14.3因式分解(第一课时)

合集下载

数学八年级上册第十四章第三节《因式分解》

数学八年级上册第十四章第三节《因式分解》
设计意图:学生通过学习目标,明确本节课的学习方向以及要掌握的 主要知识点,便于更好的开展学习。
说设计
四、导学交流,探究发现一(4分钟)
想一想: a2-b2=(a+b)(a-b) , a2-2ab+b2 = (a-b)2 , x2-x=x(x-1) 这三个等式从运算过程看有什么共同点? 由此你能得出因式分解 的定义吗?
且学习了整式的乘法运算。因此,对于因式分解的引入,学生不会感到 陌生,它为今天学习因式分解打下了良好基础。
学生已有的学习方式和学习习惯:由整式乘法寻求因式分解的方
法是一种逆向思维过程,而逆向思维对于八年级学生还比较生疏,接受 起来还有一定的困难,在教学当中尽量要让学生自己去探索如何去解决 问题。本班的个别学生观察、讨论、发现归纳能力较差,因此在教学过 程中教师要多加引导,并结合星级评价提高学生自主学习及合作学习的 热情。
设计意图:学生通过观察,交流,归纳总结,得出因式分解的概念, 提升学生的分析、归纳能力,渗透化归的数学思想方法。 遵循从具 体到抽象的原则 ,让学生经历从具体实例中抽象出概念的活动,从 而顺利地掌握重点。
1
b 说设计
五、应用训练,巩固新知一(3分钟)
1.下列代数式变形中,哪些是因式分解?哪些不是?为什么? (1)x2-3x+1=x(x-3)+1 ; (2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y); (3)2m(m-n)=2m2-2mn; (4)4x2-4x+1=(2x-1)2; (5)3a2+6a=3a(a+2); (6)x2-4+3x=(x-2)(x+2)+3x; (7) 据我们数学学科的特点,及数学新授课模式,确定本节课模式:

《因式分解》教学设计

《因式分解》教学设计

活动二
因式分解的概念 学习
类比整数的乘除,学习整式的乘除,体会“因式分解”与“整式 相乘”是两个互逆的过程.
活动三
教学“提取公因 式法”
通过短除法与乘法分配律,让学生理解并掌握提取公因式的具体 操作,并形成技能.
活动四
拓展训练,提高 能力
通过例题教学,培养学生整体观念与转化思想,发展学生思维, 增强学生解决问题的能力.
学情分析
因式分解需要用到的上位知识有:整式的乘法(单项式与单项式相乘,单项式乘以多项式,多 项式与多项式相乘)以及简单地整式的除法(多项式除以单项式,单项式除以单项式);对“代数和”、 “代数积”算式的理解,即必须准确理解一个单项式是由哪些因数组成的(即数字因数是什么?字 母因数是什么?),一个多项式是由哪几个单项式组成的(即一个多项式可以看作是哪些单项式的 和);在小学学习分数的运算时,涉及通分和约分,其中就要将一个整数分解成几个整数的积的形式; 用短除法求几个数的最大公约数及最小公倍数.这些知识多数学生可能记不大清楚了,需要耐心举例 说明,以唤醒学生已有知识经验参与到新知识的学习之中,帮助学生打通思维的任督二脉.
课堂小结
组织学生归纳小结,培养系统思考问题的意识与能力,养成反思 的习惯
作业布置
布置有针对性的练习,巩固所学知识,发展学生能力与个性
教学过程设计
一、复习旧知
师(出示题目):1、计算
(1) 1 + 7 (2) 3 + 7 (3) 3 + 7
12 12
8 24
8 12
(学生思考后,老师板书计算过程)
(1)原式= 1 + 7 = 8 = 4 2 = 2 ; 12 12 4 3 3
14.3.1《因式分解》教学设计(第一课时)

14.3.1因式分解(提公因式法)八年级数学上册课件(人教版)

14.3.1因式分解(提公因式法)八年级数学上册课件(人教版)

拓展训练
人教版数学八年级上册
3.△ABC的三边长分别为a、b、c,且a+2ab=c+2bc,请 判断△ABC是等边三角形、等腰三角形还是直角三角形?并 说明理由. 解:整理a+2ab=c+2bc得,a+2ab-c-2bc=0,
(a-c)+2b(a-c)=0,(a-c)(1+2b)=0,
∴a-c=0或1+2b=0,
解:原式=-(a2-ab+ac)=-2a(a-2b+3c) (6)-2x3+4x2-2x
解:原式=-(2x3-4x2+2x)=-2x(x2-2x+1)
人教版数学八年级上册
拓展训练
人教版数学八年级上册
1.已知m-4n=-2,mn=5,求-m3n+8m2n2-16mn3的值. 解:-m3n+8m2n2-16mn3=-mn(m2-8mn+16n2)=-mn(m-4n)2 .
典例精析
例1 把8a3b2+12ab3c分解因式.
分析:找公因式
1.系数的最大公约数 4
2.找相同字母
ab
3.相同字母的最低指数 a1b2
公因式为:4ab2
解:8a3b2+12ab3c =4ab2•2a2+4ab2•3bc =4ab2(2a2+3bc)
人教版数学八年级上册
典例精析
人教版数学八年级上册
复习引入
人教版数学八年级上册
单项式与多项式相乘的法则:单项式与多项式相乘,就是 用单项式去乘多项式的每一项,再把所得的积相加.
p(a+b+c)=pa+pb+pc
多项式与多项式相乘的法则: 多项式与多项式相乘,先用一个多项式的每一项乘另一个 多项式的每一项,再把所得的积相加.

