矩阵,且在对角线上的子块都是方阵,即其中A i(i=1,2,…,s)都是方阵,则称A为分块对角矩阵.分块对角矩阵的行列式具有下述性质由此性质可知,若,则,并有2.2 课后习题详解1计算下列乘积:(1);(2);(3);(4);(5).解:(1);(2);(3);(4);(5)2设,求3AB-2A及A T B.解:则有因A T=A,即A为对称阵,所以3已知两个线性变换求从z1,z2,z3到x1,x2,x3的线性变换.解:依次将两个线性变换写成矩阵形式其中分别为对应的系数矩阵;在这些记号下,从z1,z2,z3到x1,x2,x3的线性变换的矩阵形式为,此处矩阵即有4假设,问:(1)AB=BA吗?(2)(A+B)2=A2+2AB+B2吗?(3)(A+B)(A-B)=A2-B2吗?5举反例说明下列命题是错误的:(1)若,则;(2)若A2=A,则或A=E;(3)若AX=AY,且A≠0,则X=Y.6(1)设,求A2,A3,…,A k;(2)设,求A4.解:(1)根据矩阵乘法直接计算得一般可得 (2-2-1)则当k=1时,式(2-2-1)成立.假设当k=n时,式(2-2-1)成立,则当k=n+1时根据数学归纳法可知式(2-2-1)成立;7(1)设,求A50和A51;(2)设,A=ab T,求A100.解:(1),则可得(2)由于b T a=-8,所以根据上式可知8(1)设A,B为n阶矩阵,且A为对称阵,证明B T AB也是对称阵;(2)设A,B都是n阶对称阵,证明AB是对称阵的充要条件是AB=BA.证:(1)由矩阵乘积的转置规则有所以由定义知B T AB为对称阵;(2)因为A T=A,B T=B,所以9求下列矩阵的逆矩阵:(1);(2);(3);(4).解:(1)根据二阶方阵的求逆公式可得(2)(3)因为,所以A可逆,并且于是(4)因为a1a2…a n≠0,所以a i≠0,i=1,2,…,n.则矩阵是有意义的,并且因为所以A可逆,而且.10已知线性变换求从变量x1,x2,x3到变量y1,y2,y3的线性变换.解:记则线性变换的矩阵形式为x=Ay,其中A是它的系数矩阵.因为所以A是可逆矩阵,则从变量x1,x2,x3到变量y1,y2,y3的线性变换的矩阵形式可写成又由于 于是即11设J是元素全为1的n(≥2)阶方阵.证明E-J是可逆矩阵,且这里E是与J同阶的单位矩阵.证:因为于是所以,是可逆矩阵,并且12设(k为正整数),证明可逆,并且其逆矩阵证:因为所以可逆,并且其逆矩阵.13设方阵A满足A2-A-2E=O (2-2-2)证明A及A+2E都可逆,并求解:(1)可先证A可逆.由式(2-2-2)得即 所以A是可逆的,且;(2)再证A+2E可逆.由,即同理,可知可逆,且.14解下列矩阵方程:(1);(2);(3);(4)AXB=C,其中.解:(1)因为矩阵的行列式等于1,不为零,所以它可逆,从而用它的逆矩阵左乘方程两边,得(2)记矩阵方程为,因所以A可逆,用右乘方程的两边可得又由于所以(3)记,则矩阵方程可写为因为,所以A,B均可逆.依次用和左乘和右乘方程两边得(4)因为,所以A,B均是可逆矩阵,且分别用和左乘和右乘方程两边得15分别应用克拉默法则和逆矩阵解下列线性方程组:(1)(2)解:(1)①可用克拉默法则:因为系数矩阵的行列式,由克拉默法则,方程组有唯一解,并且②用逆矩阵方法:因为|A|≠0,所以A可逆,于是则有(2)①用克拉默法则:因为系数矩阵的行列式,由克拉默法则方程组有唯一解,并且②用逆矩阵方法因为|A|=2≠0,所以A可逆,于是,易求得代入可得16设A为三阶矩阵,,求.解:因为,所以A可逆.于是由及,得对公式两端取行列式得17设,AB=A+2B,求B.解:由因,它的行列式det(A-2E)=2≠0,所以它是可逆矩阵.用左乘上式两边得18设.且AB+E=A2+B,求B.解:由方程,合并含有未知矩阵B的项,得又因为,其行列式,所以A-E可逆,用左乘上式两边,即可得到解:由于所给矩阵方程中含有A及其伴随阵A*,可用公式求解:用A左乘所给方程两边,得又由于,所以A是可逆矩阵,用右乘上式两边,可以得到观察可得是可逆矩阵,并且于是 20已知A的伴随阵A*=diag(1,1,1,8),且,求B.解:(1)先化简所给矩阵方程假设能求得A并且为可逆矩阵,则可解得 (2-2-3)(2)再计算A根据题意可知A是可逆矩阵,由,两边取行列式得即,所以,于是因为,所以是可逆矩阵,并且将上述结果代入式(2-2-3)可得21设,其中,求A11.解:由于,则.所以22设AP=PΛ,其中求φ(A)=A8(5E-6A+A2).解:由于,所以P是可逆矩阵.根据AP=PΛ可得,并且记多项式,则有由于是三阶对角阵,所以于是 23设矩阵A可逆,证明其伴随阵A*也可逆,且.证:因为,根据定理2的推论可以知A*可逆,且另因.用A左乘此式两边得通过比较上面两式可知结论成立.24设n阶矩阵A的伴随阵为A*,证明:(1)若|A|=0,则|A*|=0;(2).证:(1)因为 (2-2-4)当时,上式成为可用反证法求证。
最新同济大学第六版高等数学上下册课后习题答案7-1
同济大学第六版高等数学上下册课后习题答案7-1仅供学习与交流,如有侵权请联系网站删除 谢谢6 习题7-11. 设u =a -b +2c , v =-a +3b -c . 试用a 、b 、c 表示2u -3v .解 2u -3v =2(a -b +2c )-3(-a +3b -c )=2a -2b +4c +3a -9b +3c=5a -11b +7c .2. 如果平面上一个四边形的对角线互相平分, 试用向量证明这是平行四边形.证 →→→-=OA OB AB ; →→→-=OD OC DC ,而 →→-=OA OC , →→-=OB OD ,所以 →→→→→→-=-=+-=AB OA OB OB OA DC .这说明四边形ABCD 的对边AB =CD 且AB //CD , 从而四边形ABCD 是平行四边形.3. 把∆ABC 的BC 边五等分, 设分点依次为D 1、D 2、D 3、D 4, 再把各分点与点A 连接. 试以c =→AB 、a =→BC 表示向量→A D 1、→A D 2、→A D 3、→A D 4.解 a c 5111--=-=→→→BD BA A D , a c 5222--=-=→→→BD BA A D , a c 5333--=-=→→→BD BA A D ,仅供学习与交流,如有侵权请联系网站删除 谢谢6 a c 5444--=-=→→→BD BA A D . 4. 已知两点M 1(0, 1, 2)和M 2(1, -1, 0). 试用坐标表示式表示向量→21M M 及→-212M M .解 )2 ,2 ,1()2 ,1 ,0()0 ,1 ,1(21--=--=→M M ,)4 ,4 ,2()2 ,2 ,1(2221-=---=-→M M .5. 求平行于向量a =(6, 7, -6)的单位向量.解 11)6(76||222=-++=a ,平行于向量a =(6, 7, -6)的单位向量为 )116 ,117 ,116(||1-=a a 或)116 ,117 ,116(||1--=-a a . 6. 在空间直角坐标系中, 指出下列各点在哪个卦限?A (1, -2, 3);B (2, 3, -4);C (2, -3, -4);D (-2, -3, 1).解 A 在第四卦限, B 在第五卦限, C 在第八卦限, D 在第三卦限.7. 在坐标面上和坐标轴上的点的坐标各有什么特征?指出下列各点的位置:A (3, 4, 0);B (0, 4, 3);C (3, 0, 0);D (0, -1, 0).解 在xOy 面上, 点的坐标为(x , y , 0); 在yOz 面上, 点的坐标为(0, y , z ); 在zOx 面上, 点的坐标为(x , 0, z ).在x 轴上, 点的坐标为(x , 0, 0); 在y 轴上, 点的坐标为(0, y , 0), 在z 轴上, 点的坐标为(0, 0, z ).A 在xOy 面上,B 在yOz 面上,C 在x 轴上,D 在y 轴上.仅供学习与交流,如有侵权请联系网站删除 谢谢68. 求点(a , b , c )关于(1)各坐标面; (2)各坐标轴; (3)坐标原点的对称点的坐标.解 (1)点(a , b , c )关于xOy 面的对称点为(a , b , -c ), 点(a , b , c )关于yOz 面的对称点为(-a , b , c ), 点(a , b , c )关于zOx 面的对称点为(a , -b , c ).