九年级下册数学同步练习相似单元测试题及答案

合集下载

人教版九年级下册数学《第27章相似》单元测试题(含答案解析)

人教版九年级下册数学《第27章相似》单元测试题(含答案解析)

春人教版九年级下册数学第27章相似单元测试题一.选择题(共10小题)1.已知x:y:z=1:2:3,且2x+y﹣3z=﹣15,则x的值为()A.﹣2B.2C.3D.﹣32.若a:b=3:2,且b是a、c的比例中项,则b:c等于()A.4:3B.3:4C.3:2D.2:33.下列命题中,其中正确的命题个数有()(1)在△ABC中,已知AB=6,AC=,∠B=45°,则∠C的度数为60°;(2)已知⊙O的半径为5,圆心O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有3个;(3)圆心角是180°的扇形是一个半圆;(4)已知点P是线段AB的黄金分割点,若AB=1,则AP=.A.1个B.2个C.3个D.4个4.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A.5B.6C.7D.85.下列说法中正确的是()A.两个直角三角形一定相似B.两个等腰三角形一定相似C.两个等腰直角三角形一定相似D.两个矩形一定相似6.两个相似的六边形,如果一组对应边的长分别为3cm,4cm,且它们面积的差为28cm2,则较大的六边形的面积为()A.44.8 cm2B.45 cm2C.64 cm2D.54 cm27.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm8.如图,△ABC中,P为AB上的一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③9.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为()A.2:5B.3:5C.9:25D.4:2510.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为()A.10m B.12m C.15m D.40m二.填空题(共8小题)11.若=,则=.12.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C;过点B的直线DE分别交l1、l3于点D、E.若AB=2,BC=4,BD=1.5,则线段DE的长为.13.已知==,且a+b﹣2c=6,则a的值.14.如图,△ABC与△ADB中,∠ABC=∠ADB=90°,∠C=∠ABD,AC=5cm,AB=4cm,AD 的长为.15.如图,在△ABC中,DE∥BC,=,则=.16.已知△ABC和△DEF中.点A、B、C分别与点D、E、F相对应.且∠A=70°时,∠B=34°,∠D=70°,则当∠F=时,△ABC∽△DEF.17.如图,已知线段AB的两个端点在直角坐标系中的坐标分别是A(m,m),B(2n,n),以原点O为位似中心,相似比为,把线段AB缩小,则经过位似变换后A、B的对应点坐标分别是A′,B′;点A到原点O的距离是.18.如图,比例规是一种画图工具,使用它可以把线段按一定的比例伸长或缩短,它是由长度相等的两脚AD和BC交叉构成的,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,使A、B两个尖端分别在线段l的两端上,若CD =2,则AB的长是.三.解答题(共8小题)19.已知,(1)求的值;(2)若x﹣2y+4z=24,求x+y+z的值.20.如图,四边形ABCD与四边形ABFE都是矩形,AB=3,AD=6.5,BF=2.(1)求下列各线段的比:,,;(2)指出AB,BC,CF,CD,EF,FB这六条线段中的成比例线段(写一组即可)21.如图,在△ABC与△A'B'C'中,∠A=∠A',BD、CE是△ABC的高,B'D'、C'E'是△A'B'C'的高,点D、E、D'、E'分别在AC、AB、A'C'、A'B'上,且=.求证:=22.如图所示:在△ABC中,AB=AC=5,BC=8,D,E分别为BC.AB边上一点,∠ADE=∠C,(1)求证:AD2=AE•AB;(2)∠ADC与∠BED是否相等?请说明理由;(3)若CD=2,求AD的长.23.如图,∠ABC=∠BCD=90°,∠A=45°,∠D=30°,BC=1,AC,BD交于点O.求的值.24.如图,以O为位似中心,将△ABC放大为原来的2倍(不写作法,保留作图痕迹).25.如图,在四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,点E为AB的中点.(1)求证:△ADC∽△ACB.(2)若AD=2,AB=3,求的值.26.如图,点E是正方形ABCD的边BC延长线上一点,联结DE,过顶点B作BF⊥DE,垂足为F,BF交边DC于点G.(1)求证:GD•AB=DF•BG;(2)联结CF,求证:∠CFB=45°.春人教版九年级下册数学第27章相似单元测试题参考答案与试题解析一.选择题(共10小题)1.已知x:y:z=1:2:3,且2x+y﹣3z=﹣15,则x的值为()A.﹣2B.2C.3D.﹣3【分析】先利用x:y:z=1:2:3,y=2x,z=3x,然后消去y与z得到关于x的一元一次方程,再解一次方程即可.【解答】解:∵x:y:z=1:2:3,∴y=2x,z=3x,∴2x+2x﹣9x=﹣15,∴x=3.故选:C.【点评】本题考查了解三元一次方程组:利用代入消元或加减消元把解三元一次方程组的问题转化为解二元一次方程组的问题.2.若a:b=3:2,且b是a、c的比例中项,则b:c等于()A.4:3B.3:4C.3:2D.2:3【分析】由b是a、c的比例中项,根据比例中项的定义,即可求得,又由a:b=3:2,即可求得答案.【解答】解:∵b是a、c的比例中项,∴b2=ac,即,∵a:b=3:2,∴b:c=3:2.故选:C.【点评】此题考查了比例线段以及比例中项的定义.解题的关键是熟记比例中项的定义及其变形.对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,我们就说这四条线段是成比例线段,简称比例线段.3.下列命题中,其中正确的命题个数有()(1)在△ABC中,已知AB=6,AC=,∠B=45°,则∠C的度数为60°;(2)已知⊙O的半径为5,圆心O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有3个;(3)圆心角是180°的扇形是一个半圆;(4)已知点P是线段AB的黄金分割点,若AB=1,则AP=.A.1个B.2个C.3个D.4个【分析】(1)作出图形,过点A作AD⊥BC于点D,然后求出AD的长度,再在Rt△ACD中,利用锐角的正弦值求出∠C的度数即可;(2)作出图形,根据圆的半径为5,圆心到AB的距离为3作出到直线AB的距离为2的直线,与圆的交点的个数即为所求;(3)根据半圆的圆心角等于180°解答;(4)因为AP是较长的线段还是较短的线段不明确,所以分两种情况讨论求解.【解答】解:(1)如图,过点A作AD⊥BC于点D,∵AB=6,∠B=45°,∴AD=AB sin45°=6×=3,又∵AC=,∴sin∠C===,∴∠C=60°,故本小题正确;(2)如图所示,到直线AB的距离为2的点有3个,故本小题正确;(3)∵半圆的圆心角为180°,∴圆心角是180°的扇形是一个半圆加一条直径,故本小题错误;(4)①若AP是较长线段,则AP2=AB•BP,即AP2=1×(1﹣AP),AP2+AP﹣1=0,解得AP=,②若AP是较短的线段,则AP=1﹣=,故本小题错误.综上所述,正确的命题有(1)(2)共2个.故选:B.【点评】本题考查了黄金分割,垂径定理,圆心角、弧、弦的关系,解直角三角形,作出图形,利用数形结合的思想求解比较关键.4.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A.5B.6C.7D.8【分析】根据平行线分线段成比例定理解答即可.【解答】解:∵l1∥l2∥l3,AB=5,AC=8,DF=12,∴,即,可得;DE=6,故选:B.【点评】本题考查了平行线分线段成比例定理的应用,能熟练地运用定理进行计算是解此题的关键,题目比较典型,难度适中,注意:对应成比例.5.下列说法中正确的是()A.两个直角三角形一定相似B.两个等腰三角形一定相似C.两个等腰直角三角形一定相似D.两个矩形一定相似【分析】根据三角形、矩形相似的判定方法逐个分析,确定正确答案即可.【解答】解:A、两个直角三角形只有一个直角可以确定相等,其他两个角度未知,故A不正确;B、等腰三角形的角度不一定相等,各边也不一定对应成比例,故B不正确;C、两个等腰直角三角形的对应相等,所以两个等腰直角三角形相似,故C正确;D、两个矩形对应角相等,但对应边的比不一定相等,故D不正确;故选:C.【点评】本题考查了相似图形的知识,解题的关键是了解对应角相等,对应边的比相等的图形相似,难度不大.6.两个相似的六边形,如果一组对应边的长分别为3cm,4cm,且它们面积的差为28cm2,则较大的六边形的面积为()A.44.8 cm2B.45 cm2C.64 cm2D.54 cm2【分析】设大六边形的面积为xcm2,根据相似多边形的性质列出比例式,计算即可.【解答】解:设大六边形的面积为xcm2,则小六边形的面积为(x﹣28)cm2,∵两个六边形相似,∴=()2,解得,x=64,故选:C.【点评】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.7.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm【分析】根据相似三角形的对应边成比例求解可得.【解答】解:设另一个三角形的最长边长为xcm,根据题意,得:=,解得:x=4.5,即另一个三角形的最长边长为4.5cm,故选:C.【点评】本题主要考查相似三角形的性质,解题的关键是掌握相似三角形的对应角相等,对应边的比相等.8.如图,△ABC中,P为AB上的一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③【分析】根据有两组角对应相等的两个三角形相似可对①②进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对③④进行判断.【解答】解:当∠ACP=∠B,∠A公共,所以△APC∽△ACB;当∠APC=∠ACB,∠A公共,所以△APC∽△ACB;当AC2=AP•AB,即AC:AB=AP:AC,∠A公共,所以△APC∽△ACB;当AB•CP=AP•CB,即=,而∠PAC=∠CAB,所以不能判断△APC和△ACB相似.故选:D.【点评】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.9.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为()A.2:5B.3:5C.9:25D.4:25【分析】根据平行四边形的性质可得出CD∥AB,进而可得出△DEF∽△BAF,根据相似三角形的性质结合DE:EC=3:2,即可得出△DEF与△BAF的面积之比,此题得解.【解答】解:∵四边形ABCD为平行四边形,∴CD∥AB,∴△DEF∽△BAF.∵DE:EC=3:2,∴==,∴=()2=.故选:C.【点评】本题考查了相似三角形的判定与性质以及平行四边形的性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.10.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为()A.10m B.12m C.15m D.40m【分析】根据同时同地物高与影长成正比列式计算即可得解.【解答】解:设旗杆高度为x米,由题意得,=,解得:x=15.故选:C.【点评】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比,需熟记.二.填空题(共8小题)11.若=,则=.【分析】根据分比性质,可得答案.【解答】解:由分比性质,得=﹣=﹣2=,∴=,故答案为:.【点评】本题考查了比例的性质,利用了分比性质,用x表示y,是解题关键.12.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C;过点B的直线DE分别交l1、l3于点D、E.若AB=2,BC=4,BD=1.5,则线段DE的长为 4.5.【分析】根据平行线分线段成比例定理得到=,然后把AB、BC、BD的值代入后,利用比例的性质可计算出DE的长.【解答】解:∵l1∥l2∥l3,∴=,即,∴BE=3,∴DE=3+1.5=4.5.