九年级(上)数学入学考试人教版

合集下载

人教版九年级上学期数学开学考试试卷新版

人教版九年级上学期数学开学考试试卷新版

人教版九年级上学期数学开学考试试卷新版一、选择题 (共10题;共20分)1. (2分)关于一元二次方程,下列判断正确的是()A . 一次项是B . 常数项是C . 二次项系数是D . 一次项系数是2. (2分)下列方程中,关于x的一元二次方程是()A . x2+2y=1B . ﹣2=0C . ax2+bx+c=0D . x2+2x=13. (2分)关于x的方程ax2-3x+2=0是一元二次方程,则()A . a>0B . a≠0C . a=1D . a≥04. (2分)若关于x的一元二次方程为ax2-3bx-5=0(a≠0)有一个根为x=2,那么4a-6b 的值是()A . 4B . 5D . 105. (2分)已知关于x的一元二次方程M为ax2+bx+c=0、N为cx2+bx+a=0(a≠c),则下列结论:①如果5是方程M的一个根,那么是方程N的一个根;②如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根;③如果方程M与方程N有一个相同的根,那么这个根必是x=1.其中正确的结论是()A . ①②B . ①③C . ②③D . ①②③6. (2分)将方程x2-6x+3=0左边配成完全平方式,得到的方程是()A . (x-3)2=-3B . (x-3)2=6C . (x-3)2=3D . (x-3)2=127. (2分)关于x的一元二次方程x2-mx-1=0的根的情况()A . 有两个不相等的实数根B . 有两个相等的实数根C . 有一个实数根D . 没有实数根8. (2分)有一人患了流感,经过两轮穿然后共有49人患了流感,设每轮传染中平均一个人传染了x人,则x的值为()B . 6C . 7D . 89. (2分)关于x的一元二次方程x2+4x﹣2k=0有两个实数根,则实数k的取值范围是()A . k≥﹣2B . k≤﹣2C . k>﹣2D . k=﹣210. (2分)方程的根的情况是().A . 有两个不相等的实数根B . 有两个相等的实数根C . 有一个实数根D . 没有实数根二、填空题 (共8题;共8分)11. (1分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是________.12. (1分)已知方程5x2+kx﹣10=0的一个根是﹣5,则它的另一个根是________.13. (1分)若关于x的方程2x2+x﹣a=0有两个不相等的实数根,则实数a的取值范围是________.14. (1分)若,则(a+b)m的值为________.15. (1分)一元二次方程x(x+3)=0的解是________.16. (1分)若关于x的一元二次方程ax2+3x-1=0有两个不相等的实数根,则a的取值范围是________.17. (1分)当m=________时,方程(m+1)x +(m﹣3)x﹣1=0是一元二次方程.18. (1分)小明设计了一个魔术盒,当任意实数对(a,b)进入其中,会得到一个新的实数a2﹣2b+3,若将实数对(x,﹣2x)放入其中,得到一个新数为8,则x=________.三、解一元二次方程 (共1题;共10分)19. (10分)解下列方程组:(1)(2)3x2−5x+1=0四、解方程解应用题 (共5题;共50分)20. (5分)解方程:x+2=621. (5分)满洲里市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?22. (15分)如图,四边形ACDE是证明勾股定理时用到的一个图形,a、b、c是Rt△ABC 和Rt△BED边长,易知AE= c,这时我们把关于x的形如ax2+ +b=0的一元二次方程称为“勾系一元二次方程”.请解决下列问题:(1)写出一个“勾系一元二次方程”;(2)求证:关于x的“勾系一元二次方程”ax2+ +b=0必有实数根;(3)若x=-1是“勾系一元二次方程”ax2+ +b=0的一个根,且四边形ACDE的周长是6 ,求△ABC面积.23. (15分)某日王老师佩戴运动手环进行快走锻炼,两次锻炼后数据如表.与第一次锻炼相比,王老师第二次锻炼步数增长的百分率是其平均步长减少的百分率的3倍.设王老师第二次锻炼时平均步长减少的百分率为x(0<x<0.5).项目第一次锻炼第二次锻炼步数(步)10000①平均步长(米/步)0.6②距离(米)60007020注:步数×平均步长=距离.(1)根据题意完成表格填空;(2)求x;(3)王老师发现好友中步数排名第一为24000步,因此在两次锻炼结束后又走了500米,使得总步数恰好为24000步,求王老师这500米的平均步长.24. (10分)某工厂为了对新研发的一种产品进行合理定价,将该产品按拟定的价格进行试销,通过对5天的试销情况进行统计,得到如下数据:单价x(元/件)3034384042销量y(件)4032242016(1)通过对上面表格中的数据进行分析,发现销量(件)与单价(元/件)之间存在一次函数关系,求关于的函数关系式(不需要写出函数自变量的取值范围);(2)预计在今后的销售中,销量与单价仍然存在(1)中的关系,且该产品的成本是20元/件.为使工厂获得最大利润,该产品的单价应定为多少?参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解一元二次方程 (共1题;共10分) 19-1、19-2、四、解方程解应用题 (共5题;共50分)20-1、21-1、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、。

人教版九年级(上)开学数学试卷(解析版)

人教版九年级(上)开学数学试卷(解析版)

人教版九年级(上)开学数学试卷一、选择题(每小题3分,满分36分)1.下列方程,是一元二次方程的是()①3y2+x=4,②2x2﹣3x+4=0,③,④x2=0A.①②B.①②④C.①③④D.②④2.一次函数y=5x﹣4的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限3.宁宁所在的班级有42人,某次考试他的成绩是80分,若全班同学的平均分是78分,判断宁宁成绩是否在班级属于中等偏上,还需要了解班级成绩的()A.中位数B.众数C.加权平均数D.方差4.下列说法中,不正确的是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行另外一组对边相等的四边形是平行四边形C.对角线互相平分且垂直的四边形是菱形D.有一组邻边相等的矩形是正方形5.若m是方程x2﹣2x﹣1=0的根,则1+2m﹣m2的值为()A.0 B.1 C.﹣1 D.26.抛物线y=﹣(x﹣3)2+1的顶点坐标为()A.(3,1)B.(﹣3,1)C.(1,3)D.(1,﹣3)7.如图,菱形ABCD的一边AB的中点E到对角线交点O的距离为4cm,则此菱形的周长为()A.8 cm B.16 cm C.16cm D.32 cm8.某水果种植基地2016年产量为80吨,截止到2018年底,三年总产量达到300吨,求三年中该基地水果产量的年平均增长率.设水果产量的年平均年增长率为x,则可列方程为()A.80(1+x)2=300B.80(1+3x)=300C.80+80(1+x)+80(1+x)2=300D.80(1+x)3=3009.在2015年聊城市举办的“划龙舟,庆端午”比赛中,甲、乙两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,根据图象得到下列结论,其中错误的是()A.这次比赛的全程是500米B.乙队先到达终点C.比赛中两队从出发到1.1分钟时间段,乙队的速度比甲队的速度快D.乙与甲相遇时乙的速度是375米/分钟10.已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+ac在直角坐标系中的图象大致为()A.B.C .D .11.如图,直线y =﹣x +4与x 轴、y 轴分别交于点A 、B 、C 是线段AB 上一点,四边形OADC 是菱形,则OD 的长为( )A .4.2B .4.8C .5.4D .612.将二次函数y =x 2﹣5x ﹣6在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新图象,若直线y =2x +b 与这个新图象有3个公共点,则b 的值为( )A .﹣或﹣12B .﹣或2C .﹣12或2D .﹣或﹣12二、填空题(每小题3分,满分18分)13.在函数y =中,自变量x 的取值范围是 .14.三角形的每条边的长都是方程x 2﹣6x +8=0的根,则三角形的周长是 .15.二次函数y =﹣2x 2﹣4x +5的最大值是 .16.一次函数y =kx +b (k 、b 为常数,且k ≠0)的图象如图所示,根据图象信息可得到关于x 的方程kx +b =4的解为 .17.已知A (x 1,y 1),B (x 2,y 2)在二次函数y =x 2﹣6x +4的图象上,若x 1<x 2<3,则y 1 y 2(填“>”、“=”或“<”)18.如图,已知二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于点A (﹣1,0),与y 轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0;②4a+2b+c>0;③4ac﹣b2<﹣4a;④<a<;⑤b>c.其中正确结论有(填写所有正确结论的序号).三、解答题19.(6分)解方程:(x﹣3)(x﹣1)=820.(6分)先化简,再求值:(1﹣)÷,其中x从0,1,2,3四个数中适当选取.21.(8分)如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)当AC⊥EF时,四边形AECF是菱形吗?请说明理由.22.(8分)已知关于x的一元二次方程:x2+(k﹣5)x+4﹣k=0(1)求证:无论k为何值,方程总有实数根;(2)若方程的一个根是2,求另一个根及k的值.23.(9分)某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图(如图),请你结合图中的信息解答下列问题:(1)求被调查的学生人数;(2)补全条形统计图;(3)已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?24.(9分)自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A 型商品的件数是用7500元采购B 型商品的件数的2倍,一件A 型商品的进价比一件B 型商品的进价多10元.(1)求一件A ,B 型商品的进价分别为多少元?(2)若该欧洲客商购进A ,B 型商品共250件进行试销,其中A 型商品的件数不大于B 型的件数,且不小于80件.已知A 型商品的售价为240元/件,B 型商品的售价为220元/件,且全部售出.设购进A 型商品m 件,求该客商销售这批商品的利润v 与m 之间的函数关系式,并写出m 的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A 型商品,就从一件A 型商品的利润中捐献慈善资金a 元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.25.(10分)使得函数值为零的自变量的值称为函数的零点.例如,对于函数y =x ﹣1,令y =0,可得x =1,我们就说1是函数y =x ﹣1的零点.已知函数y =x 2﹣2mx ﹣2(m +3)(m 为常数).(1)当m =0时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点;(3)设函数的两个零点分别为x 1和x 2,且,此时函数图象与x 轴的交点分别为A 、B (点A 在点B 左侧),点M 在直线y =x ﹣10上,当MA +MB 最小时,求直线AM 的函数解析式.26.(10分)如图(1),在平面直角坐标系xOy 中,直线y =2x +4与y 轴交于点A ,与x 轴交于点B,抛物线C1:y=﹣x2+bx+c过A,B两点,与x轴的另一交点为点C.(1)求抛物线C1的解析式及点C的坐标;(2)如图(2),作抛物线C2,使得抛物线C2与C1恰好关于原点对称,C2与C1在第一象限内交于点D,连接AD,CD,①请直接写出抛物线C2的解析式和点D的坐标②求四边形AOCD的面积;(3)已知抛物线C2的顶点为M,设P为抛物线C1对称轴上一点,Q为直线y=2x+4上一点,是否存在以点M,Q,P,B为顶点的四边形为平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.参考答案一、选择题1.解:①3y2+x=4中含有两个未知数,不是一元二次方程,故错误;②2x2﹣3x+4=0、④x2=0符合一元二次方程的定义,故正确;③是分式方程,故错误;故选:D.2.解:∵一次函数y=5x﹣4中,5>0,﹣4<0,∴图象经过一、三、四象限,故选:C.3.解:判断宁宁成绩是否在班级属于中等偏上,还需要了解班级成绩的中位数,故选:A.4.解:A、正确.两组对边分别平行的四边形是平行四边形;B、错误.比如等腰梯形,满足条件,不是平行四边形;C、正确.对角线互相平分且垂直的四边形是菱形;D、正确.有一组邻边相等的矩形是正方形;故选:B.5.解:∵m是方程x2﹣2x﹣1=0的根,∴m2﹣2m﹣1=0,∴﹣m2+2m=﹣1,∴1+2m﹣m2=1﹣1=0.故选:A.6.解:抛物线y=﹣(x﹣3)2+1的顶点坐标为(3,1).故选:A.7.解:菱形的对角线互相垂直平分,又直角三角形斜边上的中线等于斜边的一半,根据三角形中位线定理可得:BC=2OE=8,则菱形的周长为8×4=32cm.故选:D.8.解:设水果产量的年平均年增长率为x,则可列方程为:80+80(1+x)+80(1+x)2=300.故选:C.9.解:由纵坐标看出,这次龙舟赛的全程是500m,故选项A正确;由横坐标可以看出,乙队先到达终点,故选项B正确;∵比赛中两队从出发到1.1分钟时间段,乙队的图象在甲图象的下面,∴乙队的速度比甲队的速度慢,故C选项错误;∵由图象可知,乙队在1.1分钟后开始加速,加速的总路程是500﹣200=300(米),加速的时间是1.9﹣1.1=0.8(分钟),∴乙与甲相遇时,乙的速度是300÷0.8=375(米/分钟),故D选项正确.故选:C.10.解:由二次函数的图象可知,a>0,b<0,c<0,∵一次函数y=bx+ac,∴b<0,ac<0,∴一次函数y=bx+ac的图象经过第二、三、四象限,故选:D.11.解:∵直线y=﹣x+4与x轴、y轴分别交于点A,B,∴点A(3,0),点B(0,4),∴OA=3,OB=4,∴AB==5,∵四边形OADC是菱形,∴OE⊥AB,OE=DE,∴OA•OB=OE•AB,即3×4=5×OE,解得:OE=2.4,∴OD=2OE=4.8.故选:B.12.解:如图所示,过点B的直线y=2x+b与新抛物线有三个公共点,将直线向下平移到恰在点C处相切,此时与新抛物线也有三个公共点,令y=x2﹣5x﹣6=0,解得:x=﹣1或6,即点B坐标(6,0),将一次函数与二次函数表达式联立得:x2﹣5x﹣6=2x+b,整理得:x2﹣7x﹣6﹣b=0,△=49﹣4(﹣6﹣b)=0,解得:b=﹣,当一次函数过点B时,将点B坐标代入:y=2x+b得:0=12+b,解得:b=﹣12,综上,直线y=2x+b与这个新图象有3个公共点,则b的值为﹣12或﹣;故选:A.二、填空题(共6小题,每小题3分,满分18分)13.解:由题意,得3x+1≥0且x﹣2≠0,解得x≥﹣,且x≠2,故答案为:x≥﹣,且x≠2.14.解:由方程x2﹣6x+8=0,得x=2或4.当三角形的三边是2,2,2时,则周长是6;当三角形的三边是4,4,4时,则周长是12;当三角形的三边长是2,2,4时,2+2=4,不符合三角形的三边关系,应舍去;当三角形的三边是4,4,2时,则三角形的周长是4+4+2=10.综上所述此三角形的周长是6或12或10.15.解:y=﹣2x2﹣4x+5=﹣2(x+1)2+7,即二次函数y=﹣x2﹣4x+5的最大值是7,故答案为:7.16.解:观察图象知道一次函数y =kx +b (k 、b 为常数,且k ≠0)的图象经过点(3,4), 所以关于x 的方程kx +b =4的解为x =3,故答案为:x =3.17.解:二次函数y =x 2﹣6x +4对称轴为直线x =3,当x 1<x 2<3时,y 随x 增大而减小,所以y 1>y 2,故答案为>.18.解:①∵函数开口方向向上,∴a >0;∵对称轴在y 轴右侧∴ab 异号,∵抛物线与y 轴交点在y 轴负半轴,∴c <0,∴abc >0,故①正确;②∵图象与x 轴交于点A (﹣1,0),对称轴为直线x =1,∴图象与x 轴的另一个交点为(3,0),∴当x =2时,y <0,∴4a +2b +c <0,故②错误;③∵二次函数y =ax 2+bx +c 的图象与y 轴的交点在(0,﹣1)的下方,对称轴在y 轴右侧,a >0,∴最小值:<﹣1, ∵a >0,∴4ac ﹣b 2<﹣4a ;∴③正确;④∵图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间,∴﹣2<c<﹣1∴﹣2<﹣3a<﹣1,∴>a>;故④正确⑤∵a>0,∴b﹣c>0,即b>c;故⑤正确.综上所述,正确的有①③④⑤,故答案为:①③④⑤.三、解答题(共8小题,满分66分)19.解:(x﹣3)(x﹣1)=8,∴x2﹣4x﹣5=0,∴(x﹣5)(x+1)=0,得x﹣5=0,x+1=0,x 1=5,x2=﹣1.20.【解答】解:(1﹣)÷=×=∵x﹣1≠0,x﹣2≠0,x﹣3≠0,∴x≠1,2,3,当x=0时,原式==﹣21.(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=90°,AB=CD,AD=BC,AD∥BC,在Rt△ABE和Rt△CDF中,,∴Rt△ABE≌Rt△CDF(HL);(2)解:当AC⊥EF时,四边形AECF是菱形,理由如下:∵△ABE≌△CDF,∴BE=DF,∵BC=AD,∴CE=AF,∵CE∥AF,∴四边形AECF是平行四边形,又∵AC⊥EF,∴四边形AECF是菱形.22.解:(1)∵△=(k﹣5)2﹣4×1×(4﹣k)=k2﹣6k+9=(k﹣3)2≥0,∴无论k取任何值,方程总有实数根.(2)∵x=2是方程x2+(k﹣5)x+4﹣k=0的一个根,∴22+(k﹣5)×2+4﹣k=0,解得:k=2,设方程的另一个根为x1,则x•x1=4﹣k,即2×x1=2,x1=1,则方程的另一个根为1.23.解:(1)被调查的学生人数为:12÷20%=60(人);(2)喜欢艺体类的学生数为:60﹣24﹣12﹣16=8(人),如图所示:(3)全校最喜爱文学类图书的学生约有:1200×=480(人).24.解:(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+10)元.由题意:=×2,解得x=150,经检验x=150是分式方程的解,答:一件B型商品的进价为150元,则一件A型商品的进价为160元.(2)因为客商购进A型商品m件,所以客商购进B型商品(250﹣m)件.由题意:v=80m+70(250﹣m)=10m+17500,∵80≤m≤250﹣m,∴80≤m≤125,(3)设利润为w元.则w=(80﹣a)m+70(250﹣m)=(10﹣a)m+17500,①当10﹣a>0时,即0<a<10时,w随m的增大而增大,所以m=125时,最大利润为(18750﹣125a)元.②当10﹣a=0时,最大利润为17500元.③当10﹣a<0时,即10<a≤80时,w随m的增大而减小,所以m=80时,最大利润为(18300﹣80a)元.25.解:(1)当m=0时,该函数的零点为和;(2)令y=0,得△=(﹣2m)2﹣4[﹣2(m+3)]=4(m+1)2+20>0∴无论m取何值,方程x2﹣2mx﹣2(m+3)=0总有两个不相等的实数根.即无论m取何值,该函数总有两个零点.(3)依题意有x1+x2=2m,x1x2=﹣2(m+3)由,解得m=1.∴函数的解析式为y =x 2﹣2x ﹣8.令y =0,解得x 1=﹣2,x 2=4∴A (﹣2,0),B (4,0)作点B 关于直线y =x ﹣10的对称点B ′,连接AB ′,则AB ’与直线y =x ﹣10的交点就是满足条件的M 点.易求得直线y =x ﹣10与x 轴、y 轴的交点分别为C (10,0),D (0,﹣10).连接CB ′,则∠BCD =45°∴BC =CB ’=6,∠B ′CD =∠BCD =45°∴∠BCB ′=90°即B ′(10,﹣6)设直线AB ′的解析式为y =kx +b ,则,解得:k =﹣,b =﹣1;∴直线AB ′的解析式为,即AM 的解析式为.26.解:(1)∵直线y =2x +4与y 轴交于点A ,与x 轴交于点B ,∴A (0,4),B (﹣2,0),∵抛物线C 1:y =﹣x 2+bx +c 过A ,B 两点,∴c =4,0=﹣×(﹣2)2﹣2b +4,解得b =∴抛物线C 1的解析式为:y =﹣x 2+x +4令y =0,得﹣x 2+x +4=0,解得x 1=﹣2,x 2=8∴C (8,0);(2)①∵抛物线C2与C1恰好关于原点对称,∴抛物线C2的解析式为y=+x﹣4,解方程组得:,,∵点D在第一象限内,∴D(4,6);②如图2,过D作DE⊥x轴于E,则OE=4,CE=OC﹣OE=8﹣4=4,DE=6,S四边形AOCD =S梯形AOED+S△CDE=(OA+DE)×OE+DE×CE=(4+6)×4+×6×4=32;(3)存在.过B作BN∥y轴,过M作MN∥x轴与BN交于点N,∵抛物线C2的解析式为y=+x﹣4=﹣,∴顶点M(﹣3,﹣),∴BN=,MN=1,抛物线C1的对称轴为:直线x=3,设P(3,m)①以点M,Q,P,B为顶点的四边形为平行四边形,若MQ为对角线,则BM∥PQ,BM=PQ∴Q(4,m+),又∵Q为直线y=2x+4上一点,∴m +=2×4+4,解得:m =∴P (3,); ②若BM 为对角线,设P (3,m ),Q (n ,2n +4),∵BM 中点坐标为(﹣,)∴,解得,∴P (3,),③若BQ 为对角线,∵BM ∥PQ ,BM =PQ ,∴Q (2,8),设P (3,m ),则m ﹣=8+0,解得:m =,∴P (3,)综上所述,存在以点M ,Q ,P ,B 为顶点的四边形为平行四边形,点P 的坐标为P (3,)或P (3,).。

