浅谈逆向工程技术
《2024年逆向工程技术的研究与工程应用》范文
![《2024年逆向工程技术的研究与工程应用》范文](https://img.taocdn.com/s3/m/f6516e8977eeaeaad1f34693daef5ef7bb0d1257.png)
《逆向工程技术的研究与工程应用》篇一一、引言逆向工程技术是一种通过分析已有产品或系统的性能、结构、功能等,从而获取其设计原理、制造工艺、技术参数等关键信息的技术。
随着科技的不断进步,逆向工程技术已经成为产品创新、技术升级和市场竞争的重要手段。
本文将就逆向工程技术的原理、方法及其在工程领域的应用进行详细探讨。
二、逆向工程技术的原理与方法1. 逆向工程技术的原理逆向工程技术基于对已有产品或系统的逆向分析,通过获取其结构、性能、功能等关键信息,进行反向推导,从而掌握其设计原理、制造工艺和技术参数。
这一过程需要借助多种技术手段,如物理测量、化学分析、计算机辅助设计等。
2. 逆向工程的方法(1)物理测量法:通过使用各种测量设备,如三坐标测量机、激光扫描仪等,对产品进行尺寸测量和形状分析。
(2)化学分析法:通过对产品材料进行化学成分分析和组织结构分析,了解材料的性能和制备工艺。
(3)计算机辅助设计法:利用计算机辅助设计软件对测量和化学分析结果进行建模和仿真,获取产品的设计原理和制造工艺。
三、逆向工程技术在工程领域的应用1. 产品创新与优化逆向工程技术可以用于产品的创新与优化。
通过对已有产品的结构、性能、功能等进行深入分析,可以获取其设计原理和制造工艺,从而为新产品的设计和优化提供参考。
此外,逆向工程技术还可以用于对复杂产品的快速原型制作,缩短产品研发周期。
2. 技术升级与改造逆向工程技术可以用于技术升级与改造。
对于一些老旧设备或生产线,通过逆向工程技术获取其关键技术和制造工艺,可以对其进行技术升级和改造,提高其性能和效率。
此外,逆向工程技术还可以用于对一些复杂设备的维修和维护,降低维修成本和时间。
3. 知识产权保护与侵权调查逆向工程技术还可以用于知识产权保护与侵权调查。
通过对疑似侵权产品的分析,可以获取其设计原理和制造工艺,从而判断其是否侵犯了原产品的知识产权。
此外,逆向工程技术还可以用于对产品进行反伪造和溯源,保护消费者的权益。
逆向工程技术在工业设计中的应用研究
![逆向工程技术在工业设计中的应用研究](https://img.taocdn.com/s3/m/1dc5a8b8710abb68a98271fe910ef12d2bf9a95d.png)
逆向工程技术在工业设计中的应用研究引言:随着科技的不断进步和信息化时代的到来,工业设计在近年来逐渐成为了众多公司竞争的一项重要优势。
工业设计的目标是通过创新的设计来提升产品的竞争力和用户体验,并实现产品的差异化。
然而,要实现好的工业设计并不是一件容易的事情,需要进行大量的研究和实践。
而逆向工程技术正是一种能够在工业设计中发挥重要作用的技术手段。
本文将探讨逆向工程技术在工业设计中的应用研究,并分析其优势、挑战以及未来发展趋势。
一、逆向工程技术的基本概念和原理逆向工程是一种通过分析和解剖物体的内部或外部结构,来获得物体的构造和设计要素的技术方法。
逆向工程技术的基本步骤主要包括数据采集、数据处理、重建模型和设计修正。
数据采集可以使用多种手段,如3D扫描、光学成像等,来获取物体的外部形状和内部结构信息。
数据处理是为了将采集到的数据进行处理和优化,以便后续的模型重建和设计修正。
重建模型是根据采集到的数据,利用计算机辅助设计软件进行模型重建,以便进行后续的设计和分析。
设计修正是指根据模型重建的结果,对设计进行优化和修正,以实现工业设计的目标。
二、逆向工程技术在工业设计中的应用1. 产品设计改进与优化:逆向工程技术可以帮助设计师对现有产品进行分析和评估,从而发现产品的问题和不足之处。
通过逆向工程的手段,设计师可以对产品进行改进和优化,提高产品的性能和功能,以满足用户的需求。
2. 快速原型制作:逆向工程技术可以将现有产品的实体转化为数字模型,然后利用快速原型制造技术,快速制作出产品的实体模型。
这样可以大大提高产品研发的速度和效率,减少开发周期和成本。
3. 客户需求分析:逆向工程技术可以通过对现有产品的分析和解剖,获取用户的反馈和需求。
通过分析用户对产品的满意度和不满意度,设计师可以更好地了解用户的需求,以便进行产品的设计和改进。
4. 反向设计与逆向创新:逆向工程技术可以帮助设计师分析和研究已有产品的设计特点和创新之处,从中吸取灵感并进行反向设计和逆向创新。
《2024年逆向工程技术的研究与工程应用》范文
![《2024年逆向工程技术的研究与工程应用》范文](https://img.taocdn.com/s3/m/2d7bf53bcbaedd3383c4bb4cf7ec4afe05a1b106.png)
《逆向工程技术的研究与工程应用》篇一一、引言逆向工程技术是一种通过分析已有产品或系统的性能、结构、功能等,以获取其设计原理、制造工艺、技术参数等关键信息的技术手段。
随着科技的不断进步和市场竞争的日益激烈,逆向工程技术越来越受到关注和重视。
本文将对逆向工程技术的研究现状和工程应用进行深入探讨。
二、逆向工程技术的概述逆向工程技术是相对于正向工程技术而言的。
正向工程主要是根据产品的需求、功能等进行设计和制造,而逆向工程则是从已有产品出发,通过对产品的反求分析,了解其内部结构、设计原理、制造工艺等关键信息。
逆向工程技术的应用领域非常广泛,包括机械制造、电子设备、航空航天、生物医学等领域。
三、逆向工程技术的关键环节逆向工程技术的实施主要包括以下几个关键环节:1. 样品获取:通过购买、租赁、借阅等方式获取目标产品或系统。
2. 样品分析:运用各种手段对样品进行拆解、检测、分析等操作,以获取其内部结构、设计原理、制造工艺等关键信息。
3. 数据处理:将样品分析得到的数据进行整理、加工和提取,以形成可供分析和研究的数据集。
4. 建模与仿真:根据处理后的数据,建立样品的模型或仿真系统,以更好地了解其性能和特点。
5. 技术重现:在建模与仿真的基础上,重新设计和制造类似的产品或系统。
四、逆向工程技术的优点和挑战逆向工程技术的优点在于能够快速获取已有产品的关键信息,为新产品的设计和制造提供有力支持。
此外,逆向工程技术还可以帮助企业实现技术引进和消化吸收,提高企业的技术水平和创新能力。
然而,逆向工程技术也面临着一些挑战。
首先,样品分析需要专业的技术和设备支持,对操作人员的技能要求较高。
其次,由于不同产品的设计和制造工艺存在差异,逆向工程技术的应用需要针对具体情况进行具体分析。