(2)点(a , b , c )关于x 轴的对称点为(a , -b , -c ), 点(a , b , c )关于y 轴的对称点为(-a , b , -c ), 点(a , b , c )关于z 轴的对称点为(-a , -b , c ).(3)点(a , b , c )关于坐标原点的对称点为(-a , -b , -c ).9. 自点P 0(x 0, y 0, z 0)分别作各坐标面和各坐标轴的垂线, 写出各垂足的坐标.解 在xOy 面、yOz 面和zOx 面上, 垂足的坐标分别为(x 0, y 0, 0)、(0, y 0, z 0)和(x 0, 0, z 0).在x 轴、y 轴和z 轴上, 垂足的坐标分别为(x 0, 0, 0), (0, y 0, 0)和(0, 0, z 0).10. 过点P 0(x 0, y 0, z 0)分别作平行于z 轴的直线和平行于xOy 面的平面, 问在它们上面的点的坐标各有什么特点?解 在所作的平行于z 轴的直线上, 点的坐标为(x 0, y 0, z ); 在所作的平行于xOy 面的平面上, 点的坐标为(x , y , z 0).11. 一边长为a 的立方体放置在xOy 面上, 其底面的中心在坐标原点, 底面的顶点在x 轴和y 轴上, 求它各顶点的坐标.解 因为底面的对角线的长为a 2, 所以立方体各顶点的坐标分别为 )0 ,0 ,22(a -, )0 ,0 ,22(a , )0 ,22 ,0(a -, )0 ,22 ,0(a ,仅供学习与交流,如有侵权请联系网站删除 谢谢6 ) ,0 ,22(a a -, ) ,0 ,22(a a , ) ,22 ,0(a a -, ) ,22 ,0(a a . 12. 求点M (4, -3, 5)到各坐标轴的距离.解 点M 到x 轴的距离就是点(4, -3, 5)与点(4, 0, 0)之间的距离, 即 345)3(22=+-=x d .点M 到y 轴的距离就是点(4, -3, 5)与点(0, -3, 0)之间的距 离, 即 415422=+=y d .点M 到z 轴的距离就是点(4, -3, 5)与点(0, 0, 5)之间的距离, 即 5)3(422=-+=z d .13. 在yOz 面上, 求与三点A (3, 1, 2)、B (4, -2, -2)和C (0, 5, 1)等距离的点.解 设所求的点为P (0, y , z )与A 、B 、C 等距离, 则2222)2()1(3||-+-+=→z y PA ,2222)2()2(4||++++=→z y PB ,222)1()5(||-+-=→z y PC .由题意, 有222||||||→→→==PC PB PA , 即 ⎩⎨⎧-+-=++++-+-=-+-+2222222222)1()5()2()2(4)1()5()2()1(3z y z y z y z y 解之得y =1, z =-2, 故所求点为(0, 1, -2).仅供学习与交流,如有侵权请联系网站删除 谢谢6 14. 试证明以三点A (4, 1, 9)、B (10, -1, 6)、C (2, 4, 3)为顶点的三角形是等腰三角直角三角形.解 因为 7)96()11()410(||222=-+--+-=→AB , 7)93()14()42(||222=-+-+-=→AC , 27)63()14()102(||222=-+++-=→BC ,所以222||||||→→→+=AC AB BC , ||||→→=AC AB . 因此∆ABC 是等腰直角三角形.15. 设已知两点1) ,2 ,4(1M 和M 2(3, 0, 2). 计算向量→21M M 的模、方向余弦和方向角.解 )1 ,2 ,1()12 ,20 ,43(21-=---=→M M ; 21)2()1(||22221=++-=→M M ; 21cos -=α, 22cos =β, 21cos =γ; 32πα=, 43 πβ=, 3πγ=. 16. 设向量的方向余弦分别满足(1)cos α=0; (2)cos β=1;(3)cos α=cos β=0, 问这些向量与坐标轴或坐标面的关系如何?解 (1)当cos α=0时, 向量垂直于x 轴, 或者说是平行于yOz 面.(2)当cos β=1时, 向量的方向与y 轴的正向一致, 垂直于zOx 面.(3)当cos α=cos β=0时, 向量垂直于x 轴和y 轴, 平行于z轴, 垂直于xOy 面.仅供学习与交流,如有侵权请联系网站删除 谢谢6 17. 设向量r 的模是4, 它与轴u 的夹角是60︒, 求r 在轴 u 上的投影.解 22143cos ||j Pr =⋅=⋅=πr r u . 18. 一向量的终点在点B (2, -1, 7), 它在x 轴、y 轴和z 轴上的投影依次为4, -4, 7. 求这向量的起点A 的坐标.解 设点A 的坐标为(x , y , z ). 由已知得⎪⎩⎪⎨⎧=--=--=-774142z y x ,解得x =-2, y =3, z =0. 点A 的坐标为A (-2, 3, 0).19. 设m =3i +5j +8k , n =2i -4j -7k 和p =5i +j -4k . 求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解 因为a =4m +3n -p=4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k ,所以a =4m +3n -p 在x 轴上的投影为13, 在y 轴上的分向量7j .。
同济大学 第六版 高数练习册答案 上册word精品文档69页
高等数学习题解答第一章(7-11)第六节 极限存在准则 两个重要极限1.0;1;1;0;2;2/32. 1-e ;1432;0;;;--e e e e3. 证明:{n x }显然单调递增,1x 3≤,若31≤-n x ,则n x ≤33+≤3∴ {n x }单调有界,∴{n x }收敛,不妨设∞→n lim nx =a , 则有 a =3+a ,解得,a =(1+13)/2, 2)131(-=a∴2)131(lim +=∞→n n x4. 解:1)12111(22222+≤++++++≤+n n nn n n nn n Λ11limlim22=+=+∞→∞→n n n n nn n∴1)12111(lim 222=++++++∞→nn n n n Λ第七节 无穷小的比较1.(B )2. (A )3.证明: 令t x sin = , 1sin lim arcsin lim00==→→t txx t x∴当0→x 时,x x ~arcsin 。
4.解:(1)0lim→x x x 25tan =0lim →x x x 25=25 (2)0lim →x ())cos 1(arcsin 2x x x -=0lim→x 222x x x =∞(3)0lim→x x x )sin 21ln(-=0lim→x 2sin 2-=-xx(4)0lim →x =-+1)21ln(3x e x 3232lim 0=→x x x (5)0lim→x x x x 3sin sin tan -=0lim →x =-xx x x cos )cos 1(sin 30lim →x 322xx x =1/2(6)0lim →x ⎪⎭⎫ ⎝⎛-x x tan 1sin 1=0lim→x x x sin cos 1-=0lim →x 022=x x (7)431)3tan arctan (lim 220=+=+++→nn n n n a n n 第八节 函数的连续性与间断点1.0 ; 2. 充要;3. 2;4. D 5. B 6. C7. 解:12121lim 1212lim )(lim 0=+-=+-=--+∞→+∞→→+t tt tt t x x f1)(lim 0-=-→x f x∴ )(x f 在x=0 不连续,且x=0 为函数)(x f 的第一类间断点。
《高等数学》第六版同济大学上册课后答案详解
《高等数学》第六版同济大学上册课后答案详解
《高等数学》第六版同济大学上册课后答案详解
第六版同济大学高等数学上册课后答案详解
《高等数学第六版上册》是2007年高等教育出版社出版的图书。
本书是同济大学数学系编《高等数学》的第六版,依据最新的“工科类本科数学基础课程教学基本要求”,为高等院校工科类各专业学生修订而成。
本次修订时对教材的深广度进行了适度的调整,使学习本课程的学生都能达到合格的要求,并设置部分带*号的内容以适应分层次教学的需要;吸收国内外优秀教材的优点对习题的类型和数量进行了凋整和充实,以帮助学生提高数学素养、培养创新意识、掌握运用数学工具去解决实际问题的能力;对书中内容进一步锤炼和调整,将微分方程作为一元函数微积分的应用移到上册,更有利于学生的学习与掌握。