14.3 因式分解【教案】八年级上册数学

14.3  因式分解【教案】八年级上册数学

14.3.1提公因式法课时目标1.了解因式分解的意义,以及它与整式乘法的关系,掌握因式分解的概念,体会数学知识的内在含义与价值.2.能确定多项式各项的公因式,会用提公因式法把多项式分解因式,培养学生有条理的思考和运算能力.3.会利用因式分解进行简便计算,体会因式分解的价值,培养学生的创新意识.学习重点运用提公因式法分解因式.学习难点正确理解因式分解的概念,准确找出公因式.课时活动设计回顾引入1.回顾整式乘法完成填空:(1)m(a+b+c)=ma+mb+mc.(2)(x+1)(x-1)=x2-1.(3)(a+b)2=a2+2ab+b2.2.根据等式性质填空:(1)ma+mb+mc=m(a+b+c).(2)x2-1=(x+1)(x-1).(3)a2+2ab+b2=(a+b)2.设计意图:引导学生回顾旧知识,激活学生已有的知识体系,为学习新知识打下基础.探究新知探究1因式分解问题:回顾引入中第2组式子有什么共同特点?学生回答:将一个多项式化成多个整式相乘.教师引导并给出因式分解的概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式.p(a+b+c)pa+pb+pc通过观察,你发现因式分解和整式乘法有什么关系?学生发现:因式分解与整式乘法的互逆性.探究2提公因式法问题1:观察下列多项式有哪些相同因式?学生观察发现前者的相同因式为p,后者的相同因式为x.总结如下:多项式中各项都含有的相同因式,叫做这个多项式的公因式.师生活动:教师板书:pa+pb+pc=p(a+b+c).引导学生用文字进行总结:一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法.问题2:找出3x2-6xy的公因式,并思考如何确定一个多项式的公因式?师生活动:学生先独立思考,然后小组交流得出结论:公因式为3x.教师引导学生用文字总结如何确定一个多项式的公因式:1.定字母:字母取多项式各项中都含有的相同的字母;2.定系数:公因式的系数是多项式各项系数的最大公约数;3.定指数:相同字母的指数取各项中最小的一个,即字母的最低次数.设计意图:通过具体问题的解决,让学生在观察、思考和操作的过程中,了解因式分解的概念,培养学生类比的思想方法和运算能力;学生从系数、字母、指数多个角度思考问题,培养学生思维的全面性和开阔性,养成积极思考的学习态度和创新意识.典例精讲例1把下列各式分解因式:(1)8a3b2+12ab3c;(2)2a(b+c)-3(b+c);(3)(a+b)(a-b)-a-b.解:(1)8a3b2+12ab3c=4ab2·2a2+4ab2·3bc=4ab2(2a2+3bc).(2)2a(b+c)-3(b+c)=(b+c)(2a-3).(3)(a+b)(a-b)-a-b=(a+b)(a-b)-(a+b)=(a+b)(a-b-1).技巧:1.整体思想找公因式;2.整项被提取后,1不能丢;3.可以用整式乘法验证.例2以下因式分解是否正确?如果错误,请指出原因并改正.(1)把12x2y+18xy2分解因式.解:原式=3xy(4x+6y).解:不正确.正解:原式=6xy(2x+3y).注意:公因式要提尽.(2)把3x2-6xy+x分解因式.解:原式=x(3x-6y).解:不正确.正解:原式=3xx-6yx+1·x=x(3x-6y+1).注意:某项提出莫漏1.(3)把-x2+xy-xz分解因式.解:原式=-x(x+y-z).解:不正确.正解:原式=-(x2-xy+xz)=-x(x-y+z).注意:首项有负常提负.例3计算:(1)39×37-13×91;(2)29×20.16+72×20.16+13×20.16-20.16×14.解:(1)原式=3×13×37-13×91=13×(3×37-91)=13×20=260.(2)原式=20.16×(29+72+13-14)=2 016.例4已知a+b=7,ab=4,求a2b+ab2的值.解:∵a+b=7,ab=4,∴原式=ab(a+b)=4×7=28.设计意图:通过例题,让学生寻求不同的解题方法,体会在计算求值时,若式子各项都含有公因式,用提公因式的方法可使运算简便,感悟学习因式分解的作用,培养学生转化意识、整体思想,进一步训练运算能力.巩固训练1.多项式15m3n2+5m2n-20m2n3的公因式是(C)A.5mnB.5m2n2C.5m2nD.5mn22.把多项式(x+2)(x-2)+(x-2)提取公因式(x-2)后,余下的部分是(D)A.x+1B.2xC.x+2D.x+33.简便计算:2 0132+2 013-2 0142.解:原式=2 013×(2 013+1)-2 0142=2 013×2 014-2 0142=2 014×(2 013-2 014)=-2 014.设计意图:巩固训练共设计3个题目,针对所学知识点对本节所学知识再巩固,检验学生的学习效果,准确地进行教学评价,帮助教师发现问题和进行教学改进.课堂小结1.整式乘法和因式分解的关系是方向相反的变形,因式分解的目的是把一个多项式化成了几个整式的积的形式.2.找公因式的方法三定:定系数;定字母;定指数.3.提公因式的因式分解的步骤第一步找公因式,第二步提公因式.4.提公因式的技巧或注意问题1.要提尽;2.不漏项;3.提负数要注意变号.5.本节用到什么研究问题的方法?设计意图:引导学生从知识内容和学习过程两个方面总结自己的收获,把握本节课的核心,梳理本节课内容,回顾由具体到抽象的过程,总结方法,建立知识体系,体会类比、转化方法在研究数学问题中的重要作用,促进学生数学思维品质的优化.课堂8分钟.1.教材第115页练习第1,2,3题.2.作业.教学反思14.3.2公式法第1课时运用平方差公式因式分解课时目标1.探索并运用平方差公式进行因式分解,体会转化思想和逆向思维.2.能综合运用提公因式法和平方差公式对多项式进行因式分解,培养运算能力和应用意识.3.培养良好的推理能力,体会“化归”与“整体”的思想方法,形成灵活的应用能力.学习重点掌握平方差公式的特点,运用平方差公式进行因式分解.学习难点灵活应用平方差公式因式分解.课时活动设计回顾引入之前学习了平方差公式,今天先回顾一下.计算:(1)(x+2)(x-2);(2)(x-1)(x+1).选两名学生黑板上板书计算过程:解:(1)(x+2)(x-2)=x2-4.(2)(x-1)(x+1)=x2-1.设计意图:从结构上认识本节课所研究的多项式的结构特点,引出课题,培养学生观察问题的能力和模型观念.探究新知问题:多项式a2-b2有什么特点?你能将它分解因式吗?学生观察得出结论:a2-b2=(a+b)(a-b)是a,b两数的平方差的形式.追问1:你能根据符号语言写出文字语言吗?师生活动:教师引导学生结合整式乘法归纳出因式分解平方差公式的文字语言:两个数的平方差,等于这两个数的和与这两个数的差的积.追问2:如图,在边长为a米的正方形上剪掉一个边长为b米的小正方形,将剩余部分拼成一个长方形,根据此图形变换,你能验证刚才的公式吗?师生活动:教师首先引导学生利用面积验证平方差公式,提问两名同学分别列出左右两个图形涂色区域的面积.左:涂色区域的面积=a2-b2;右:涂色区域的面积=(a+b)(a-b).根据左右涂色区域的面积相等得到:a2-b2=(a+b)(a-b).设计意图:通过利用拼图求面积验证平方差公式,培养学生多角度思考问题的习惯和图形语言、符号语言、文字语言的相互转化能力.典例精讲例1分解因式:(1)4x2-9;(2)(x+p)2-(x+q)2.解:(1)原式=(2x)2-32=(2x+3)(2x-3).(2)原式=[(x+p)+(x+q)]·[(x+p)-(x+q)].例2分解因式:(1)x4-y4;(2)a3b-ab.解:(1)原式=(x2)2-(y2)2=(x2+y2)(x2-y2)=(x2+y2)(x+y)(x-y).