最后,逆向工程技术的实施需要遵守相关法律法规和知识产权保护规定。
五、逆向工程技术在工程应用中的实例分析以汽车行业为例,逆向工程技术被广泛应用于汽车设计和制造过程中。
逆向工程技术的研究与工程应用
![逆向工程技术的研究与工程应用](https://img.taocdn.com/s3/m/fe249386d4bbfd0a79563c1ec5da50e2534dd176.png)
逆向工程技术的研究与工程应用一、引言逆向工程技术是一种通过对已有对象进行解析和推导,以获取其设计原理、功能特性以及制造工艺等信息的方法。
该技术广泛应用于多个领域,包括制造业、工程设计、安全评估以及产品维修等方面。
本文将重点探讨逆向工程技术的研究进展和工程应用,并探讨其对相关领域的影响和前景。
二、逆向工程技术的研究进展逆向工程技术的研究主要包括几个方面的内容:扫描和建模、数据处理和分析、逆向设计和制造等。
其中,扫描和建模是逆向工程的基础。
通过光学扫描、计算机断层扫描(CT)、三维激光扫描等技术,可以将实物对象转化为数字化的数据。
在这一基础上,通过数据处理和分析,如点云数据处理、曲面重建、数据拟合等操作,可以进一步提取对象的几何形状、曲面参数、尺寸和位置等信息。
逆向设计和制造是逆向工程技术的核心内容之一。
通过对已有对象的分析和推导,可以了解其设计原理和技术要求。
在此基础上,可以进行产品改进、优化设计、设计验证等工作。
逆向工程技术还可以应用于制造过程的优化和控制。
通过对产品的逆向分析,可以获得其制造工艺和工艺参数等重要信息,从而实现制造过程的优化和控制。
逆向工程技术的研究还包括逆向工程软件开发、算法改进和数据分析等方面。
随着计算机技术和数学建模方法的不断发展,逆向工程技术在数据处理和算法改进方面取得了很大进展。
逆向工程软件的开发和应用也得到了广泛的关注和应用。
三、逆向工程技术在制造业中的应用逆向工程技术在制造业中有着广泛的应用。
首先,逆向工程技术可以帮助企业进行竞争对手产品的分析和评估。
通过对竞争对手产品的逆向分析,企业可以了解其产品设计、工艺和性能等信息,为自身产品的优化和升级提供参考。
其次,逆向工程技术可以帮助企业改进和优化现有产品的设计和制造过程。
通过对现有产品的逆向分析,可以发现产品的设计缺陷、制造工艺的不足等问题,并提出相应的改进措施。
再者,逆向工程技术还可以帮助企业进行产品的快速开发和模型制造。
《2024年逆向工程技术的研究与工程应用》范文
![《2024年逆向工程技术的研究与工程应用》范文](https://img.taocdn.com/s3/m/48c087f7dc3383c4bb4cf7ec4afe04a1b071b0ad.png)
《逆向工程技术的研究与工程应用》篇一一、引言逆向工程技术(Reverse Engineering Technology)在当代的制造业中占据了举足轻重的地位。
这项技术涉及到产品的反求设计和创新设计过程,是对原始产品设计的一种深入分析。
其研究涉及面广,包括了物理学、计算机技术、化学以及众多相关学科,应用场景多样,对工程领域有着深远的影响。
本文将就逆向工程技术的相关概念、原理以及在工程应用中的实际作用进行探讨。
二、逆向工程技术的定义与原理逆向工程技术是一种利用现有产品或服务,通过一系列的技术手段和工艺流程,对其进行结构、性能、功能等属性的研究,并最终达到反求其设计思路、原理和制造方法的目的。
其基本原理包括产品拆解、数据采集、数据处理、模型重构等步骤。
1. 产品拆解:对产品进行物理或化学的分解,以便于后续的数据采集和分析。
2. 数据采集:利用各种测量设备和技术,如三维扫描仪、CT 扫描等,获取产品的几何形状、尺寸等数据。
3. 数据处理:对采集的数据进行清洗、修正和优化,为后续的模型重构提供基础。
4. 模型重构:根据处理后的数据,建立产品的三维模型,进而分析其设计原理和制造方法。
三、逆向工程技术在工程应用中的作用逆向工程技术被广泛应用于汽车、机械、航空等工程领域。
以下是逆向工程技术在工程应用中的具体作用:1. 产品复制:对原产品进行反求,从而实现对产品的完全复制,达到高仿真的效果。
这在汽车行业尤为常见,对于零部件的制造和改进有重要的价值。
2. 故障诊断:通过对已出现故障的产品进行逆向分析,可以快速找到故障的原因和位置,从而采取相应的维修措施。
3. 产品改进:在了解原产品设计原理和制造方法的基础上,可以进行产品的优化和改进,提高产品的性能和质量。
4. 创新设计:逆向工程技术不仅可以帮助我们理解和学习原产品的设计思路和制造方法,还可以为创新设计提供灵感和思路。
通过对不同产品的特点和优势进行综合分析,可以设计出更具创新性和竞争力的新产品。
简单阐述逆向工程技术及其流程
![简单阐述逆向工程技术及其流程](https://img.taocdn.com/s3/m/cb94b75a15791711cc7931b765ce050876327583.png)
简单阐述逆向工程技术及其流程
标题:逆向工程技术概述及其流程
一、逆向工程技术概述
逆向工程技术,又称反求工程,是一种产品设计技术手段,其基本原理是从已存在的产品或部件出发,通过对实物的测量、分析和研究,获取产品的几何形状、材料特性、制造工艺等设计信息,进而重构出原始的设计模型或者创新设计新的产品。
逆向工程广泛应用于产品改型设计、技术创新、质量检测、侵权分析等领域,是现代工业设计与制造中不可或缺的重要技术手段。
二、逆向工程的主要流程
1. 数据采集阶段:
这是逆向工程的第一步,通常采用三维扫描仪、CMM(三坐标测量机)等精密测量设备对实物进行精确的数据采集,获取物体表面的点云数据或几何特征数据。
2. 数据处理阶段:
对采集到的大量离散数据进行预处理,包括噪声过滤、数据平滑、点云拼接等操作,将其转化为可供后续建模使用的高质量数据集。
3. 曲面重构阶段:
根据处理后的数据,利用逆向工程软件如Geomagic, Rapidform等构建曲面模型,通过拟合、插值、光顺等方法,生成能准确反映实物表面特性的三维曲面模型。
4. 设计优化阶段:
在得到初步的三维模型后,设计师会对模型进行进一步的修改和完善,包括结构优化、尺寸调整、细节补充等,以满足设计需求和加工要求。
5. 制造阶段:
逆向工程的最后阶段是将优化后的三维模型转换为适合加工的二维图纸或CAM代码,提供给数控机床、3D打印设备等进行生产制造。
总结,逆向工程技术不仅能够帮助我们理解并复制现有的复杂产品,更能在原有产品的基础上进行创新设计和改进,对于推动产品更新换代和技术进步具有重大意义。
逆向工程技术及其在模具设计制造中的应用分析