本书分上、下两册出版,上册包括函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、微分方程等内容,书末还附有二、三阶行列式简介、几种常用的曲线、积分表、习题答案与提示
高等数学是大学必修数学科目之一,当然这对于非数学专业的同学而言,简直就是难上加难,但是对于数学专业同学而言,这就是基础课,必须踏踏实实的学好,否则对于以后的学习真的就是难上加难,牧边我就是深有体会啊。
同济大学数学系高等数学第6版笔记和课后习题答案
第1章函数与极限1.1 复习笔记一、映射与函数1.集合(1)集合概念集合(简称集)是指具有某种特定性质的事物的总体,组成这个集合的事物称为该集合的元素(简称元)。
常用大写拉丁字母A,B,C,…表示集合,用小写拉丁字母a,b,c,…表示集合的元素。
如果a是集合A的元素,就说a属于A,记作a∈A;如果a不是集合A的元素,就说a不属于A,记作a A。
一个集合,若它只含有有限个元素,则称为有限集;不是有限集的集合称为无限集。
(2)表示集合的方法通常有以下两种:①列举法,就是把集合的全体元素一一列举出来表示;②描述法,若集合M是由具有某种性质P的元素x的全体所组成的,就可表示成M={x|具有性质P}。
(3)常见的集合①空集,指不包含任何元素的集合,记为φ;②非负整数集,全体非负整数即自然数的集合,记作N,即N={0,1,2,…,n,…};③正整数集,全体正整数的集合,记作,即={1,2,3,…,n,…};④整数集,全体整数的集合,记作Z,即Z={…,-n,…,-2,-1,0,1,2,…,n,…};⑤有理数集,全体有理数的集合,记作Q,即Q={∈z,q∈且P与q互质};⑥实数集,全体实数的集合,记作R,R为排除数0的实数集,为全体正实数的集合。
(4)集合的关系①包含关系设A、B是两个集合,如果集合A的元素都是集合B的元素,则称A是B的子集,记作A B(读作A包含于B)或B A(读作B包含A)。
规定空集φ是任何集合A的子集,即φA。
若且,则称A是B的真子集,记作(读作A真包含于B)。
②等价关系若集合A与集合B互为子集,即A B且B A,则称集合A与集合B相等,记作A=B。
(5)集合的运算①并、交、差a.并集设A、B是两个集合,由所有属于A或者属于B的元素组成的集合,称为A与B的并集(简称并),记作,即。
b.交集由所有既属于A又属于B的元素组成的集合,称为A与B的交集(简称交),记作,即。
c.差集由所有属于A而不属于B的元素组成的集合,称为A与B的差集(简称差),记作A\B,即。
高等数学第六版(同济大学)[上册]课后习题答案解析
高等数学第六版上册课后习题答案及解析第一章习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式.解 A ⋃B =(-∞, 3)⋃(5, +∞),A ⋂B =[-10, -5),A \B =(-∞, -10)⋃(5, +∞), A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C . 证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明 (1)f (A ⋃B )=f (A )⋃f (B );(2)f (A ⋂B )⊂f (A )⋂f (B ). 证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B ) ⇔ y ∈f (A )⋃f (B ), 所以 f (A ⋃B )=f (A )⋃f (B ). (2)因为y ∈f (A ⋂B )⇒∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ),所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射. 又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2)⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2. 因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射. 5. 设映射f : X →Y , A ⊂X . 证明: (1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )), 所以 f -1(f (A ))⊃A .(2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域: (1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-.(2)211xy -=;解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞). (3)211x x y --=;解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1]. (4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2). (5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞). (6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2,⋅ ⋅ ⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4]. (8)xx y 1arctan 3+-=;解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3). (9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞). (10)xe y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞).7. 下列各题中, 函数f (x )和g (x )是否相同?为什么? (1)f (x )=lg x 2, g (x )=2lg x ; (2) f (x )=x , g (x )=2x ; (3)334)(x x x f -=,31)(-=x x x g .(4)f (x )=1, g (x )=sec 2x -tan 2x . 解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x . (3)相同. 因为定义域、对应法则均相相同. (4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3||03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ.9. 试证下列函数在指定区间内的单调性:(1)xx y -=1, (-∞, 1);(2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时,0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数x x y -=1在区间(-∞, 1)内是单调增加的.(2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有 0ln)()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2. 因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), -f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加.11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明: (1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则 F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ), 所以F (x )为偶函数, 即两个偶函数的和是偶函数. 