(2)原式=ab(a2-1)=ab(a+1)(a-1).例3已知x2-y2=-2,x+y=1,求x-y,x,y的值.解:∵x2-y2=(x+y)(x-y)=-2,∵x+y=1,①∴x-y=-2.②联立①②,组成二元一次方程组{x+y=1, x-y=−2,解得{x =−12,y =32. 例4 计算下列各题:(1)1012-992; (2)53.52×4-46.52×4. 解:(1)原式=(101+99)×(101-99)=200×2=400. (2)原式=4×(53.52-46.52) =4×(53.5+46.5)(53.5-46.5) =4×100×7=2 800.例5 求证:当n 为整数时,多项式(2n +1)2-(2n -1)2一定能被8整除. 证明:原式=(2n +1+2n -1)(2n +1-2n +1)=4n ·2=8n , ∵n 为整数,∴8n 能被8整除.即多项式(2n +1)2-(2n -1)2一定能被8整除.设计意图:进一步通过例题强调平方差公式和因式分解的两种方法的综合应用,让学生体会若用平方差公式分解后的结果中有公因式,一定要再用提公因式法继续分解,分解到不能再分解为止,体会“一提二套三彻底”,培养学生归纳抽象能力和数学思想方法的掌握.巩固训练1.下列多项式中能用平方差公式分解因式的是( D )A.a 2+(-b )2B.5m 2-20mnC.-x 2-y 2D.-x 2+9 2.把下列各式分解因式: (1)16a 2-9b 2= (4a +3b )(4a -3b ) ; (2)(a +b )2-(a -b )2= 4ab ; (3)2x 2-8= 2(x +2)(x -2) ; (4)-a 4+16= (4+a 2)(2+a )(2-a ) .3.如图,在边长为6.8 cm 正方形钢板上,挖去4个边长为1.6 cm 的小正方形,求剩余部分的面积.解:根据题意,得6.82-4×1.62=6.82-(2×1.6)2=6.82-3.22=(6.8+3.2)(6.8-3.2)=10×3.6=36(cm2).答:剩余部分的面积为36 cm2.设计意图:共设计3个题目,针对所学知识点对本节所学知识再巩固,检验学生的学习效果,准确地进行教学评价,帮助教师发现问题和进行教学改进.课堂小结1.因式分解有哪些方法?2.能用平方差公式因式分解的结构特点是什么?3.平方差公式因式分解的步骤及注意问题有什么?4.本节用到什么研究问题的方法?5.根据本节的研究思路思考因式分解还有什么方法?设计意图:以提问的方式引导学生从知识内容和学习过程两个方面总结自己的收获,把握本节课的核心,梳理本节课内容,回顾由具体到抽象的过程,总结方法,建立知识体系,体会类比、转化方法在研究数学问题中的重要作用,促进学生数学思维品质的优化.课堂8分钟.1.教材第119页习题14.3第2,5(4)题.2.作业.教学反思第2课时运用完全平方公式因式分解课时目标1.理解完全平方公式的结构特点,培养模型观念.2.经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.在运用完全平方公式法进行因式分解的同时,培养学生的观察、比较和判断能力以及运算能力.学习重点掌握完全平方公式的结构特点,运用完全平方公式进行因式分解.学习难点理解完全平方公式的结构特征,灵活运用完全平方公式进行因式分解.课时活动设计回顾引入之前学习了完全平方公式,今天先来回顾一下.计算:(1)(x+2)(x+2);(2)(x-1)(x-1).选两名学生黑板上板书计算过程:解:(1)(x+2)(x+2)=x2+4x+4.(2)(x-1)(x-1)=x2-2x+1.设计意图:通过复习旧知,巩固因式分解和整式乘法的关系,为探究新知做准备,回顾完全平方公式,注重知识间的联系和知识体系的渗透,培养知识的迁移能力.探究新知问题1:观察多项式a2+2ab+b2,a2-2ab+b2,并回答下列各题.(1)每个多项式有几项?解:三项.(2)每个多项式的第一项和第三项有什么特征?解:都是一个数的平方.(3)中间项和第一项,第三项有什么关系?解:中间项是正负这两个数的积的2倍.追问:你能用符号语言和文字语言表述完全平方式吗?师生活动:选两名学生在黑板上板书整式乘法的完全平方公式.(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.等号两边互换位置,就得到:a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.教师引导学生用文字表述完全平方式:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.问题2:你能把下面4个图形拼成一个正方形,并根据拼成的图形的面积写出等量关系吗?学生动手操作,通过拼图前后图形面积相等写出等量关系a2+2ab+b2=(a+b)2.设计意图:学生在归纳出完全平方式的结构特征后,尝试用符号语言和文字语言表述完全平方式,最后通过动手操作,以拼图的形式再次验证完全平方式,同时在探究过程中感受到学习数学的乐趣.典例精讲例1分解因式:(1)16x2+24x+9;(2)-x2+4xy-4y2.解:(1)原式=(4x)2+2·4x·3+32=(4x+3)2.(2)原式=-(x2-4xy+4y2)=-(x-2y)2.例2把下列各式分解因式:(1)3ax2+6axy+3ay2;(2)(a2+4)2-16a2.解:(1)原式=3a(x2+2xy+y2)=3a(x+y)2.(2)原式=(a2+4)2-(4a)2=(a2+4+4a)(a2+4-4a)=(a+2)2(a-2)2.例3计算:(1)1002-2×100×99+992;(2)342+34×32+162;(3)7652×17-2352×17.解:(1)原式=(100-99)2=1.(2)原式=(34+16)2=2 500.(3)原式=17×(7652-2352)=17×(765+235)(765-235)=17×1 000×530=9 010 000.例4已知a2+b2+2a-4b+5=0,求2a2+4b-3的值.解:由已知可得(a2+2a+1)+(b2-4b+4)=0,即(a+1)2+(b-2)2=0,解得a=-1,b=2.∴2a2+4b-3=2×(-1)2+4×2-3=7.设计意图:通过多种方法的综合应用,感受因式分解给计算带来的便捷,选题层次分明考察各有侧重点,让学生体会“数式同性”,掌握研究方法和知识的迁移性,形成体系,培养数感和运算能力.巩固训练1.下列四个多项式中,能因式分解的是(B)A.a2+1B.a2-6a+9C.x2+5yD.x2-5y2.把多项式4x2y-4xy2-x3分解因式的结果是(B)A.4xy(x-y)-x3B.-x(x-2y)2C.x(4xy-4y2-x2)D.-x(-4xy+4y2+x2)3.把下列多项式因式分解.(1)4(2a+b)2-4(2a+b)+1;(2)y2+2y+1-x2.解:(1)原式=[2(2a+b)]2-2·2(2a+b)·1+12=(4a+2b-1)2.(2)原式=(y+1)2-x2=(y+1+x)(y+1-x).设计意图:共设计3个题目,针对所学内容对本节所学知识再巩固,检验学生的学习效果,准确地进行教学评价,帮助教师发现问题和进行教学改进.课堂小结(1)因式分解有哪些方法?(2)能用完全平方公式因式分解的结构特点是什么?(3)因式分解的步骤及注意问题有什么?(4)本节用到什么研究问题的方法?设计意图:引导学生从知识内容和学习过程两个方面总结自己的收获,把握本节课的核心,梳理本节课内容,回顾由具体到抽象的过程,总结方法,建立知识体系,体会类比、转化方法在研究数学问题中的重要作用,促进学生数学思维品质的优化.课堂8分钟.1.教材第119页练习第1,2题.2.作业.教学反思。