故答案为:4.5.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.13.已知==,且a+b﹣2c=6,则a的值10.【分析】设===k,表示出a,b,c,代入a+b﹣3c=求出k的值,即可确定出a的值.【解答】解:设===k,则有a=5k,b=6k,c=4k,代入a+b﹣2c=得:5k+6k﹣8k=6,解得:k=2,则a=10,故答案为:10【点评】此题考查了比例的性质,熟练掌握比例的性质是解本题的关键.14.如图,△ABC与△ADB中,∠ABC=∠ADB=90°,∠C=∠ABD,AC=5cm,AB=4cm,AD 的长为.【分析】根据相似三角形的判定与性质即可求出答案.【解答】解:∵∠ABC=∠ADB=90°,∠C=∠ABD,∴△ACB∽△ABD,∴,∴AD==cm,故答案为:【点评】本题考查相似三角形的性质与判定,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.15.如图,在△ABC中,DE∥BC,=,则=.【分析】由DE∥BC可得出∠ADE=∠B、∠AED=∠C,进而可得出△ADE∽△ABC,根据相似三角形的性质可得出的值.【解答】解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴==.故答案为:.【点评】本题考查了相似三角形的判定与性质,利用相似三角形的判定定理证出△ADE∽△ABC是解题的关键16.已知△ABC和△DEF中.点A、B、C分别与点D、E、F相对应.且∠A=70°时,∠B=34°,∠D=70°,则当∠F=76°时,△ABC∽△DEF.【分析】利用两对角相等的三角形相似即可作出判断.【解答】解:∵△ABC和△DEF中.点A、B、C分别与点D、E、F相对应.且∠A=70°时,∠B =34°,∠D=70°,∴∠B=∠E=34°,∴∠C=∠F=76°,故答案为:76°【点评】此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.17.如图,已知线段AB的两个端点在直角坐标系中的坐标分别是A(m,m),B(2n,n),以原点O为位似中心,相似比为,把线段AB缩小,则经过位似变换后A、B的对应点坐标分别是A′(m,m),B′(n,n);点A到原点O的距离是m.【分析】由于在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,则把点A和点B的坐标都乘以即可得到点A′和点B′的坐标,再利用两点间的距离公式计算点A到原点O的距离.【解答】解:∵A(m,m),B(2n,n),而位似中心为原点,相似比为,∴A′(m,m),B′(n,n);点A到原点O的距离==m.故答案为(m,m),(n,n);m.【点评】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.18.如图,比例规是一种画图工具,使用它可以把线段按一定的比例伸长或缩短,它是由长度相等的两脚AD和BC交叉构成的,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,使A、B两个尖端分别在线段l的两端上,若CD =2,则AB的长是6.【分析】根据题意可知△ABO∽△DCO,根据相似三角形的性质即可求出AB的长度,此题得解.【解答】解:根据题意,可知:△ABO∽△DCO,∴=,即=3,∴AB=6.故答案为:6.【点评】本题考查了相似三角形的应用,利用相似三角形的性质求出AB的长度是解题的关键.三.解答题(共8小题)19.已知,(1)求的值;(2)若x﹣2y+4z=24,求x+y+z的值.【分析】设=k,于是得到x=2k,y=3k,z=4k,代入代数式即可得到结论.【解答】解:∵,∴设=k,∴x=2k,y=3k,z=4k,∴(1)==;(2)∵x﹣2y+4z=24,∴2k﹣6k+16k=24,∴k=2,∴x+y+z=2k+3k+4k=9k=18.【点评】本题考查了比例的性质,熟练掌握比例的性质是解题的关键.20.如图,四边形ABCD与四边形ABFE都是矩形,AB=3,AD=6.5,BF=2.(1)求下列各线段的比:,,;(2)指出AB,BC,CF,CD,EF,FB这六条线段中的成比例线段(写一组即可)【分析】(1)根据矩形的性质和线段的和差关系得到CD,EF,BC,CF,再代入数据即可求得各线段的比;(2)根据成比例线段的定义写一组即可求解.【解答】解:(1)∵四边形ABCD与四边形ABFE都是矩形,AB=3,AD=6.5,BF=2,∴CD=EF=AB=3,BC=AD=6.5,CF=BC﹣BF=4.5,∴==,==,=;(2)成比例线段有=.【点评】本题考查了矩形的性质,比例线段,解决问题的关键是得到CD,EF,BC,CF的值.21.如图,在△ABC与△A'B'C'中,∠A=∠A',BD、CE是△ABC的高,B'D'、C'E'是△A'B'C'的高,点D、E、D'、E'分别在AC、AB、A'C'、A'B'上,且=.求证:=【分析】先证△BDC∽△B′D′C′得∠ACB=∠A′C′B′,结合∠A=∠A′可证△ABC∽△A'B'C',再利用相似三角形的性质可得答案.【解答】解:∵BD是AC边上的高、B'D'是A'C'的高,∴∠BDC=∠B′D′C′=90°,∴△BDC和△B′D′C′均为直角三角形,∵=,∴△BDC∽△B′D′C′,∴∠ACB=∠A′C′B′,∵∠A=∠A′,∴△ABC∽△A'B'C',∵BD、CE是△ABC的高,B'D'、C'E'是△A'B'C'的高,∴=.【点评】本题主要考查相似三角形的判定与性质,解题的关键是掌握相似三角形的判定定理及相似三角形的对应边的比、对应高的比、对应中线的比、对应角平分线的比和周长的比都等于相似比、面积比等于相似比的平方的性质.22.如图所示:在△ABC中,AB=AC=5,BC=8,D,E分别为BC.AB边上一点,∠ADE=∠C,(1)求证:AD2=AE•AB;(2)∠ADC与∠BED是否相等?请说明理由;(3)若CD=2,求AD的长.【分析】(1)证明△DAE∽△BAD,根据相似三角形的性质证明;(2)根据三角形的外角的性质、等腰三角形的性质证明;(3)证明△ADC∽△DEB,根据相似三角形的性质求出BE,代入(1)的结论计算即可.【解答】(1)证明:∵∠ADE=∠C,∠DAE=∠BAD,∴△DAE∽△BAD,∴=,即AD2=AE•AB;(2)∠ADC=∠DAE+∠B,∠BED=∠DAE+∠ADE,∵AB=AC,∴∠B=∠C,∴∠ADC=∠BED;(3)∵∠ADC=∠BED,∠B=∠C,∴△ADC∽△DEB,∴=,即=,解得,BE=2.4,由(1)得,AD2=AE•AB=13,则AD=.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.23.如图,∠ABC=∠BCD=90°,∠A=45°,∠D=30°,BC=1,AC,BD交于点O.求的值.【分析】由同旁内角互补两直线平行得到AB与CD平行,再利用两直线平行内错角相等,以及对顶角相等得到三角形相似,由相似得比例求出所求即可.【解答】解:∵∠ABC=∠BCD=90°,∴AB∥CD,∴∠A=∠ACD,∴△ABO∽△CDO,∴,在Rt△ABC中,∠ABC=90°,∠A=45°,BC=1,∴AB=1,在Rt△BCD中,∠BCD=90°,∠D=30°,BC=1,∴CD=,∴==.【点评】此题考查了相似三角形的性质与判定,以及平行线的性质,能利用相似三角形的性质将未知线段的比转化为已知线段的比是解本题的关键.24.如图,以O为位似中心,将△ABC放大为原来的2倍(不写作法,保留作图痕迹).【分析】延长OA到A′使OA′=2OA,同样作出点B′、C′,从而得到满足条件的△A′B′C′;反向延长OA到A″使OA″=2OA,同样作出点B″、C″,从而得到满足条件的△A″B″C″.【解答】解:如图所示:△A′B′C′和△A″B″C″.【点评】本题考查了作图﹣位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;然后根据位似比,确定能代表所作的位似图形的关键点;最后顺次连接上述各点,得到放大或缩小的图形.25.如图,在四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,点E为AB的中点.(1)求证:△ADC∽△ACB.(2)若AD=2,AB=3,求的值.【分析】(1)根据角平分线的定义得到∠DAC=∠CAB,根据相似三角形的判定定理证明;(2)根据相似三角形的性质得到∠ACB=∠ADC=90°,根据直角三角形的性质得到CE=AE,根据等腰三角形的性质、平行线的判定定理证明=,由相似三角形的性质列出比例式,计算即可.【解答】(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵AC2=AB•AD,∴=,∴△ADC∽△ACB;(2)∵△ADC∽△ACB,∴∠ACB=∠ADC=90°,∵点E为AB的中点,∴CE=AE=AB=,∴∠EAC=∠ECA,∴∠DAC=∠EAC,∴∠DAC=∠ECA,∴CE∥AD;∴==,∴=.【点评】本题考查的是直角三角形的性质、平行线的判定、相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.26.如图,点E是正方形ABCD的边BC延长线上一点,联结DE,过顶点B作BF⊥DE,垂足为F,BF交边DC于点G.(1)求证:GD•AB=DF•BG;(2)联结CF,求证:∠CFB=45°.【分析】(1)由∠BCD=∠GFD=90°、∠BGC=∠FGD可证得△BGC∽△DGF,即可知,根据AB=BC即可得证;(2)连接BD,由△BGC∽△DGF知,即,根据∠BGD=∠CGF可证△BGD∽△CGF得∠BDG=∠CFG,再由即可得证.【解答】证明:(1)∵四边形ABCD是正方形∴∠BCD=∠ADC=90°,AB=BC,∵BF⊥DE,∴∠GFD=90°,∴∠BCD=∠GFD,∵∠BGC=∠FGD,∴△BGC∽△DGF,∴,∴DG•BC=DF•BG,∵AB=BC,∴DG•AB=DF•BG;(2)如图,连接BD、CF,∵△BGC∽△DGF,∴,∴,又∵∠BGD=∠CGF,∴△BGD∽△CGF,∴∠BDG=∠CFG,∵四边形ABCD是正方形,BD是对角线,∴,∴∠CFG=45°.【点评】本题主要考查相似三角形的判定和性质及正方形的性质,解题的关键是熟练掌握相似三角形的判定和性质.。

人教版初中数学九年级数学下册第二单元《相似》测试(含答案解析)(1)

人教版初中数学九年级数学下册第二单元《相似》测试(含答案解析)(1)

一、选择题1.下列各组线段的长度成比例的是()A.2cm,4cm,6cm,8cm B.10cm,20cm,30cm,40cmC.2.2cm,3.3cm,5cm,8cm D.20cm,30cm,60cm,40cm2.如图,在△ABC中,点D在BC边上,连接AD,点E在AC边上,过点E作//EF BC,交AD于点F,过点E作//EG AB,交BC于G,则下列式子一定正确的是()A.AE EFEC CD=B.BF EGCD AB=C.AF BCFD GC=D.CG AFBC AD=3.如图所示,一电线杆AB的影子分别落在了地上和墙上,某一时刻,小明竖起1米高的直杆,量得其影长为0.5米,此时,他又量得电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米,小明用这些数据很快算出了电线杆AB的高,请你计算,电线杆AB的高为()A.5米B.6米C.8米D.10米4.如图,在四边形ABCD中,对角线BD平分∠ABC,∠DBC=30°,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F,若CD=2,则BF的长为()A.35B.233C.635D.355.如图,点D、E分别在CA、BA中的延长线上,若DE∥BC,AD=5,AC=10,DE=6,则BC 的值为()A .10B .11C .12D .136.如图,已知////AB CD EF ,它们依次交直线1l 、2l 于点A 、D 、F 和点B 、C 、E ,如果:3:1AD DF =,10BE =,那么CE 等于( )A .103B .203C .52D .1527.如图,在平面直角坐标系中,ABC 的顶点坐标分别是()1,2A ,()1,1B ,()3,1C ,以原点为位似中心,在原点的同侧画DEF ,使DEF 与ABC 成位似图形,且相似比为2:1,则线段DF 的长度为( )A .5B .2C .4D .58.