如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ), 所以F (x )为奇函数, 即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则 F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的积是偶函数. 如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ), 所以F (x )为偶函数, 即两个奇函数的积是偶函数. 如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ), 所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2); (2)y =3x 2-x 3;(3)2211x x y +-=; (4)y =x (x -1)(x +1); (5)y =sin x -cos x +1;(6)2x x a a y -+=. 解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数. (2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数.(5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----, 所以f (x )是偶函数.13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期: (1)y =cos(x -2);解 是周期函数, 周期为l =2π. (2)y =cos 4x ;解 是周期函数, 周期为2π=l .(3)y =1+sin πx ;解 是周期函数, 周期为l =2. (4)y =x cos x ; 解 不是周期函数. (5)y =sin 2x .解 是周期函数, 周期为l =π.14. 求下列函数的反函数:(1)31+=x y 错误!未指定书签。
同济大学第六版高等数学上册课后答案全集()
高等数学第六版上册课后习题答案第一章习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式.解 A ⋃B =(-∞, 3)⋃(5, +∞),A ⋂B =[-10, -5),A \B =(-∞, -10)⋃(5, +∞),A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C .证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明(1)f (A ⋃B )=f (A )⋃f (B );(2)f (A ⋂B )⊂f (A )⋂f (B ).证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B )⇔ y ∈f (A )⋃f (B ),所以 f (A ⋃B )=f (A )⋃f (B ).(2)因为y ∈f (A ⋂B )⇒∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ),所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2)⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2.因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A ⊂X . 证明:(1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )),所以 f -1(f (A ))⊃A .(2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域:(1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-. (2)211xy -=; 解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞).(3)211x xy --=; 解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1].(4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2).(5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞).(6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=; 解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3).(9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞).(10)x e y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞).7. 下列各题中, 函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2, g (x )=2lg x ;(2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f (x )=1, g (x )=sec 2x -tan 2x .解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x .(3)相同. 因为定义域、对应法则均相相同.(4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性:(1)xx y -=1, (-∞, 1); (2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时,0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数xx y -=1在区间(-∞, 1)内是单调增加的. (2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有0ln )()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2.因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), -f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加. 11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的和是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ),所以F (x )为奇函数, 即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的积是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个奇函数的积是偶函数.如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ),所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2);(2)y =3x 2-x 3;(3)2211xx y +-=; (4)y =x (x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x a a y -+=. 解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数.(2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数.(5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----, 所以f (x )是偶函数. 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);解 是周期函数, 周期为l =2π.(2)y =cos 4x ;解 是周期函数, 周期为2π=l . (3)y =1+sin πx ;解 是周期函数, 周期为l =2.(4)y =x cos x ;解 不是周期函数.(5)y =sin 2x .解 是周期函数, 周期为l =π.14. 求下列函数的反函数:(1)31+=x y 错误!未指定书签。