人教版数学八年级上第十四章14.3因式分解第一课时教案-word文档

人教版数学八年级上第十四章14.3因式分解第一课时教案-word文档

第十四章整式的乘法和因式分解14.3 因式分解第一课时14.3.1 提公因式法1 教学目标1.1 知识与技能:[1]理解因式分解的概念,知道因式分解和整式的乘法是方向相反的变形。

[2]理解公因式的概念,会根据“三定法”确定公因式。

[3]掌握因式分解中的提公因式法。

1.2过程与方法:[1]通过对比整式乘法,理解因式分解的概念,发展学生的逆向思维能力。

[2]通过类比数的结合律,抽象出因式分解中的提公因式方法。

1.3 情感态度与价值观:[1]在数学运算中培养学生细致严谨的精神素养。

[2]让学生初步感受对立统一的辨证观点以及实事求是的科学态度。

2 教学重点/难点/易考点2.1 教学重点[1]因式分解的概念及提公因式法。

2.2 教学难点[1]正确找出多项式各项的公因式[2]正确认识分解因式与整式乘法的区别和联系。

3 专家建议学生刚刚学习过有关幂的运算,因此在教学设计中可以多适当安排一些有关幂的、应用提公因式法的分解因式题目。

此外,因式分解属于新概念,它和学生以往的运算认知是相反的,教师在教学过程中应该耐心面对学生的错误,并多举出实例使学生区别整式乘法和因式分解。

4 教学方法观察思考——概念介绍——补充讲解——练习提高5 教学用具多媒体。

6 教学过程6.1 引入新课【师】同学们好。

这节课开始,我们先来思考一个问题,630能被哪些数整除?【生】把630分解质因数,可以得到:630=2×32×5×7。

【师】这个问题大家小学就知道了对吧,但现在我们在学习整式的乘法,所以我们可以想一下,一个数可以写成若干个因数乘积的形式,整式能不能这样做呢?这就是这节课我们要学习的内容。

【板书】第十四章整式的乘法和因式分解14.3 因式分解14.3.1 提公因式法6.2 新知介绍[1]因式分解的概念【师】大家看投影(给出114页探究),首先我们来完成这样的一个任务:把下列多项式写成整式的乘积的形式。

根据整式的乘法,你能得到答案么?【生】(完成题目,给出答案)。

人教版数学八年级上册教学设计《14-3因式分解》(第1课时)

人教版数学八年级上册教学设计《14-3因式分解》(第1课时)

人教版数学八年级上册教学设计《14-3因式分解》(第1课时)一. 教材分析《14-3因式分解》是人教版数学八年级上册的教学内容,本节课主要让学生掌握因式分解的方法和技巧,并能应用于实际问题中。

教材通过引入实例和问题,引导学生探究因式分解的规律,从而达到理解并掌握因式分解的目的。

二. 学情分析学生在学习本节课之前,已经掌握了整式的乘法、平方差公式等基础知识,具备了一定的数学思维能力。

但因式分解较为抽象,需要学生通过实例和问题去理解和掌握。

因此,在教学过程中,需要关注学生的学习兴趣,激发他们的探究欲望,帮助他们建立因式分解的知识体系。

三. 教学目标1.知识与技能:让学生掌握因式分解的方法和技巧,能够独立完成因式分解的题目。

2.过程与方法:通过实例和问题,引导学生探究因式分解的规律,培养学生的逻辑思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养他们独立思考和解决问题的能力。

四. 教学重难点1.重点:因式分解的方法和技巧。

2.难点:如何引导学生发现并总结因式分解的规律。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过提出问题,引导学生思考和探究;通过案例分析,让学生理解并掌握因式分解的方法;通过小组合作,培养学生的团队协作能力。

六. 教学准备1.准备相关的实例和问题,用于引导学生探究因式分解的规律。

2.准备PPT,用于展示和讲解因式分解的方法和技巧。

七. 教学过程1.导入(5分钟)通过提出一个实际问题,引导学生思考如何将问题转化为数学问题。

例如:已知一家电器商店举行优惠活动,购买一台电视需要支付1200元,同时赠送一个价值300元的音响。

请问,购买一台电视和一台音响需要支付多少钱?2.呈现(10分钟)展示PPT,呈现因式分解的定义和基本方法。

解释因式分解的意义,以及如何将一个多项式转化为几个整式的乘积。

3.操练(10分钟)让学生独立完成一些因式分解的题目,教师巡回指导。

题目难度可以适当调整,以满足不同学生的需求。

人教版数学八年级上册14.3.因式分解(第1课时)优秀教学案例

人教版数学八年级上册14.3.因式分解(第1课时)优秀教学案例
二、教学目标
(一)知识与技能
1.让学生掌握因式分解的基本概念,理解因式分解的意义和作用。
2.使学生掌握提公因式法和公式法这两种基本的因式分解方法,并能够运用这两种方法进行简单的因式分解。
3.培养学生运用因式分解解决一些实际问题的能力,提高学生的数学应用意识。
4.培养学生运用数学知识分析和解决问题的能力,提高学生的数学思维水平。
2.问题导向的教学策略:本节课通过设计具有层次性和挑战性的问题,引导学生进行思考和探究,使学生在解决问题的过程中掌握因式分解的方法。这种问题导向的教学策略不仅培养了学生的逻辑思维能力,还提高了学生的创新解题能力。
3.小组合作的实践:通过组织学生进行小组合作,让学生在合作中探究和解决问题,提高了学生的实践能力。同时,小组合作也培养了学生的团队协作意识和交流沟通能力,使学生在合作中得到成长。
三、教学策略
(一)情景创设
1.生活情境:通过引入生活中的实际问题,让学生感受因式分解在实际生活中的应用,激发学生的学习兴趣。
2.故事情境:讲述与因式分解相关的历史故事,让学生了解因式分解的发展历程,增强学生的文化素养。
3.问题情境:创设具有挑战性和启发性的问题,引发学生的思考,引导学生进入学习状态。
2.利用故事情境:讲述与因式分解相关的历史故事,如“笛卡尔和因式分解”,激发学生的学习兴趣。
3.提出问题:创设具有挑战性和启发性的问题,如“你能将一个多项式分解成几个整式的乘积吗?”,引发学生的思考,引导学生进入学习状态。
(二)讲授新知
1.提公因式法:引导学生观察和分析多项式,找出公因式,并进行提取,让学生理解并掌握提公因式法。
2.组织讨论:引导学生积极参与讨论,鼓励学生提出自己的观点和思路,培养学生的团队协作能力。

人教版初中数学八年级上册第十四章 公式法(第1课时)