如图,在ABC ∆中,,D E 分别是边,BC AC 上的点,且11,BD BC AE AC n m ==,连接,AD BE 交于点F ,则AF AD的值为( )A .1m n -B .1m m n +-C .1n m n +-D .1n m - 9.如图,地面上点A 处有一只兔子,距它10米的B 处有一根高1.6米的木桩,大树、木桩和兔子刚好在一条直线上.一只老鹰在9.6米高的树顶上刚好看见兔子,则大树C 离木桩B( )米.A .60B .50C .40D .4510.下列相似图形不是位似图形的是( )A .B .C .D . 11.如图,ABC 是等边三角形,被一平行于BC 的矩形所截(即:FG ∥BC),若AB 被截成三等分,则图中阴影部分的面积是ABC 的面积的( )A .19B .29C .13D .4912.如图在ABC 中,其中D 、E 两点分别在AB 、AC 上,且31AD =,29DB =,30AE =,32EC =.若50A ∠=︒,则图中1∠、2∠、3∠、4∠的大小关系正确的是( ).A .13∠=∠B .24∠∠=C .23∠∠=D .14∠<∠二、填空题13.如图,在Rt ABC 中,90ACB ︒∠=,5AC =,12BC =,D 、E 分别是边BC 、AC 上的两个动点,且8DE =,P 是DE 的中点,连接PA ,PB ,则13PA PB +的最小值为________.14.如图,直线////AF BE CD ,直线AC 交BE 于B ,直线FD 交BE 于E ,2AB cm =,1BC cm =, 1.8EF cm =,求DE 的长为______cm .15.在梯形ABCD 中,//AD BC ,两条对角线AC 、BD 相交于点O ,:1:9AOD COB S S =,那么BOC DOC S S =△△:__________.16.如图,在四边形ABCD 中,AC 平分∠BAD ,AD=AC ,以A 为圆心,AB 长为半径画弧,交AC 于点E ,连接DE 、BE ,并延长BE 交CD 于点F ,下列结论:①△BAC ≌ △EAD ,②BC+CF=DE+EF ,③∠ABE+∠ADE=∠BCD ,其中正确的有____(填序号)17.如图,EF 是ABC 纸片的中位线,将AEF 沿EF 所在的直线折叠,点A 落在BC 边上的点D 处,已知AEF 的面积为7,则图中阴影部分的面积为______.18.如图,ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的面积是ABC 的面积的______.19.如图,⊙O 的直径为5,在⊙O 上位于直径AB 的异侧有定点C 和动点P ,已知BC :CA =4:3,点P 在半圆弧AB 上运动(不与A ,B 重合),过C 作CP 的垂线CD 交PB 的延长线于D 点.则△PCD 的面积最大为______________.20.如图,在四边形ABCD 中,点E 在AD 上,EC//AB ,EB//DC ,若△ABE 面积为5 , △ECD 的面积为1,则△BCE 的面积是________.三、解答题21.如图,王华同学在晚上由路灯AC 走向路灯BD ,当他走到点P 时,发现身后他影子的顶部刚好接触到路灯AC 的底部,当他向前再步行12 m 到达Q 点时,发现身前他影子的顶部刚好接触到路灯BD 的底部.已知王华同学的身高是1.6 m ,两个路灯的高度都是9.6 m(1)求两个路灯之间的距离;(2)当王华同学走到路灯BD 处时,他在路灯AC 下的影子长是多少?22.如图,在等边三角形ABC 中,点D ,E 分别在BC ,AB 上,且60ADE ∠=︒. 求证:ADC ∽DEB .23.如图1,点()8,1A 、(),8B n 都在反比例函数()0m y x x=>的图象上,过点A 作AC x ⊥轴于C ,过点B 作BD y ⊥轴于D .(1)求m 的值和直线AB 的函数关系式;(2)动点P 从O 点出发,以每秒2个单位长度的速度沿线段OD 向点D 运动,同时动点Q 从O 点出发,以每秒1个单位长度的速度沿线段OC 向C 点运动,当动点P 运动到点D 时,点Q 也停止运动,设运动的时间为t 秒.如图2,当点P 运动时,如果作OPQ △关于直线PQ 的对称图形'O PQ △,是否存在某时刻t ,使得点'O 恰好落在反比例函数的图象上?若存在,求'O 的坐标和t 的值﹔若不存在,请说明理由.24.如图,在ABC ∆中,AD 平分,BAC E ∠是AD 上一点,且BE BD =.(1)求证:ABE ACD ∆~∆;(2)若E 是线段AD 的中点,求BD CD的值..25.如图,△ABC 中,E 、F 分别是边AB 、AC 的中点,EF =a ,动点P 在射线EF 上,BP 交CE 于D ,∠CBP 的平分线交CE 于Q , (1)当CQ =12CE 时,求EP+BP 的值. (2)当CQ =13CE 时,求EP+BP 的值. (3)当CQ =1nCE 时,直接写出EP+BP 的值.26.如图,△ABC是⊙O的内接三角形,AD是△ABC的高,AE是⊙O的直径.求证:△ABE~△ADC.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段,对每一项进行分析即可.【详解】解:A、2×8≠4×6,故本选项错误;B、10×40≠20×30,故选项错误;C、2.2×8≠3.3×5,故选项错误;D、20×60=30×40,故本选项正确.故选:D.【点睛】此题考查了比例线段,用到的知识点是成比例线段的概念,注意在相乘的时候,最小的和最大的相乘,另外两个相乘,看它们的积是否相等.2.C解析:C【分析】根据平行线分线段成比例性质进行解答便可.【详解】解:∵EF∥BC,∴AF AE=,FD EC∵EG∥AB,∴AE BG=,EC GC∴AF BC=,FD GC故选:C.【点睛】本题考查了平行线分线段成比例性质,关键是熟记定理,找准对应线段.3.C解析:C【分析】根据同一时刻,物体的实际高度和影长成正比例列出比例式即可解答.【详解】解:如图,假设没有墙,电线杆AB的影子落在E处,∵同一时刻,物体的实际高度和影长成正比例,∴CD:DE=1:0.5=2:1,∴AB:BE=2:1,∵CD=2,BE=BD+DE,∴BE=3+1=4,∴AB:4=2:1,∴AB=8,即电线杆AB的高为8米,故选:C.【点睛】本题考查了相似三角形的应用、比例的性质,解答的关键是理解题意,将实际问题转化为相似三角形中,利用同一时刻,物体的实际高度和影长成正比例列出方程求解.4.C解析:C【分析】连接DE,根据直角三角形的性质求出BC,根据勾股定理求出BD,再求出AB,根据DE ∥AB ,得到B DE AB DF F =,把已知数据代入计算,得到答案. 【详解】 解:连接DE ,∵∠BDC =90°,∠CBD =30°,CD =2, ∴BC =2CD =4,由勾股定理得,BD 22BC CD -2242-23∵E 是BC 的中点,∴DE =12BC =BE =2, ∴∠BDE =∠CBD =30°,∵对角线BD 平分∠ABC ,∴∠ABD =∠CBD =∠BDE ,∴DE ∥AB ,∴BDE AB DF F =, 在Rt △ABD 中,∠ABD =30°, ∴AD =12BD 3 ∴AB 22BD AD -3, ∴23DF FB =, 2332BF =-, 解得,BF =35故选:C .【点睛】 本题考查的是勾股定理、角平分线的性质、直角三角形30度角的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题.5.C解析:C【分析】根据平行线的性质得出∠E=∠B ,∠D=∠C ,根据相似三角形的判定定理得出△EAD ∽△BCA ,根据相似三角形的性质求出即可【详解】解:∵DE ∥BC ,∴∠E=∠B ,∠D=∠C ,∴△EAD ∽△CAB ,∴AC :AD=BC :DE ,∵AD =5,AC =10,DE =6,∴10:5=BC :6.∴BC=12.故选:C .【点睛】本题考查了平行线的性质,相似三角形的性质和判定的应用,能推出△EAD ∽△BAC 是解此题的关键.6.C解析:C【分析】 根据平行线分线段成比例得到BC AD CE DF =,代入已知解答即可. 【详解】解:∵////AB CD EF , ∴BC AD CE DF=, ∵:3:1AD DF =,10BE =, ∴1031CE CE -=, 解得:CE=52, 故选:C .【点睛】 本题考查平行线分线段成比例、比例的性质,掌握平行线分线段成比例是解答的关键,注意对应线段的顺序.7.A解析:A【分析】根据位似图形的性质可得DF =2AC ,然后根据两点间的距离公式求出AC 即可解决问题.【详解】解:∵DEF 与ABC 是位似图形,且相似比为2:1,∴DF =2AC ,∵AC ==∴DF =故选:A .【点睛】本题考查了位似图形的性质和两点间的距离,熟练掌握位似图形的性质是解题的关键. 8.C解析:C【分析】过D 作DG ∥AC 交BE 于G ,易证△BDG ∽△BCE ,△DGF ∽△AEF,利用三角形相似的性质即可解答.【详解】解:过D 作DG ∥AC 交BE 于G ,则△BDG ∽△BCE ,∴DG BD CE BC=, ∵1BD BC n =, ∴1DG BD CE BC n==, ∵1AE AC m =, ∴1m CE AC m-=, ∴DG=11m CE AC n mn-⋅= ∵DG ∥AC ,∴△DGF ∽△AEF ,∴111m AC DF DG m mn AF AE n AC m --===, ∴1AD m n AF n +-=,即1AF n AD m n =+-, 故选:C .【点睛】本题考查了相似三角形的判定与性质、比例性质,熟练掌握相似三角形的判定与性质,添加辅助线构造相似三角形是解答的关键.9.B解析:B【分析】如图,证明△ABE∽△ACD,根据相似三角形的性质列式求解即可.【详解】解:如图,根据题意得,△ABE∽△ACD,∴AB BEAC CD∵AB=10m,BE=1.6m,CD=9.6m∴10 1.6=AC9.6∴AC=60m∴BC=AC-AB=60-10=50m故选:B.【点睛】此题主要考查了相似三角形的应用,善于观察题目的信息是解题以及学好数学的关键.10.D解析:D【分析】根据位似变换的概念判断即可.【详解】解:D中两个图形,对应边不互相平行,不是位似图形,A 、B 、C 中的图形符合位似变换的定义,是位似图形,故选:D .【点睛】本题考查的是位似变换,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形.11.C解析:C【分析】AB 被截成三等分,可得AB=3AE ,AF=2AE ,由EH ∥FG ∥BC ,可得△AEH ∽△AFG ∽△ABC ,则S △AEH :S △AFG :S △ABC =AE 2:AF 2:AB 2,S 阴影= S △AFG - S △AEH =13S △ABC . 【详解】∵AB 被截成三等分,∴AB=3AE ,AF=2AE ,∵EH ∥FG ∥BC ,∴△AEH ∽△AFG ∽△ABC ,∴S △AEH :S △AFG :S △ABC =AE 2:AF 2:AB 2=AE 2:(2AE )2:(3AE )2=1:4:9,∴S △AEH =19S △ABC , S △AFG =4 S △AEH , S 阴影= S △AFG - S △AEH =3 S △AEH =3×19 S △ABC =13S △ABC . 故选择:C .【点睛】 本题考查阴影部分面积问题,关键是利用相似三角形的面积比等于相似比的平方,找到阴影面积与△AEH 的关系,由△AEH 与△ABC 的关系来转化解决问题.12.C解析:C【分析】根据31AD =,30AE =,可得21∠<∠;根据题意,通过计算AB 和CD ,可得12AD AE AC AB ,即证明ADE ACB ∽,即可得到各个角度的大小关系. 【详解】∵31AD =,30AE =∴21∠<∠∵31AD =,29DB =,30AE =,32EC =∴60AB AD BD =+=,62AC AE EC =+= ∴12AD AEAC AB∵50A ∠=︒∴ADE ACB ∽∴14∠=∠,23∠∠=∴13∠>∠,24∠<∠故选:C .【点睛】 本题考查了相似三角形的知识;解题的关键是熟练掌握相似三角形的性质,从而完成求解.二、填空题13.【分析】在BC 上截取CF =连接PFCPAF 通过证明△ACP ∽△PCF 可得则PA+PB =PA+PF 当点A 点P 点F 共线时PA+PB 的最小值为AF 由勾股定理可求解【详解】解:如图:在BC 上截取CF =连接P 解析:2413 【分析】 在BC 上截取CF =43,连接PF ,CP ,AF .通过证明△ACP ∽△PCF ,可得31=PF BP ,则PA 13+PB =PA+PF ,当点A 点P ,点F 共线时.PA+13PB 的最小值为AF ,由勾股定理可求解.