最新同济大学第六版高等数学上下册课后习题答案4-2
最新同济大学第六版高等数学上下册课后习题答案4-2同济大学第六版高等数学上下册课后习题答案4-2仅供学习与交流,如有侵权请联系网站删除谢谢9习题4-21. 在下列各式等号右端的空白处填入适当的系数, 使等式成立(例如: )74(41+=x d dx :(1) dx = d (ax );解dx = a 1 d (ax ).(2) dx = d (7x -3);解dx = 71 d (7x -3).(3) xdx = d (x 2);解xdx = 21 d (x 2). (4) x d x = d (5x 2);解x d x = 101 d (5x 2). (5))1( 2x d xdx -=;解 )1( 21 2x d xdx --=.(6)x 3dx = d (3x 4-2);解x 3dx = 121 d (3x 4-2). (7)e 2x dx = d (e 2x );解e 2x dx = 21 d (e 2x ). (8))1( 22x x e d dx e --+=;解 )1( 2 22x x e d dx e --+-=. (9))23(cos 23sin x d xdx =;解 )23(cos 32 23sin x d xdx -=. (10)|)|ln 5( x d x dx =;仅供学习与交流,如有侵权请联系网站删除谢谢9解 |)|ln 5( 51 x d x dx =. (11)|)|ln 53( x d x dx -=; 解 |)|ln 53( 51 x d x dx --=. (12))3(arctan 912x d xdx =+; 解 )3(arctan 31 912x d x dx =+. (13))arctan 1( 12x d x dx-=-;解 )arctan 1( )1( 12x d x dx--=-. (14))1( 122x d x xdx-=-. 解 )1( )1( 122x d x xdx--=-.2. 求下列不定积分(其中a , b , ω, ?均为常数):(1)?dt e t 5;解 C e x d e dt e x x t +==??55551551. (2)?-dx x 3)23(;解 C x x d x dx x +--=---=-??433)23(81)23()23(21)23(. (3)?-dx x211; 解 C x x d x dx x +--=---=-??|21|ln 21)21(21121211. (4)?-332x dx ;仅供学习与交流,如有侵权请联系网站删除谢谢9解 C x C x x d x x dx +--=+-?-=---=-??-3232313)32(21)32(2331)32()32(3132. (5)?-dx e ax b x )(sin ; 解 C be ax a b x d e b ax d ax a dx e ax b x b x b x +--=-=-cos 1)()(sin 1)(sin . (6)?dt ttsin ; 解 ??+-==C t t d t dt t tcos 2sin 2sin .(7)??xdx x 210sec tan ;解 ??xdx x 210sec tan C x x xd +==?1110tan 111tan tan . (8)?x x x dx ln ln ln ; 解 C x x d xx d x x x x x dx +===|ln ln |ln ln ln ln ln 1ln ln ln ln 1ln ln ln . (9)?+?+dx x xx 2211tan ;解 ?+?+dx x x x 2211tan 2222211cos 1sin 11tan x d x x x d x +++=++=?? C x x d x ++-=++-=?|1cos |ln 1cos 1cos 1222. (10)?xx dx cos sin ; 解 C x x d xdx x x x x dx +===|tan |ln tan tan 1tan sec cos sin 2. (11)?-+dx ee x x 1;仅供学习与交流,如有侵权请联系网站删除谢谢9解 ?-+dx e e xx 1C e de e dx e e x x x x x +=+=+=??arctan 11122. (12)?-dx xe x 2;解 .21)(212222C e x d e dx xe x x x +-=--=---?? (13)??dx x x )cos(2;解 C x x d x dx x x +==)sin(21)()cos(21)cos(2222. (14)?-dx x x232;解 C x C x x d x dx x x +--=+--=---=-??-2212221223231)32(31)32()32(6132. (15)?-dx x x 4313; 解 ??+--=---=-C x x d x dx x x |1|ln 43)1(11431344443.(16)?++dt t t ))sin((cos 2?ω?ω;解 C t t d t dt t t ++-=++-=++??)(cos 31)cos()(cos 1)sin()(cos 322?ωωω?ωω?ω?ω. (17)?dx xx 3cos sin ; 解 C x C x x xd dx xx +=+=-=--??2233sec 21cos 21cos cos cos sin . (18)?-+dx x x x x 3cos sin cos sin ; 解 )sin cos (cos sin 1cos sin cos sin 33x x d x x dx x x x x +--=-+?? C x x x x d x x +-=--=?-3231)cos (sin 23)cos (sin )cos (sin . (19)?--dx x x2491;仅供学习与交流,如有侵权请联系网站删除谢谢9 解 dx x x dx x dx x x---=--22249491491 )49(49181)32()32(1121222x d x x d x --+-=??C x x +-+=2494132arcsin 21. (20)?+dx xx 239; 解 C x x x d x x d x x dx x x ++-=+-=+=+)]9ln(9[21)()991(21)(9219222222223. (21)?-dx x 1212; 解+--=+-=-dx x x dx x x dx x )121121(21)12)(12(11212 ??++---=)12(121221)12(121221x d x x d x C x x C x x ++-=++--=|1212|ln 221|12|ln 221|12|ln 221. (22)?-+dx x x )2)(1(1; 解 C x x C x x dx x x dx x x ++-=++--=+--=-+??|12|ln 31|1|ln |2|(ln 31)1121(31)2)(1(1. (23)?xdx 3cos ;解 C x x x d x x d x xdx +-=-==3223sin 31sin sin )sin 1(sin cos cos .(24)?+dt t )(cos 2?ω;解 C t t dt t dt t +++=++=+??)(2sin 4121)](2cos 1[21)(cos 2?ωωω?ω. (25)?xdx x 3cos 2sin ;解 ?xdx x 3cos 2sin C x x dx x x ++-=-=?cos 215cos 101)sin 5(sin 21.