![逆向工程技术及其在模具设计制造中的应用分析](https://img.taocdn.com/s3/m/725eeeebb1717fd5360cba1aa8114431b90d8eba.png)
逆向工程技术及其在模具设计制造中的应用分析1. 引言1.1 介绍逆向工程技术及其在模具设计制造中的重要性逆向工程技术是一种通过反向分析、扫描、建模和制造的技术手段,可以将已有的物体或产品进行数字化重建。
在模具设计制造领域,逆向工程技术扮演着至关重要的角色。
逆向工程技术可以帮助设计师快速获取并理解产品的实际形状和结构,节省研发时间,提高设计效率。
逆向工程技术可以对现有模具进行快速反馈和修正,从而提高模具设计的准确性和稳定性。
逆向工程技术还可以帮助制造商在产品更新换代时快速复制原有模具,降低生产成本,提高生产效率。
2. 正文2.1 逆向工程技术的基本原理逆向工程技术的基本原理是通过对已有的物体或产品进行扫描、测量和分析,以获取其几何形状、结构、材料属性等信息,然后使用这些信息进行数字化建模、设计和制造新的产品或进行产品改进。
逆向工程技术通常包括以下几个步骤:1. 数据采集:通过3D扫描、光学测量、摄影测量等手段获取物体的表面形状和结构信息,也可以通过X射线、CT扫描等技术获取内部结构信息。
2. 数据处理:将采集到的数据进行处理和分析,包括数据清理、数据配准、建模等步骤。
通常需要使用CAD软件进行数据处理和建模。
3. 数字化建模:根据采集到的数据,进行三维数字化建模,生成几何模型、工程图纸等设计数据。
4. 设计与仿真:基于数字化建模数据进行产品设计、工艺设计、性能分析、模具设计等工作,可以使用CAD/CAM软件进行设计和仿真。
5. 制造与验证:基于数字化设计数据,进行数控加工、3D打印、快速成型等制造过程,然后进行产品验证和测试。
逆向工程技术的基本原理就是通过数据采集、处理、建模和制造来实现对现有产品的重建和改进,从而实现产品设计与制造的快速和灵活性。
逆向工程技术的发展对模具设计制造领域具有重要的意义和应用价值。
2.2 逆向工程技术在模具设计中的具体应用1. 借助逆向工程技术,可以快速获取现有模具的设计数据,包括尺寸、形状、结构等信息。
逆向工程技术在工业设计中的应用研究
![逆向工程技术在工业设计中的应用研究](https://img.taocdn.com/s3/m/973fe927f08583d049649b6648d7c1c708a10b6f.png)
逆向工程技术在工业设计中的应用研究随着科技的不断发展,逆向工程技术在工业设计中的应用越来越广泛,逆向工程技术作为一种重要的工业设计技术,已经被广泛应用于工业领域。
逆向工程技术是一种非常有价值的技术,其应用范围极广,可以大大缩短产品设计的时间,提高产品的品质和竞争力。
一、逆向工程技术的概念与特点逆向工程技术(Reverse Engineering)是指将已经存在的物品(例如机器、零件、产品等)通过分析,测量等手段和技术,去逆向推导其设计图纸或3D模型的工程技术。
相对于传统的设计和制造工艺,逆向工程技术具有以下优势:1、提高产品的设计准确性:传统的设计过程中,需要多次修改和完善,容易出现错误和疏漏。
而逆向工程技术可以通过对已经存在的产品进行分析和测量,获得设计的几何数据和材料属性,从而更加准确地完成产品的设计。
2、缩短产品开发周期:传统的设计需要反复推敲和完善,耗时较长。
而逆向工程技术可以通过直接测量和分析,快速取得产品的设计数据,缩短了产品设计和开发的时间。
3、提高产品的品质:逆向工程技术可以通过对已有产品的分析和测量,发现其缺陷和不足之处,在新产品的设计和制造过程中避免重复的错误和疏漏,提高产品的品质和性能。
4、降低成本:逆向工程技术可以通过对现有产品的测量和分析,确定合适的生产工艺和材料,避免盲目的试验和选择,减少生产成本。
二、逆向工程技术在工业设计中的应用逆向工程技术已经在很多工业领域中得到了广泛的应用,例如:汽车、飞机、机械、电子、医疗等领域。
下面分别从三个方面介绍逆向工程在工业设计中的应用。
1、逆向工程技术在汽车工业中的应用汽车工业是逆向工程技术应用最广泛的领域之一。
汽车零部件的复杂性和多样性,对于汽车厂商来说是一个不小的挑战。
逆向工程技术通过对汽车零部件的快速测量和分析,可以确定零部件的优化设计和制造工艺,完成快速制造,提高生产效率,同时降低成本。
同时,逆向工程技术在汽车保险杠、车身结构等设计中的应用,可以快速确定具体的构型、各部件的位置和布局、零件的尺寸和材质等,从而加快了汽车设计和制造的进程。
逆向工程技术简介
![逆向工程技术简介](https://img.taocdn.com/s3/m/e141265cad02de80d4d8401d.png)
目前ቤተ መጻሕፍቲ ባይዱ大多数的实物原型的逆向工程是通过上图所示的三种方式来达到反求目地的。
第一种实现方式是在得到零件的CAD数据后,将数据导入专业的CAD软件系统进行再设计。第二种方式是在得到零件的CAD数据后,自动生成零件的NC代码文件,然后将该文件输入数控加工机床加工出所需产品。第三种方式是在得到零件的CAD数据后,自动生成样品的STL文件,然后将该文件导入快速原型制造系统中制造出产品。
第三步:零件原形CAD模型的重建将分割后的三维数据在CAD系统中分别做表面模型的拟合,并通过各表面片的求交与拼接获取零件原形表面的CAD模型。
第四步:重建CAD模型的检验与修正采用根据获得的CAD模型重新测量和加工出样品的方法来检验重建的CAD模型是否满足精度或其他试验性能指标的要,对不满足要求者重复以上过程,直至达到零件的逆向工程设计要求。
3、逆向工程实现的步骤
逆向工程一般可以分为4个步骤:
第一步:零件原形的数字化通常采用三坐标测量机(CMM)或激光扫描仪等测量装置来获取零件原形表面点的三维坐标值。
第二步:从测量数据中提取零件原形的几何特征按测量数据的几何属性对其进行分割,采用几何特征匹配与识别的方法来获取零件原形所具有的设计与加工特征。
4.1数字化测量
数字化测量是逆向工程的基础,在此基础上进行复杂曲面的建模、评价、改进和制造。数据的测量质量直接影响最终模型的质量。
图3常用方法
三坐标测量机CMM(three coordinate measuring machine)是常用的接触式测量方法,但其适用范围较窄,仅适用那些结构简单,没有复杂内腔的零部件。
针对获得的点云数据,可以直接导入Imageware软件中进行一系列的处理,最终生成三维实体模型;针对获得CT切片图像,可以导入专业的矢量化软件等软件中经过一系列处理获得三维模型。
逆向工程技术及其在模具设计制造中的应用分析