人教版初中数学八年级上册第十四章 公式法(第1课时)
人教版 数学 八年级 上册
14.3 因式分解/
14.3 因式分解
14.3.2 公式法(第1课时)
导入新知
14.3 因式分解/
如图,在边长为a米的正方形上剪掉一个边长为b
米的小正方形,将剩余部分拼成一个长方形,根据此
图形变换,你能得到什么公式?
a米
b米
(a–b)
a米 b米
a2– b2=(a+b)(a–b)
(2)原式=(a2–4b2)–(a+2b) =(a+2b)(a–2b)–(a+2b)
=(a+2b)(a–2b–1).
探究新知
14.3 因式分解/
素养考点 3 利用因式分解求整式的值
例3 已知x2–y2=–2,x+y=1,求x–y,x,y的值.
解:∵x2–y2=(x+y)(x–y)=–2,
x+y=1①,
(1) 4x2 9;
(2) (x p)2 (x q)2.
解:(1)原式= (2x)2 32 (22x 33)(22x 33) ;
a2 – b2 = ( a+ + b) (a –b)
(x ap)2 (x bq)2
(2)原式=[(x+p)+(x+q)]×[(x+p)-(x+q)]
(2x p q)( p q).
例5 求证:当n为整数时,多项式(2n+1)2–(2n–1)2一定能 被8整除.
证明:原式=(2n+1+2n–1)(2n+1–2n+1)=4n•2=8n, ∵n为整数, ∴8n被8整除, 即多项式(2n+1)2–(2n–1)2一定能被8整除.
方法总结:解决整除的基本思路就是将代数式化为整式乘积 的形式,然后分析能被哪些数或式子整除.

数学人教版八年级上册14.3.2 因式分解 公式法(第一课时)

数学人教版八年级上册14.3.2 因式分解 公式法(第一课时)

14.3.2 因式分解公式法(第一课时)一、内容和内容解析1.内容因式分解平方差公式2.内容解析本节课是在学习了提公因式法后,公式法因式分解的第一课时,它是整式乘法中平方差公式的逆向应用,在教材中处于重要的地位。

平方差公式因式分解要充分理解公式的含义,掌握公式的形式与特点. 公式左边的多项式形式上是二项式,且两项符号相反;公式左边的每一项都可以化成某一个数或式的平方形式。

基于以上分析,确定本节课的教学重点:运用平方差公式分解因式。

二、目标和目标解析1、目标(1)进一步理解因式分解的概念,体会因式分解在简化计算上的应用。

(2)会用平方差公式进行因式分解,并从中体验“整体”的思路,树立“换元”的意识。

2、目标解析达成目标(1)的标志是:学生能说出因式分解中平方差公式的特点。

知道这里的平方差公式与整式乘法中的平方差公式是互逆变形的关系。

达成目标(2)的标志是:学生在数学活动过程中,体会平方差公式的结构、特征及公式中字母的广泛含义,理解平方差公式的意义,掌握运用平方差公式解决问题的方法.并在练习中,对发生的错误做具体分析,加深对公式的理解。

三、教学问题诊断分析虽然有了第一节提公因式法做基础,但学生有时还会出现因式分解后又反转回去做乘法的错误,解决此问题的关键是让学生正确认识因式分解的概念,理解它与整式乘法的互逆变形关系。

学生在运用平方差公式分解因式的过程中经常遇到的困难是找不准哪个数或式相当于公式中的a , b 。

因此,教学中引导学生分析公式的结构特征,并运用变式训练揭示公式的本质特征,以加深学生对公式的理解.本节课的教学难点是:灵活运用平方差公式分解因式,并理解因式分解的要求。

四、教学过程设计1.复习引入问题1 你能叙述多项式因式分解的定义吗?提公因式法的定义是什么?因式分解:(1)3mx-6nx 2;(2)4a 2b+10ab-2ab 3;(3)252 y 师生活动:学生独立思考并解答,找同学的答案投影展示。

人教版八年级数学上册《14.3.因式分解》优质PPT课件

人教版八年级数学上册《14.3.因式分解》优质PPT课件

三、公式法
3、例题讲解
例3. 4a³- 4a 解:原式=4a(a²-1)
=4a(a+1)(a-1)
利用提取公因式法和平方差公式
三、公式法
3、例题讲解
例4. 5x3y(x-y)-10x4y3(y-x)2 解:原式=5x3y(x-y)-10x4y3(x-y)2
=5x3y(x-y)[1-2xy2(x-y)] =5x3y(x-y)(1-2x2y2+2xy3) 利用提取公因式法和平方差公式
14.3因式分解
情景导入
计算下列各式:
3x(x-2)=3x2-6x m(a+b+c)= ma+mb+mc (m+4)(m-4)= m2-16 (x-2)2= x2-4x+4 a(a+1)(a-1)= a3-a
3x2-6x=(3x)(x-2) ma+mb+mc=(m)(a+b+c) m2-16=(m+4)(m-4) x2-4x+4=(x-2)2 a3-a=(a)(a+1)(a-1)
多项式的第一项是系数为负数的项,一般地,应提出负系数的公 因式.但应注意,这时留在括号内的每一项的符号都要改变,且 最后一项“-x”提出时,应留有一项“+1”,而不能错解为- x(x2-x).
三、公式法
1、平方差公式
把整式乘法的平方差公式(a+b)(a-b)=a2-b2反过来,就得到 a2-b2= (a+b)(a-b),即两个数的平方差,等于这两个数的 和与这两个数的差的积.
左边一组的变形是什么运算?右边的变形与这种运算有什么不 同?右边变形的结果有什么共同的特点?
一、因式分解
1、定义
把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这 个多项式因式分解,也叫做把这个多项式分解因式.

八年级数学上册14.3因式分解课件(新版)新人教版

八年级数学上册14.3因式分解课件(新版)新人教版

,即ab=
1时,
6
原式=24ab=4.
第九页,共19页。
因式分解与特殊三角形判定(pàndìng) 的综合 例5 已知△ABC的三边长a,b,c满足(mǎnzú)a2+b2+c2-6a-
6b-10c+43=0,试判断△ABC的形状.
〔解析〕将等号的左边(zuǒ bian)变形为几个非负数的和的形 式,然后转化为关于a,b,c的方程,确定a,b,c的值即可.
第二页,共19页。
1.因式分解(yīn shì fēn jiě).
(1)16(x-1)2 - (x+2)2
(2)a2-14a+49
=[4(x-1)]2-(x+2)2
=[4(x-1)+(x+2)][4(x-1)-(x+2)] =(4x-4+x+2)(4x-4-x-2) =(5x-2)(3x-6) =3(5x-2)(x-2).
解:(1)原式=(88+112)×(88-112)=200×(-24)=-4800.
(2)原式=122+2×12×8+82=(12+8)2=202=400.
【解题归纳】 运用因式分解进行(jìnxíng)简便计算,关键是先 将所给式子进行(jìnxíng)因式分解,常见的方法:①先提公因式, 再运用公式法;②直接运用公式法.
八年级数学(shùxué)·上 标 [人]
新课
第十四章 整式的乘法(chéngfǎ)与因式 分解
14.3 因式分解(yīn shì fēn jiě)
第一页,共19页。
选择合适(héshì)的方法进行因式分
例1 把下列(xiàliè解)各式因式分解.