【详解】 解:如图:在BC 上截取CF =43,连接PF ,CP ,AF .∵DE =8,P 是DE 的中点,∴CP =12DE =4 ∵5AC =,12BC =,∵41132==CP BC ,41334==CF CP ;∴=CP CF BC CP,且∠FCP =∠BCP ∴△PCF ∽△BCP , ∴13==PF CF BP CP , ∴PF =13BP , ∵PA+13PB =PA+PF , 当点A 、点P 、点F 共线时,PA+13PB 的最小值为AF∴AF 3.故答案为:3. 【点睛】本题考查了相似三角形的性质和判定,勾股定理,添加恰当的辅助线是解答本题的关键. 14.09【分析】直接根据平行线分线段成比例定理求解即可【详解】解:∵∴即:∴DE=09cm 故答案为:09【点睛】此题主要考查了平行线分线段成比例定理熟练运用定理是解答此题的关键解析:0.9【分析】直接根据平行线分线段成比例定理求解即可.【详解】解:∵////AF BE CD , ∴AB EF BC DE= 即:2 1.8=1DE∴DE=0.9cm故答案为:0.9【点睛】 此题主要考查了平行线分线段成比例定理,熟练运用定理是解答此题的关键15.3:1【分析】根据在梯形ABCD 中AD ∥BC 易得△AOD ∽△COB 且S △COB :S △AOD=9:1可求=3:1则S △BOC :S △DOC=3:1【详解】解:根据题意AD ∥BC ∴△AOD ∽△COB ∵S △解析:3:1【分析】根据在梯形ABCD 中,AD ∥BC ,易得△AOD ∽△COB ,且S △COB :S △AOD =9:1,可求BO OD=3:1,则S △BOC :S △DOC =3:1. 【详解】解:根据题意,AD ∥BC ,∴△AOD ∽△COB ,∵S △AOD :S △COB =1:9, ∴BO OD=3:1, 则S △BOC :S △DOC =3:1,故答案为:3:1.【点睛】本题考查了相似三角形的性质与判定,掌握相似三角形面积的比等于相似比的平方是解题的关键.16.①②③【分析】先由已知条件利用SAS 证明△BAC ≌△EAD 得到①;由全等得到BC=DE 然后再通过证明△ABE ∽△ACD 得到∠ABE=∠ACD=∠AEB 进而再得到CF=EF 得到BC+CF=DE+EF 即解析:①②③【分析】先由已知条件利用SAS 证明△BAC ≌ △EAD ,得到①;由全等得到BC=DE ,然后再通过证明△ABE ∽△ACD ,得到∠ABE=∠ACD=∠AEB ,进而再得到CF=EF ,得到BC+CF=DE+EF ,即②正确;由∠ABE=∠ACD ,∠BCA=∠EDA ,可得到∠ABE+∠ADE=∠BCD ,即③正确.【详解】解:由题意可知,∠BAC=∠CAD ,AB=AE ,在△BAC 和△EAD 中,AB AE BAC CAD AC AD =⎧⎪=⎨⎪=⎩∠∠∴△BAC ≌ △EAD ,故①正确;∵△BAC ≌ △EAD ,∴BC=ED ,∠BCA=∠EDA ,由于AB=AE ,AC=AD ,∠BAC=∠CAD , ∴AB AE AC AD=, ∴△ABE ∽△ACD ,且△ABE 和△ACD 都为等腰三角形,∴∠ABE=∠ACD=∠AEB ,∵∠AEB=∠CEF ,∴∠ECF=∠CEF ,∴CF=EF,∴BC+CF=DE+EF,故②正确;由以上过程知道∠ABE=∠ACD,∠BCA=∠EDA,∴∠ABE+∠ADE=∠ACD+∠BCA=∠BCD,故③正确.故答案为:①②③.【点睛】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,正确找到全等三角形是解题的关键.17.14【分析】根据三角形的中位线定理结合相似三角形的性质可以求得△ABC的面积再根据折叠的性质得到△DEF的面积从而求解【详解】∵EF是△ABC的中位线∴EF∥BCEF=BC∴△AEF∽△ACB∴∵△解析:14【分析】根据三角形的中位线定理,结合相似三角形的性质可以求得△ABC的面积,再根据折叠的性质得到△DEF的面积,从而求解.【详解】∵EF是△ABC的中位线,∴EF∥BC,EF=12BC,∴△AEF∽△ACB,∴22AEFACB1124 S EFS BC⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭,∵△AEF的面积为7,∴△ABC的面积=28,由折叠的性质得△DEF的面积为7,∴图中阴影部分的面积为28-7-7=14.故答案为:14.【点睛】本题综合考查了折叠问题,三角形的中位线定理和相似三角形的判定和性质.关键是掌握三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.18.【分析】根据题意易证△AEH∽△AFG∽△ABC利用相似三角形的性质解决问题即可【详解】解:∵AB被截成三等分∴△AEH∽△AFG∽△ABC∴∴S△AFG:S△ABC=4:9S△AEH:S△ABC=解析:1 3【分析】根据题意,易证△AEH∽△AFG∽△ABC,利用相似三角形的性质解决问题即可.【详解】解:∵AB 被截成三等分,∴△AEH ∽△AFG ∽△ABC , ∴11,,23AE AE AF AB ==, ∴S △AFG :S △ABC =4:9,S △AEH :S △ABC =1:9, ∴S 阴影部分的面积=49S △ABC -19S △ABC =13S △ABC , ∴图中阴影部分的面积是ABC 的面积的13. 故答案为:13. 【点睛】 本题主要考查了利用三等分点求得各相似三角形的相似比,从而求出面积比计算阴影部分的面积,难度适中.19.【分析】由圆周角定理可知再由可证明最后根据相似三角形对应边成比例及已知条件BC :CA =4:3结合三角形面积公式解题即可【详解】为直径又BC :CA =4:3当点P 在弧AB 上运动时当PC 最大时取得最大值而 解析:503【分析】由圆周角定理可知A P ∠=∠,再由90ACB PCD ∠=∠=︒可证明~ACB PDC ,最后根据相似三角形对应边成比例,及已知条件BC :CA =4:3,结合三角形面积公式解题即可.【详解】 AB 为直径,90ACB ∴∠=︒PC CD ⊥,90PCD ∴∠=︒又CAB CPD ∠=∠~ACB PDC ∴AC BC CP CD∴= BC :CA =4:3,43CD PC ∴= 当点P 在弧AB 上运动时, 12PCD S PC CD =⋅△2142233PCD S PC PC PC ∴=⨯⋅= 当PC 最大时,PCD S 取得最大值而当PC 为直径时最大,22505=33PCD S ∴=⨯. 【点睛】本题考查圆周角定理、三角形面积、相似三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.20.【分析】由EC ∥ABEB ∥DC 可得∠A=∠CED ∠AEB=∠D 证得△ABE 与△ECD 相似由△ABE 的面积为5△CDE 的面积为1可得AB :CE=:1又由EC ∥AB 可得△ABE 与△BCE 等高然后由等高三【分析】由EC ∥AB ,EB ∥DC ,可得∠A=∠CED ,∠AEB=∠D ,证得△ABE 与△ECD 相似,由△ABE 的面积为5,△CDE 的面积为1,可得AB :1又由EC ∥AB ,可得△ABE 与△BCE 等高,然后由等高三角形的面积比等于对应底的比,求得△BCE 的面积.【详解】∵EC ∥AB ,∴∠A=∠CED ,∵EB ∥DC∴∠AEB=∠D ,∴△ABE ∽△ECD , ∴22ABE ECD 551S BE AB CD CE S⎛⎫⎛⎫====⎪ ⎪⎝⎭⎝⎭, ∴AB CE =AB =, ∵△ABE 以AB 为底边的高与△BCE 以CE 为底的高相等,∴ABEBCE SAB S CE ==BCE S ∴==【点睛】本题考查了相似三角形的判定与性质.注意相似三角形的面积比等于相似比的平方、等高三角形面积的比等于其对应底的比.三、解答题21.(1)18;(2)3.6【分析】(1)依题意得到△APM ∽△ABD ,得到MP AP BD AB =再由它可以求出AB ; (2)设王华走到路灯BD 处头的顶部为E ,连接CE 并延长交AB 的延长线于点F 则BF 即为此时他在路灯AC 的影子长,容易知道△EBF ∽△CAF ,再利用它们对应边成比例求出现在的影子.【详解】 解:(1)由对称性可知AP =BQ ,设AP =BQ =x m ,∵MP ∥BD ,∴△APM ∽△ABD ,∴MP AP BD AB = , ∴1.69.6=212x x +, 解得x =3,∴AB =2x +12=18(m),即两个路灯之间的距离为18米(2)设王华走到路灯BD 处头的顶部为E ,连接CE 并延长交AB 的延长线于点F ,则BF 即为此时他在路灯AC 下的影子长,设BF =y m ,∵BE ∥AC ,∴△FEB ∽△FCA ,∴BE BF AC FA = ,即1.69.6=18y y +, 解得y =3.6,当王华同学走到路灯BD 处时,他在路灯AC 下的影子长3.6米.【点睛】此题主要考查相似三角形的应用,两个问题都主要利用了相似三角形的性质:对应边成比例.22.见解析【分析】根据ABC 是等边三角形,即可得到60B C ∠=∠=︒,再根据 CAD BDE ∠=∠,即可判定~ADC DEB △△.【详解】证明:∵ABC 是等边三角形,∴60B C ∠=∠=︒, ∴60ADB CAD C CAD ∠=∠+∠=∠+︒,∵60ADE ∠=︒,∴60ADB BDE ∠=∠+︒,∴CAD BDE ∠=∠,∴ADC DEB △△. 【点睛】本题考察了相似三角形的判定与性质,解题的关键是掌握三角形相似的判定条件. 23.(1)直线AB 的解析式为9y x =-+;(2)存在,()'4,2O ,52t =,见解析; 【分析】 (1)由于点A (8,1)、B (n ,8)都在反比例函数m y x=的图象上,根据反比例函数的意义求出m ,n ,再由待定系数法求出直线AB 的解析式;(2)①由题意知:OP=2t ,OQ=t ,由三角形的面积公式可求出解析式;②通过三角形相似,用t 的代数式表示出O′的坐标,根据反比例函数的意义可求出t 值.【详解】 解:(1)∵点()8,1A 、(),8B n 都在反比例函数m y x =的图象上, ∴818=⨯=m , ∴8y x =, ∴88n=,即1n =. 设AB 的解析式为y kx b =+,把()8,1、()1,8B 代入上式得:818k b k b +=⎧⎨+=⎩,解得:19k b =-⎧⎨=⎩. ∴直线AB 的解析式为9y x =-+.(2)存在.当'O 在反比例函数的图象上时,作PE y ⊥轴,'O F x ⊥轴于F ,交PE 于E ,则90E ∠=︒,'2PO PO t ==,'QO QO t ==.由题意知:'PO Q POQ ∠=∠,'90'QO F PO E ∠=︒-∠,'90'EPO PO E ∠=︒-∠,∴''PEO O FQ △△, ∴''''PE EO PO O F QF QO ==, 设QF b =,'O F a =,则PE OF t b ==+,'2O E t a =-, ∴22t b t a a b+-==, 解得:45a t =,35b t =, ∴84',55O t t ⎛⎫ ⎪⎝⎭, 当'O 在反比例函数的图象上时,84855t t ⋅=, 解得:52t =±, ∵反比例函数的图形在第一象限,∴0t >, ∴52t =, ∴()'4,2O , 当52t =秒时,'O 恰好落在反比例函数的图象上. 【点睛】 本题主要考查了反比例函数的意义,利用图象和待定系数法求函数解析式,相似三角形的判定和性质,熟练掌握反比例函数的意义和能数形结合是解决问题的关键.24.(1)见解析;(2)12【分析】(1)根据三角形相似的判定定理,即可得证;(2)根据△ABE ∽△ACD ,可得: AE BE AD CD =,再由等量代换即可求解. 【详解】(1)∵BE=BD ,∴∠BED=∠BDE ,∴∠AEB=180°-∠BED=180°-∠BDE=∠ADC ,∵AD 平分∠BAC ,∴∠BAE=∠CAD ,∴△ABE ∽△ACD ;(2)∵△ABE ∽△ACD ,∴AE BE AD CD=, ∵E 是线段AD 的中点,1=2AE BE AD CD = ∵BE=BD ,∴1=2BD CD 【点睛】 本题主要考查相似三角形的判定定理和性质定理,熟练掌握相似三角形的判定和性质,是解题的关键.25.(1)2a ;(2)4a ;(3)2an ﹣2a .【分析】(1)延长BQ 交EF 的延长线于点G ,根据三角形中位线定理求出BC ,证明△BQC ∽△GQE ,根据相似三角形的性质得到EG=BC=2a ,根据角平分线的定义、平行线的性质得到PB=PG ,得到答案;(2)(3)仿照(1)的解法解答.【详解】解:(1)如图1,延长BQ 交EF 的延长线于点G ,∵E 、F 分别是边AB 、AC 的中点,∴EF 是△ABC 的中位线,∴BC=2EF=2a ,EF ∥BC ,∴△BQC ∽△GQE , ∴1EG EQ BC QC==, ∴EG=BC=2a ,∵BQ 是∠CBP 的平分线,∴∠PBQ=∠CBQ ,∵EF ∥BC ,∴∠EGQ=∠CBQ ,∴∠PBQ=∠EGQ ,∴PB=PG ,∴PE+PB=PE+PG=EG=2a ;(2)如图2,延长BQ 交EF 的延长线于点M ,由(1)可知,△BQC ∽△MQE ,∴1.2BC CQ EM EQ ==, ∴EM=2BC=4a ,∴PE+PB=PE+PM=EM=4a ;(3)如图2,当1CQ CE n=时,则EQ=(n-1)CQ , 由EF ∥BC 得,△MEQ ∽△BCQ , ∴1EM EQ n BC QC==-, ∴EM=(n-1)BC=2a (n-1),即EP+BP=2an-2a .【点睛】本题考查了相似三角形的判定与性质、角平分线的定义、平行线的性质,延长BQ 构造出相似三角形,求出EP+BP=EM 并得到相似三角形是解题的关键.26.见解析.【分析】根据∠AEB=∠ACB(同弧所对的圆周角相等)和AD是△ABC的高,AE是⊙O的直径,利用一个三角形的两个角与另一个三角形的两个角对应相等,即可证明.【详解】证明:∵AB=AB∴∠AEB=∠ACB(同弧所对的圆周角相等),∵AE为直径,∴∠ABE=90°(直径所对的圆周角是直角),又∵AD⊥BC,即∠ADC=90°,∴∠ABE=∠ADC,∴△ABE∽△ADC.【点睛】此题主要考查学生对相似三角形的判定和圆周角定理的理解和掌握,解题的关键是利用同弧上的圆周角相等,先求证∠AEB=∠ACB,然后即可得出结论.。