人教版九年级上学期入学能力测试卷数学试题

人教版九年级上学期入学能力测试卷数学试题

人教版九年级上学期入学能力测试卷数学试题姓名:________ 班级:________ 成绩:________一、单选题1 . 下列命题中假命题有()①相邻的两个角都互补的四边形是平行四边形;②一组对边平行一组对角相等的四边形是平行四边形;③一组对边平行另一组对边相等的四边形是平行四边形;④有一条对角线平分一组对角的四边形是菱形;⑤对角线相等且互相垂直的四边形是正方形.A.1个B.2个C.3个D.4个2 . 如图,在平面直角坐标系中,是反比例函数图象上一点,是轴正半轴上一点,以,为邻边作,若点及中点都在反比例函数图象上,则的值为()A.B.C.D.3 . 已知点A(a,3),点B是x轴上一动点,则点A、B之间的距离不可能是()A.2B.3C.4D.54 . 端午节放假后,赵老师从七年级650名学生中随机抽查了其中50名学生的数学作业,发现有5名学生的作业不合格,下面判断正确的是()A.赵老师采用全面调查方式B.个体是每名学生C.样本容量是650D.该七年级学生约有65名学生的作业不合格5 . 如图,反比例函数和正比例函数的图像交于A(—1,—3)、B(1,3)两点,若,则的取值范围是()A.B.C.D.6 . 世界文化遗产“三孔”景区已经完成5G基站布设,“孔夫子家”自此有了5G 网络.5G网络峰值速率为4G 网络峰值速率的10倍,在峰值速率下传输500兆数据,5G 网络比4G 网络快45秒,求这两种网络的峰值速率.设4G网络的峰值速率为每秒传输兆数据,依题意,可列方程是()A.B.C.D.7 . 如图,反比例函数的图像经过点,过点作轴,垂足为,在轴的正半轴上取一点,过点作直线的垂线,以直线为对称轴,点经轴对称变换得到的点在此反比例函数的图像上,则的值为().C.D.A.B.8 . 下列运算正确的是()A.B.C.D.9 . 在﹣3、、、3四个实数中,最小的数是()D.3A.﹣3B.﹣C.10 . 今年我们三个市参加中考的考生共约11万人,用科学记数法表示11万这个数是()A.1.1×103B.1.1×104C.1.1×105D.1.1×106二、填空题11 . 在锐角△ABC中,CD、BE分别是AB、AC上的角平分线,且CD、BE交于一点P,若∠A=50°,则∠BPC的度数是________12 . 在平面直角坐标系中,一副含和角的三角板和如图摆放,边与重合,.当点从点出发沿方向滑动时,点同时从点出发沿轴正方向滑动.设点关于的函数表达式为________.连接.当点从点滑动到点时,的面积最大值为_______.13 . 如图,四边形ABCD,四边形EBFG,四边形HMPN均是正方形,点E、F、P、N分别在边AB、BC、CD、AD上,点H、G、M在AC上,阴影部分的面积依次记为S1,S2,则S1:S2等于____.14 . 函数中自变量x的取值范围是.15 . 因式分解:________.16 . 从标有1到9序号的9张卡片中任意抽取一张,抽到序号是3的倍数的概率是.____________17 . Rt△ABC中,∠ACB=90°,AC=20,BC=10,D、E分别为边AB、CA上两动点,则CD+DE的最小值为______.18 . 如图所示,∠1+∠2+∠3+∠4+∠5+∠6=__________度.三、解答题19 . 先化简,再求值:(1﹣)÷,其中a从0,1,2,3中挑选一个.20 . 如图①,已知正方形边长为2,点是边上的一个动点,点关于直线的对称点是点,连结、、、.设AP=x.(1)当时,求长;(2)如图②,若的延长线交边于,并且,求证:为等腰三角形;(3)若点是射线上的一个动点,则当为等腰三角形时,求的值.21 . 计算:(1);(2)[(2x﹣y)2﹣(2x+y)(2x﹣y)+4xy]÷2y.22 . 手机下单,随叫随走,每公里一元……继“共享单车”后,重庆、北京、上海、成都等多地开始流行起时尚、炫酷的“共享汽车”,只需下载手机APP,注册后就能用手机在附近找到汽车使用,到达目的地后可把车还到指定停车网点或任意的正规停车场.这种新兴出行方式越来越受到人们的青睐.在重庆,戴姆勒集团和力帆集团已经完成第一批共享汽车的投放,共计1400辆,戴姆勒集团投放的奔驰smart汽车购买单价为15万元,力帆集团投放的AE纯电动汽车购买单价为8万元;两家公司的汽车成本总投资额为1.54亿元.(1)求两集团公司在重庆第一批共享汽车的投放数量分别为多少?(2)这种共享的方式能够很好的整合社会资源,实现社会资源的优化配置,政府决定对后期投放的每辆汽车补贴成本价的,在此政策刺激下,戴姆勒集团公司决定再次购买并投放与第一次销售单价相同的第二批奔驰smart共享汽车,数量在两家公司第一次投放总和的一半的基础上增加,并且享受完政府补贴后,购买成本为1.197亿元,求的值.23 . 在平面直角坐标系中,对于点P(a,b),若点P′的坐标为(,)(其中k为常数,且k≠0),则称点P′为点P的“k关联点”.(1)点P(﹣3,4)的“2关联点”P′的坐标是_______________;(2)若a、b为正整数,点P的“k关联点”P′的坐标为(3,9),请直接写出k的值及点P的坐标;(3)如图,点Q的坐标为(0,2 ),点A在函数的图象上运动,且点A是点B的“﹣关联点”,求线段BQ的最小值.24 . 如图在直角坐标系中,四边形ABCO为正方形,A点的坐标为(a,0),D点的坐标为(0,b),且a,b满足(a﹣3)2+|b﹣|=0.(1)求A点和D点的坐标;(2)若∠DAE=∠OAB,请猜想DE,OD和EB的数量关系,说明理由.(3)若∠OAD=30°,以AD为三角形的一边,坐标轴上是否存在点P,使得△PAD为等腰三角形,若存在,直接写出有多少个点P,并写出P点的坐标,选择一种情况证明.25 . 为响应国家要求中小学生每天锻炼1小时的号召,某校开展了形式多样的“阳光体育运动”活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了图1和图2的统计图.请回答下列问题:(1)该班共有多少名学生?(2)求图1中“乒乓球”部分的人数,并在图1中将“乒乓球”部分的图形补充完整;(3)求出扇形统计图中表示“足球”的扇形的圆心角度数.26 . 如图,直线y=2x﹣4分别交坐标轴于A、B两点,交双曲线y=(x>0)于C点,且sin∠COB=;(1)求双曲线的解析式;(2)若过点B的直线y=ax+b(a>0)交y轴于D点,交双曲线于点E,且OD:AD=1:2,求E点横坐标.27 . 已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA中点,点P在BC 上以每秒1个单位的速度由C向B运动,设运动时间为t秒.(1)△ODP的面积S=________.(2)t为何值时,四边形PODB是平行四边形?(3)在线段PB上是否存在一点Q,使得ODQP为菱形?若存在,求t的值,并求出Q点的坐标;若不存在,请说明理由;(4)若△OPD为等腰三角形,请写出所有满足条件的点P的坐标(请直接写出答案,不必写过程)28 . 解不等式组:参考答案一、单选题1、2、3、4、5、6、7、8、9、10、二、填空题1、2、3、4、5、6、7、8、三、解答题1、2、3、4、5、6、7、8、9、10、第11 页共11 页。