人教版八年级上册14.3.1提公因式法教案设计

人教版八年级上册14.3.1提公因式法教案设计

课题:14.3因式分解第1课时教学内容提公因式法教学目标知识与技能:1.使学生了解因式分解的概念以及因式分解与整式乘法的关系.2.了解公因式的概念和提取公因式的方法.3.会用提取公因式的方法分解因式.过程与方法:1.通过学习提取公因式法提取公因式,掌握寻找公因式的方法和提取公因式的方法.2.理解因式分解的最后结果,每个因式要分解到不能再分解为止.情感、态度与价值观:在探索提公因式法分解因式的过程中,学会逆向思维,渗透化归的思想方法.教学重点会用提取公因式法分解因式.教学难点如何确定公因式以及提取公因式后的另外一个因式.教学方法讲练结合.教学准备多媒体课件.教学过程设计设计意图教学过程一、新课引入新兴一中决定购买m台电脑和m套桌子,现在知道每台电脑的单价为a元,每套桌子的单价为b元,那么怎样表示该校购买电脑和桌子总共需要的资金呢?答案一:购买一台电脑和一套桌子需(a+b)元,购买m台电脑和m套桌子共需m(a+b)元.答案二:购买m台电脑需ma元,购买m套桌子需mb元,则购m台电脑和m套桌子共需(ma+mb)元.从这两种方法中,我们发现了什么?ma+mb=m(a+b).二、新课探究我们知道,利用整式的乘法运算,有时可以将几个整式的乘积化为一个多项式的形式,反过来,在式的变形中,有时需要将一个多项式写成几个整式的乘积的形式.1、请把下列多项式写成整式的积的形式:(1)x2+x=(2)x2-1= .通过情境导入,让学生掌握数学来源于生活的道理,从而激发学生的学习热情,自然地转入到从观察ma+mb=m(a+b)这个式子的特点入手,以此引出因式分解的定义.(1)x2+x=x(x+1);(2)x2-1=(x+1)(x-1).下面请同学们观察上述两个式子和ma+mb=m(a+b),这些式子的共同特点是什么?学生通过观察得出:等式左边是多项式,右边都是乘积的形式.上述式子,左边是一个多项式,右边是两个因式的乘积,这种从左到右的变形,我们叫因式分解.2、因式分解:把一个多项式化成几个整式的积的形式,叫做因式分解,也叫做把这个多项式分解因式.正确理解因式分解要注意以下三点:(1)因式分解的对象是多项式,不是单项式,也不是以后我们要学习的分式.(2)因式分解的结果是整式的乘积的形式.(3)不能走回头路,如x2-1=(x+1)(x-1)=x2-1,本来已经完成了对x2-1的因式分解,但习惯性地按整式乘法算出x2-1 的结果,就画蛇添足了.练习:下列从左到右的变形中,哪些是分解因式?哪些不是分解因式?为什么?(1)12ab= 3a·4b;(2)(x+3)(x-3)=x2 -9;(3)4x2 -8x-1=4x(x-2)-1;(4)2ax-2ay=2a(x-y);(5)a2-4ab+4b2 =(a-2b)2.总结:(1)分解因式是多项式的恒等变形,也就是分解因式的结果的积等于多项式.(2)分解因式的结果必须是整式的积的形式,每个因式必须是整式且每个因式的次数都不高于原来多项式的次数.因式分解时,左边必须是多项式,右边是几个因式的乘积,且又是左、右两边恒等,那么分解因式与整式乘法有什么关系?(板书)分解因式与整式乘法的关系如果把整式乘法看作一个变形过程,那么多项式的分解因式就是整式乘法的逆过程;如果把多项式的分解因式看作一个变形过程,那么整式乘法又是多项式的分解因式的逆过程.因此,多项式的分解因式与整式乘法互为逆过程,ma+mb m(a+b)3、提公因式法我们知道,由单项式乘多项式可知m(a+b+c) =ma+mb+mc,而反过来ma+mb+mc一定等于m(a+b+c),这种变形我们知道就是因式分解.在ma+mb+mc=m(a+b+c)中,m又被称作什么呢?学生可能发现“m”存在于多项式的每一项中,在学生充分观察、讨论基础上,教师给予点拨.公因式:多项式中各项都含有的相同因式.练习:下列说法中正确的是()A.多项式mx2-mx+2中各项的公因式为mB.多项式7a3 +15b无公因式C.1+x3中各项公因式为x2D.多项式10x2y3-5y3+15xyz的公因式是5y2让学生由公因式定义出发,去分析、比较确定答案,并引导学生总结在理解公因式定义时应注意什么.注意:(1)多项式的每一项都含有,体现“公”字.(2)各项所含有的相同的因式.确定公因式的方法:(1)取多项式各项系数的最大公约数为公因式的系数;(2)取各项都含有的相同字母或相同因式的最低次幂作为公因式的因式.如:求多项式4x2y3 z-12x3y4的公因式.如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫提公因式法.注意:(1)提公因式法的关键是确定公因式,但提出公因式后,还应准确地确定另一个因式.(2)提公因式的依据是逆用乘法分配律.(3)提公因式时要防止出现以下错误:①漏项;②变错符号.三、知识运用例1、把8a3b2+12ab3c分解因式.〔解析〕先要求学生思考这个问题的最后结果应是怎样的,然后仿照教材进行分析,注意讲清确定公因式的具体步骤,从数、字母和字母的次数三个方面进行分析;分解因式完成后要分析公因式和另一个因式之间的关系,并思考:如果提出公因式4ab,另一个因式是否还有公因式?从而把提公因式的“提”的具体含义深刻化,这是提公因式法的正确性的重要保证.例2、把2a(b+c)-3(b+c)因式分解.〔解析〕可引导学生对该多项式的每项因式的特点进行仔细观察,从而发现把b+c看作一个“整体”时公因式就是b+c,再用提公因式法进行分解.例3、计算:0.84×12+12×0.6-0.44×12.〔解析〕让学生观察并分析怎样计算更简单. 例3是因式分解在计算中的四、课堂练习P115 1、2、3题五、课堂小结1.因式分解(1)定义:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.等式特点:左边:多项式;右边:整式×整式,整式乘整式结果是多项式,而多项式也可以变形为相应的整式与整式的乘积,我们就把这种多项式的变形叫做因式分解.(2)因式分解:pa+pb+pc=p(a+b+c).①(3)整式乘法:p(a+b+c)=pa+pb+pc.②(4)联系:都是由几个相同的整式组成的等式.(5)区别:这几个相同的整式所在的位置不同,①式是因式分解,②式是整式乘法,两者是方向相反的恒等变形,二者是一个式子的不同表现形式,一个是多项式的表现形式,一个是两个或几个因式积的表现形式.2.公因式(1)多项式pa+pb+pc中,各项都含有一个公共的因式p,因式p叫做这个多项式各项的公因式.(2)注意:公因式是每一项都含有的因式,是单项式或多项式.(3)公因式的确定方法:各项系数的最大公因数和相同字母的最低次幂的积.3.