![逆向工程技术及其在模具设计制造中的应用分析](https://img.taocdn.com/s3/m/9a7abc22001ca300a6c30c22590102020740f2c2.png)
逆向工程技术及其在模具设计制造中的应用分析1. 引言1.1 逆向工程技术及其在模具设计制造中的应用分析逆向工程技术是一种通过分析、解构和重建现有产品或零部件来获取设计信息的技术。
在模具设计制造领域,逆向工程技术的应用越来越广泛。
通过逆向工程技术,工程师们可以快速精准地获取现有产品的相关信息,对模具设计制造过程起到了至关重要的作用。
逆向工程技术可以帮助工程师们快速了解产品的整体结构和设计细节,从而为模具设计提供重要的参考。
通过对现有产品进行逆向扫描和数学建模,工程师们可以准确获取产品的尺寸、形状、曲面等参数,为模具设计提供准确的数据支持。
逆向工程技术在模具制造中的应用也是十分重要的。
通过对现有产品进行逆向扫描和数学建模,可以为模具制造过程提供精准的加工路径和参数,提高模具的加工质量和效率。
逆向工程技术还可以帮助工程师们快速制造出复杂形状的模具,提升生产效率。
逆向工程技术在模具设计制造中的应用非常广泛,为工程师们提供了强大的工具和支持。
未来,随着逆向工程技术的不断发展和完善,将会为模具领域带来更多的创新和发展机遇。
逆向工程技术的重要性将会更加凸显,促进模具设计制造领域的进步和发展。
2. 正文2.1 逆向工程技术概述逆向工程技术是一种通过扫描、建模和分析物体表面的技术,以获取其设计意图和原始数据的过程。
逆向工程技术可以应用于多个领域,包括模具设计制造。
在模具设计中,逆向工程技术可以帮助工程师快速获取已有产品的三维数据,包括形状、尺寸和结构等信息,从而在设计新模具时提供重要参考。
逆向工程技术通常包括三个主要步骤:扫描、建模和分析。
通过3D扫描技术对模具进行扫描,获取其表面的几何数据。
然后,利用建模软件将扫描得到的数据转化为数字模型,包括CAD模型和点云数据。
通过对模型进行分析,工程师可以识别出模具的设计缺陷或潜在问题,并进行相应的优化和改进。
逆向工程技术的发展为模具设计带来了许多便利。
它可以节省设计时间和成本,提高设计的准确性和可靠性。
逆向工程技术及应用研究
![逆向工程技术及应用研究](https://img.taocdn.com/s3/m/ed4442a559f5f61fb7360b4c2e3f5727a4e92440.png)
逆向工程技术及应用研究摘要:逆向工程是由已有产品回溯产品设计思路,通过研究现存的系统或产品,发现其规律,通过复制、改进、创新从而超越现有产品或系统的过程。
逆向工程技术在产品设计中的应用可以缩短新产品设计开发周期,大大降低设计开发成本,提高设计水平和质量,有效地提高企业的市场竞争力。
关键词:逆向工程;三维测量;曲面重构;产品设计;创新一.逆向工程技术定义逆向工程技术与传统的产品正向设计方法不同。
它是根据已存在的产品或零件原型构造产品或零件的工程设计模型,在此基础上对已有产品进行剖析、理解和改进,是对已有设计的再设计。
通过样件开发产品的过程。
与产品正向设计过程相反,逆向工程基于已有产品设计新产品,通过研究现存的系统或产品,发现其规律,通过复制、改进、创新从而超越现有产品或系统的过程。
它不是仅对现有产品进行简单的模仿,而是对现有产品进行改造、突破和创新。
二.逆向工程分类从广义讲,逆向工程可分以下三类。
(1)实物逆向:顾名思义,它是在已有实物条件下,通过试验、测绘和分折。
提出再创造的关键;其中包括功能逆向、性能逆向、方案、结构、材质、精度、使用规范等多方面的逆向。
实物逆向对象可以是整机、部件、组件和零件。
(2)软件逆向:产品样本、技术文件、设计书、使用说明书、图纸、有关规范和标准、管理规范和质量保证手册等均称为技术软件。
软件逆向中有三类情况:1)既有实物,又有全套技术软件;2)有实物而无技术软件;3)无实物,仅有全套或部分技术软件。
三.逆向工程测量系统根据测量探头是否和零件表面接触.其测量方式可分两类。
(1)接触式测量:根据测头的不同。
可分为触发式和连续式。
应用最为广泛的三座标测量机是20世纪6o年代发展起来的新型高效精密测量仪器,是有很强柔性的大型测量设备。
(2)非接触式测量:根据原理的不同,可分为三角形法、结构光法、计算机视觉法、激光干涉法、激光衍射法、CT测量法、MRI测量法、超声波法和层析法等。
浅谈逆向工程技术
![浅谈逆向工程技术](https://img.taocdn.com/s3/m/c2cc8bcbbb4cf7ec4bfed00b.png)
浅谈逆向工程技术摘要:逆向工程技术是根据已经存在的实物模型反向推出产品设计数据(包括设计图纸或数字模型)的过程。
本文简单介绍了逆向工程技术的概念,实施原理,常用的软件以及它在工业制造领域的实际应用。
关键词:逆向工程技术实施原理软件应用1 前言在瞬息万变的产品市场中,能否快速地生产出合乎市场要求的产品就成为企业成败的关键,而往往我们都会遇到这样难题,就是客户给你的只有一个实物样品或模型,没有图样或CAD数据档案,工程人员没法得到准确的尺寸。
如果要制造模具就更为烦杂,用传统的雕刻方法,时间长而效果不佳,这时候你就需要一个一体化的解决方案:从样品到数据再到产品,逆向工程系统就专门为制造业提供了一个全新、高效的三维制造路线。
逆向工程是以专案方式执行一模型的仿制工作。
往往拟仿制的产品没有原始设计图档,而是委托单位交付一件样品或模型,要求制作单位复制出来。
传统的复制方法是用立体雕刻机或液压三次元靠模铣床制作出一比一等比例的模具,再进行量产,这种方法称为类比式复制,无法建立工件尺寸图档,也无法做任何的外形修改,已渐渐地为新型数字化的逆向工程系统所取代。
2 逆向工程技术的概念逆向工程(Reverse Engineering,RE)是对产品设计过程的一种描述。
是以目前已有的实物通过三维激光超数及逆向软件处理,还原为电脑模型,并且可以修改和改进。
逆向工程的实施过程是多领域、多学科的协同过程。
从实践中我们可以得出,逆向工程的整个实施过程包括了从测量数据采集、处理到常规CAD/CAM系统,最终与产品数据管理系统(PDM系统)融合的过程。
工程的实施需要人员和技术的高度协同、融合。
3 逆向工程实施原理逆向工程在CAD/CAM系统中的作用逆向工程技术不是一个孤立的技术,它和测量技术及现有CAD/CAM系统有着千丝万缕的联系。
但是在实际应用过程中,由于大多数工程技术人员对逆向工程技术不够了解,将逆向工程技术与现有CAD/CAM技术等同起来,用现有CAD/CAM系统的技术水平要求逆向工程技术,往往造成人们对逆向工程技术的不信任和误解。