人教版九年级数学上册第一学期科入学测试卷.docx

人教版九年级数学上册第一学期科入学测试卷.docx

初中数学试卷桑水出品2015学年第一学期九年级数学科入学测试卷姓名: 班级: 成绩:一、选择题(本大题共6小题,每小题4分,共24分.)1.小明3分钟共投篮80次,进了50个球,则小明进球的频率是( ) A .80 B .50 C .1.6 D .0.6252. 在□ABCD 中,如果∠A +∠C =140°,那么∠C 等于( )A. 20°B. 40°C. 60°D. 70° 3.函数y =x 的取值范围是 ( )A .2x >B .2x <C .2x ≥D .2x ≤4. 将点A (2,1)向左..平移2个单位长度得到点A ′,则点A ′的坐标是( )A .(2,3)B .(2,-1)C .(4,1)D. (0,1)5.如图,△ABC 为等腰三角形,如果把它沿底边BC 翻折后,得到△DBC ,那么四边形ABDC 为( )A .菱形B .正方形C .矩形D . 一般平行四边形6. 一次函数4)2(2-+-=k x k y 的图象经过原点,则k 的值为( )A .2B .-2 C.2或-2 D.3二、 填空题(本大题共6小题,每题4分,共24分. )ABCD7. 一次函数y=kx+b 与y=2x+1平行,且经过点(-3,4),则表达式为:8.. 在平面直角坐标系xOy 中,点P 在x 轴上,且与原点的距离为7,则点P 的坐标为9. 已知一次函数b kx y +=的图象与y 轴正半轴相交,且y 随x 的增大而减小,请写出符合上述条件的一个解析式.....: . 10. 如图,△ABC 为等边三角形,DC ∥AB ,AD ⊥CD 于D .若△ABC 的周长为123cm ,则CD =________ cm .11. 正方形ABCD 中,AB =24,AC 交BD 于O ,则△ABO 的周长是_________.12. 已知a ,b ,c 为三角形的三边, 则=三、解答题(本大题共4小题,共52分. 解答应写出文字说明、证明过程或演算步骤.) 13.(本小题满分10分)已知:如图,E ,F 是□ABCD 的对角线AC 上的两点, BE DF ∥,求证:AF CE =.BDCAD CA B EF14. (本小题满分14分)如图,在菱形ABCD 中,AC ,BD 相交于点O ,E 为 AB 的中点,DE AB ⊥. (1)求ABC ∠的度数;(2)如果43AC =,求DE 的长.15. (本小题满分10分)如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从 一棵树的树梢飞到另一棵树的树梢,求小鸟至少飞行的距离.A BCDEO15. (本小题满分18分)某校八(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,请解答以下问题: (1)把上面的频数分布表和频数分布直方图补充完整;(2)若该小区用水量不超过15t 的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20 t 的家庭大约有多少户?第20题图月用水量(t)2015学年第一学期九年级数学科入学测试卷答案一、 选择题(每题4分,共24分) 1. D 2. D 3. C 4. D 5. A 6. B 二、 填空题(每题4分,共24分) 7. y=2x+10 8. ()7,0±9. 1y x =-+或21y x =-+等 10. 2311. 24+242 12.三、 解答题 13.(本小题满分10分)证明:∵四边形ABCD 是平行四边形,∴,//AD BC AD BC =.…………………………2分∴DAF BCE ∠=∠. …………………………4分∵//BE DF ,∴DFA BEC ∠=∠. ……………………………6分∴AFD CEB △≌△. …………………………………………………8分 ∴AF CE =. ……………………………………………10分14. (本小题满分14分)解:(1)∵四边形ABCD 是菱形,AB AD ∴=,AD ∥.BC ………………………………………2分 ∴180DAB ABC ∠+∠=︒.∵E 为AB 的中点,DE AB ⊥,DCABE FCD∴AD DB =. ……………………………4分∴AD DB AB ==. ∴ △ABD 为等边三角形. ∴ 60DAB ∠=︒.∴ 120ABC ∠=︒. ………………………………………6分 (2)∵四边形ABCD 是菱形, ∴BD AC ⊥于O ,12 3.2AO AC ==……………………………………8分 ∵DE AB ⊥于E , ∴90AOB DEB ∠=∠=︒.∵,,DB AB ABO DBE =∠=∠∴AAS ABO DBE △≌△(). ∴==23DE AO .……………………………………14分15. (本小题满分10分)如图,设大树高为AB =10 m ,小树高为CD =4 m , 过C 点作CE ⊥AB 于E ,则EBDC 是矩形. ……………2分 ∴EB=CD =4 m ,EC =8 m. ……………4分 AE =AB -EB =10-4=6 m. ……………6分 连接AC ,在Rt △AEC 中,2210m.AC AE EC =+=.……………10分16. (本小题满分18分)解:(1)12;0.08;频数分布直方图略. …………………………6分(2)用水量不超过15吨的是前三组,(0.12+0.24+0.32)×100﹪=68﹪. ……………12分 (3)1000×(0.04+0.08)=120(户). …………………………18分。

九年级数学上学期入学考试试题新人教版

九年级数学上学期入学考试试题新人教版

九年级入学摸底测试题数学一、选择题:(每题2分,共30分)1、下列方程中,关于x 的一元二次方程的是( )A. 3(x +1)2=2(x +1) B . 1x 2+1x-2=0 C. ax 2+bx +c =0 D .x 2+2x =x 2-1 2、不等式(a-1)x >1的解集是x > ,则a 的取值范围是( )A. a >1B. a <1C. a ≠0D. 以上都不对3、下列命题是假命题的是( )A .四个角相等的四边形是矩形B .对角线相等的平行四边形是矩形C .对角线互相垂直的四边形是菱形D .对角线互相垂直的平行四边形是菱形4、 下列因式分解正确的是( )A. B.C. D.5. 下列变形正确的是( )A. B.C. D.6、 设a,b,c 是三角形的三边,则多项式的值( ) A. 等于0 B. 大于0 C. 小于0 D. 无法确定7、若a 是方程2x 2-x -3=0的一个解,则6a 2-3a 的值为( )A .3B .-3C .9D .-98. 用配方法解一元二次方程x 2-2x -3=0时,方程变形正确的是( )A. (x -1)2=2 B .(x -1)2=4C .(x -1)2=1D .(x -1)2=79.下列一元二次方程中,没有实根的是( )A .x 2+2x -3=0B .x 2+x +14=0C.x2+2x+1=0 D.-x2+3=010、已知,则a b c 的值是 ( ) A.45 B. 54 C.2 D.1211、在相同时刻,物高与影长成正比。

如果高为1.5米的标杆影长为2.5米,那么影长为30米的旗杆的高为( )A.20米B.18米C.16米D.15米 12、一次函数y=的图像如图所示,当时,x 的取值范围是( )A. -4<x<0B. -4<x<4C. 0<x<4D.-4<x<413、如图,在△ABC 中,∠A =36°,AB =AC ,AB 的垂直平分线OD交AB 于点O ,交AC 于点D ,连接BD .下列结论错误的是( )A. ∠C =2∠A B .BD 平分∠ABCC. S △BCD =S △BOD D .AD=BC14、 无论x 为任何实数,的取值范围为( ) A.B. C.D. 15、已知一元二次方程x 2-3x -1=0的两个根分别是x 1,x 2,则x 12x 2+x 1x 22的值为( )A. -3 B .3 C .-6 D .6二、填空题:(每题3分,共21分)16、已知菱形的两条对角线长分别为2 cm,3 cm,则它的面积是 cm 2.17、方程(x +2)2=x +2的解是18、已知43=y x ,则._____=-y y x x y O 3 2 12题13题19、分式方程:1+= 的解是20、分解因式: 2xy-=21、如果正整数a 是一元二次方程x 2-5x +m =0的一个根,-a 是一元二次方程x 2+5x -m =0的一个根,则a = .22、如图,菱形ABCD 的边长为4,过点A ,C 作对角线AC 的垂线,分别交CB 和AD 的延长线于点E ,F ,AE =3,则四边形AECF 的周长为__ _.三、解答题:(共69分)23、(10分)解方程(若题目有要求,请按要求解答)(1) x 2-4x +2=0(配方法); (2) x 2+3x +2=0;24、(10分)设方程: x 2+3x - 5=0的两个实数根为1x 、2x ,不解方程,求下列代数式的值: 1)1211x x - 2)25. (8分) 化简: 22222()2m n mn n mn m mn n m n n m-+--+--26.(8分)解方程:27、(10分)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE. (1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.28、(12分)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?29、(11分)已知关于x的一元二次方程+(m+3)x+m+1=0;1) 求证:无论m取何值,原方程总有两个不相等的实数根。