仅供学习与交流,如有侵权请联系网站删除谢谢9 (26)?dx x x 2cos cos ;解 C x x dx x x dx x x ++=+=??21sin 23sin 31)21cos 23(cos 212cos cos . (27)?xdx x 7sin 5sin ;解 C x x dx x x xdx x ++-=--=??2sin 4112sin 241)2cos 12(cos 217sin 5sin . (28)?xdx x sec tan 3;解 x d x xdx x x xdx x sec tan tan sec tan sec tan 223=?= C x x x d x +-=-=?sec sec 31sec )1(sec 32. (29)?-dx x x2arccos 2110;解 C x d x d dx x x x x x+-=-=-=-10ln 210)arccos 2(1021arccos 10110arccos 2arccos 2arccos 22arccos 2. (30)?+dx x x x)1(arctan ;解 C x x d x x d x x dx x x x+==+=+2)(arctan arctan arctan 2)1(arctan 2)1(arctan . (31)?-221)(arcsin x x dx ; 解 C x x d x x x dx +-==-??arcsin 1arcsin )(arcsin 11)(arcsin 222. (32)?+dx x x x2)ln (ln 1; 解 C x x x x d x x dx x x x +-==+??ln 1)ln ()ln (1)ln (ln 122. (33)?dx xx x sin cos tan ln ;。
最新同济大学第六版高等数学上下册课后习题答案6-2
同济大学第六版高等数学上下册课后习题答案6-2仅供学习与交流,如有侵权请联系网站删除谢谢17 习题6-21. 求图6-21 中各画斜线部分的面积:(1)解 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为61]2132[)(1022310=-=-=⎰x x dx x x A . (2)解法一 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为1|)()(1010=-=-=⎰x x e ex dx e e A ,解法二 画斜线部分在y 轴上的投影区间为[1, e ]. 所求的面积为1)1(|ln ln 111=--=-==⎰⎰e e dy y y ydy A e e e . (3)仅供学习与交流,如有侵权请联系网站删除 谢谢17 解画斜线部分在x 轴上的投影区间为[-3, 1]. 所求的面积为332]2)3[(132=--=⎰-dx x x A . (4)解 画斜线部分在x 轴上的投影区间为[-1, 3]. 所求的面积为332|)313()32(3132312=-+=-+=--⎰x x x dx x x A . 2. 求由下列各曲线所围成的图形的面积:(1) 221x y =与x 2+y 2=8(两部分都要计算); 解:388282)218(220220*********--=--=--=⎰⎰⎰⎰dx x dx x dx x dx x x A34238cos1642+=-=⎰ππtdt.346)22(122-=-=ππSA.(2)xy1=与直线y=x及x=2;解:所求的面积为⎰-=-=212ln23)1(dxxxA.(3) y=e x,y=e-x与直线x=1;解:所求的面积为⎰-+=-=-121)(eedxeeA xx.仅供学习与交流,如有侵权请联系网站删除谢谢17仅供学习与交流,如有侵权请联系网站删除 谢谢17(4)y =ln x , y 轴与直线y =ln a , y =ln b (b >a >0).解所求的面积为a b e dy e A b a y ba y -===⎰ln ln ln ln 3. 求抛物线y =-x 2+4x -3及其在点(0, -3)和(3, 0)处的切线所围成的图形的面积. 解:y '=-2 x +4.过点(0, -3)处的切线的斜率为4, 切线方程为y =4(x -3).过点(3, 0)处的切线的斜率为-2, 切线方程为y =-2x +6.两切线的交点为)3 ,23(, 所求的面积为 49]34(62[)]34(34[23023232=-+--+-+-+---=⎰⎰dx x x x x x x A .仅供学习与交流,如有侵权请联系网站删除 谢谢17 4. 求抛物线y 2=2px 及其在点),2(p p 处的法线所围成的图形的面积. 解2y ⋅y '=2p .在点),2(p p 处, 1),2(=='p p y p y , 法线的斜率k =-1, 法线的方程为)2(p x p y --=-, 即y p x -=23. 求得法线与抛物线的两个交点为),2(p p 和)3,29(p p -. 法线与抛物线所围成的图形的面积为233232316)612123()223(p y p y y p dy p y y p A p p pp =--=--=--⎰. 5. 求由下列各曲线 所围成的图形的面积;(1)ρ=2a cos θ ;解:所求的面积为⎰⎰==-2022222cos 4)cos 2(21πππθθθθd a d a A =πa 2.仅供学习与交流,如有侵权请联系网站删除谢谢17 (2)x =a cos 3t , y =a sin 3t ;解所求的面积为⎰⎰⎰===2042202330sin cos 34)cos ()sin (44ππtdt t a t a d t a ydx A a2206204283]sin sin [12a tdt tdt a πππ=-=⎰⎰.(3)ρ=2a (2+cos θ )解所求的面积为仅供学习与交流,如有侵权请联系网站删除谢谢172202220218)cos cos 44(2)]cos 2(2[21a d a d a A πθθθθθππ=++=+=⎰⎰. 6. 求由摆线x =a (t -sin t ), y =a (1-cos t )的一拱(0≤t ≤2π)与横轴 所围成的图形的面积.解:所求的面积为⎰⎰⎰-=--==a a a dt t a dt t a t a ydx A 20222020)cos 1()cos 1()cos 1(ππ22023)2cos 1cos 21(a dt t t a a =++-=⎰. 7. 求对数螺线ρ=ae θ(-π≤θ≤π)及射线θ=π所围成的图形面积.解所求的面积为)(421)(21222222ππππθππθθθ----===⎰⎰e e a d e a d ae A . 8. 求下列各曲线所围成图形的公共部分的面积.(1)ρ=3cos θ 及ρ=1+cos θ解仅供学习与交流,如有侵权请联系网站删除 谢谢17 曲线ρ=3cos θ 与ρ=1+cos θ交点的极坐标为)3,23(πA , )3,23(π-B . 由对称性, 所求的面积为πθθθθπππ45])cos 3(21)cos 1(21[2232302=++=⎰⎰d d A . (2)θρsin 2=及θρ2cos 2=.解曲线θρsin 2=与θρ2cos 2=的交点M 的极坐标为M )6,22(π. 所求的面积为 2316]2cos 21)sin 2(21[246602-+=+=⎰⎰πθθθθπππd d A .9. 求位于曲线y =e x 下方, 该曲线过原点的切线的左方以及x 轴上方仅供学习与交流,如有侵权请联系网站删除 谢谢17 之间的图形的面积. 解 设直线y =kx 与曲线y =e x 相切于A (x 0, y 0)点, 则有⎪⎩⎪⎨⎧=='==k e x y e y kx y x x 00)(0000,求得x 0=1, y 0=e , k =e .所求面积为21ln 21)ln 1(00020e dy y y y y y e dy y y e e e e e=⋅+-=-⎰⎰. 10. 求由抛物线y 2=4ax 与过焦点的弦所围成的图形的面积的最小值. 解 设弦的倾角为α. 由图可以看出, 抛物线与过焦点的弦所围成的图形的面积为10A A A +=.显然当2πα=时, A 1=0; 当2πα<时, A 1>0. 因此, 抛物线与过焦点的弦所围成的图形的面积的最小值为20300383822a x a dx ax A a a ===⎰. 11. 把抛物线y 2=4ax 及直线x =x 0(x 0>0)所围成的图形绕x 轴旋转, 计算所得旋转体的体积.解 所得旋转体的体积为2002002224000x a x a axdx dx y V x x x ππππ====⎰⎰.12. 