《2024年逆向工程技术的研究与工程应用》范文
![《2024年逆向工程技术的研究与工程应用》范文](https://img.taocdn.com/s3/m/55435e46fd4ffe4733687e21af45b307e871f9d3.png)
《逆向工程技术的研究与工程应用》篇一一、引言逆向工程技术,又称为反向工程或反求工程,是一种通过对现有产品或系统的性能、结构及制造过程进行解析、理解和再现的技术手段。
它是一种将已有的实物产品或现象,转化为可被理解的模型、工艺流程、制造配方等技术资料的方法。
在过去的几十年中,逆向工程技术已在众多领域,特别是工程领域内,展现出其巨大的潜力和价值。
本文将对逆向工程技术的研究以及其在工程领域的应用进行详细的阐述和讨论。
二、逆向工程技术的原理与过程逆向工程技术主要基于对现有产品或系统的物理特性、性能和结构的深入理解与解析。
它首先通过观察、测量和分析已有产品或系统的结构、性能和功能,然后利用各种技术手段,如物理建模、化学分析、图像处理等,获取产品的设计信息和技术资料。
接着,通过这些信息和技术资料,对产品进行复制或改进,以达到优化产品性能、提高产品质量、降低生产成本等目的。
逆向工程的过程主要包括以下几个步骤:产品检测与分析、物理建模或数据提取、几何和尺寸还原、加工过程研究以及产品设计重制。
这一过程既是一个知识再挖掘的过程,也是一项综合性强且复杂的技术工作。
三、逆向工程技术的工程应用逆向工程技术已被广泛应用于各个工程领域,如机械制造、汽车制造、航空航天、生物医学等。
在机械制造领域,逆向工程技术常被用于产品的优化设计和再设计,提高产品的性能和质量。
在汽车制造领域,逆向工程技术被用于汽车的设计和制造过程中,通过复制或改进已有的汽车设计,提高汽车的性能和舒适性。
在航空航天领域,由于产品的高精度和高复杂度,逆向工程技术更显得重要。
在生物医学领域,逆向工程技术被用于对人体的生物组织结构进行研究,从而推动医学诊断和治疗的技术发展。
四、逆向工程技术的挑战与展望虽然逆向工程技术具有许多优势和应用潜力,但同时也面临着一些挑战。
首先,逆向工程需要大量的数据和信息支持,这需要先进的技术手段和设备支持。
其次,逆向工程需要专业的技术人员进行操作和分析,这需要大量的专业知识和经验积累。
《2024年逆向工程技术的研究与工程应用》范文
![《2024年逆向工程技术的研究与工程应用》范文](https://img.taocdn.com/s3/m/c88fa8a705a1b0717fd5360cba1aa81144318fec.png)
《逆向工程技术的研究与工程应用》篇一一、引言逆向工程技术是一种通过对已有产品或技术进行反向研究,以获得其设计原理、结构特点、制造工艺等关键信息的技术。
随着科技的不断进步和市场竞争的日益激烈,逆向工程技术已成为许多企业和科研机构进行创新的重要手段。
本文将重点探讨逆向工程技术的原理、方法及其在工程领域的应用。
二、逆向工程技术的原理及方法1. 逆向工程技术的原理逆向工程技术主要基于对已有产品或技术的实物、样品、图纸等资料进行深入分析和研究,以获取其设计原理、结构特点、制造工艺等关键信息。
通过对这些信息的理解和掌握,可以实现产品的仿制、改进和创新。
2. 逆向工程的方法(1)实物拆解法:通过对产品进行拆解、测量和观察,获取产品的结构特点和制造工艺。
(2)图像处理法:利用计算机图像处理技术,对产品图像进行分析和处理,提取产品的几何形状、尺寸等关键信息。
(3)软件逆向法:通过对软件程序进行反汇编、反编译等操作,获取软件的源代码和算法等关键信息。
三、逆向工程技术在工程领域的应用1. 产品仿制与改进逆向工程技术可用于对已有产品进行仿制,快速复制同类产品。
同时,通过对产品进行改进和优化,提高产品的性能和质量。
2. 新产品开发逆向工程技术可用于新产品的研发过程,通过对市场上的同类产品进行逆向研究,了解其设计原理和结构特点,从而为新产品的设计和开发提供参考和借鉴。
3. 技术创新与研发逆向工程技术还可用于技术创新和研发过程中,通过对关键技术的逆向研究,掌握其核心技术,实现技术创新和突破。
四、逆向工程技术的挑战与展望1. 挑战(1)技术难度:逆向工程技术需要具备一定的专业知识和技能,包括机械、电子、计算机等多个领域的知识。
(2)法律问题:逆向工程可能涉及知识产权和专利权等问题,需要遵守相关法律法规。
(3)数据获取:在逆向工程过程中,需要获取足够的样品、图纸等资料,以确保研究的准确性和可靠性。
2. 展望随着科技的不断进步和市场的变化,逆向工程技术将面临更多的机遇和挑战。
逆向工程技术研究
![逆向工程技术研究](https://img.taocdn.com/s3/m/ec5d0b72f6ec4afe04a1b0717fd5360cba1a8d89.png)
逆向工程技术研究引言逆向工程技术是指通过对产品、设备或软件进行逆向分析、研究和重建的一种技术手段。
在信息时代的浪潮下,逆向工程技术得到了广泛应用,并在各行各业中发挥着重要作用。
本文将对逆向工程技术进行深入研究,并从几个不同的方面进行探讨和讨论。
一、逆向工程技术的概念和发展逆向工程技术的概念最早出现在20世纪50年代,起初主要应用于军事领域。
然而,随着计算机技术和软件技术的迅猛发展,逆向工程技术逐渐向其他领域渗透。
现代逆向工程技术是一种多层次、多学科的综合技术,包括计算机科学、材料科学、机械工程、电子工程等多个专业领域。
由于逆向工程技术的重要性和广泛适用性,很多国家开始将其列为战略性技术,并投入大量资源用于研究和应用。
逆向工程技术的发展已经从最初的软件分析扩展到硬件分析,如逆向设计芯片、逆向分析电路板等。
同时,逆向工程技术在工业设计、产品研发、制造业等领域也得到广泛应用。
二、逆向工程技术的主要方法和应用1. 逆向工程技术的主要方法逆向工程技术的主要方法包括:静态分析、动态分析、结构分析、材料分析、数据恢复、逻辑分析等。
静态分析主要通过反汇编和反编译等手段,对程序进行解析和研究;动态分析则通过执行和调试目标软件,跟踪程序的执行流程,寻找其中的漏洞和脆弱点;结构分析用于分析目标产品的内部结构和组成;材料分析则主要用于分析目标产品所采用的材料的性质和特性;数据恢复则通过恢复被删除或丢失的数据,以获取有用信息;逻辑分析主要用于研究目标软件的逻辑结构和功能。
2. 逆向工程技术的应用逆向工程技术的应用范围广泛。
在软件领域,逆向工程技术可以用于软件程序的优化和改进、病毒检测和分析、版权保护等方面。
在制造业中,逆向工程技术可以用于产品设计、品质检测、工艺改进等。