2024年九年级上学期开学考数学(人教版)试题及答案

2024年九年级上学期开学考数学(人教版)试题及答案

九年级上学期开学摸底卷02 重难点检测卷【考试范围:人教版八下全部内容+九年级上衔接内容】注意事项:本试卷满分100分,考试时间120分钟,试题共26题。

答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置一、选择题(10小题,每小题2分,共20分)1.(2024·山东潍坊·模拟预测)计算()23−的结果是( )A .3B .9C .23D .3 2.(23-24八年级上·甘肃酒泉·期末)如图,一张长方形纸片剪去一个角后剩下一个梯形,则这个梯形的周长为( )A .30B .32C .34D .363.(23-24八年级下·云南昆明·期末)已知正比例函数的解析式为7x y =,下列结论正确的是( ) A .图象是一条线段B .图象必经过点(1,6)−C .图象经过第一、三象限D .y 随x 的增大而减小4.(23-24八年级下·湖北恩施·期末)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( )A .平均数B .中位数C .极差D .众数5.(22-23八年级下·广东揭阳·期中)如图,在ABCD 中,对角线AC ,BD 交于点O ,下列结论一定成立的是( )A .AC BD ⊥B .=AC BD C .OB OD =D .ABC BAC∠=∠6.(22-23八年级下·四川广安·期末)如图,在作线段AB 的垂直平分线时,小聪是这样操作的:分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点C ,D ,则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定是( )A .矩形B .菱形C .正方形D .平行四边形7.(23-24八年级上·安徽合肥·期末)下图中表示一次函数y mx n =+与正比例函数y mnx = (m ,n 是常数,且<0mn )图象是( )A .B .C .D .8.(23-24八年级下·云南昭通·期末)为了培养学生的数学核心素养,提高学生发现问题,分析问题,解决问题的能力.2024年昭通市某学校的156班组织了一次课外研学活动.在研学活动中,王宇同学欲控制遥控轮船匀速垂直横渡一条河,但由于水流的影响,实际上岸地点F 与欲到达地点E 相距10米,结果轮船在水中实际航行的路程HF 比河的宽度EH 多2米,则河的宽度EH 是( ).A .8米B .12米C .16米D .24米9.(2024·重庆·模拟预测)设一元二次方程()200ax bx ca ++=≠的两个根分别为1x ,2x ,则方程可写成()()12a x x x x 0−−=,即()212120ax a x x x ax x −++=.容易发现:12b x x a +=−,12c x x a=.设一元三次方程()3200ax bx cx d a +++=≠的三个非零实根分别为1x ,2x ,3x ,则以下正确命题的序号是( ) ①123b x x x a ++=−;②122313c x x x x x x a ++=;③123111cx x x d ++=;④123d x x x a =−. A .①②③ B .①②④ C .②③④ D .①③④10.(2023·湖北黄冈·模拟预测)如图,抛物线()20y ax bx c a ++≠与x 轴的一个交点坐标为(1,0)−,抛物线的对称轴为直线1x =,下列结论:①0abc <;②30a c +=;③当0y >时,x 的取值范围是13x −≤<;④点1(2,)y −,2(2,)y 都在抛物线上,则有120.y y <<其中结论正确的个数是( )A .2个B .3个C .4个D .5个二、填空题(8小题,每小题2分,共16分)11.(23-24八年级下·广东惠州·期中)如果最简二次根式1a +与21a −是同类二次根式,那么a = .12.(23-24八年级下·山西晋城·期末)若点()13,A y ,()25,B y 都在一次函数y x b =+的图象上,则1y 2y .(填“>”“<”“=”)13.(2024·四川乐山·二模)若关于x 的方程()22140x m x m −+++=两根互为负倒数,则m 的值为 .14.(22-23八年级下·广东惠州·阶段练习)如图,Rt ABC △中,90C ∠=°,AB 比AC 长1,3BC =,则AC = .15.(22-23八年级下·湖南衡阳·期末)如图,已知直线y ax b =+和直线y kx =交于点P ,则关于x ,y 的二元一次方程组y kx y ax b = =+ 的解是.16.(23-24八年级下·广东惠州·期中)如图,在平行四边形ABCD 中,DDDD 平分ADC ∠,5AD =,2BE =,则平行四边形ABCD 的周长是 .17.(22-23八年级下·湖北黄冈·期中)如图,电工黄师傅为了确定新栽的电线杆与地面是否垂直,他从电线杆上离地面2.5m 处向地面拉一条长6.5m 的缆绳,当黄师傅量得这条缆绳在地面的固定点距离电线杆底部距离为 m 时,这根电线杆便与地面垂直了.18.(2024·吉林·模拟预测)已知抛物线2y ax bx c ++(a ,b ,c 是常数,0a c <<)经过点()1m −,,其中0m >.下列结论:①0b <;②当12x >−时,y 随x 的增大而减小; ③关于x 的方程()20ax b m x c n ++++=有实数根,则n 是非负数;④代数式3m a b++的值大于0.其中正确的结论是(填写序号).三、解答题(8小题,共64分)19.(23-24八年级下·广东广州·期末)计算:()243332+−.20.(23-24八年级下·海南省直辖县级单位·阶段练习)用适当的方法解下列方程:(1)21690x −=;(2)231212x x −=−;(3)()33x x x +=+;(4)24240x x −+=.21.(23-24八年级下·广东广州·期末)如图,在 Rt ABC △中,90ACB ∠=°,68AC BC ==,,以点 A 为圆心,AC 长为半径画弧交AB 于点 D ,求BD 的长.22.(23-24八年级上·四川达州·期末)如图,在ABC 中,5cm AB =,26cm BC =,AD 是BC 边上的中线,12cm AD =,求ABC 的面积.23.(23-24八年级下·福建泉州·期末) 某公司随机抽取一名职员,统计了他一个月 (30天) 每日上班通勤费用通勤费用 (元/天) 0 48 36 天数(天) 8 12 64 (1)该名职工上班通勤费用的中位数是 元,众数是 元:(2)若该公司每天补贴该职员上班通勤费用6元,请你利用统计知识判断该职员是否还需自行补充上班通勤费用?24.(23-24八年级下·山东临沂·期中)如图,点D ,C 在BF 上,AC DE ∥,A E ∠=∠,BD CF =.(1)求证:AB EF =;(2)连接AF ,BE ,猜想四边形ABEF 的形状,并说明理由.25.(22-23八年级下·四川广安·期末)如图,已知函数12y x b =−+的图象与x 轴,y 轴分别交于点A 、B ,与函数y x =的图象交于点M ,点M 的横坐标为2,在x 轴上有一点(,0)P a (其中2)a >,过点P 作x 轴的垂线,分别交函数12y x b =−+和y x =的图象于点C 、D .(1)求点A 的坐标;(2)若OB CD =,求a 的值.26.(2024·山西晋中·模拟预测)鹰眼技术助力杭州亚运,提升球迷观赛体验.如图分别为足球比赛中某一时刻的鹰眼系统预测画面(如图1)和截面示意图(如图2),攻球员位于点O ,守门员位于点A ,OA 的延长线与球门线交于点B ,且点A ,B 均在足球轨迹正下方,足球的飞行轨迹可看成抛物线.水平距离s 与离地高度h 的鹰眼数据如表: /m s 0 9 12 1518 21 … /m h 0 4.2 4.8 5 4.8 4.2 …(2)求h关于s的函数解析式.九年级上学期开学摸底卷02 重难点检测卷【考试范围:人教版八下全部内容+九年级上衔接内容】注意事项:本试卷满分100分,考试时间120分钟,试题共26题。

人教版九年级数学入学考试试卷含答案

人教版九年级数学入学考试试卷含答案

九年级(上)入学考试数学试卷(满分:100分 考试时间:90分钟)一、选择题:(每小题3分,共30分。

每小题只有一个选项符合题意,请将正确选项的序号1.下列判断中,你认为正确的是( ) A .0的倒数是0 B 2 C .π是有理数D 3±2.观察下列各式:①2a+b和a+b ;②)(5b a m -和b a +-;③)(3b a +和b a --;④22y x -和22y x +;其中有公因式的是( )A .①②B .②③C .③④ D·①④ 3.当x=2时,下列各式的值为0的是( ) A .2322+--x x x B .21-x C .942--x x D .12-+x x4.在△ABC 与△C B A '''中,有下列条件:①C B BC B A AB ''='';⑵C A ACC B BC ''=''③∠A =∠A ';④∠C =∠C '。

如果从中任取两个条件组成一组,那么能判断△ABC ∽△C B A '''的共有()组。

A 、1B 、2C 、3D 、45.一盒苹果分给几个学生,若每人分4个,则剩下3个,若每人分6个,则最后一个学生能得到的苹果不超过2个,则学生人数是( ) A 、3 B 、4 C 、5 D 、66、如图,是小明设计用手电来测量某古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB=1.2米,BP=1.8米,PD=12米, 那么该古城墙的高度是A .6米B .8米C .18米 D .24米 7.不等式组的解⎨⎧->2x 在数轴上表示正确的是( )8.解关于x 的方程116-=--x mx x 产生增根,则常数m 的值等于( ) A .2- B .3- C .1 D .5-DC A B9.2009年某市大约有50000名学生参加高考,为了考查他们的数学成绩考试情况,评卷人抽去了2000名学生的数学成绩进行统计,那么下列四个判断正确的是( )A .每名学生的成绩是个体B .50000名学生是总体C .2000名考生是总体的一个样本D .上述调查是普查10.如图,在△ABC 中,∠ACB=90,∠B=30,AC=1,过点C 作AB CD ⊥1与1D ,过1D 作AB D D ⊥21于2D ,过2D 作AB D D ⊥32于3D ,这样继续作下去,线段1+n n D D 的长度(n为正整数)等于( )A .121+⎪⎭⎫ ⎝⎛n B .123+⎪⎭⎫ ⎝⎛n C .n ⎪⎪⎭⎫ ⎝⎛23 D .123+⎪⎪⎭⎫⎝⎛n二、填空题:(每小题3分,共18分)11.如果b a +=8,ab =15,则a 2b +ab 2的值为 。