【初三数学】天津市九年级数学下(人教版)第二十七章《相似》测试卷(含答案)

【初三数学】天津市九年级数学下(人教版)第二十七章《相似》测试卷(含答案)

人教版数学九年级下册第二十七章 相似 章末复习卷一、选择题:1、制作一块3m ×2m 长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( C )A .360元B .720元C .1080元D .2160元 2.如果x ∶y =2∶3,则下列各式不成立的是( D ) A.x +y y =53 B.y -x y =13C.x 2y =13D.x +1y +1=343.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC ,若BD =2AD ,则( B )A.AD AB =12 B .AE EC =12 C.AD EC =12 D .DE BC =12 4. 下列各组图形中有可能不相似的是( A ) A .各有一个角是45°的两个等腰三角形 B .各有一个角是60°的两个等腰三角形 C .各有一个角是105°的两个等腰三角形 D .两个等腰直角三角形5.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,且∠ ,将 绕点A 顺时针旋转 ,使点E 落在点处,则下列判断不正确的是 DA. ′是等腰直角三角形B. AF 垂直平分C. ′∽D. ′是等腰三角形6. 下列图形中不是位似图形的是( C )7.已知△ABC中,AB=AC,∠A=36°,以点A为位似中心把△ABC的各边放大2倍后得到△AB′C′,则∠B的对应角∠B′的度数为( C )A.36° B.54° C.72° D.144°8、若四条线段a,b,c,d成比例,且a=3 cm,b=2 cm,c=9 cm,则线段d的长为( C )A.4 cmB.5 cmC.6 cmD.8 cm9.如图,在△ABC中,DE∥BC,,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,则DE 的长为( C )A.6 B.8 C.10 D.1210. 如图所示3个图形中是位似图形的有( B )A.1个 B.2个 C.3个 D.0个二、填空题:11、在比例尺为1:6 000 000 的海南地图上,量得海口与三亚的距离约为3.7 厘米,则海口与三亚的实际距离约为 222 千米.12. 若k=a-2bc=b-2ca=c-2ab,且a+b+c≠0,则k= -1 .13.若△ABC∽△A1B1C1,AB=2,A1B1=3;则△A1B1C1与△ABC的相似比为 3∶2 .14.如图,有三个三角形,其中相似的是①与② .15. 如图,四边形ABCD与四边形EFGH位似,位似中心点是O,OEOA=35,则FGBC=35.三、解答题16.若a+23=b4=c+56,且2a-b+3c=21.试求a∶b∶c.解:a∶b∶c=4∶8∶7.17.已知四边形ABCD和A1B1C1D1中,ABA1B1人教版九年级数学下册复习_第27章_相似_单元测试卷(有答案)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 已知,则下面结论成立的是()A. B. C. D.2. 下列各组中的四条线段成比例的是()A.,,,B.,,,C.,,,D.,,,3. 如图,若,则的度数是()A. B. C. D.4. 下列各组线段中,能成比例的是()A.,,,B.,,,C.,,,D.,,,5. 若点是线段的黄金分割点,设,则的长为()A. B. C. D.或6. 如图,,,、分别交于点、,则图中相似的三角形有()A.个B.个C.个D.个7. 正常人的体温一般在,室温太高、太低都会感觉不舒服.有人研究认为人的满意温度与正常体温的比是黄金分割比,根据你的生活体验和数学知识,该温度约为()A. B. C. D.8. 如图,中,若,,,则的长为()A. B. C. D.9. 若的各边都分别扩大到原来的倍,得到,下列结论正确的是()A.与的对应角不相等B.与不一定相似C.与的相似比为D.与的相似比为10. 如果线段、、、满足,那么下列等式不一定成立的是()A. B. C. D.二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 如图,在矩形中,、分别是、的中点.若矩形与矩形是相似的矩形,则________.12. 如图,,,已知,,则图中线段的长________,________,________.13. 若两个三角形的相似比为,且较大的三角形的周长为,则较小的三角形的周长为________ .14. 如图,在中,、分别是、边上的点;,,.当________时,.15. 如果两个位似图形的对应线段长分别为和,且两个图形的面积之差为,则较大的图形的面积为________.16. 如图,添加一个条件:________=tag_underline,使,17. 如图,在中,点、分别在、上,.若,,则的值为________.18. 已知,则的值为________.19. 小亮带着他弟弟在阳光下散步,小亮的身高为米,他的影子长米.若此时他的弟弟的影子长为米,则弟弟的身高为________米.20. 如图,中,,,,为的中点,若动点以的速度从点出发,沿着的方向运动,设点的运动时间为秒,连接,当是直角三角形时,的值为________.三、解答题(本题共计8 小题,共计60分,)21.(4分) 如图,是由经过位似变换得到的(1)求出与的相似比,并指出它们的位似中心;(2)是的位似图形吗?如果是,求相似比;如果不是说明理由;(3)如果相似比为,那么的位似图形是什么?22.(8分) 【问题情境】如图,中,,,我们可以利用与相似证明,这个结论我们称之为射影定理,试证明这个定理;【结论运用】如图,正方形的边长为,点是对角线、的交点,点在上,过点作,垂足为,连接,(1)试利用射影定理证明;(2)若,求的长.23. (8分)如图,在中,,于,求证:,.24.(8分) 如图,在中,,是边上的高,是边上的一点,,,垂足分别为,.(1)求证:;(2)与是否垂直?若垂直,请给出证明;若不垂直,请说明理由.25.(8分) 如图,在平面直角坐标系中,的三个顶点分别为,,.(1)以原点为位似中心,将缩小为原来的,得到.请在第一象限内,画出.(2)在(1)的条件下,点的对应点的坐标为________,点的对应点的坐标为________.26. (8分)已知矩形与矩形是位似图形,为位似中心.已知矩形的周长为,,,求与的长.27. (8分)要制作两个形状相同的三角形框架,其中一个三角形框架的三边长分别为、、,另一个三角形框架的一边长为,它的另外两边长分别可以为多少?28.(8分) 如图,在中,,,,动点(与点,不重合)在边上,交于点.(1)当的面积与四边形的面积相等时,求的长;(2)当的周长与四边形的周长相等时,求的长;(3)试问在上是否存在点,使得为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出的长.参考答案与试题解析人教版九年级数学下册复习第27章相似单元测试卷一、选择题(本题共计10 小题,每题3 分,共计30分)1.【答案】A【考点】比例的性质【解析】根据等式的性质,可得答案.【解答】、两边都除以,得,故符合题意;、两边除以不同的整式,故不符合题意;、两边都除以,得,故不符合题意;、两边除以不同的整式,故不符合题意;2.【答案】A【考点】比例线段比例的性质【解析】理解成比例线段的概念,注意在线段两两相乘时,让最小的和最大的相乘,另外两条相乘,看它们的积是否相等.【解答】解:根据两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.所给选项中,只有中,,四条线段成比例,故选:.3.【答案】C【考点】相似三角形的性质【解析】根据三角形的内角和等于求出,再根据相似三角形对应角相等可得.【解答】解:在中,,∵,∴.故选.4.【答案】D【考点】比例线段【解析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.对选项一一分析,排除错误答案.【解答】解:、,故选项错误;、,故选项错误;、,故选项错误;、,故选项正确.故选.5.【答案】D【考点】黄金分割【解析】根据黄金分割的概念得到较长线段根据黄金分割的概念得到较长线段,再根据,即可得出答案.【解答】解:∵是的黄金分割点,∴较长线段,∵,∴,∴较短的线段;故选.6.【答案】B【考点】相似三角形的判定【解析】根据,可以判定图中所有的三角形相似,即可得出与相似的三角形.【解答】解:,∴,,∵,∴,∴与相似三角形有对.故选.7.【答案】C【考点】黄金分割【解析】根据人的满意温度与正常体温的比是黄金分割比,可知该温度约为.【解答】解:∵人的满意温度与正常体温的比是黄金分割比,而正常人的体温一般在,∴人的满意温度约为.故选.8.【答案】D【考点】平行线分线段成比例【解析】由,根据比例的性质,可得,又由,根据平行线分线段成比例定理,即可求得的长.【解答】解:∵,∴,又∵,∴,∴.故选.9.【答案】C【考点】相似图形相似三角形的判定【解析】相似三角形的对应边之比等于相似比,据此即可解答.【解答】解:因为的各边都分别扩大到原来的倍,得到,那么的各边为的倍,即与的相似比为.故选 . 10.【答案】 C【考点】比例的性质 【解析】根据比例的性质,对所给选项进行整理,找到不一定正确的选项即可. 【解答】解: 、∵,∴,即,正确,不符合题意;、∵,∴,即,正确,不符合题意;、∵,∴ , ,∴,错误,符合题意,、∵ 、 、正确,∴ 相除可得,正确,不符合题意; 故选 .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 11.【答案】【考点】相似多边形的性质 【解析】首先设 ,则 ,进而利用矩形 与矩形 是相似的矩形,则,进而求出即可. 【解答】解:设 ,则 ,∵ 矩形 与矩形 是相似的矩形, ∴,人教版九年级下册数学《相似》单元测试(Word 版有答案)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为34,则△ABC 与△DEF 对应中线的比为( )A.34B.43C.916D.169 2.已知b a =513,则a -b a +b的值是( )A.23B.32C.94D.493.如图,在四边形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点O.若AD =1,BC =3,则AO CO 的值为( )A.12B.13C.14D.194.如图,在△ABC 中,DE ∥BC ,DE 分别与AB ,AC 相交于点D ,E.若AD =12,DB =4,则DE ∶BC 的值为( )A.23B.12C.34D.355.如图,不能判定△AOB 和△DOC 相似的条件是( )A .AO ·CO =BO ·DO B.AO DO =ABCDC .∠A =∠D D .∠B =∠C6.