由y =x 3, x =2, y =0所围成的图形, 分别绕x 轴及y轴旋转, 计算所得两个旋转体的体积.解 绕x 轴旋转所得旋转体的体积为ππππ712871207206202====⎰⎰x dx x dx y V x . 绕y 轴旋转所得旋转体的体积为⎰⎰-=-⋅⋅=803280223282dy y dy x V y ππππ πππ56453328035=-=y . 13. 把星形线3/23/23/2a y x =+所围成的图形, 绕x 轴旋转, 计算所得旋转体的体积.解 由对称性, 所求旋转体的体积为dx x a dx y V a a ⎰⎰-==03323202)(22ππ 30234323234210532)33(2a dx x x a x a a a ππ=-+-=⎰.14. 用积分方法证明图中球缺的体积为)3(2H R H V -=π. 证明 ⎰⎰---==R H R R H R dy y R dy y x V )()(222ππ )3()31(232H R H y y R R H R -=-=-ππ.15. 求下列已知曲线所围成的图形, 按指定的轴旋转所产生的旋转体的体积:(1)2x y =, 2y x =, 绕y 轴;解 ππππ103)5121()(1052102210=-=-=⎰⎰y y dy y ydy V . (2)ax a y ch =, x =0, x =a , y =0, 绕x 轴; 解 ⎰⎰⎰===102302202ch ch )(udu a au x dx a x a dx x y V a a πππ令 1022310223)21221(4)2(4u u u u e u e a du e e a ---+=++=⎰ππ )2sh 2(43+=a π. (3)16)5(22=-+y x , 绕x 轴.解 ⎰⎰------+=44224422)165()165(dx x dx x V ππ 2421601640π⎰=-=dx x .(4)摆线x =a (t -sin t ), y =a (1-cos t )的一拱, y =0, 绕直线y =2a .解 ⎰⎰--=ππππa a dx y a dx a V 202202)2()2(⎰----=πππ20223)sin ()]cos 1(2[8t t da t a a a232023237sin )cos 1(8ππππa tdt t a a =+-=⎰.16. 求圆盘222a y x ≤+绕x =-b (b >a >0)旋转所成旋转体的体积.解 ⎰⎰------+=a a a a dy y a b dy y a b V 222222)()(ππ 2202228ππb a dy y a b a=-=⎰.17. 设有一截锥体, 其高为h , 上、下底均为椭圆, 椭圆的轴长分别为2a 、2b 和2A 、2B , 求这截锥体的体积.解 建立坐标系如图. 过y 轴上y 点作垂直于y轴的平面, 则平面与截锥体的截面为椭圆, 易得其长短半轴分别为y h a A A --, y hb B B --. 截面的面积为π)()(y hb B B y h a A A --⋅--. 于是截锥体的体积为])(2[61)()(0bA aB AB ab h dy y h b B B y h a A A V h+++=--⋅--=⎰ππ.18. 计算底面是半径为R 的圆, 而垂直于底面上一条固定直径的所有截面都是等边三角形的立体体积.解 设过点x 且垂直于x 轴的截面面积为A (x ),由已知条件知, 它是边长为x R -2的等边三角形的面积, 其值为)(3)(22x R x A -=,所以 322334)(3R dx x R V RR =-=⎰-. 19. 证明 由平面图形0≤a ≤x ≤b , 0≤y ≤f (x )绕y 轴旋转所成的旋转体的体积为⎰=ba dx x xf V )(2π. 证明 如图, 在x 处取一宽为dx 的小曲边梯形, 小曲边梯形绕y 轴旋转所得的旋转体的体积近似为2πx ⋅f (x )dx , 这就是体积元素, 即dV =2πx ⋅f (x )dx ,于是平面图形绕y 轴旋转所成的旋转体的体积为⎰⎰==ba b a dx x xf dx x xf V )(2)(2ππ. 20. 利用题19和结论, 计算曲线y =sin x (0≤x ≤π)和x 轴所围成的图形绕y 轴旋转所得旋转体的体积.解 20002)sin cos (2cos 2sin 2πππππππ=+-=-==⎰⎰x x x x xd xdx x V . 21. 计算曲线y =ln x 上相应于83≤≤x 的一段弧的长度.解 ⎰⎰⎰+=+='+=8328328321)1(1)(1dx xx dx x dx x y s , 令t x =+21, 即12-=t x , 则23ln 211111113223232222322+=-+=-=-⋅-=⎰⎰⎰⎰dt t dt dt t t dt t tt t s . 22. 计算曲线)3(3x x y -=上相应于1≤x ≤3的一段弧的长度.解 x x x y 31-=, x x y 2121-=', x x y 4121412+-=', )1(2112xx y +='+, 所求弧长为3432)232(21)1(213131-=+=+=⎰x x x dx xx s . 23. 计算半立方抛物线32)1(32-=x y 被抛物线32x y =截得的一段弧的长度.解 由⎪⎩⎪⎨⎧=-=3)1(32232x y x y 得两曲线的交点的坐标为)36 ,2(, )36 ,2(-.所求弧长为⎰'+=21212dx y s . 因为2)1(22-='x y y , y x y 2)1(-=', )1(23)1(32)1()1(34242-=--=-='x x x y x y . 所以]1)25[(98)13(13232)1(2312232121-=--=-+=⎰⎰x d x dx x s . 24. 计算抛物线y 2=2px 从顶点到这曲线上的一点M (x , y )的弧长. 解 ⎰⎰⎰+=+='+=y y y dy y p p dy p y dy y x s 02202021)(1)(1 y y p y p y p y p 022222])ln(22[1++++= py p y p y p p y 2222ln 22++++=. 25. 计算星形线t a x 3cos =, t a y 3sin =的全长.解 用参数方程的弧长公式.dt t y t x s ⎰'+'=2022)()(4π⎰⋅+-⋅=202222]cos sin 3[)]sin (cos 3[4πdt t t a t t a a tdt t 6cos sin 1220==⎰π.26. 将绕在圆(半径为a )上的细线放开拉直, 使细线与圆周始终相切, 细线端点画出的轨迹叫做圆的渐伸线, 它的方程为)sin (cos t t t a x +=, )cos (sin t t t a y -=.计算这曲线上相应于t 从0变到π的一段弧的长度.解 由参数方程弧长公式⎰⎰+='+'=ππ022022)sin ()cos ()]([)]([dt t at t at dt t y t x s 202ππa tdt a ==⎰. 27. 在摆线x =a (t -sin t ), y =a (1-cos t )上求分摆线第一拱成1: 3的点的坐标.解 设t 从0变化到t 0时摆线第一拱上对应的弧长为s (t 0), 则⎰⎰+-='+'=000220220]sin [)]cos 1([)]([)]([)(t t dt t a t a dt t y t x t s )2cos 1(42sin 2000t a dt t a t -==⎰. 当t 0=2π时, 得第一拱弧长s (2π)=8a . 为求分摆线第一拱为1: 3的点为A (x , y ), 令a t a 2)2cos 1(40=-,解得320π=t , 因而分点的坐标为: 横坐标a a x )2332()32sin 32(-=-=πππ, 纵坐标a a y 23)32cos 1(=-=π, 故所求分点的坐标为)23 ,)2332((a a -π. 28. 求对数螺线θρa e =相应于自θ=0到θ=ϕ的一段弧长. 解 用极坐标的弧长公式. θθθρθρϕθθϕd ae e d s a a ⎰⎰+='+=022022)()()()( )1(11202-+=+=⎰θϕθθa a e a a d e a . 29. 求曲线ρθ=1相应于自43=θ至34=θ的一段弧长. 解 按极坐标公式可得所求的弧长 ⎰⎰-+='+=3443222344322)1()1()()(θθθθθρθρd d s 23ln 12511344322+=+=⎰θθθd . 30. 求心形线ρ=a (1+cos θ )η.解 用极坐标的弧长公式. θθθθθρθρππd a a d s ⎰⎰-++='+=0222022)sin ()cos 1(2)()(2a d a 82cos 40==⎰πθθ.。