人教版2019-2020学年九年级(上)开学数学试卷【含答案】

人教版2019-2020学年九年级(上)开学数学试卷【含答案】

人教版2019-2020学年九年级(上)开学数学试卷一、选择题(每小题 3 分,共计 30 分)1.实数2-,,0.2-,17,π中,无理数的个数是( ) A .2 个 B .3 个C .4 个D .5 个2.下列运算中,正确的是( )A.x3•x 2=x5(x 2)3=x 5C .2x 3÷x 2=xD .﹣(x ﹣1)=﹣x ﹣13.下列图形中,对称轴条数最多的是()A .B .C .D .4.下列命题中正确的是( )A .对角线互相垂直的四边形是菱形 B.对角线相等的四边形是矩形 C .对角线相等且互相垂直的四边形是菱形 D .对角线相等的平行四边形是矩形5.制造一种产品,原来每件成本是 100 元,由于连续两次降低成本,现在的成本是 81 元, 则平均每次降低的百分率是()A .8.5%B .9%C .9.5%D .10%6.如图,修建抽水站时,沿着倾斜角为30°的斜坡铺设管道,若量得水管AB 的长度为80米,那么点B 离水平面的高度B C 的长为()A.B.C.40米D.10米7.直线132y x=+与坐标轴分别交于,A B两点,O为坐标原点,则AOB∆的面积是()B. C.40米 D.10米7.直线132y x=+与坐标轴分别交于A、B两点,O为坐标原点,则AOB∆的面积是()A.4.5 B.6 C.9 D.188.反比例函数1myx-=的图象在第一、三象限,则m的取值范围是()A.m≥1 B.m≤1 C.m>1 D.m<19.如图,在△ABC 中,D 是A B 边上一点,DE∥BC,DF∥AC,下列结论正确的是()A.AD AEBD AC= B.DE AEBF AC= C.AD AEAB AC= D.AD DFBD AC=10.甲、乙两人以相同路线前往距离学校10km 的科技中心参观学习.图中y1 与y2 分别表示甲、乙两人前往目的地所走的路程y(km)随时间x(分)变化的函数图象.以下说法:①乙比甲提前12 分钟到达;②甲的平均速度为15 千米/小时;③乙走了5.5km 后遇到甲;④当乙到达时甲距离科技中心4.4km.其中正确的结论有()A.4 个B.3 个C.2 个D.1个二、填空题(每小题3分,共计30 分)11.数字72000 用科学记数法表示为.12.函数13xyx+=-的自变量x的取值范围是.13.不等式组24050xx-≥⎧⎨+≥⎩的解集为.14.把多项式2a2﹣4ab+2b2 分解因式的结果是.15.如果x=2 是方程x2﹣kx﹣k+5=0 的一个根,那么k的值等于.16.在反比例函数2yx=-的图象上有两点(,y1),(﹣2,y2),则y1y2.(填“>”或“<”)17.如图,在平行四边形A BCD 中,E 为B C 边上的点,连接A E 交B D 于F,AE 的延长线与D C的延长线交于点K,若B E:EC=5:4,则B F:FD 等于.18.等腰三角形中,腰长为4 5cm,底边长8cm,则它的顶角的正切值是.19.如图,菱形A BCD 中,∠BAD=60°,M 是A B 的中点,P 是对角线A C 上的一个动点,若P M+PB 的最小值是3,则A B 长为.20.在△ABC 中,∠BAC=90°,点D、E 分别在BC、AC 上,AC=CD,2∠EDC=∠B,AB=3,CE=2,AE=.三、解答题(其中21-22 题各7 分,23-24 题各8 分,25-27 题各10 分,共计60 分)21.先化简,再求值:21()(1)11x x x x -÷++-,其中2cos452cos60x =︒+︒. 22.图 1,图 2 均为正方形网格,每个小正方形的边长均为 1,各个小正方形的顶点叫做格点,请在下面的网格中按要求分别画图,使得每个图形的顶点均在格点上.(1)画一个边长均为整数的等腰三角形,且面积等于12;( 2 )5,并直接写出这个三角形的面积.23.如图,在平面直角坐标系 xOy 中,一次函数 y =ax +b (a ≠0)与反比例函数k y x=(k ≠0)的图象交于点 A (4,1)和 B (﹣1,n ).(1)求 n 的值和直线 y =ax +b 的表达式;(2)根据这两个函数的图象,直接写出不等式0kax b x+-<的解集.24.如图甲楼 AB 的高为 40 米,小华从甲楼顶 A 测乙楼顶 C 仰角为α=30°,观测乙楼的底部 D 俯角为β=45°;(1)求甲、乙两楼之间的距离;(2)求乙楼的高度(结果保留根号).25.某商场销售一批A 型衬衫,平均每天可售出20 件,每件赢利40 元,为了增加盈利并尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价 1 元,商场平均每天可多售出 2 件.(1)若商场平均每天赢利1200 元,每件衬衫应降价多少元?(2)在(1)的定价情况下,衬衫的成本是100 元,为了更快的盈利和清理库存,商店选择一种领带与 A 型衬衫成套出售,领带按照标价的8 折出售,领带标价是其进价的2倍,要使每套的利润率不低于40%,则选择的领带的成本至少多少钱?26.已知△ABC 中,AB=AC,点D、H 分别在边BC、AC 上,BH 与AD 交于点E,∠BAC=∠BED.(1)如图①,若∠BAC=60°,求证:BD=CH;(2)如图②,连接EC,若BE=2AE,求证:∠BED=2∠DEC.(3)在(2)的条件下,延长AE 至点F,连接BF、CF,∠ABE+∠ACE+∠BFE=90°,∠BFC=90°,DE = 2,求CH 的长.27.如图,平面直角坐标系中,点O 为BD 交线段 OA 于点 E ,E 点坐标为(0,1),且 D 点恰在 AB 的垂直平分线上. (1)求 A 点坐标; (2)动点 P 从点 O 出发沿线段 OA 以每秒 1 个单位的速度向终点 A 运动,动点 Q 从C 出发沿折线 C ﹣﹣O ﹣﹣y 轴负方向以每秒 4 个单位长度的速度运动.P 、Q 两点同时出发,且 P 点到达 A 处时,P 、Q 两点同时停止运动.设点 P 的运动时间为 t 秒,△BPQ 的面积为 S ,请用含 t 的式子表示 S ,并直接写出相应的 t 的取值范围;(3)在(2)问的条件下,是否存在 t 值,使得△BPQ 是以坐标轴为对称轴的等腰三角形?若存在,请求出符合条件的 t 值;若不存在,请说明理由.试卷答案一、选择题1-5: AAADD 6-10: CCCDD二、填空题11. 47.210⨯ 12.3x ≠ 13.2x ≥14.()22a b - 15.3 16.>17.5918.4319.20.6三、解答题21.解:∵2cos452cos60x =︒+︒,∴122122x =⨯+⨯=, 原式()2211111x x x x x x +--+=÷+- 22211x x x x-=⋅+ 1x =-,把1x =代入上式,原式=22.解:(1)如图所示,ABC ∆即为所求:(2)如图所示,DEF ∆即为所求:152DEF S ∆==.23.解:(1)把点()4,1A 代入ky x=,解得4k =. 把点()4,1B 和()1,4B --代入y ax b =+得414k b k b +=⎧⎨-+=-⎩解得13k b =⎧⎨=-⎩∴一次函数的表达式为3y x =-.(2)观察图象可知:0kax b x+-<的解集为:1x <-或04x <<. 24.解:(1)过点A 作AE CD ⊥于E ,则四边形ABCD 为矩形,∴40DE AB ==米,∵45β=︒∴40AE DE ==米即两楼之间的距离为40米;(2)在Rt ACE ∆中,∵30α=︒,40AE =米,∴tan 30CEAE=︒,∴40CE ==则楼高为:403DE CE +=+(米).答:乙楼的高度为(403+米. 25.解:(1)设每件衬衫应降价x 元,则每天多销售2x 件,由题意,得()()40 202 1200x x -+=,解得:120x =,210x =, ∵要增加盈利并尽快减少库存,∴每件衬衫应降价20元;(2)设选择的领带的成本为y 元,由题意,得()()()4020 0.82100 40%y y y -+⨯-≥+⨯,解得100y ≥.答:选择的领带的成本至少100元.26.(1)证明:如图①中,∵AB=AC,∠BAC=60°,∴△ABC 是等边三角形,∴∠BAC=∠C=60°,∵∠BAC=∠BED,∴∠ABH+∠BAE=∠BAE+∠DAC,∴∠ABH=∠DAC,∴△BAH≌△ACD,∴AH=CD,∵BC=AC,∴BD=CH.(2)证明:如图②中,取BE 的中点F,连接AF.∵BE=2AE,BF=EF,∴AE=EF,∴∠EAF=∠EFA,∴∠BED=∠EAF+∠EFA=2∠EFA,∵AB=AC,∠FBA=∠EAC,BF=AE,∴△BAF≌△EAC,∴∠BFA=∠AEC,∴∠EFA=∠DEC,∴∠BED=2∠DEC.(3)解:取BE 的中点F,连接AF.作EM⊥BF 于M,DN⊥AC 于N,连接FM.∵∠ABE=∠CAD,∠ABE+∠ACE+∠BFE=90°,∠FEC=∠ACE+∠DAC=∠ACE+∠ABF,∴∠BFE+∠FEC=90°,∵∠MEF+∠AFB=90°,∠BFE+∠EFC=90°∴∠MEF=∠FEC=∠EFC,∴CF=CE,∵∠BEF=2∠FEC,∴∠BEM=∠FEM=∠CEF,∵∠EBM+∠BEM=90°,∠EFB+∠MEF=90°,∴∠EBF=∠EFB,∴EB=EF,∴BM=MF,∵BF=FE,∴FM∥EF,FM=12 EF,∵EF=BE=2AE,∴FM=AE,∴四边形AEMF 是平行四边形,∴AF=EM=EC=CF,∵EM∥CF,∴四边形ECFM 是平行四边形,∵CE=CF,∠EMF=90°,∴四边形ECFM 是正方形,∴∠FEM=∠FEC=45°,∴∠BEF=2∠FEC=90°,∴∠AEB=90°,∵∠ABE+∠BAE=90°,∠ABE=∠CAD,∴∠BAE+∠CAD=90°,∴∠BAC=90°,△ABC 是等腰直角三角形,∴tan∠ABE=12 AE AHBE AB==,∴AB=AC=2AH,∴AH=CH,设EH=a,则AE=2a,BE=4a,AB=AC=,∵1tan2DNDAAN∠=,DN CN=,∴133CN DN AC a ===,∵AD=,∴1023a a=,∴4a=∴CH==.27.解:(1)如图1 中,作DF⊥OC 于F.∵|a+2|=﹣b2+6b﹣9.∴|a+2|+(b﹣3)2=0,∵|a+2|≥0,(b﹣3)2≥0,∴a=﹣2,b=3,∴B(﹣2,0),C(3,0),∵E(0,1),∴OB=2,OE=1,OC=3,BE==,又∵D在AB的垂直平分线上,AD AC⊥,∴BOE BDC∠=∠,∵EBO CBD∠=∠,∴BOE BDC∆∆,∴OB EO BE BD CD BC==,∴21 BD DC==∴BD=CD=∴BE DE==∵EO∥DF,∴OB=OF=2,∴DF=2OE=2,∴D(2,2),设直线AD 的解析式是y=kx+b,则22 30k bk b+=⎧⎨+=⎩,解得:26kb=-⎧⎨=⎩,则直线AD 的解析式是y=﹣2x+6,∴A(0,6).(2)当304t ≤≤时,Q 在线段OC 上,则54PB t =-,OP t =, 则()115422S PB OP t t =⋅=-,即2522S t t =-+; 当364t <≤时,Q 在y 轴的负半轴上,P 在线段OA 上,OP t =,43OQ t =-, 则()4353PQ t t t =+-=- 则()115325322S PQ OB t t =⋅=⨯-⨯=-. (3)当对称轴是y 轴时,Q 在OC 上,此时0≤t ≤34,OQ =3﹣4t ,则OQ =OA ,即3﹣4t =2, 解得:14t =; 当x 轴是对称轴时,364t <≤时,,Q 在y 轴的负半轴上,P 在线段OA 上,OP =t ,OQ =4t ﹣3, OP =OQ ,则t =4t ﹣3,解得:t =1.总之,t 14=或1.。

九年级数学上学期入学试卷(含解析) 新人教版(2021-2022学年)

九年级数学上学期入学试卷(含解析) 新人教版(2021-2022学年)