如图,矩形ABCD ∽矩形ADFE ,AE =1,AB =4,则AD =( )A .2B .2.4C .2.5D .37.已知如图①,②中各有两个三角形,其边长和角的度数如图上标注,则对图①,②中的两个三角形,下列说法正确的是( )A .只有①相似B .只有②相似C .都不相似D .都相似8.如图,在8×4的矩形网格中,每个小正方形的边长都是1.若△ABC 的三个顶点在图中相应的格点上,图中点D ,E ,F 也都在格点上,则下列与△ABC 相似的三角形是( )A .△ACDB .△ADFC .△BDFD .△CDE9.如图,点M 在BC 上,点N 在AM 上,CM =CN ,AM AN =BMCM,下列结论正确的是( )A .△ABM ∽△ACB B .△ANC ∽△AMB C .△ANC ∽△ACMD .△CMN ∽△BCA10.如图,在△ABC 中,DE ∥BC ,DF ∥AC ,EG ∥AB ,且AE ∶EC =3∶2.若BC =10,则FG 的长为( )A.1 B.2 C.3 D.411.阳光通过窗口AB照射到室内,在地面上留下2.7米的亮区DE(如图所示),已知亮区到窗口下的墙角的距离EC=8.7米,窗口高AB=1.8米,则窗口底边离地面的高BC为( )A.4米 B.3.8米 C.3.6米 D.3.4米12.在Rt△ABC和Rt△DEF中,已知∠C=∠F=90°,在下列条件中:①∠A=30°,∠E =60°;②AC=5,BC=4,DF=15,EF=12;③AB=5,AC=3,DE=10,DF=6;④AC∶AB =1∶3,DF=a,DE=3a.能够判断Rt△ABC∽Rt△DEF的有( )A.1个 B.2个 C.3个 D.4个13.如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点重合.若AB=2,BC=3,则△FCB′与△DGB′的面积之比为( )A.9∶4 B.16∶9 C.4∶3 D.3∶214.如图,将△ABC的高AD四等分,过每一个分点作底边的平行线,把三角形的面积分成四部分S1,S2,S3,S4,则S1∶S2∶S3∶S4等于( )A.1∶2∶3∶4 B.2∶3∶4∶5 C.1∶3∶5∶7 D.3∶5∶7∶9 15.如图,在△ABC中,AC=BC,CD是边AB上的高线,且有2CD=3AB=6,CE=EF=DF,则下列判断中不正确的是( )A.∠AFB=90° B.BE= 5C.△EFB∽△BFC D.∠ACB+∠AEB=45°16.如图1,在Rt△ABC中,∠ACB=90°,点P以每秒1 cm的速度从点A出发,沿折线AC —CB运动,到点B停止,过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图像如图2所示.当点P运动5秒时,PD的长是( )A.1.5 cm B.1.2 cm C.1.8 cm D.2 cm二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.如图,已知AD∥BE∥CF,且AB=4,BC=5 ,EF=4,则DE=.18.如图,已知△OAB与△OA′B′是位似比为1∶2的位似图形,点O为位似中心.若△OAB 内一点P(x,y)与△OA′B′内一点P′是一对对应点,则点P′的坐标是.19.如图,在△ABC 中,AB =AC =10,BC =16,点D 是边BC 上一动点(不与B ,C 重合),∠ADE =∠B =α,DE 交AC 于点E.则当BD =4时,CE = ;当∠AED =90°时,BD = . 三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)如图,矩形ABCD 中,AB =3,BC =6,点E 在对角线BD 上,且BE =1.8,连接AE 并延长交DC 于点F ,求CFCD的值.21.(本小题满分9分)如图,△ABC 的顶点坐标分别为A(1,1),B(2,3),C(3,0).(1)以点O 为位似中心画△DEF ,使它与△ABC 位似,且位似比为2;(2)在(1)的条件下,若M(a ,b)为△ABC 边上的任意一点,则△DEF 的边上与点M 对应的点M ′的坐标为 .22.(本小题满分9分)已知:如图,在△ABC 中,BC =10,BC 边上的高h =5,点E 在边AB 上,过点E 作EF ∥BC ,交AC 边于点F ,点D 为BC 上一点,连接DE ,DF ,△DEF 的面积为4,求点E 到BC 的距离.23.(本小题满分9分)如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于点E,交AC延长线于点F.求证:(1)△ADF∽△EDB;(2)CD2=DE·DF.24.(本小题满分10分)小明想利用太阳光测量楼高,他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2 m,CE =0.8 m,CA=30 m(点A,E,C在同一直线上).已知小明的身高EF是1.7 m,请你帮小明求出楼高AB.(结果精确到0.1 m)25.(本小题满分10分)如图,在△ABC中,BC=8 cm,AC=6 cm,点P从B出发,沿人教版数学九年级下册第二十七章相似章末专题训练人教版数学九年级下册第二十七章相似章末专题训练一、选择题1.下列各组图形相似的是( B )A.B.C.D.2.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( C )A.360元B.720元C.1080元D.2160元3.如图,直线l1∥l2∥l3,直线AC分别交,l1,l2,l3于点A,B,C,直线DF分别交,l1,l2,l3于点D,E,F.若DE=3,EF=6,AB=4,则AC的长是( D )A. 6B. 8C. 9D. 124.如图,已知DE∥BC,EF∥AB,则下列比例式错误的是( C )A. B.C. D.5.在△ABC和△DEF中,AB=AC,DE=DF,根据下列条件,能判断△ABC和△DEF相似的是( B )A.=B.=C.∠A=∠ED.∠B=∠D6.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有( C )A.1对B.2对C.3对D.4对7.如图,将一张直角三角形纸片BEC的斜边放在矩形ABCD的BC边上,恰好完全重合,BE、CE分别交AD于点F、G,BC=6,AF∶FG∶GD=3∶2∶1,则AB的长为( C )A. 1B.C.D. 28. 下列说法正确的是( A )A. 位似图形一定是相似图形B. 相似图形一定是位似图形C. 两个位似图形一定在位似中心的同侧D. 位似图形中每对对应点所在的直线必互相平行9.已知△ABC∽△DEF,△ABC的面积为1,△DEF的面积为4,则△ABC与△DEF的周长之比为( A )A. 1∶2B. 1∶4C. 2∶1D. 4∶110. 如图,△ABC∽△DEF,相似比为1∶2.若BC=1,则EF的长是( D )A.1 B.2 C.3 D.4二、填空题11.如图所示,C为线段AB上一点,且满足AC∶BC=2∶3,D为AB的中点,且CD=2 cm,则AB=________ cm.【答案】20则海口与三12.在比例尺为1:6 000 000 的海南地图上,量得海口与三亚的距离约为3.7 厘米,亚的实际距离约为千米.【答案】22213.在△ABC中,MN∥BC分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为__________.【答案】114.如图,在▱ABCD 中,对角线AC 、BD 相交于点O ,在BA 的延长线上取一点E ,连接OE 交AD 于点F.若CD =5,BC =8,AE =2,则AF = .【答案】16915.在△ABC 中,AB =6 cm ,AC =5 cm ,点D 、E 分别在AB 、AC 上.若△ADE 与△ABC 相似,且S △ADE ∶S 四边形BCED =1∶8,则AD =__________ cm. 【答案】2或 三、解答题16. 已知四条线段a ,b ,c ,d 的长度,试判断它们是否成比例: (1)a =16 cm,b =8 cm,c =5 cm,d =10 cm; (2)a =8 cm,b =5 cm,c =6 cm,d =10 cm.(1) 【答案】∵8×10=80,16×5=80,∴bd =ac.∴能够成比例. (2) 【答案】∵8×6=48,10×5=50,∴不能够成比例.17.问题背景:在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息如图1:甲组:测得一根直立于平地,长为80 cm 的竹竿的影长为60 cm ; 如图2:乙组:测得学校旗杆的影长为900 cm ;如图3:丙组:测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为350 cm ,影长为300 cm. 解决问题:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度?(2)如图3,设太阳光线MH 与⊙O 相切于点M ,请根据甲、丙两组得到的信息,求景灯灯罩的半径?【答案】解(1)∵同一时刻物高与影长成正比,∴=,即=,解得DE=1 200 cm;(2)连接OM,设OM=r,∵同一时刻物高与影长成正比,∴=,即=,解得NG=400 cm,在Rt△NGH中,NH===500 cm,设⊙O的半径为r,∵MH与⊙O相切于点M,∴OM⊥NH,∴∠NMO=∠NGH=90°,又∵∠ONM=∠GNH,∴△NMO∽△NGH,∴=,即=,又∵NO=NK+KO=(NG-KG)+KO=400-350+r=50+r,∴500r=300(50+r),解得r=75 cm.故景灯灯罩的半径是75 cm.18.如图已知,在△ABC中,CD⊥AB,BE⊥AC,BE交CD于点O.求证:△ABE∽△OCE.证明:因为CD⊥AB,BE⊥AC,所以∠AEB=∠ADC=90°.又∠A=∠A,所以∠ABE=∠OCE.又因为∠AEB=∠OEC,所以△ABE∽△OCE.18.如图所示,△ABC是等边三角形,点D、E分别在BC、AC上,且CE=BD,BE、AD相交于点F.求证:(1)△ABD≌△BCE;(2)△AEF∽△ABE.【答案】证明 (1)∵△ABC 是等边三角形, ∴AB =BC ,∠ABD =∠C =∠BAC =60°, 在△ABD 和△BCE 中,∴△ABD ≌△BCE (SAS); (2)∵△ABD ≌△BCE , ∴∠BAD =∠CBE , ∴∠EAF =∠ABE , ∵∠AEF =∠BEA , ∴△AEF ∽△ABE .19. 如图,在平面直角坐标系中,△ABC 的顶点坐标为A (-2,3),B (-3,2),C (-1,1).(1)若将△ABC 向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的△A 1B 1C 1; (2)画出△A 1B 1C 1绕原点旋转180°后得到的△A 2B 2C 2;(3)△A'B'C'与△ABC 是位似图形,请写出位似中心的坐标: ; (4)顺次连接C ,C 1,C',C 2,所得到的图形是轴对称图形吗? (1) 【答案】如答图.(2) 【答案】如答图.(3) 【答案】(0,0)(4) 【答案】如答图,所得图形是轴对称图形.20.如图,△ABC、△DEP是两个全等的等腰直角三角形,∠BAC=∠PDE=90°.(1)若将△DEP的顶点P放在BC上(如图1),PD、PE分别与AC、AB相交于点F、G.求证:△PBG∽△FCP;(2)若使△DEP的顶点P与顶点A重合(如图2),PD、PE与BC相交于点F、G.试问△PBG与△FCP还相似吗?为什么?【答案】(1)证明如图1,∵△ABC、△DEP是两个全等的等腰直角三角形,∴∠B=∠C=∠DPE=45°,∴∠BPG+∠CPF=135°,在△BPG中,∵∠B=45°,∴∠BPG+∠BGP=135°,∴∠BGP=∠CPF,∵∠B=∠C,∴△PBG∽△FCP;(2)解△PBG与△FCP相似.理由如下:如图2,∵△ABC、△DEP是两个全等的等腰直角三角形,∴∠人教版九年级下册数学《第27章相似》单元测试卷(解析版)一.选择题(共10小题)1.若a:b=3:2,且b2=ac,则b:c=()A.4:3B.3:2C.2:3D.3:42.下列各组中的四条线段成比例的是()A.a=,b=3,c=2,d=B.a=4,b=6,c=5,d=10C.a=2,b=,c=2,d=D.a=2,b=3,c=4,d=13.已知点C在线段AB上,且点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是()A.AB2=AC•BC B.BC2=AC•BC C.AC=BC D.BC=AC 4.