(完整版)高等数学第六版(同济大学)上册课后习题答案解析
高等数学第六版上册课后习题答案及解析第一章习题1—11. 设A=(-, —5)(5, +),B=[-10, 3), 写出A B,A B, A\B及A\(A\B)的表达式。
解A B=(-, 3)(5, +),A B=[-10,—5),A\B=(—, -10)(5, +),A\(A\B)=[-10, -5).2. 设A、B是任意两个集合,证明对偶律: (A B)C=A C B C。
证明因为x(A B)C x A B x A或x B x A C或x B C x A C B C,所以(A B)C=A C B C。
3. 设映射f : X Y, A X, B X。
证明(1)f(A B)=f(A)f(B);(2)f(A B)f(A)f(B).证明因为y f(A B)x A B, 使f(x)=y(因为x A或x B) y f(A)或y f(B)y f(A)f(B),所以f(A B)=f(A)f(B).(2)因为y f(A B)x A B, 使f(x)=y(因为x A且x B) y f(A)且y f(B)yf (A )f (B ),所以 f (A B )f (A )f (B )。
4。
设映射f : XY , 若存在一个映射g : Y X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个xX , 有I X x =x ; 对于每一个y Y , 有I Y y =y 。
证明:f 是双射, 且g 是f 的逆映射: g =f —1.证明 因为对于任意的yY , 有x =g (y )X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射. 又因为对于任意的x 1x 2, 必有f (x 1)f (x 2), 否则若f (x 1)=f (x 2)g [ f (x 1)]=g [f (x 2)]x 1=x 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在带有佩亚诺型余项的泰勒公式中,如果取 x0=0,则有带有佩亚诺型余项的麦克劳林 公式:
。 如 果 存 在 正 实数 M 使得 区 间 ( -r, r ) 里 的任意 x 都 有
,如果当 n 趋向于无穷大时,
,则
,那么 。
可得近似公式:
。
5 / 84
圣才电子书 十万种考研考证电子书、题库视频学习平台
四、函数的单调性 微分中值定理,强调了函数值与导数之间的关系。这部分主要介绍如何通过函数的导数 来判定函数的单调性或凹凸性等性质。 1.单调性的判定 【定理】设函数 y=f(x)在[a,b]上连续,在(a,b)内可导。 (1)如果在(a,b)内 f'(x)>0,那么函数 y=f(x)在[a,b]上单调增加; (2)如果在(a,b)内 f'(x)<0,那么函数 y=f(x)在[a,b]上单调减少; 如果把这个判定法中的闭区间换成其他各种区间(包括无穷区间),那么结论也成立。 这是函数单调性判定的一个最基本也是最重要的法则。
2 / 84
圣才电子书 十万种考研考证电子书、题库视频学习平台
那么在(a,b)内至少有一点 ε,使等式
成立。
拉格朗日中值公式是柯西中值公式的特殊形式。
二、洛必达法则 洛必达法则在求函数极限过程中,有重要作用,在考研试题中也经常出现。一般,洛必 达法则针对 或 形式的极限公式。下面我们主要介绍相关定理及引入一些例题,方便读 者更进一步理解洛必达法则的应用。 1.x→a 【定理】设 (1)当 x→a 时,函数 f(x)及 F(x)都趋于零; (2)在点 a 的某去心邻域内,f'(x)及 F'(x)都存在且 F'(x)≠0;
(3)Biblioteka 存在(或为无穷大),那么
。
这种在一定条件下通过分子分母分别求导再求极限来确定未定式的值的方法称为洛必 达(L’hospital)法则。
注意,在使用洛必达法则时,分子分母的表达式必须同时是未定式,即单独的极限同时 趋于 0 或 。
2.x→∞
3 / 84
圣才电子书
2.拉格朗日中值定理 (1)定理表述 【拉格朗日中值定理】如果函数 f(x)满足: ①在闭区间[a,b]上连续; ②在开区间(a,b)内可导,
1 / 84
圣才电子书 十万种考研考证电子书、题库视频学习平台
那么在(a,b)内至少有一点 ε(a<ε<b),使等式 f(b)-f(a)=f'(ε)(b-a)成 立。
图 3-1 从图 3-1 看出,在罗尔定理中,由于 f(a)=f(b),弦 AB 是平行于 x 轴的,因此点 C 处的切线实际上也平行于弦 AB。由此可见,罗尔定理是拉格朗日中值定理的特殊情形。
3.柯西中值定理 【柯西中值定理】如果函数 f(x)及 F(x)满足: (1)在闭区间[a,b]上连续; (2)在开区间(a,b)内可导; (3)对任一 x∈(a,b),F'(x)≠0,
圣才电子书 十万种考研考证电子书、题库视频学习平台
第 3 章 微分中值定理与导数的应用
3.1 复习笔记
一、微分中值定理 1.罗尔定理 首先我们引入费马引理: 【费马引理】设函数 f(x)在点 的某邻域 U( )内有定义,并且在 x0 处可导,如 果对任意的 x∈U(x0),有 f(x)≤f(x0)(或 f(x)≥f(x0)),那么 f'(x0)=0。 相关证明在此就不做过多介绍,感兴趣的同学可以参照相关的高等数学或数学分析教材。 通常称导数等于 0 的点为函数的驻点。 【罗尔定理】如果函数 f(x)满足: (1)在闭区间[a,b]上连续; (2)在开区间(a,b)内可导; (3)在区间端点处的函数值相等,即 f(a)=f(b), 那么在(a,b)内至少有一点 ε(a<ε<b),使得 f'(ε)=0。
称为拉格朗日型余项。
2.佩亚诺型余项 在不需要余项的精确表达式时,n 阶泰勒公式也可写成
。 称为佩亚诺(Peano)型余项,上述公式称为 f(x)按(x-x0) 的幂展开的带有佩亚诺型余项的 n 阶泰勒公式。
3.拉格朗日型余项的麦克劳林(Maclaurin)公式 如果取 x0=0,则 ε 在 0 与 x 之间。因此可以令 ε= (0<θ<1),从而泰勒公式变 成较简单的形式,即所谓带有拉格朗日型余项的麦克劳林(Maclaurin)公式:
其中 1.拉格朗日余项
。这里 ε 是 x0 与 x 之间的某个值。
称 数 f(x)按(x-x0)的幂展开的 n 次泰勒多项式,公式
为函
称 为 f ( x ) 按 ( x - x0 ) 的 幂 展 开 的 带 有 拉 格 朗 日 型 余 项 的 n 阶 泰 勒 公 式 , 而
4 / 84
圣才电子书 十万种考研考证电子书、题库视频学习平台
作为拉格朗日中值定理的一种特殊情况,有以下定理: 【定理】如果函数 f(x)在区间 I 上的导数恒为零,那么 f(x)在区间 I 上是一个常数。 (2)几何意义
如果把 f(b)-f(a)=f'(ε)(b-a)改写成
,由图 3-1 可看
出,等式左边为弦 AB 的斜率,而 f'(ε)为曲线在点 C 处的切线的斜率。因此拉格朗日中 值定理的几何意义是:如果连续曲线 y=f(x)的弧 AB 上除端点外处处具有不垂直于 x 轴 的切线,那么这弧上至少有一点 C,使曲线在 C 点处的切线平行于弦 AB。
【定理】设
十万种考研考证电子书、题库视频学习平台
(1)当 x→∞时,函数 f(x)及 F(x)都趋于零;
(2)当|x|>N 时 f'(x)与 F'(x)都存在,且 F'(x)≠0;
(3)
存在(或为无穷大),
那么
。
三、泰勒公式 对于一些比较复杂的函数,为了方便研究,往往希望用一些简单的函数来近似表达,譬 如多项式、三角函数等函数。泰勒公式就是一种用多项式来逼近复杂函数的表达公式。 【定理】如果函数 f(x)在含有 x0 的某个开区间(a,b)内具有直到 n+1 阶的导数, 则对任意 x∈(a,b),有
2.曲线的凹凸性与拐点 (1)定义 设 f(x)在区间 I 上连续,如果对 I 上任意两点 x1,x2 恒有