在信息安全领域,逆向工程技术可以用于漏洞分析、攻击溯源等。
此外,逆向工程技术还在法医学、文化遗产保护等领域有着重要应用。
三、逆向工程技术的挑战与前景逆向工程技术的应用带来了巨大的经济和社会效益,但也面临着一些挑战。
逆向工程技术基本原理
![逆向工程技术基本原理](https://img.taocdn.com/s3/m/70cfce732f3f5727a5e9856a561252d381eb2068.png)
逆向工程技术基本原理一、什么是逆向工程技术逆向工程技术是指通过对已有产品、系统或软件进行分析、解构和研究,以获取其内部结构、工作原理和设计特点的过程。
它可以帮助人们了解、学习和改进现有的产品或系统,也可以用于创新和竞争分析等领域。
二、逆向工程技术的应用领域逆向工程技术在多个领域有着广泛的应用。
其中,软件逆向工程可以帮助开发者理解和修复软件缺陷,提高软件的安全性和性能;硬件逆向工程可以帮助工程师了解和优化电路设计,改进产品的功能和性能;工艺逆向工程可以帮助制造商分析竞争对手的产品,寻找产品的改进空间等。
三、逆向工程技术的基本原理1. 逆向工程技术基于反向思维:逆向工程技术通过反向思维,从已有产品的输出结果出发,逆向推导出产品的内部结构和工作原理。
这种思维方式可以帮助研究人员更好地理解产品的设计和实现过程。
2. 逆向工程技术基于逆向分析:逆向工程技术通过对已有产品进行逆向分析,研究其组成部分和功能模块之间的关系,以及它们的工作原理和算法。
逆向分析可以从多个层面对产品进行解构和研究,包括硬件层面、软件层面和系统层面等。
3. 逆向工程技术基于逆向设计:逆向工程技术通过对已有产品进行逆向设计,重新构思和设计出符合需求的新产品或系统。
逆向设计可以通过改进现有产品的功能和性能,或者结合不同产品的特点,创造出全新的产品。
四、逆向工程技术的方法和步骤逆向工程技术的实施通常包括以下几个步骤:1. 收集信息:收集与目标产品相关的各种信息,包括产品的规格、功能、特性、外观等。
这些信息可以通过市场调研、产品手册、用户反馈等途径获取。
2. 分析逆向目标:对目标产品进行逆向目标的分析,确定逆向的重点和目标。
可以根据实际需求选择逆向分析的深度和广度。
3. 逆向分析:根据逆向目标,对目标产品进行逆向分析。
可以通过逆向工具、调试器、模拟器等手段,对产品的硬件和软件进行分析和调试。
4. 结果解读:对逆向分析的结果进行解读和理解。
理解产品的内部结构、工作原理和设计特点,找出产品的优点和不足之处。
浅谈逆向工程技术
![浅谈逆向工程技术](https://img.taocdn.com/s3/m/1aec9a173868011ca300a6c30c2259010302f352.png)
浅谈逆向工程技术浅谈逆向工程技术逆向工程(又称反向工程),是一种技术过程,即对一项目标产品进行逆向分析及研究,从而演绎并得出该产品的处理流程、组织结构、功能性能规格等设计要素,以制作出功能相近,但又不完全一样的产品。
逆向工程源于商业及军事领域中的硬件分析。
其主要目的是,在不能轻易获得必要的生产信息下,直接从成品的分析,推导出产品的设计原理。
逆向工程可能会被误认为是对知识产权的严重侵害,但是在实际应用上,反而可能会保护知识产权所有者。
例如在集成电路领域,如果怀疑某公司侵犯知识产权,可以用逆向工程技术来寻找证据。
需要逆向工程的原因如下:1.接口设计。
由于互操作性,逆向工程被用来找出系统之间的协作协议。
2.军事或商业机密。
窃取敌人或竞争对手的最新研究或产品原型。
3.改善文档。
当原有的文档有不充分处,又当系统被更新而原设计人员不在时,逆向工程被4.用来获取所需数据,以补充说明或了解系统的最新状态。
5.软件升级或更新。
出于功能、合规、安全等需求更改,逆向工程被用来了解现有或遗留软件系统,以评估更新或移植系统所需的工作。
6.制造没有许可/未授权的副本。
7.学术/学习目的。
8.去除复制保护和伪装的登录权限。
9文件丢失:采取逆向工程的情况往往是在某一个特殊设备的文件已经丢失了(或者根本就没有),同时又找不到工程的负责人。
完整的系统时常需要基于陈旧的系统上进行再设计,这就意味着想要集成原有的功能进行项目的唯一方法便是采用逆向工程的方法分析已有的碎片进行再设计。
10.产品分析:用于调查产品的运作方式,部件构成,估计预算,识别潜在的侵权行为。
逆向工程能在拥有现有物理部件之上,利用激光扫描仪、结构光源转换仪或X射线断层成像之类3D扫描仪技术进行尺寸测量,再通过CAD、CAM、CAE或其他软件构筑3D 虚拟模型的方法。
逆向工程经常被用于军事上,在二战和冷战中经常被用到。
1980年开始,欧美国家许多学校及工业界开始注意逆向工程领域。
逆向工程技术及其应用之浅见
![逆向工程技术及其应用之浅见](https://img.taocdn.com/s3/m/fb939fcc31126edb6e1a109f.png)
逆向工程技术及其应用之浅见在现代社会中,市场产品的变化非常快,能不能找到一个合适产品是现代企业发展下去的关键。
但由于很多产品在市场中只能找到简单的模型,因此无法得到图纸以及产品的数据,因此也就无法将产品数据尺寸进行正确的把握,给后续的制造技术发展带来了影响。
在当前来说,亟需利用先进的技术对于实体进行处理,从而得到模型。
逆向工程技术就是这样的一种技术方式,对现代产业发展具有重要作用。
下面将对逆向工程技术以及其应用进行详细的分析。
1 逆向工程技术概述逆向工程技术是反向工程,它主要是根据一个实物的产品,通过三维数字分析和扫描的方式来快速地对实物进行测量,然后通过三维方式将曲面进行重新修建,最后再传递给一般的CAD系统。
通过CAM编出刀具程序传递给CNC加工设备,从而得到相同的模型。
也就是说逆向工程是通过现有的产品进行解剖和深化,从而从反向的角度来对产品进行设计。
逆向工程主要包含了以下三个类型:实物反向、软件反向和影像反向。
实物反向主要指的是对实物进行测量分析和再生产,它具有性能逆向、功能逆向和结构逆向等不同的功能,而且这种功能的主要目标可以是一个整体,同时也可以是一个零部件,都能实现逆向设计。
软件反向技术主要是将产品样本的设计图以及使用手册等来进行的反向设计,主要分为三类:实物和技术软件、只有技术软件以及只有实物的。
影像反向这种逆向技术的存在指的是即便没有实物和技术软件,只需要从产品广告和参考图片等方面就能根据资料进行反向的构思和设计,这种方式就叫做影像反向。
2 逆向工程的关键技术2.1 数据采集数据的采集首先是采用特殊的采集设备和方法来获得产品外观的轮廓坐标,然后再对产品的集合外形变成数字化内容。