2016—2017学年重庆市九年级(上)入学数学试卷一、选择题(4X10)1.下列是关于x的一元二次方程的是()A.B.(x﹣1)(x﹣5)=x2﹣5ﻩ C.x2=0 D.x2﹣2xy=12.画出如图中物体的俯视图,正确的是()A.B. C.ﻩD.3.若分式的值为0,则x的值为()A.1ﻩB.﹣1 C.±1ﻩD.04.如图,四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是( )A.AB=CD B.AD=BCﻩC.AB=BC D.AC=BD5.若x=3是关于x的方程x2﹣bx﹣3a=0的一个根,则a+b的值为()A.3ﻩB.﹣3ﻩC.9ﻩ D.﹣96.一个密闭不透明盒子中有若干个白球,现又放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再放回盒中,像这样共摸200次,其中40次摸到黑球,估计盒中大约有白球( )A.28个B.30个ﻩ C.32个ﻩ D.34个7.如图,在▱ABCD中,AB=3,BC=5,对角线AC、BD相交于点O.过点O作OE⊥AC,交AD于点E.连接CE,则△CDE的周长为()A.3ﻩB.5ﻩC.8ﻩ D.11ﻬ8.如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=9厘米,EF=12厘米,则边AD的长是()A.12厘米B.15厘米ﻩ C.20厘米ﻩ D.21厘米9.从﹣3,﹣1,,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程﹣=﹣1有整数解,那么这5个数中所有满足条件的a的值之和是( )A.﹣3B.﹣2 C.﹣ﻩ D.10.如图,菱形OABC的顶点O为坐标原点,顶点A在x轴正半轴上,顶点B、C在第一象限,OA=2,∠AOC=60°,点D在边AB上,将四边形ODBC沿直线OD翻折,使点B和点C分别落在这个坐标平面内的B′和C′处,且∠C′DB′=60°,某正比例函数图象经过B′,则这个正比例函数的解析式为( )A.y=﹣xﻩB.y=﹣ C.y=﹣ﻩ D.y=﹣x二、填空题(4X10)11.方程x2﹣4=0的解是.12.关于x的一元二次方程2x2+kx+1=0有两个相等的实根,则k=;方程的解为.13.如图,已知△ACP∽△ABC,AC=4,AP=2,则AB的长为.ﻬ14.如图:M为反比例函数图象上一点,MA⊥y轴于A,S△MAO=2时,k=.15.在分别写有﹣2,﹣1,0,1,2的五张卡片中随机抽取两张,所抽取的两个数差的绝对值大于1的概率为 .16.已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是.17.若关于x的分式方程+=1有增根,则m=.18.如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是.19.如图,已知M是平行四边形ABCD中AB边的三等分点,BD与CM交于E,阴影部分面积为7,则平行四边形ABCD的面积为.20.在正方形ABCD中,点E为BC边上一点且CE=2BE,点F为对角线BD上一点且BF=2DF,连接A E交BD于点G,过点F作FH⊥AE于点H,连结CH、CF,若HG=2cm,则△CHF的面积是cm2.ﻬ三、解答题(共70分)21.解方程:(1)x2﹣4x+1=0(2)﹣=.22.先化简,再求值:,其中a满足方程a2+4a+1=0.23.如图,已知直线y=mx+b(m≠0)与双曲线y=(k≠0)交于A(﹣3,﹣1)与B(n,6)两点,连接OA、OB.(1)求直线与双曲线的表达式;(2)求△AOB的面积.24.今年前两个月,全国商品住宅市场销售出现销售量和销售价格齐跌态势.数据显示,2016年前两个月,鲁能地产开发公司开发的鲁能星城13街区的销售面积一共8000平方米,其中1月份的销售面积不多于总面积的40%.(1)求鲁能地产开发公司开发的鲁能星城13街区2016年2月份最少销售了多少平方米?(2)鲁能地产前两月每平方米的售价为8000元,为了解资金链问题,公司决定从3月份开始,以降价促销的方式回笼资金.根据数据调查显示,每平方米销售单价下调a%,3月份销售面积将会在2月份最少销售面积的基础上增加(a+10)%,结果3月份总销售额为3456万元,求a的值.25.任意写一个个位数字不为零的四位正整数A,将该正整数A的各位数字顺序颠倒过来,得到四位正整数B,则称A和B为一对四位回文数.例如A=2016,B=6102,则A和B就是一对四位回文数,现将A的回文数B从左往右,依次顺取三个数字组成一个新数,最后不足三个数字时,将开头的一个数字或两个数字顺次接到末尾,在组成三位新数时,如遇最高位数字为零,则去掉最高位数字,由剩下的两个或一个数字组成新数,将得到的所有新数求和,把这个和称为A的回文数B作三位数的和.例如将6102依次顺取三个数字组成的新数分别为:610,102,26,261,它们的和为:610+102+26+261=999,把999称为2016的回文数作三位数的和.(1)请直接写出一对四位回文数:猜想一个四位正整数和回文数作三位数的和能否被111整除?并说明理由;(2)已知一个四位正整数1x1y(千位数字为1,百位数字为x且0≤x≤9,十位数字为1,个位数字为y且0≤y≤9)的回文数作三位数的和能被27整除,请求出x与y的数量关系.26.已知正方形ABCD中,点E在BC上,连接AE,过点B作BF⊥AE于点G,交CD于点F.(1)如图1,连接AF,若AB=4,BE=1,求AF的长;(2)如图2,连接BD,交AE于点N,连接AC,分别交BD、BF于点O、M,连接GO,求证:GO平分∠AG F;(3)如图3,在第(2)问的条件下,连接CG,若CG⊥GO,请直接写出的值.27.如图1,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH:AC=2:3.(1)延长HF交AB于G,求△AHG的面积.(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B 重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图2).探究1:在运动中,四边形CDH′H能否为正方形?若能,请求出此时t的值;若不能,请说明理由.ﻬ探究2:在运动过程中,延长HF交AB于G,三角形GEB能否为等腰三角形?若能,求出此时的t值;若不能,请说明理由.ﻬ2016-2017学年重庆市巴蜀中学九年级(上)入学数学试卷参考答案与试题解析一、选择题(4X10)1.下列是关于x的一元二次方程的是()A.B.(x﹣1)(x﹣5)=x2﹣5ﻩ C.x2=0 D.x2﹣2xy=1【考点】一元二次方程的定义.【分析】根据一元二次方程的定义进行判断.【解答】解:A、该方程属于分式方程,故本选项错误;B、由已知方程得到﹣6x﹣10=0,属于一元一次方程,故本选项错误;C、该方程符合一元二次方程的定义,故本选项正确;D、该方程中含有2个未知数,属于二元一二次方程,故本选项错误;故选:C2.画出如图中物体的俯视图,正确的是()A. B. C.ﻩD.【考点】简单组合体的三视图.【分析】俯视图是从上面看所得到的图形,因此找到从上面看所得到的图形即可.【解答】解:从上面看可得;故选D.3.若分式的值为0,则x的值为()A.1ﻩB.﹣1 C.±1ﻩD.0【考点】分式的值为零的条件.【分析】直接利用分式的值为零,则其分母不为零,分子为零,进而得出答案.【解答】解:∵分式的值为0,∴x2﹣1=0,﹣x﹣1≠0,∴x=1,故选:A.4.如图,四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是()A.AB=CD B.AD=BCﻩ C.AB=BCD.AC=BD【考点】矩形的判定.【分析】由四边形ABCD的对角线互相平分,可得四边形ABCD是平行四边形,再添加AC=BD,可根据对角线相等的平行四边形是矩形证明四边形ABCD是矩形.【解答】解:可添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形,故选:D.5.若x=3是关于x的方程x2﹣bx﹣3a=0的一个根,则a+b的值为( )A.3 B.﹣3 C.9ﻩD.﹣9【考点】一元二次方程的解.【分析】将x=3代入方程,得出32﹣3b﹣3a=0,然后利用等式的性质变形即可得到答案.【解答】解:∵x=3是关于x的方程x2﹣bx﹣3a=0的一个根,∴32﹣3b﹣3a=0,∴3a+3b=9,ﻬ∴a+b=3,故选A.6.一个密闭不透明盒子中有若干个白球,现又放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再放回盒中,像这样共摸200次,其中40次摸到黑球,估计盒中大约有白球()A.28个ﻩB.30个ﻩC.32个ﻩ D.34个【考点】用样本估计总体.【分析】设盒中大约有白球x个,根据题意列出方程,求出方程的解即可得到结果.【解答】解:设盒中大约有白球x个,根据题意得: =,解得:x=32,则盒中大约有白球32个,故选C7.如图,在▱ABCD中,AB=3,BC=5,对角线AC、BD相交于点O.过点O作OE⊥AC,交AD于点E.连接CE,则△CDE的周长为( )A.3B.5C.8 D.11【考点】平行四边形的性质.【分析】由平行四边形ABCD的对角线相交于点O,OE⊥AC,根据线段垂直平分线的性质,可得AE=CE,又由平行四边形ABCD的AB+BC=AD+CD=8,继而可得△CDE的周长等于AD+CD.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC,∵AB=3,BC=5,∴AD+CD=8,∵OE⊥AC,∴AE=CE,ﻬ∴△CDE的周长为:CD+CE+DE=CD+CE+AE=AD+CD=8.故选:C.8.如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=9厘米,EF=12厘米,则边AD的长是()A.12厘米ﻩ B.15厘米C.20厘米 D.21厘米【考点】翻折变换(折叠问题).【分析】利用三个角是直角的四边形是矩形易证四边形EFGH为矩形,那么由折叠可得HF的长即为边AD的长.【解答】解:∵∠HEM=∠AEH,∠BEF=∠FEM,∴∠HEF=∠HEM+∠FEM=×180°=90°,同理可得:∠EHG=∠HGF=∠EFG=90°,∴四边形EFGH为矩形.∵AD=AH+HD=HM+MF=HF,HF===15,∴AD=15厘米.故选:B.9.从﹣3,﹣1,,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程﹣=﹣1有整数解,那么这5个数中所有满足条件的a的值之和是( )A.﹣3 B.﹣2ﻩC.﹣ D.【考点】解分式方程;解一元一次不等式组.【分析】根据不等式组无解,求得a≤1,解方程得x=,于是得到a=﹣3或1,即可得到结论.【解答】解:解得,∵不等式组无解,∴a≤1,解方程﹣=﹣1得x=,∵x=为整数,a≤1,∴a=﹣3或1或﹣1,∵a=﹣1时,原分式方程无解,故将a=﹣1舍去,∴所有满足条件的a的值之和是﹣2,故选B.10.如图,菱形OABC的顶点O为坐标原点,顶点A在x轴正半轴上,顶点B、C在第一象限,OA=2,∠AOC=60°,点D在边AB上,将四边形ODBC沿直线OD翻折,使点B和点C分别落在这个坐标平面内的B′和C′处,且∠C′DB′=60°,某正比例函数图象经过B′,则这个正比例函数的解析式为( )A.y=﹣xﻩB.y=﹣C.y=﹣ﻩD.y=﹣x【考点】一次函数图象与几何变换;菱形的性质.【分析】ﻬ连接AC,求出△BAC是等边三角形,推出AC=AB,求出△DC′B′是等边三角形,推出C′D=B′D,得出CB=BD=B′C′,推出A和D重合,连接BB′交x轴于E,求出AB′=AB=2,∠B′AE =60°,求出B′的坐标即可求得正比例函数的解析式.【解答】解:连接AC,∵四边形OABC是菱形,∴CB=AB,∠CBA=∠AOC=60°,∴△BAC是等边三角形,∴AC=AB,∵将四边形OABC沿直线0D翻折,使点B和点C分别落在这个坐标平面的点B′和C′处,∴BD=B′D,CD=C′D,∠DB′C′=∠ABC=60°,∵∠B′DC′=60°,∴∠DC′B′=60°,∴△DC′B′是等边三角形,∴C′D=B′D,∴CB=BD=B′C′,即A和D重合,连接BB′交x轴于E,则AB′=AB=2,∠B′AE=180°﹣=60°,在Rt△AB′E中,∠B′AE=60°,AB′=2,∴AE=1,B′E=,OE=2+1=3,即B′的坐标是(3,﹣),设正比例函数的解析式为y=kx,∵正比例函数图象经过B′,∴﹣=3k,∴k=﹣.故选B.ﻬ二、填空题(4X10)11.方程x2﹣4=0的解是±2 .【考点】解一元二次方程—直接开平方法.【分析】首先把4移项,再利用直接开平方法解方程即可.【解答】解:x2﹣4=0,移项得:x2=4,两边直接开平方得:x=±2,故答案为:±2.12.关于x的一元二次方程2x2+kx+1=0有两个相等的实根,则k= ;方程的解为 x1=x2= .【考点】根的判别式.【分析】根据一元二次方程的根的判别式,建立关于k的等式,求出k的取值.【解答】解:∵a=2,b=k,c=1,方程有两个相等的实数根,∴△=b2﹣4ac=k2﹣8=0∴k=±2.把k=±2代入原方程,得2x2±2x+1=0,解得x1=x2=.13.如图,已知△ACP∽△ABC,AC=4,AP=2,则AB的长为8 .【考点】相似三角形的性质.【分析】根据相似三角形对应边的比相等即可求解.【解答】解:∵△ACP∽△ABC,∴AC:AB=AP:AC,∴4:AB=2:4,∴AB=8.故答案为:8.14.如图:M为反比例函数图象上一点,MA⊥y轴于A,S△MAO=2时,k=﹣4.【考点】反比例函数系数k的几何意义.【分析】根据反比例函数y=(k≠0)系数k的几何意义得到S△AOM=|k|=2,然后根据k<0去绝对值得到k的值.【解答】解:∵AB⊥x轴,∴S△AOM=|k|=2,∵k<0,∴k=﹣4.故答案为﹣4.15.在分别写有﹣2,﹣1,0,1,2的五张卡片中随机抽取两张,所抽取的两个数差的绝对值大于1的概率为 0。

人教版九年级上学期开学考数学试题

人教版九年级上学期开学考数学试题

人教版九年级上学期开学考数学试题姓名:________ 班级:________ 成绩:________一、单选题1 . 已知m、n是方程x2﹣3x﹣1=0的两根,且(2m2﹣6m+a)(3n2﹣9n﹣5)=10,则a的值为()A.7B.﹣7C.3D.﹣32 . 某商品房原价60000元/m2 ,经过连续两次降价后,现价48600元/m2 ,求平均每次降价的百分率,设每次降价的百分率为x,依题意可列方程为()A.60000(1-2x)=48600B.60000(1-x)2=48600C.48600(1+2x)=60000D.48600(1+x) 2=600003 . 在下列条件中,能够判定一个四边形是平行四边形的是()A.一组对边平行,另一组对边相等B.一组对边相等,一组对角相等C.一组对边平行,一条对角线平分另一条对角线D.一组对边相等,一条对角线平分另一条对角线4 . (易错题)等式成立的条件是()A.a≤-2或a≥2B.a≥2C.a≥-2D.-2≤a≤25 . 在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是()A.B.C.D.6 . 如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=B.y=C.y=D.y=7 . 如图,在长方形ABCD中,AC是对角线.将长方形ABCD绕点B顺时针旋转90°到长方形GBEF位置,H是EG的中点.若AB=6,BC=8,则线段CH的长为()A.B.C.D.8 . 方程的根是()A.x1=1 x2= -1B.C.无实根D.x1=x2= 19 . 8名学生的平均成绩是x,如果另外2名学生每人得84分,那么整个组的平均成绩是()A.B.C.D.10 . 用反证法证明“是无理数”时,最恰当的证法是先假设()A.是分数B.是整数C.是有理数D.是实数二、填空题11 . 如图,在矩形ABCD中,AB=4,BC=8,把△ABC沿着AC向上翻折得到△AEC,EC交AD边于点F,则点F到AC的距离是_____.12 . 如图,一个圆柱体高8 cm,底面半径2 cm,蚂蚁在圆柱表面从点A爬到点B处,要爬行的最短路程是___________cm13 . 甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如图所示.甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过_____小时恰好装满第1箱.14 . 如图所示,点D在ΔABC的边BC的延长线上,DE⊥AB于E,交AC于F,∠B=50°,∠CFD=60°,则∠ACB=____.15 . 某校拟招聘一批优秀教师,其中某位教师笔试、试讲、面试三轮测试得分分别为92分、85分、90分,综合成绩笔试占40%,试讲占40%,面试占20%,则该名教师的综合成绩为_______分.16 . 如果,则的值________.17 . 如果关于x的方程有实数根,则m的取值范围是_______________.18 . 如图,大长方形的长10cm,宽8cm,阴影部分的宽2cm,则空白部分的面积是______cm2.三、解答题19 . 计算:如图,已知:在等边△ABC中,D、E分别在AB、AC上,且AD=CE,BE、CD相交于点P.(1)说明△ADC≌△CEB的理由;(2)求∠BPC的度数.20 . 滴滴打车为市民的出行带来了很大的方便,小亮调查了若干市民一周内使用滴滴打车的时间t(单位:分)(1)这次被调查的总人数是多少?(2)试求表示C组的扇形圆心角的度数,并补全条形统计图;(3)若全市的总人数为666万,试求全市一周内使用滴滴打车超过20分钟的人数大约有多少?21 . 某公司销售一种产品,进价为20元/件,售价为80元/件,公司为了促销,规定凡一次性购买10万件以上的产品,每多买1万件,每件产品的售价就减少2元,但售价最低不能低于50元/件,设一次性购买x万件(x >10)(1)若x=15,则售价应是元/件;(2)一次性购买多少件产品时,该公司的销售总利润为728万元;22 . 已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.23 . 方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”.(1)在图1中确定格点D,并画出一个以A、B、C、D为顶点的四边形,使其为轴对称图形(一种情况即可);(2)直接写出图2中△FGH的面积是;(3)在图3中画一个格点正方形,使其面积等于17.24 . 如图,已知直线与轴交于点,与反比例函数的图象交于,两点,的面积为.(1)求一次函数的解析式;(2)求点坐标和反比例函数的解析式.参考答案一、单选题1、2、3、4、5、6、7、8、9、10、二、填空题1、2、3、4、5、6、7、8、三、解答题1、2、3、4、5、6、7、。