如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,若AD:DB=3:2,则AE:AC等于()A.3:2B.3:1C.2:3D.3:55.将直角三角形三边扩大同样的倍数,得到的新的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形6.如果两个相似多边形的面积比为4:9,那么它们的周长比为()A.4:9B.2:3C.:D.16:817.两三角形的相似比是2:3,则其面积之比是()A.:B.2:3C.4:9D.8:278.如图所示,每个小正方形的边长均为1,则下列A、B、C、D四个图中的三角形(阴影部分)与△EFG相似的是()A.B.C.D.9.如图,在△ABC中,已知∠ADE=∠B,则下列等式成立的是()A.B.C.D.10.如图,是小孔成像原理的示意图,根据图所标注的尺寸,这支蜡烛在暗盒中所成的像CD的长是()A.B.C.D.1 cm二.填空题(共5小题)11.若,则=.12.如果在比例尺为1:1000000的地图上,A、B两地的图上距离是5.8cm,那么A、B两地的实际距离是km.13.若线段AB=6cm,点C是线段AB的一个黄金分割点(AC>BC),则AC的长为cm (结果保留根号).14.已知:AM:MD=4:1,BD:DC=2:3,则AE:EC=.15.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的倍.三.解答题(共4小题)16.已知a:b:c=2:3:4,且2a+3b﹣2c=10,求a,b,c的值.17.某考察队从营地P处出发,沿北偏东60°前进了5千米到达A地,再沿东南方向前进到达C地,C地恰好在P地的正东方向.回答下列问题:(1)用1cm代表1千米,画出考察队行进路线图;(2)量出∠PAC和∠ACP的度数(精确到1°);(3)测算出考察队从A到C走了多少千米?此时他们离开营地多远?(精确到0.1千米).18.如图,△ABC中,AB=AC,∠A=36°,CE平分∠ACB交AB于点E,(1)试说明点E为线段AB的黄金分割点;(2)若AB=4,求BC的长.19.如图,l1∥l2∥l3,AB=3,AD=2,DE=4,EF=7.5.求BC、BE的长.2019年人教版九年级下册数学《第27章相似》单元测试卷参考答案与试题解析一.选择题(共10小题)1.若a:b=3:2,且b2=ac,则b:c=()A.4:3B.3:2C.2:3D.3:4【分析】根据比例的基本性质,a:b=3:2,b2=ac,则b:c可求.【解答】解:∵b2=ac,∴b:a=c:b,∵a:b=3:2,∴b:c=a:b=3:2.故选:B.【点评】利用比例的基本性质,对比例式和等积式进行互相转换即可得出结果.2.下列各组中的四条线段成比例的是()A.a=,b=3,c=2,d=B.a=4,b=6,c=5,d=10C.a=2,b=,c=2,d=D.a=2,b=3,c=4,d=1【分析】根据比例线段的概念,让最小的和最大的相乘,另外两条相乘,看它们的积是否相等即可得出答案.【解答】解:A.×3≠2×,故本选项错误;B.4×10≠5×6,故本选项错误;C.2×=×2,故本选项正确;D.4×1≠3×2,故本选项错误;故选:C.【点评】此题考查了比例线段,理解成比例线段的概念和变形是解题的关键,注意在线段两两相乘的时候,要让最小的和最大的相乘,另外两条相乘,看它们的积是否相等进行判断.3.已知点C在线段AB上,且点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是()A.AB2=AC•BC B.BC2=AC•BC C.AC=BC D.BC=AC 【分析】根据黄金分割的定义得出=,从而判断各选项.【解答】解:∵点C是线段AB的黄金分割点且AC>BC,∴=,即AC2=BC•AB,故A、B错误;∴AC=AB,故C错误;BC=AC,故D正确;故选:D.【点评】本题主要考查黄金分割,掌握黄金分割的定义和性质是解题的关键.4.如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,若AD:DB=3:2,则AE:AC等于()A.3:2B.3:1C.2:3D.3:5【分析】由DE∥CB,根据平行线分线段成比例定理,可求得AE、AC的比例关系.【解答】解:∵DE∥BC,AD:DB=3:2,∴AE:EC=3:2,∴AE:AC=3:5.故选:D.【点评】此题主要考查了平行线分线段成比例定理,根据已知得出AE与EC的关系是解题关键.5.将直角三角形三边扩大同样的倍数,得到的新的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形【分析】因为直角三角形三边扩大同样的倍数,而角的度数不会变,所以得到的新的三角形是直角三角形.【解答】解:因为角的度数和它的两边的长短无关,所以得到的新三角形应该是直角三角形,故选B.【点评】主要考查“角的度数和它的两边的长短无关”的知识点.6.如果两个相似多边形的面积比为4:9,那么它们的周长比为()A.4:9B.2:3C.:D.16:81【分析】直接根据相似多边形周长的比等于相似比,面积的比等于相似比的平方进行解答即可.【解答】解:∵两个相似多边形面积的比为4:9,∴两个相似多边形周长的比等于2:3,∴这两个相似多边形周长的比是2:3.故选:B.【点评】本题考查的是相似多边形的性质,即相似多边形周长的比等于相似比,面积的比等于相似比的平方.7.两三角形的相似比是2:3,则其面积之比是()A.:B.2:3C.4:9D.8:27【分析】根据相似三角形的面积比等于相似比的平方计算即可.【解答】解:∵两三角形的相似比是2:3,∴其面积之比是4:9,故选:C.【点评】本题考查的是相似三角形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.8.如图所示,每个小正方形的边长均为1,则下列A、B、C、D四个图中的三角形(阴影部分)与△EFG相似的是()A.B.C.D.【分析】根据相似三角形的判定,易得出△ABC的三边的边长,故只需分别求出各选项中三角形的边长,分析两三角形对应边是否成比例即可.【解答】解:∵小正方形的边长为1,∴在△ABC中,EG=,FG=2,EF=,A中,一边=3,一边=,一边=,三边与△ABC中的三边不能对应成比例,故两三角形不相似.故A错误;B中,一边=1,一边=,一边=,有,即三边与△ABC中的三边对应成比例,故两三角形相似.故B正确;C中,一边=1,一边=,一边=2,三边与△ABC中的三边不能对应成比例,故两三角形不相似.故C错误;D中,一边=2,一边=,一边=,三边与△ABC中的三边不能对应成比例,故两三角形不相似.故D错误.故选:B.【点评】本题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.9.如图,在△ABC中,已知∠ADE=∠B,则下列等式成立的是()A.B.C.D.【分析】首先证明△AED∽△ACB,再根据相似三角形的性质:对应边成比例可得答案.【解答】解:∵∠A=∠A,∠ADE=∠B,∴△AED∽△ACB,∴=.故选:A.【点评】此题主要考查了相似三角形的性质与判定,关键是掌握判断三角形相似的方法和相似三角形的性质.10.如图,是小孔成像原理的示意图,根据图所标注的尺寸,这支蜡烛在暗盒中所成的像CD的长是()A.B.C.D.1 cm【分析】据小孔成像原理可知△AOB∽△COD,利用它们的对应边成比例就可以求出CD 之长.【解答】解:如图过O作直线OE⊥AB,交CD于F,依题意AB∥CD∴OF⊥CD∴OE=12,OF=2而AB∥CD可以得△AOB∽△COD∵OE,OF分别是它们的高∴,∵AB=6,∴CD=1,故选:D.【点评】本题考查了相似三角形的应用,解题的关键在于理解小孔成像原理给我们带来的已知条件,还有会用相似三角形对应边成比例.二.填空题(共5小题)11.若,则=.【分析】根据合比定理[如果a:b=c:d,那么(a+b):b=(c+d):d(b、d≠0)]解答即可.【解答】解:∵,∴,即=.故答案为:.【点评】本题主要考查了合比定理:在一个比例里,第一个比的前后项的差与它的后项的比,等于第二个比的前后项的差与它们的后项的比,这叫做比例中的分比定理.12.如果在比例尺为1:1000000的地图上,A、B两地的图上距离是5.8cm,那么A、B两地的实际距离是58km.【分析】实际距离=图上距离:比例尺,根据题意代入数据可直接得出实际距离.【解答】解:根据题意,5.8÷=5800000厘米=58千米.即实际距离是58千米.故答案为:58.【点评】本题考查了比例线段的知识,注意掌握比例线段的定义及比例尺,并能够灵活运用,同时要注意单位的转换.13.若线段AB=6cm,点C是线段AB的一个黄金分割点(AC>BC),则AC的长为3(﹣1)cm(结果保留根号).【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.【解答】解:根据黄金分割点的概念和AC>BC,得:AC=AB=3(﹣1).故本题答案为:3(﹣1).【点评】此题考查了黄金分割点的概念,要熟记黄金比的值.14.已知:AM:MD=4:1,BD:DC=2:3,则AE:EC=8:5.【分析】过点D作DF∥BE,再根据平行线分线段成比例,而为公共线段,作为中间联系,整理即可得出结论.【解答】解:过点D作DF∥BE交AC于F,∵DF∥BE,∴△AME∽△ADF,∴AM:MD=AE:EF=4:1=8:2∵DF∥BE,∴△CDF∽△CBE,∴BD:DC=EF:FC=2:3∴AE:EC=AE:(EF+FC)=8:(2+3)∴AE:EC=8:5.【点评】本题主要考查平行线分线段成比例定理的应用,作出辅助线,利用中间量EF 即可得出结论.15.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的5倍.【分析】由题意一个三角形的各边长扩大为原来的5倍,根据相似三角形的性质及对应边长成比例来求解.【解答】解:∵一个三角形的各边长扩大为原来的5倍,∴扩大后的三角形与原三角形相似,∵相似三角形的周长的比等于相似比,∴这个三角形的周长扩大为原来的5倍,故答案为:5.【点评】本题考查了相似三角形的性质:相似三角形的周长的比等于相似比.。

【单元练】海南中学九年级数学下册第二十七章《相似》经典测试题(培优专题)

【单元练】海南中学九年级数学下册第二十七章《相似》经典测试题(培优专题)

一、选择题1.如图,D 是△ABC 的边BC 上一点,AC =4,AD =2,∠DAB =∠C .如果△ACD 的面积为15,那么△ABD 的面积为( )A .15B .10C .152D .5D解析:D【分析】 首先证明△ABD ∽△CBA ,由相似三角形的性质可得:△ABD 的面积:△ACB 的面积为1:4,因为△ACD 的面积为15,进而求出△ABD 的面积.【详解】∵∠DAB =∠C ,∠B =∠B ,∴△ABD ∽△CBA ,∵AC =4,AD =2,∴△ABD 的面积:△ACB 的面积=(AD AC)2=1:4, ∴△ABD 的面积:△ACD 的面积=1:3,∵△ACD 的面积为15,∴△ABD 的面积=5.故选:D .【点睛】 本题考查了相似三角形的判定和性质:相似三角形的面积比等于相似比的平方,是中考常见题型.2.在ABC 中,D ,E 分别为,BC AC 上的点,且2AC EC =,连结,AD BE ,交于点F ,设:,:x CD BD y AF FD ==,则( )A .1y x =+B .1x y x +=C .413y x =+D .21x y x-=-A 解析:A【分析】过D 作DG ∥AC 交BE 于G ,可得△BDG ∽△BCE ,△DGF ∽△AEF ,根据相似三角形的性质可得x 与y 的数量关系.【详解】解:如图,过D 作DG ∥AC 交BE 于G ,∴△BDG ∽△BCE ,△DGF ∽△AEF ,∴BD DG BC CE =,DG DF AE AF =, ∵AC =2EC ,∴AE =CE ,则BD DF BC AF = ∴BD DF BD CD AF =+, ∴BD CD AF BD DF+=, ∵x =CD :BD ,y =AF :FD ,∴1+x =y ,∴y =x +1,故选:A ..【点睛】本题考查相似三角形的性质和应用,恰当作辅助线构建相似三角形是解题的关键. 3.如图,在▱ABCD 中,M 、N 为BD 的三等分点,连接CM 并延长交AB 与点E ,连接EN 并延长交CD 于点F ,则DF :FC 等于( ).A .1:2B .1:3C .2:3D .1:4B解析:B【分析】 由题意可得DN=NM=MB ,据此可得DF :BE=DN :NB=1:2,再根据BE :DC=BM :MD=1:2,AB=DC ,故可得出DF :FC 的值.