这种方式主要通过测量将产品的三维坐标进行扫描,得到精确的数据内容,然后根据所得的数据再进行进一步的处理,从而形成各个不同的组成元素,例如圆和长方体等。
通过数字方式来计算出外观的形态以及位置等。
当前进行数据采取主要有两种方式:一种是通过接触方式直接采取数据;另一种是通过非接触的方式来获取数据。
逆向工程技术特点应用与分析
![逆向工程技术特点应用与分析](https://img.taocdn.com/s3/m/3a6e7c995acfa1c7ab00cc03.png)
外形 装饰
产品 复制
模具 成型
模具 加工
CAM产生 NC文档
RPM 快速原型
逐层产生 STL文档
特点
与传统的“产品概念设计→产品CAD模型 →产品 (物理模型 )”的正向工程相反 。逆向工 程是在没有设计图纸或图纸不完整,而有样品 的情况下,利用三维扫描测量仪,准确快速地 测量样品表面数据或轮廓外形,加以点数据处 理、曲面创建、三维实体模型重构,然后通过 CAM系统进行数控编程,直至利用CNC加工 机床或快速成型机来制造产品。
针对如图2(a)所示点云形状,其底面为一个平面,有以下几个步 骤完成定位:
(1)从底面点云中构造新点云,再用所构造点云生成一个平面;
(2)选取显示菜单,视线对齐所构平面;
(3)旋转90度方向后,利用interactive切片生成两个切片点云;
(4)用切片点云生成二个圆,通过两个圆心构造一条直线;
﹙4﹚CAD输出 将产品模型信息输出到CAD系统, 实现产品再设计。
3、逆向工程在CAD/CAM体系中的应用
逆向工程技术并不是孤立的,它和测量技术、 CAD/CAM技术有着千丝万缕的联系。 最终目标:从理论角度分析,逆向工程技术 能按照产品的测量数据建立与现有CAD/CAM系统 完全兼容的数字模型; 但目前人们所掌握的技术,包括工程上的和 理论上的(如曲面建模理论),尚无法满足这 种要求。特别是针对目前比较流行的大规模“ 点云”数据建模,更是远没有达到直接在CAD系 统中应用的程度(希望增加智能,测量后能够 通过软件系统。
(5)后续处理 CNC RPM
4、曲面重构
曲面重构可以说是逆向工程的核心,是以 所量测的CMM或扫瞄点数据为输入数据来重 新建构曲面模型。
得到产品的数据后,选取适当的算法(或 用逆向工程软件)进行点数据的处理,如: 格式转换、噪声滤除、平滑、对齐、点线 面与实体误差的比对后,再重新建构曲面 模型,产生CAD数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈逆向工程技术逆向工程(又称反向工程),是一种技术过程,即对一项目标产品进行逆向分析及研究,从而演绎并得出该产品的处理流程、组织结构、功能性能规格等设计要素,以制作出功能相近,但又不完全一样的产品。
逆向工程源于商业及军事领域中的硬件分析。
其主要目的是,在不能轻易获得必要的生产信息下,直接从成品的分析,推导出产品的设计原理。
逆向工程可能会被误认为是对知识产权的严重侵害,但是在实际应用上,反而可能会保护知识产权所有者。
例如在集成电路领域,如果怀疑某公司侵犯知识产权,可以用逆向工程技术来寻找证据。
需要逆向工程的原因如下:1.接口设计。
由于互操作性,逆向工程被用来找出系统之间的协作协议。
2.军事或商业机密。
窃取敌人或竞争对手的最新研究或产品原型。
3.改善文档。
当原有的文档有不充分处,又当系统被更新而原设计人员不在时,逆向工程被4.用来获取所需数据,以补充说明或了解系统的最新状态。
5.软件升级或更新。
出于功能、合规、安全等需求更改,逆向工程被用来了解现有或遗留软件系统,以评估更新或移植系统所需的工作。
6.制造没有许可/未授权的副本。
7.学术/学习目的。
8.去除复制保护和伪装的登录权限。
9文件丢失:采取逆向工程的情况往往是在某一个特殊设备的文件已经丢失了(或者根本就没有),同时又找不到工程的负责人。
完整的系统时常需要基于陈旧的系统上进行再设计,这就意味着想要集成原有的功能进行项目的唯一方法便是采用逆向工程的方法分析已有的碎片进行再设计。
10.产品分析:用于调查产品的运作方式,部件构成,估计预算,识别潜在的侵权行为。
逆向工程能在拥有现有物理部件之上,利用激光扫描仪、结构光源转换仪或X射线断层成像之类3D扫描仪技术进行尺寸测量,再通过CAD、CAM、CAE或其他软件构筑3D 虚拟模型的方法。
逆向工程经常被用于军事上,在二战和冷战中经常被用到。
1980年开始,欧美国家许多学校及工业界开始注意逆向工程领域。
1990年初期,各国学术界团队大量投入逆向工程的研究并发表成果。
逆向软件的演进约略可区分为三个阶段:2000年前,在逆向工程上,只能运用CATIA等CAD/CAM高阶曲面系统。
市场后来发展出两套主流产品约在2003年前技术成熟,广为业界引用。
到2007年后,发展出不同以往的逆向工程数学逻辑运算,速度快。
1998年,NEWPOWER启动了逆向工程的一些项目,要求是把客户的现有源代码转变成设计,如果需要的话,进一步转化成产品需求规约。
这恰恰与类似于V模型的标准开发过程模型相逆。
这样一来,客户就可以容易地维护他们的产品(需求,设计,源代码等等),而不需要想以前那样,每次改动产品都需要直接修改源代码。
截止2011年,逆向工程的应用已从单纯的技巧性手工操作,发展到采用先进的计算机及测量设备,进行设计、分析、制造等活动,如获取修模后的模具形状、分析实物模型、基于现有产品的创新设计、快速仿形制造等。
逆向工程被广泛地应用到新产品开发和产品改型设计、产品仿制、质量分析检测等领域,它的特点是:1、缩短产品的设计、开发周期,加快产品的更新换代速度;2、降低企业开发新产品的成本与风险;3、加快产品的造型和系列化的设计;4、适合单件、小批量的零件制造,特别是模具的制造,可分为直接制模与间接制模法。
直接制模法:基于RP技术的快速直接制模法是将模具CAD的结果由RP系统直接制造成型。
该法既不需用RP系统制作样件,也不依赖传统的模具制造工艺,对金属模具制造而言尤为快捷,是一种极具开发前景的制模方法;间接制模法:间接制模法是利用RP技术制造产品零件原型,以原型作为母模、模芯或制模工具(研磨模),再与传统的制模工艺相结合,制造出所需模具。
逆向工程技术不是一个孤立的技术,它和测量技术及现有CAD/CAM系统有着千丝万缕的联系。
但是在实际应用过程中,由于大多数工程技术人员对逆向工程技术不够了解,将逆向工程技术与现有CAD/CAM技术等同起来,用现有CAD/CAM系统的技术水平要求逆向工程技术,往往造成人们对逆向工程技术的不信任和误解。