九年级数学上学期入学试卷(含解析) 新人教版五四制-新人教版初中九年级全册数学试题

九年级数学上学期入学试卷(含解析) 新人教版五四制-新人教版初中九年级全册数学试题

2016-2017学年某某省某某市萧红中学九年级(上)入学数学试卷一、选择题(每小题3分,共计30分)1.下列实数中,无理数是()A.﹣ B.πC.D.|﹣2|2.下列函数中,是反比例函数的是()A.y=x+3 B.y=C.=2 D.y=3.抛物线y=﹣5(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)4.下列各式计算正确的是()A.(a7)2=a9B.a7•a2=a14C.2a2+3a3=5a5D.(ab)3=a3b35.若反比例函数y=的图象经过点(﹣2,﹣5),则该函数图象位于()A.第一、二象限 B.第二、四象限 C.第一、三象限 D.第三、四象限6.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.7.在反比例函数的图象的每一条曲线上,y都随x的增大而减小,则k的取值X 围是()A.k>1 B.k>0 C.k≥1 D.k<18.如图,把△ABC绕点C顺时针旋转35°得到△A1B1C,A1B1交AC于点D,若∠A1DC=90°,则∠A的度数是()A.35° B.50° C.55° D.60°9.如果将抛物线y=x2+2先向下平移1个单位,再向左平移1个单位,那么所得新抛物线的解析式是()A.y=(x﹣1)2+2 B.y=(x+1)2+1 C.y=x2+1 D.y=(x+1)2﹣110.如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:①a<0;②b<0;③c<0;④>0;⑤a+b+c<0.其中正确的个数是()A.1 B.2 C.3 D.4二、填空题(每小题3分,共计30分)11.太阳的半径约是69000千米,用科学记数法表示约是千米.12.函数y=的自变量x的取值X围是.13.在平面直角坐标系中,点(3,﹣2)关于原点的对称点的坐标是:.14.因式分解:y3﹣4x2y=.15.已知点M(﹣2,3)在双曲线y=上,k的值为.16.不等式组的解集为.17.用配方法将二次函数y=x2+4x﹣2写成y=(x﹣h)2+k的形式为.18.如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数y=的图象上,则菱形的面积为.19.已知正方形ABCD中,点E在边DC上,DE=2,EC=1(如图所示)把线段AE绕点A旋转,使点E落在直线BC上的点F处,则F、C两点的距离为.20.如图,四边形ABCD是菱形,E在AD上,F在AB延长线上,CE和DF相交于点G,若CE=DF,∠CGF=30°,AB的长为6,则菱形ABCD的面积为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.先化简,再求值.先化简:÷(1﹣),再求值,其中a=﹣1.22.如图,点A、B坐标分别为(4,2)、(3,0),(1)将△OAB向上平移2个单位得到△O1A1B1,请画出△O1A1B1;(2)将△OAB绕O点按逆时针方向旋转90°到△OA2B2,请画出△OA2B2;并直接写出线段A1B2的长.23.如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:△ABE≌△CBF;(2)若∠ABE=50°,求∠EGC的大小.24.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣2,0),B(0,﹣4),C(2,﹣4)三点,且与x轴的另一个交点为E.(1)求抛物线的解析式;(2)用配方法求抛物线的顶点D的坐标和对称轴;(3)求四边形ABDE的面积.25.如图,要用篱笆(虚线部分)围成一个矩形苗圃ABCD,其中两边靠的墙足够长,中间用平行于AB的篱笆EF隔开,已知篱笆的总长度为18米.(l)设矩形苗圃ABCD的一边AB的长为x(m),矩形苗圃ABCD面积为y(m2),求y关于x 的函数关系式,直接写出自变量x的取值X围;(2)当x为何值时,所围矩形苗圃ABCD的面积为40m2?26.已知△ABC中,AB=AC,点D为BC上一点,∠BAC=∠DAE,AD=AE,连接CE.(1)当∠BAC=90°时,如图1,直接写出线段CE、CD、BC的数量关系;(2)当∠BAC=120°时,如图2,求证:CE+CD=BC;(3)在(2)的条件下,点G为AC的中点,连接BG,∠BAD=∠ABG,若AE=7,求BG的长.27.如图,在平面直角坐标系中,点O为坐标原点,在二次函数y=x2上一点D,过D作DA ⊥x轴,垂足为点A,C为y轴上一点,且OA=OC,直线CD交抛物线于第一象限一点B;(1)若C(0,2),求直线BD的解析式;(2)若C为y轴正半轴任意一点,连接OD,设点D的横坐标为t,四边形ADCO的面积为S,求S与t的关系式;(3)如图2,在(2)的条件下,点B关于y轴的对称点为点E,连接BE、OE,OE交直线BD于点K,直线BD交x轴于点G,当∠FKB=2∠KBO时,求t值.2016-2017学年某某省某某市萧红中学九年级(上)入学数学试卷(五四学制)参考答案与试题解析一、选择题(每小题3分,共计30分)1.下列实数中,无理数是()A.﹣ B.πC.D.|﹣2|【考点】无理数.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项即可得出答案.【解答】解:A、﹣是有理数,故本选项错误;B、是无理数,故本选项正确;C、=3,是有理数,故本选项错误;D、|﹣2|=2,是有理数,故本选项错误;故选B.2.下列函数中,是反比例函数的是()A.y=x+3 B.y=C.=2 D.y=【考点】反比例函数的定义.【分析】根据反比例函数的定义进行判断即可.【解答】解:A、该函数属于一次函数,故本选错误;B、该函数是y与x2成反比例,故本选错误;C、由已知函数得到y=2x且x≠0,不属于反比例函数,故本选错误;D、该函数符合反比例函数的定义,故本选项正确;故选:D.3.抛物线y=﹣5(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)【考点】二次函数的性质.【分析】由于抛物线y=a(x﹣h)2+k的顶点坐标为(h,k),由此即可求解.【解答】解:∵抛物线y=﹣5(x﹣2)2+3,∴顶点坐标为:(2,3).故选A.4.下列各式计算正确的是()A.(a7)2=a9B.a7•a2=a14C.2a2+3a3=5a5D.(ab)3=a3b3【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】A、利用幂的乘方运算法则计算得到结果,即可做出判断;B、利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式不能合并,错误;D、利用积的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、(a7)2=a14,本选项错误;B、a7•a2=a9,本选项错误;C、本选项不能合并,错误;D、(ab)3=a3b3,本选项正确,故选D5.若反比例函数y=的图象经过点(﹣2,﹣5),则该函数图象位于()A.第一、二象限 B.第二、四象限 C.第一、三象限 D.第三、四象限【考点】反比例函数图象上点的坐标特征.【分析】利用待定系数法求得k的值;最后根据k的符号判断该函数所在的象限.【解答】解:∵反比例函数y=的图象经过点(﹣2,﹣5),∴k=xy=(﹣2)×(﹣5)=10>0,∴该函数图象经过第一、三象限,故选:C.6.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,是中心对称图形,故此选项正确;故选:D.7.在反比例函数的图象的每一条曲线上,y都随x的增大而减小,则k的取值X 围是()A.k>1 B.k>0 C.k≥1 D.k<1【考点】反比例函数的性质.【分析】根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k﹣1>0,解可得k的取值X围.【解答】解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,即可得k﹣1>0,解得k>1.故选:A.8.如图,把△ABC绕点C顺时针旋转35°得到△A1B1C,A1B1交AC于点D,若∠A1DC=90°,则∠A的度数是()A.35° B.50° C.55° D.60°【考点】旋转的性质.【分析】由于把△ABC绕点C顺时针旋转35°后,得到△A1B1C,那么根据旋转的旋转知道∠A1CA=35°,而∠A1DC=90°,然后根据三角形的内角和定理即可求解.【解答】解:∵把△ABC绕点C顺时针旋转35°后,得到△A1B1C,∴∠A1DA=35°,而∠A1DC=90°,∴∠A=90°﹣35°=55°.故选C.9.如果将抛物线y=x2+2先向下平移1个单位,再向左平移1个单位,那么所得新抛物线的解析式是()A.y=(x﹣1)2+2 B.y=(x+1)2+1 C.y=x2+1 D.y=(x+1)2﹣1【考点】二次函数图象与几何变换.【分析】先确定抛物线y=x2+2的顶点坐标为(0,2),根据点平移的规律得到点(0,2)平移后得到对应点的坐标为(﹣1,1),然后根据顶点式写出新抛物线的解析式.【解答】解:抛物线y=x2+2的顶点坐标为(0,2),把点(0,2)先向下平移1个单位,再向左平移1个单位得到对应点的坐标为(﹣1,1),所以所得新抛物线的解析式为y=(x+1)2+1.故选B.10.如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:①a<0;②b<0;③c<0;④>0;⑤a+b+c<0.其中正确的个数是()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向、对称轴、与y轴的交点坐标可判断①②③,由二次函数的顶点坐标可判断④,由对称轴可知b=﹣a,代入a+b+c可判断⑤,则可得出答案.【解答】解:∵抛物线开口向下,与y轴的交点在x轴上方,∴a<0,c>0,∵顶点坐标为(,1),∴﹣=,=1,∴b>0,∴①正确,②不正确,③不正确,④正确,由﹣=,可得b=﹣a,∴a+b+c=a﹣a+c=c>0,∴⑤不正确,综上可知正确的结论有两个,故选B.二、填空题(每小题3分,共计30分)11.太阳的半径约是69000千米,用科学记数法表示约是×104千米.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】×104,×104.12.函数y=的自变量x的取值X围是x≠﹣.【考点】函数自变量的取值X围.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,2x+3≠0,解得x≠﹣.故答案为:x≠﹣.13.在平面直角坐标系中,点(3,﹣2)关于原点的对称点的坐标是:(﹣3,2).【考点】关于原点对称的点的坐标.【分析】根据两个点关于原点对称时,它们的坐标符号相反可直接得到答案.【解答】解:点(3,﹣2)关于原点的对称点的坐标是(﹣3,2),故答案为:(﹣3,2).14.因式分解:y3﹣4x2y= y(y+2x)(y﹣2x).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式y,再对余下的多项式利用平方差公式继续分解.【解答】解:y3﹣4x2y,=y(y2﹣4x2),=y(y+2x)(y﹣2x).15.已知点M(﹣2,3)在双曲线y=上,k的值为﹣6 .【考点】反比例函数图象上点的坐标特征.【分析】直接把点M(﹣2,3)代入y=,求出k的值即可.【解答】解:∵点M(﹣2,3)在双曲线y=上,∴3=,解得k=﹣6.故答案为:﹣6.16.不等式组的解集为﹣1<x<2 .【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x<2,解②得:x>﹣1,则不等式组的解集是:﹣1<x<2.故答案是:﹣1<x<2.17.用配方法将二次函数y=x2+4x﹣2写成y=(x﹣h)2+k的形式为y=(x+2)2﹣6 .【考点】二次函数的三种形式.【分析】利用配方法加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【解答】解:y=x2+4x﹣2=x2+4x+4﹣6=(x+2)2﹣6,故答案为:y=(x+2)2﹣6.18.如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数y=的图象上,则菱形的面积为 4 .【考点】反比例函数系数k的几何意义;菱形的性质.【分析】连接AC交OB于D,由菱形的性质可知AC⊥OB.根据反比例函数中k的几何意义,得出△AOD的面积=1,从而求出菱形OABC的面积=△AOD的面积的4倍.【解答】解:连接AC交OB于D.∵四边形OABC是菱形,∴AC⊥OB.∵点A在反比例函数y=的图象上,∴△AOD的面积=×2=1,∴菱形OABC的面积=4×△AOD的面积=4.19.已知正方形ABCD中,点E在边DC上,DE=2,EC=1(如图所示)把线段AE绕点A旋转,使点E落在直线BC上的点F处,则F、C两点的距离为1或5 .【考点】旋转的性质;正方形的性质.【分析】题目里只说“旋转”,并没有说顺时针还是逆时针,而且说的是“直线BC上的点”,所以有两种情况,即一个是逆时针旋转,一个顺时针旋转,根据旋转的性质可知.【解答】解:旋转得到F1点,∵AE=AF1,AD=AB,∠D=∠ABC=90°,∴△ADE≌△ABF1,∴F1C=1;旋转得到F2点,同理可得△ABF2≌△ADE,∴F2B=DE=2,F2C=F2B+BC=5.20.如图,四边形ABCD是菱形,E在AD上,F在AB延长线上,CE和DF相交于点G,若CE=DF,∠CGF=30°,AB的长为6,则菱形ABCD的面积为18 .【考点】菱形的性质.【分析】作辅助线,构建全等三角形,根据中位线定理得OM=CE,ON=DF,则OM=ON,证明△AMO≌△AHO,得OM=OH=ON,根据等边对等角和平角的定义得:∠AMO+∠ONH=180,再由平行线的同位角相等得:∠DAB+∠EGF=180°,所以得∠DAB=30°,根据30°角的性质求出菱形的高PC的长,代入面积公式求出菱形ABCD的面积.【解答】解:连接AC、BD,交于点O,分别取AE、BF的中点M、N,连接OM、ON,在AB上截取AH=AM,连接OH,过C作CP⊥AF于P,∵四边形ABCD是菱形,∴O是BD的中点,也是AC的中点,∴OM=CE,ON=DF,∵CE=DF,∴OM=ON,∵AC平分∠DAB,∴∠DAC=∠BAC,∵AO=AO,∴△AMO≌△AHO,∴OM=OH,∠AMO=∠AHO,∴OM=OH=ON,∴∠OHN=∠ONH,∵∠AHO+∠OHN=180°,∴∠AMO+∠ONH=180,∵OM∥EC,ON∥DF,∴∠AMO=∠AEC,∠ONH=∠GFA,∴∠AEC+∠GFA=180°,∴∠DAB+∠EGF=180°,∵∠CGF=30°,∴∠EGF=150°,∴∠DAB=30°,∵AD∥BC,∴∠CBF=∠DAB=30°,∵AB=BC=6,∴CP=BC=3,∴菱形ABCD的面积=AB•CP=6×3=18,故答案为18.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.先化简,再求值.先化简:÷(1﹣),再求值,其中a=﹣1.【考点】分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将a的值代入计算即可求出值.【解答】解:原式=÷=﹣•=﹣,当a=﹣1时,原式=﹣=﹣.22.如图,点A、B坐标分别为(4,2)、(3,0),(1)将△OAB向上平移2个单位得到△O1A1B1,请画出△O1A1B1;(2)将△OAB绕O点按逆时针方向旋转90°到△OA2B2,请画出△OA2B2;并直接写出线段A1B2的长.【考点】作图-旋转变换;作图-平移变换.【分析】(1)直接利用平移的性质得出对应点位置,进而得出答案;(2)直接利用旋转的性质得出对应点位置,进而利用勾股定理得出答案.【解答】解:(1)如图所示:△O1A1B1,即为所求;(2)如图所示:△OA2B2,即为所求,线段A1B2的长为:=.23.如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:△ABE≌△CBF;(2)若∠ABE=50°,求∠EGC的大小.【考点】正方形的性质;全等三角形的判定.【分析】(1)证全等三角形由AB=BC,BE=BF,∠ABE+∠EBC=∠CBF+∠EBC⇒∠BAE=∠CBF,可证的全等.(2)因为BE=BF再根据(1)可得∠EFB=∠BEF=45°,∠EGC=∠EBG+∠BEF=45°+40°=85°【解答】(1)证明:∵四边形ABCD是正方形,BE⊥BF∴AB=CB,∠ABC=∠EBF=90°∴∠ABC﹣∠EBC=∠EBF﹣∠EBC即∠ABE=∠CBF又BE=BF∴△ABE≌△CBF;(2)解:∵BE=BF,∠EBF=90°∴∠BEF=45°又∠EBG=∠ABC﹣∠ABE=40°∴∠EGC=∠EBG+∠BEF=85°.(注:其它方法酌情给分)24.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣2,0),B(0,﹣4),C(2,﹣4)三点,且与x轴的另一个交点为E.(1)求抛物线的解析式;(2)用配方法求抛物线的顶点D的坐标和对称轴;(3)求四边形ABDE的面积.【考点】二次函数综合题.【分析】(1)已知了抛物线上三点的坐标,即可用待定系数法求出抛物线的解析式.(2)根据(1)的解析式按要求求解即可.(3)由于四边形ABDE不是规则的四边形,因此可将其分割成几个规则图形来求解.方法不唯一:①可连接OD,将梯形的面积分割成三个三角形的面积进行求解.②可过D作x轴的垂线,将梯形的面积分割成两个三角形和一个直角梯形进行求解.【解答】解:(1)∵抛物线y=ax2+bx+c经过A(﹣2,0),B(0,﹣4),C(2,﹣4)三点∴解得.∴抛物线解析式:y=x2﹣x﹣4.(2)y=x2﹣x﹣4=(x﹣1)2﹣∴顶点坐标D(1,﹣),对称轴直线x=1.(3)连接OD,对于抛物线解析式y=x2﹣x﹣4当y=0时,得x2﹣2x﹣8=0,解得:x1=﹣2,x2=4.∴E(4,0),OE=4.∴S四边形ABDE=S△AOB+S△BOD+S△EOD=OA•OB+OB•x D的横坐标+OEy D的纵坐标=4+2+9=15.25.如图,要用篱笆(虚线部分)围成一个矩形苗圃ABCD,其中两边靠的墙足够长,中间用平行于AB的篱笆EF隔开,已知篱笆的总长度为18米.(l)设矩形苗圃ABCD的一边AB的长为x(m),矩形苗圃ABCD面积为y(m2),求y关于x 的函数关系式,直接写出自变量x的取值X围;(2)当x为何值时,所围矩形苗圃ABCD的面积为40m2?【考点】二次函数的应用;一元二次方程的应用.【分析】(1)一边AB的长为x(m),则另一边BC=18﹣2x(m),根据长方形面积公式可得函数解析式;(2)根据y=40得出关于x的方程,解方程即可得.【解答】解:(1)设矩形苗圃ABCD的一边AB的长为x(m),则BC=18﹣2x(m),∴y=x(18﹣2x)=﹣2x2+18x,(0<x<9);(2)根据题意,得:﹣2x2+18x=40,解得:x=4或x=5,答:当x=4或x=5时,所围矩形苗圃ABCD的面积为40m2.26.已知△ABC中,AB=AC,点D为BC上一点,∠BAC=∠DAE,AD=AE,连接CE.(1)当∠BAC=90°时,如图1,直接写出线段CE、CD、BC的数量关系CE+CD=BC ;(2)当∠BAC=120°时,如图2,求证:CE+CD=BC;(3)在(2)的条件下,点G为AC的中点,连接BG,∠BAD=∠ABG,若AE=7,求BG的长.【考点】三角形综合题.【分析】(1)易证∠BAD=∠EAC,即可证明△ABD≌△ACE,得出BD=CE,即可得到结论;(2)易证∠BAD=∠EAC,即可证明△ABD≌△ACE,BD=CD,即可得到结论;(3)先作出辅助线判断出△ABM≌△ABG得到AM=BG,BM=AG进而判断出△ADN≌△BDM即可得出结论.【解答】解:(1)BC=CE+CD,理由:∵∠BAC=90°,∴∠DAE=∠BAC=90°,∵∠BAD=90°﹣∠DAC∠EAC=90°﹣∠DAC,∴∠BAD=∠EAC,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;∴BC=BD+CD=CE+CD;故答案为:BC=CE+CD(2)∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;∴BC=BD+CD=CE+CD,(3)如图3过点B作BM⊥BC,交AD延长线于M,过点A作AN⊥BC于N;∵∠BAC=∠DAE=120°,AB=AC,AD=AE,∴∠ABC=∠ACB=30°,∠ADE=∠AED=30°,∵BM⊥BC,∴∠MBC=90°,∴∠MBA=120°=∠BAC,∵AB=AB,∠BAC=∠DAE,∴△ABM≌△ABG,∴AM=BG,BM=AG,在Rt△ANC中,∠ACB=30°,∴AN=AC=AG=BM,∵∠ANC=90°=∠MBC,∠BDM=∠AND,∴△ADN≌△BDM,∴AD=DM=7,∴BG=2AD=14.27.如图,在平面直角坐标系中,点O为坐标原点,在二次函数y=x2上一点D,过D作DA ⊥x轴,垂足为点A,C为y轴上一点,且OA=OC,直线CD交抛物线于第一象限一点B;(1)若C(0,2),求直线BD的解析式;(2)若C为y轴正半轴任意一点,连接OD,设点D的横坐标为t,四边形ADCO的面积为S,求S与t的关系式;(3)如图2,在(2)的条件下,点B关于y轴的对称点为点E,连接BE、OE,OE交直线BD于点K,直线BD交x轴于点G,当∠FKB=2∠KBO时,求t值.【考点】二次函数综合题.【分析】(1)利用待定系数法求出点D坐标,即可解决问题.(2)根据梯形的面积公式即可解决问题.(3)首先证明点B是定点坐标为(3,3),再证明△OKF≌△OKG,推出点G坐标,求出直线BD,利用方程组解决点D坐标即可解决问题.【解答】解:(1)∵点C(0,2),∵OA=OC=2,AD⊥OA,∴点D坐标(﹣2,),∴直线BD解析式为y=x+2,由解得或,∴点B坐标(3,3).(2)∵四边形ADCO是梯形,OA=OC=﹣t,AD=t2,∴S=•OA=•(﹣t)=﹣t3+t2.(3)设点C坐标(0,c),则A(﹣c,0),D(﹣c,c2),∴直线BD解析式为y=(1﹣c)x+c,由解得或,∴点B是定点坐标为(3,3),∵E、B关于y轴对称,∴点E坐标(﹣3,3),易知∠AOB=90°,设∠CBO=α,则∠FKB=2α,∠BKO=90°﹣α,∴∠OKF=90°+α,∠OKG=90°+α,∴∠OKF=∠OKG,∵∠KOF=∠KOG,OK=OK,∴△OKF≌△OKG,∴OG=OF=3,∴点G坐标(﹣3,0)∴直线BD的解析式为y=x+.由解得或,∴点D坐标(﹣,),∴t=﹣.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