提公因式定义:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.由定义可知,提公因式法的关键是如何正确地寻找公因式. 应用,学习例3使学生对因式分解的重要性有新的认识.布置作业P119 1题板书设计提公因式法一、新课引入三、知识运用五、课堂小结二、新课探究四、课堂练习六、作业课题:14.3因式分解第2课时教学内容公式法—平方差公式教学目标知识与技能:1.能说出平方差公式的特点.2.能比较熟练地应用平方差公式进行因式分解.过程与方法:1.在运用平方差公式进行因式分解的同时培养学生的观察、比较和判断能力以及运算能力,用不同的方法分解因式可以提高综合运用知识的能力.2.进一步体会“整体”思想,培养“换元”的意识.情感、态度与价值观:培养学生的观察、联想能力,进一步了解换元的思想方法.教学重点应用平方差公式分解因式.教学难点灵活应用平方差公式和提公因式法分解因式,并理解因式分解的要求. 教学方法讲练结合.教学准备多媒体课件.教学过程设计设计意图教学过程一、新课引入1、你能叙述多项式因式分解的定义吗?2、运用提公因式法分解因式的步骤是什么?3、你能将a2-b2分解因式吗?你是如何思考的?通过复习引入新课,让学生体会知识间的必然联系,认识到了除了用提公因式法进行因式分解,还有其他的因式分解的方法.二、新课讲解1、问题1.多项式的因式分解其实是整式乘法的逆用,也就是把一个多项式化成了几个整式的积的形式.问题2.提公因式法的第一步是观察多项式各项是否有公因式,如果没有公因式,就不能使用提公因式法对该多项式进行因式分解.问题3.对不能使用提公因式法分解因式的多项式,不能说不能进行因式分解.要将a2 -b2进行因式分解,可以发现它没有公因式,不能用提公因式法分解因式,但我们还可以发现这个多项式是两个式的平方差形式,所以用平方差公式可以写成如下形式:a2 -b2=(a+b)(a-b).这种分解因式的方法称为运用公式法.今天我们就来多项式的乘法公式的逆向应用,就是多项式的因式分解公式,如果被分解的多项式符合公式的条件,就可以直接写出因式分解的结学习利用平方差公式分解因式.观察平方差公式: a2 -b2=(a+b)(a-b)的项、指数、符号有什么特点?归纳总结:(1)左边是二项式,每项都是平方的形式,两项的符号相反;(2)右边是两个多项式的积,一个因式是两数的和,另一个因式是这两数的差;(3)在乘法公式中,“平方差”是计算结果,而在因式分解中,“平方差”是分解因式的多项式,由此可知如果多项式是两数差的形式,并且这两个数又都可以写成平方的形式,那么这个多项式可以运用平方差公式分解因式.2、把一个多项式分解因式,一般可按下列步骤进行:(1)如果多项式的各项有公因式,那么先提取公因式.(2)如果多项式的各项没有公因式(或已提取公因式),那么可尝试用公式法来分解.(3)分解因式必须进行到每一个因式都不能再分解为止.3、填空:(1)4a2=( )2;(2)b2=( )2;(3)a4=( )2;(4)121a2b2=( )2;(5)x4=( )2;(6)x4y6=( )2.三、知识运用例1、分解因式.(1) 4x2 -9;(2)(x+p)2-(x+q)2.可以通过多媒体课件演示(1)中的2x,(2)中的x+p相当于平方差公式中的a;(1)中的3,(2)中的x+q相当于平方差公式中的b,进而说明公式中的a与b可以表示一个数,也可以表示一个单项式,甚至是多项式,渗透换元思想.解:(1)4x2 -9=(2x)2-32=(2x+3)(2x-3).(2)(x+p)2-(x+q)2=[(x+p)+(x+q)][(x+p)-(x+q)]=(2x+p+q)(p-q).例2、分解因式.(1)x4-y4;(2)a3b-ab.〔解析〕(1)x4-y4可以写成(x2)2 -(y2)2的形式,这样就可以利用平方差公式进行因式分解了.但分解到(x2+y2)(x2-y2)后,部分学生不会继续分解因式,针对这种情况,可以回顾因式分解定义后,让学生理解因式分解的要求是果,由问题3学生比较容易想到前面所学的平方差公式.填空题的作用在于训练学生迅速地把一个单项式写成平方的形式.也可以对积的乘方、幂的乘方运算法则给予一定时间复习,避免出现4a2=(4a)2这一类错误.必须进行到多项式的每一个因式都不能再分解为止.(2)不能直接利用平方差公式分解因式,但通过观察可以发现a3b-ab有公因式ab,应先提出公因式,再进一步分解.注意:(1)多项式分解因式的结果要化简;(2)在化简过程中要正确应用去括号法则,并注意合并同类项;(3)分解因式,必须进行到每一个因式都不能再分解为止.四、课堂练习 P117 练习1、2题五、课堂小结1.公式:a2-b2=(a+b)(a-b).2.法则:两个数的平方差,等于这两个数的和与这两个数的差的积.3.注意:(1)左边是二项式,每项都是平方的形式,两项的符号相反;(2)右边是两个多项式的积,一个因式是两数的和,另一个因式是这两数的差;(3)在乘法公式中,“平方差”是计算结果,而在因式分解中,“平方差”是要分解因式的多项式;(4)平方差公式的使用条件:如果多项式是两数差的形式,并且这两个数又都可以写成平方的形式,那么这个多项式可以运用平方差公式分解因式.布置作业P119 2题板书设计公式法—平方差公式一、新课引入三、知识运用五、课堂小结二、新课讲解四、课堂练习六、作业课题:14.3因式分解第3课时教学内容公式法—完全平方公式教学目标知识与技能:1.经历用公式法分解因式的探索过程.2.能比较熟练地运用完全平方公式分解因式.3.会用提公因式法、完全平方公式法分解因式,并能说出提公因式法在这类因式分解中的作用.过程与方法:1.通过综合运用提公因式、完全平方公式分解因式,进一步培养学生的观察和联想能力.2.通过知识结构图培养学生归纳总结的能力.情感、态度与价值观:1.体验数学活动充满着探索性.2.在数学学习过程中获得成功的体验和喜悦,树立学习的自信心.教学重点用完全平方公式分解因式.教学难点灵活应用公式分解因式.教学方法讲练结合.教学准备多媒体课件.教学过程设计设计意图教学过程一、新课引入【问题】把下列各式分解因式.(1)a2 +2ab+b2;(2)a2-2ab+b2.能不能用语言叙述呢?两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方.其实就是完全平方公式的符号表示,即:a2 +2ab+b2=(a+b)2,a2-2ab+b2 =(a-b)2.把整式乘法的完全平方公式反过来写,即因式分解的完全平方公式.二、新课讲解1、下列各式是不是完全平方式?(1)a2 -4a+4; (2)x2 +4x+4y2;(3)4a2 +2ab+b2;(4)a2 -ab+b2;引导学生对比两个公式,类比平方差公式,得出用完全平方公式因式分解的方法.