从理论角度分析,逆向工程技术能够按照产品的测量数据重建出与现有CAD/CAM系统完全兼容的三维模型,这是逆向工程技术的最终实现目标。
但是,人们所掌握的技术,包括工程上的和纯理论上的(如曲面建模理论),都还无法满足这种要求。
特别是针对大规模“点云”数据建模,更是远未达到可以直接在CAD系统中应用的程度。
因此,逆向工程CAD 技术与现有CAD/CAM系统的关系只能是一种相辅相成的关系。
现有CAD/CAM系统经过几十年的发展,无论从理论还是实际应用上都已经十分成熟,在这种状况下,现有CAD/CAM 系统不会也不可能为了满足逆向工程建模的特殊要求变更系统底层。
另一方面,逆向工程技术中用到的大量建模方法完全可以借鉴现有CAD/CAM系统,不需要另外搭建新平台。
基于这种分析,我们认为逆向工程技术在整个制造体系链中处于从属、辅助建模的地位,逆向工程技术可以利用现有CAD/CAM系统,帮助其实现自身无法完成的工作。
逆向工程技术(包括相应的软件)始终不是市场上的主流,而大多数CAD/CAM系统又均包含逆向工程模块或第三方软件包。
逆向工程软件部分品牌包括Surfacer(Imageware)、ICEM、CopyCAD、Rapid Form等。
逆向软件的演进约略可区分为三个阶段。
十一年前在逆向工程上,只能运用CATIA等CAD/CAM高阶曲面系统。
市场后来发展出两套主流产品约在七、八年前技术成熟,广为业界引用。
到最近四年来,发展出不同以往的逆向工程数学逻辑运算,速度快。
逆向工程的硬件最早是运用仿制加工设备,制作出来的成品品质粗糙。
后来有接触式扫瞄设备,运用探针接触工件取得产品外型。
再来进一步开发非接触式设备,运用照相或激光技术,计算光线反射回来的时间取得距离。
向工程的实施需要逆向工程软件的支撑。
逆向工程软件的主要作用是接收来自测量设备的产品数据,通过一系列的编辑操作,得到品质优良的曲线或曲面模型,并通过标准数据格式将这些曲线曲面数据输送到现有CAD/CAM系统中,在这些系统中完成最终的产品造型。
由于无法完全满足用户对产品造型的需求,因此逆向工程CAD软件很难与现有主流CAD/CAM系统,如CA TIA、UG、Pro/ENGINEER和SolidWorks等抗衡。
很多逆向工程软件成为这些CAD/CAM系统的第三方软件。
如UG采用ImageWare作为UG系列产品中完成逆向工程造型的软件,Pro/ENGINEER采用ICEM Surf作为逆向工程模块的支撑软件。
此外还有一些独立的逆向工程软件,如GeoMagic等,这些软件一般具有多元化的功能。
例如,GeoMagic除了处理几何曲面造型以外,还可以处理以CT、MRI数据为代表的断层界面数据造型,从而使软件在医疗成像领域具有相当的竞争力。
另外一些逆向工程软件作为整体系列软件产品中的一部分,无论数据模型还是几何引擎均与系列产品中的其他组件保持一致,这样做的好处是逆向工程软件产生的模型可以直接进入CAD或CAM模块中,实现了数据的无缝集成,这类软件的代表是DELCAM公司的CopyCAD。
当前使用的逆向工程系统存在以下不足之处:(1)大多数系统是针对具体的应用而开发,数据处理往往针对特定的测量设备、测量对象,通用性差。
(2)曲面拟合系统大多是对于代数二次曲面,对自由曲面,特别是由大数据量散乱点拟合自由曲面,系统一般没有此功能(3)数据区域分割往往要交互操作,降低了CAD建模的速度,自动化程度低;(4)系统集成化程度低,有些系统只侧重与曲面的拟合,有些系统只侧重于与特定制造技术的结合,系统只包含简单几何数据,不符合现代设计制造的并行思想。
几何建模是逆向工程的关键环节,同时也是影响逆向工程速度的瓶颈问题,因此,提高逆向工程几何建模的自动化程度和通用性是目前逆向工程研究的一个重点方向。
作者提出了一种逆向工程几何建模自动化系统,具有体现设计意图的特征建模的特点,数据点的组织方式不限,输出的B-rep模型与现有商用CAD系统完全兼容。
系统的关键技术在于特征的自动提取、组合自由曲面的光滑连接。
提高系统的集成性,有些情况CAD 模型并不是必需的,或者为了最快的制造产品,需要数字化系统与CMM 的直接结合;另外,有些产品(例如注塑模、注塑件的设计)需要多次进行CAE 分析,由数据点直接产生CAE 模型,可极大地提高产品的设计、分析过程,在上一节已有一些集成系统的应用实例,大多是根据具体情况的部分集成,邢渊提出了完整的逆向工程集成系统框架,具有CAD、CAE、CAM 多个数据接口,采用了面向对象的集成方法。
关键技术是通用、开放的产品数据库结构。
三坐标测量可分为接触式测量和非接触式测量两大类。
接触式测量方法通过传感测量头与样件的接触而记录样件表面的坐标位置,可以细分为点触发式和连续式数据采集方法。
对于航空航天、汽车等行业,大型样件的测量一般可以选用接触式测量,以满足精度要求。
因为,接触式测量中的点触发式测量可以通过人为规划,使得在大曲率或曲率变化剧烈的区域获得较多的测量点,而在相对平坦的区域则可以测量较少的点。
结合造型方法,人工对被测物体进行区域规划,测量对物体形状起关键作用的特征线和曲线网格,数据点可以根据需要组织成模型重建软件所需要的形式,然后根据特征线及曲线网格重建物体的CAD模型,减少了数据处理的难度和工作量。
其唯一的缺点是测量效率较低。
非接触式测量方法主要是基于光学、声学、磁学等领域中的基本原理,将一定的物理模拟量通过适当的算法转化为样件表面的坐标点。
例如:声纳测量仪利用声音遇到被测物体产生回声的时间计算点与声源间的距离;激光测距法是将激光束的飞行时间转化为被测点与参考平面间的距离。
非接触式测量使测量效率得到了极大提高,某些光学测量机可以在数秒钟内得到几十万个数据点,因而在测量过程中可以大大减少人工测量规划,在整个样件表面快速采集大量的密集点集。
由于操作简便,以激光测距法为代表的非接触式测量技术近两年来,发展迅速,应用普及面越来越广。
不过,非接触测量获得的海量数据的数据量非常庞大,常有几十万、上百万,甚至更多。
必须配合较强功能的逆向软件和高性能的计算机设备,才能顺利使用。
不过,将五年来,按照摩尔定律,计算机硬件的性能迅速提高,软件技术也今非昔比,基于光学的非接触式测量方法和三坐标测量设备在逆向工程中得到了更为广泛的应用。
逆向工程的应用领域主要是飞机、汽车、玩具和家电等模具相关行业。
随着生物、材料技术的发展,逆向工程技术也开始应用在人工生物骨骼等医学领域。
但是其最主要的应用领域还是在模具行业。
由于模具制造过程中经常需要反复试冲和修改模具型面。
若测量最终符合要求的模具并反求出其数字化模型,在重复制造该模具时就可运用这一备用数字模型生成加工程序,可以大大提高模具生产效率,降低模具制造成本。