茂县八一中学九年级入学考试
数学试题
班级_______ 姓名________ 得分________
(考试时间:120分钟 试卷总分:150分)
A 卷(100分)
一、选择题(本小题共10小题,每小题4分,共40分)下列各题给出的四个选项中,只有一个是正确的,请将正确答案的字母代号填写在下面的表格中。

1、如果分式
x
-11
有意义,那么x 的取值范围是 A 、x >1 B 、x <1 C 、x ≠1 D 、x =1
2、己知反比例数x
k
y =的图象过点(2,4),则下面也在反比例函数图象上的
点是
A 、(2,-4)
B 、(4,-2)
C 、(-1,8)
D 、(16,2
1

3、一直角三角形两边分别为3和5,则第三边为
A 、4
B 、34
C 、4或34
D 、2
4、用两个全等的等边三角形,可以拼成下列哪种图形
A 、矩形
B 、菱形
C 、正方形
D 、等腰梯形 5、菱形的面积为2,其对角线分别为x 、y ,则y 与x 的图象大致为
A B C D
6、小明妈妈经营一家服装专卖店,为了合理利用资金,小明帮妈妈对上个月
各种型号的服装销售数量进行了一次统计分析,决定在这个月的进货中多进某种型号服装,此时小明应重点参考
A 、众数
B 、平均数
C 、加权平均数
D 、中位数
第7题图 第8题图
7、如图,□ABCD 的对角线AC 、BD 相交于O ,EF 过点O 与AD 、BC 分别
相交于E 、F ,若AB=4,BC=5,OE=1.5,那么四边形EFCD 的周长为
A 、16
B 、14
C 、12
D 、10
8、如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=700,
则∠EDC 的大小为
A 、100
B 、150
C 、200
D 、300
9、下列命题正确的是
A 、同一边上两个角相等的梯形是等腰梯形;
B 、一组对边平行,一组对边相等的四边形是平行四边形;
C 、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。

D 、对角线互相垂直的四边形面积等于对角线乘积的一半。

10、如图,在高为3米,水平距离为4米楼梯的表面铺地毯,地毯的长度至少需多少米( )
A .4米 B.5米 C.6米 D.7米
二、填空题(共5小题,每小题4分,共20分)
11、一组数据8、8、x 、10的众数与平均数相等,则x= 。

12、若反比例函数x k y 4
-=的图像在每个象限内y 随x 的增大而减小,则k 的
值可以为_______(只需写出一个符合条件的k 值即可)
13、如图(3)所示,在□ABCD 中,E 、F 分别为AD 、BC 边上的一点,若添加一个条件_____________,则四边形EBFD 为平行四边形。

14、如图(4),是一组数据的折线统计图,这组数据的平均数是 ,极差是 .
15、如图(5)所示,有一直角梯形零件ABCD ,A D ∥BC ,斜腰DC=10cm ,
∠D=120°,则该零件另一腰AB 的长是_______cm;
三、解答题 16、(本题6分)解方程
13321-+=+x x x x
17、(本题8分)先化简,再求值。

)1
21(12x
x x x --÷-其中2=x
A B
C
D
F
图(3)
图(4)
E
A
B
C
D
图(5)
56
18、(本题8分)如图,□ABCD中,点E、F在对角线AC上,且AE=CF。

求证:四边形BEDF是平行四边形。

19、(本题8分)汶川地震牵动着全国亿万人民的心,某校为地震灾区开展了
“献出我们的爱” 赈灾捐款活动.八年级(1)班50名同学积极参加了这次赈灾捐款活动,下表是小明对全班捐款情况的统计表:
捐款(元)10 15 30 50 60
人数 3 6 11 13 6 因不慎两处被墨水污染,已无法看清,但已知全班平均每人捐款38元.(1)根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程.(2)该班捐款金额的众数、中位数分别是多少?
20、(本题10分)如图所示,一次函数b kx y +=的图像与反比例函数x
m
y =
的图像交于M 、N 两点。

(1
(2)当x
B
卷(50分)
一、填空(每题4分、共20分) 21、当m = 时,分式
2
(1)(3)
32
m m m m ---+的值为零 22、已知:在等腰梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD,AD=3cm,BC=7cm,
则梯形的高是_______cm
23、已知双曲线x
k
y =
经过点(-1,3),如果A (11,b a ),B (22,b a )两点在该双曲线上,且1a <2a <0,那么1b 2b
24、如图是阳光公司为某种商品设计的商标图案,图中阴
影部分为红色,若每个小长方形的面积都是1,则红
色部分的面积为。

25、如图,每一个图形都是由不同个数的全等的小等腰梯
形拼成的,梯形上、下底及腰长如图,依此规律第
10个图形的周长为。

……
第一个图第二个图第三个图
二、解答题(共30分)
26、(本题10分)如图所示,折叠矩形ABCD的一边AD,使点D落在BC
边的点F处,已知AB=8cm,BC=10cm。

求CE
27、(本题10分)甲、乙两个工程队合做一项工程,需要16天完成,现在两
队合做9天,甲队因有其他任务调走,乙队再做21天完成任务。

甲、乙两队独做各需几天才能完成任务?
28、(本题10分)如图所示,在梯形ABCD中,A D∥BC,∠B=90°,AD=24 cm,
BC=26 cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动。

点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动。

(1)经过多长时间,四边形PQCD是平行四边形?
(2)经过多长时间,四边形PQBA是矩形?
(3)经过多长时间,四边形PQCD是等腰梯形?
Q P D
C
B A。

相关文档
最新文档