出示习题,并放手让学生讨论,达到熟悉公式结构特征的目(5)x2 -6x-9; (6)a2+a+0.25.[方法总结]完全平方公式的特点是左边是一个二次三项式,其中有两个数的平方和与这两个数的积的2倍或这两个数的积的2倍的相反数,符合这些特征,就可以化成右边的两数和(或差)的平方形式.完全平方公式适合分解三项的多项式,要掌握这一公式的形式和特点.运用公式法分解因式的关键是弄清各公式的形式和结构,选择适当的公式进行因式分解,公式中的字母可以是任何数、单项式或多项式.对照a2±2ab+b2=(a±b)2填空.1.x2+4x+4=( )2+2( )( )+( )2=( + )2.2.m2-6m+9=( )2- 2( )( )+( )2=( - )2.注意:公式中的a,b可以表示单项式甚至是多项式.三、例题讲解例1、分解因式(1)16x2+24x+9;(2)-x2+4xy-4y2.〔解析〕(1)分析:在(1)中,16x2=(4x)2,9=32,24x=2·4x·3,所以16x2 +24x+9是一个完全平方式,即:16x2+24x+9=(4x)2+2·4x·3+32+ +a2+ 2·a·b+ b2(2)分析:在(2)中两个平方项前有负号,所以应考虑用添括号法则将负号提出,然后再考虑完全平方公式,因为4y2 =(2y)2,4xy=2·x·2y.所以:-x2+4xy-4y2=-(x2-4xy+4y2)=-[x2-2·x·2y+(2y)2]- +a2- 2·a·b+ b2例2、分解因式(1) 3ax2 +6axy+3ay2;(2)(a+b)2 -12(a+b)+36.〔解析〕(1)中有公因式3a,应先提出公因式,再进一步分解;(2)中,将a+b看作一个整体,设a+b=m,则原式化为完全平方式m2 -12m+36.解:(1)3ax2 +6axy+3ay2=3a(x2+2xy+y2)=3a(x+y)2. 的.通过这几个判断题可以让学生明确只要给出的多项式符合完全平方公式的结构特征,就可以运用公式进行分解.(2)(a+b)2 -12(a+b)+36=(a+b)2-2·(a+b)·6+62=(a+b-6)2.可以看出,如果把乘法公式的等号两边互换位置,就可以得到用于分解因式的公式,用来把某些具有特殊形式的多项式分解因式,这种分解因式的方法叫做公式法.四、课堂练习 P119 练习 1、2题五、课堂小结1.(a±b)2=a2±2ab+b2与a2±2ab+b2=(a±b)2都叫做完全平方公式,前者是用来进行多项式的乘法运算,后者是用来进行因式分解.2.应用a2±2ab+b2=(a±b)2分解因式时要抓住公式特点:公式左边是一个二次三项式,右边是二项式的平方,当左边是两数的平方和加上这两数的积的2倍时,右边就是这两个数的和的平方的形式,当左边是两个数平方的和与这两个数积的2倍的差时,右边就是这两个数的差的平方的形式,仅一个符号不同.3.要注意平方差公式的综合应用,分解到每一个因式都不能再分解为止.对于因式分解与整式乘法的关系布置作业P119习题 3题板书设计公式法—完全平方公式一、新课引入三、例题讲解五、课堂小结二、新课讲解四、课堂练习六、作业。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)3mx-6my;
(3)8m n+ 2mn;
(4)12 xyz -9 x y ; a - b (5)2(y -z)3(z -y);
2 2
2
(a 2 +b2)(a 2 +b 2). -q (6) p
初步应用提公因式法
先分解因式,再求值. 2 4a(x+ 7)(x+ 7) ,其中 a =-5,x=3. -3 练习3
课堂小结
(1)本节课学习了哪些主要内容? (2)因式分解的目的是什么?因式分解与整式乘法 有什么区别和联系? (3)提公因式法的一般步骤是什么?应用提公因式 法分解因式时要注意什么?
布置作业
教科书习题14.3第1、4(1)题.
八年级
上册
14.3 因式分解 (第1课时)
课件说明
• 本课是在学生学习了整式乘法的基础上,研究对整 式的一种变形即因式分解,是把一个多项式转化成 几个整式相乘的形式,它与整式乘法是互逆变形的 关系.
课件说明
• 学习目标: 1.了解因式分解的概念. 2.了解公因式的概念,能用提公因式法进行因式 分 解. • 学习重点: 运用提公因式法分解因式.
了解因式分解的概念
在多项式的变形中,有时需要将一个多项式化成几 个整式的积的形式,这种式子变形叫做这个多项式的因 式分解,也叫做把这个多项式分解因式. 你认为因式分解与整式乘法有什么关系?
因式分解与整式乘法是互逆变形关系.
了解因式分解的概念
练习1 下列变形中,属于因式分解的是: a = (1) (b+c)ab+ac;
= 4ab 2a +3bc). (
2 2
初步应用提公因式法
通过对例1的解答,你有什么收获? (1)公因式是多项式各项系数的最大公约数和各项都 含有的字母及多项式的最低次幂的乘积; (2)提公因式法就是把多项式分解成两个因式乘积的 形式,其中一个因式是各项的公因式,另一个因 式是由多项式除以公因式得到的; (3)用提公因式分解因式后,应保证含有多项式的因 式中再无公因式.
( (2) x + 2 x -3=x x+ 2)3; 2 2 a -b =(a+b) a-b) ( . (3)
3 你能试着将多项式 pa+pb+pc 因式分解吗? (1)这个多项式有什么特点? (2)因式分解的依据是什么? (3)分解后的各因式与原多项式有何关系?
初步应用提公因式法
例2 把 2(b+c)(b+c) 分解因式. a -3
a -3 解: 2(b+c)(b+c)
=(b+c) 2a-3). (
初步应用提公因式法
通过对例2的解答,你有什么收获?
公因式可以是单项式,也可以是多项式.
初步应用提公因式法
练习2 把下列各式分解因式:
(1)ax+ay;
了解因式分解的概念
上一节我们已经学习了整式的乘法,知道可以将几 个整式的乘积化为一个多项式的形式.反过来,在式的 变形中,有时需要将一个多项式写成几个整式的乘积的 形式. 请把下列多项式写成整式的乘积的形式:
(x+1 x ) x 2 +x= _______________ ; (x+1) x-1) x 2 -1= ________________. (
探索因式分解的方法——提公因式法
一般地,如果多项式的各项有公因式,可以把这个 公因式提取出来,将多项式写成公因式与另一个因式的 乘积的形式.这种分解因式的方法叫做提公因式法.
初步应用提公因式法
例1 把 8a 3b 2 +12ab3c 分解因式.
解: 8a 3b 2 +12ab3c
= 4ab 2 2a 2 + 4ab 2 3bc
相关文档
最新文档