【详解】解:由题意可得DN=NM=MB ,AB//CD ,AB//BC∴△DFN ∽△BEN ,△DMC ∽△BME ,∴DF :BE=DN :NB=1:2,BE :DC=BM :MD=1:2,又∵AB=DC,∴DF:AB=1:4,∴DF:FC=1:3故选:B.【点睛】本题考查相似三角形的性质,两相似三角形对应线段成比例,要注意比例线段的应用.4.下列各组线段能成比例的是()A.1.5cm,2.5cm, 3.5cm,4.5cm B.1cm,2cm,3cm,4cmC.3cm, 6cm, 4cm, 8cm D.2cm,10cm,5cm,15cm C 解析:C【分析】根据比例线段的概念:如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.【详解】解:A、1.5×4.5≠2.5×3.5,故本选项错误;B、1×4≠2×3,故本选项错误;C、3×8=4×6,故本选项正确;D、215105⨯≠⨯,故本选项错误.故选:C.【点睛】此题考查了比例线段的概念.注意在相乘的时候,最小的和最大的相乘,另外两个相乘,看它们的积是否相等.5.下列每个选项的两个图形,不是相似图形的是()A. B.C.D.D解析:D【分析】根据相似图形的定义,对选项进行一一分析,排除错误答案.【详解】解:A、形状相同,但大小不同,符合相似形的定义,故不符合题意;B 、形状相同,但大小不同,符合相似形的定义,故不符合题意;C 、形状相同,但大小不同,符合相似形的定义,故不符合题意;D 、形状不相同,不符合相似形的定义,故符合题意;故选:D .【点睛】本题考查的是相似形的定义,是基础题.6.如图,比例规是伽利略发明的一种画图工具,使用它可以把线段按一定比例伸长或缩短,它是由长度相等的两脚AD 和BC 交叉构成的.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使3OA OD =,3OB OC =),然后张开两脚,使A 、B 两个尖端分别在线段I 的两个端点上.若12AB cm =,则CD 的长是( )A .3cmB .4cmC .6cmD .8cm B解析:B【分析】 首先根据题意利用两组对边的比相等且夹角相等的三角形是相似三角形判定相似,然后利用相似三角形的性质求解.【详解】∵OA =3OD ,OB =3OC , ∴3OA OB OD OC==, ∵AD 与BC 相交于点O ,∴∠AOB =∠DOC ,∴△AOB ∽△DOC , ∴3AB OA DC OD==, ∵12AB cm =∴CD=12433AB ==cm, 故选B.【点睛】 本题考查相似三角形的应用,解题的关键是熟练掌握相似三角形的判定方法,学会利用相似三角形的性质解决问题,属于中考常考题型.7.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,AE 、CD 相交于点O ,若S △DOE :S △COA =1:9,则S △BDE :S △CDE 的值是( ).A .1:2B .1:3C .1:4D .2:5A解析:A【分析】 根据DE ∥AC 可得到△DOE ∽△COA 和△DBE ∽△ABC ,再根据相似三角形的性质即可得出12BE EC =,再根据同高三角形的面积比等于底之比即可求出. 【详解】∵DE ∥AC∴△DOE ∽△COA ,△DBE ∽△ABC∵S △DOE :S △COA =1:9∴13DE AC = ∴13DE BE AC BC == ∴12BE EC = ∴S △BDE :S △CDE =1:2故答案选A .【点睛】本题主要考察了相似三角形的性质,准确记住面积比等于相似比平方是解题关键. 8.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=5:2,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .5:7B .10:4C .25:4D .25:49D 解析:D【分析】根据题意证明DEFBAF ,再利用相似比得到面积比.【详解】 解:∵四边形ABCD 是平行四边形,∴//CD AB ,CD AB =,∵:5:2DE EC =,∴:5:7DE DC =,∴:5:7DE AB =, ∵DEF BAF , ∴22::25:49DEF BAF S S DE AB ==.故选:D .【点睛】本题考查相似三角形的性质,解题的关键是掌握相似三角形相似比和面积比的关系. 9.如图,在矩形OABC 中,点A 和点C 分别在y 轴和x 轴上.AC 与BO 交于点D ,过点C 作CE BD ⊥于点E ,2DE BE =.若5CE =,反比例函数(0,0)k y k x x=>>经过点D ,则k =( )A .2B .352C .36D .30B解析:B【分析】 作DF ⊥OC 于F ,根据矩形的性质和相似三角形的性质求得OD=3,OE=5,根据勾股定理求得30OC =,然后通过三角形相似求得DF 和OF ,从而求得D 的坐标,代入解析式即可求得k 的值.【详解】解:作DF ⊥OC 于F ,在矩形OABC 中,∠OCB=90°,OD=BD ,90,OCE BCE ∴∠+∠=︒∵CE ⊥OB ,90,CEO BEC ∴∠=∠=︒90,OCE COE ∴∠+∠=︒,COE BCE ∴∠=∠,COE BCE ∴∽ ,CE OE BE CE ∴= ∴2,CE BE OE = ∵2DE BE =,5,CE = 设,BE x =则DE=2x ,3,OD BD x ==∴OE=5x ,∴()255,x x =解得,x=1(负根舍去),∴OD=3,OE=5,∴()22225530,OC OE CE =+=+=∵∠OFD=∠OEC=90°,∠DOF=∠EOC ,∴△DOF ∽△COE ,∴,DF OF OD CE OE OC== 即3,5530DF OF == ∴306,,22OF DF == ∴D 的坐标为306,22⎛⎫ ⎪ ⎪⎝⎭,∵反比例函数k y x =(k >0,x >0)经过点D , ∴30635,222k =⨯= 故选:B .【点睛】本题考查了矩形的性质,勾股定理,三角形相似的判定和性质,反比例函数图象上点的坐标特征,求得D 的坐标是解题的关键.10.如图,菱形ABCD 的边长为10,面积为80,∠BAD <90°,⊙O 与边AB ,AD 都相切菱形的顶点A 到圆心O 的距离为5,则⊙O 的半径长等于( )A .2.5B .5C .22D .3B解析:B【分析】 如图,连接AO ,作DH ⊥AB 于H ,连接BD ,延长AO 交BD 于E .利用菱形的面积公式求出DH ,再利用勾股定理求出AH ,BD ,由△AOF ∽△DBH ,可得=OA OF BD BH,即可解决问题.【详解】解:如图,连接AO ,作DH ⊥AB 于H ,连接BD ,延长AO 交BD 于E .∵菱形ABCD 的边AB=10,面积为80,∴AB•DH=80,∴DH=8,在Rt △ADH 中,226AH AD DH =-=, ∴HB=AB-AH=4,在Rt △BDH 中,2245BD DH BH +=, 设⊙O 与AB 相切于F ,与AD 相切于J ,连接OF ,OJ ,则OF ⊥AB ,OJ ⊥AD ,OF=OJ , ∴OA 平分∠DAB ,∵AD=AB ,∴AE ⊥BD ,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH ,∵∠AFO=∠DHB=90°,∴△AOF ∽△DBH ,∴=OA OF BD BH , ∴445OF , ∴5故选:B .【点睛】本题考查切线的性质、菱形的性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.二、填空题11.如图,△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点P 沿BC 边以2cm/s 的速度从点B 向点C 移动,同时点Q 沿CA 边以1cm/s 的速度从点C 向点A 移动.若以点C 、P 、Q 构成的三角形与△ABC 相似,则运动时间为____________秒.或【分析】首先设点P 移动t 秒时△CPQ 与△ABC 相似然后分别从当即时△CPQ ∽△CBA 与当即时△CPQ ∽△CAB 去分析求解即可求得答案【详解】设点P 移动t 秒时△CPQ 与△ABC 相似∵点P 从点B 以2c 解析:125或3211【分析】 首先设点P 移动t 秒时△CPQ 与△ABC 相似,然后分别从当CP CQ CB CA =,即8286t t -=时,△CPQ ∽△CBA ,与当CQ CP CB CA =,即8286t t -=时,△CPQ ∽△CAB ,去分析求解即可求得答案.【详解】设点P 移动t 秒时△CPQ 与△ABC 相似,∵点P 从点B 以2cm/s 的速度向点C 移动,点Q 以1cm/s 的速度从点C 向点A 移动, ∴BP =2tcm ,CQ =tcm ,则CP =CB−BP =8−2t (cm ),∵∠C 是公共角,∴当CP CQ CB CA=,即8286t t -=时,△CPQ ∽△CBA , 解得:t =125; 当CQ CP CB CA=,即8286t t -=时,△CPQ ∽△CAB , 解得:t =3211, ∴点P 移动125s 或3211s 时△CPQ 与△ABC 相似. 故答案为:125或3211【点睛】此题考查了相似三角形的判定.此题难度适中,注意掌握数形结合思想、分类讨论思想以及方程思想的应用.12.如图,点D 是ABC 的边AB 上的一点,//DE BC 交AC 于点E ,作//DF AC 交BC 于点F ,分别记ADE ,BDF ,平行四边形DFCE ,ABC 的面积为1S ,2S ,3S ,S 有以下结论:①若12S S ,则DE 为ABC 的中位线;②若13S S =,则23BC DE =; ③()212S S S =+; ④3122S S S =.其中正确的是______.(把所有正确结论的序号都填上)①②③④【分析】①根据相似三角形的面积比等于相似比的平方得出AD=BD 求出AE=CE 即可得出答案;②根据相似三角形的面积比等于相似比的平方得出AM=2MN 即可得出答案;③由平行线可得对应线段成比例再解析:①②③④【分析】①根据相似三角形的面积比等于相似比的平方得出AD=BD ,求出AE=CE ,即可得出答案; ②根据相似三角形的面积比等于相似比的平方得出AM=2MN ,即可得出答案; ③由平行线可得对应线段成比例,再由相似三角形的面积比等于对应边的平方比,进而代入求解即可;④先判断出△BFD ∽△DEA ,然后根据面积比等于相似比的平方得出△ABC 的面积,进而根据S 3=S ABC -S ADE -S DBF 可得出答案【详解】解:①、∵DE ∥BC ,DF ∥AC ,∴△ADE ∽△ABC ,△BDF ∽△BAC ,∵S 1=S 2,22()()∴=AD BD AB AB∴AD=BD ,∵DE ∥BC ,∴AE=EC ,∴DE 是△ABC 的中位线,∴①正确;②、过A 作AN ⊥BC 于N ,交DE 于M ,∵DE ∥BC ,∴AN ⊥DE ,∵DE ∥BC ,DF ∥AC ,∴四边形DECF 是平行四边形,∴DE=CF ,∵S 1=S 3,12∴⨯⨯=⨯DE AM CF MN ∴AM=2MN ,∵DE ∥BC ,∴△ADE ∥△ABC ,2223∴===+DE AM MN BC AN MN MN ∴2BC=3DE ,∴②正确;③、∵DE ∥BC ,DF ∥AC∴四边形DECF 是平行四边形,∴DE=CF ,DF=CE ,∵相似三角形的面积比等于对应边的平方比,==AD BD AB AB1+=+=AD BD AB AB=∴2S =;∴③正确; ④∵由题意得:△BFD ∽△DEA ,∴可得:=BD AD∴=BD AB=x ∵ABC S =S ,22()∴=S BD S AB∴可得212112=++S S S S S S 又∵△ADE 、△DBF 的面积分别为S 1和S 2, 21121322S =--==⋅ABC ADE DBF S S S S S S S S ,∴④正确; 故答案为:①②③④.【点睛】本题考查了面积及等积变换、相似三角形的性质和判定等,难度适中,对于此类题目要先根据相似得出比例式,然后根据比例的性质得出要求图形的面积表达式,进而得出答案. 13.如图,D 是AC 上一点,//BE AC ,BE AD =,AE 分别交BD 、BC 于点F 、G ,12∠=∠.若8DF =,4FG =,则GE =________.12【分析】利用AAS 判定△FEB ≌△FAD 得BF=DF 根据有两组角对应相等的两个三角形相似可得到△BFG ∽△EFB 根据相似三角形的对应边成比例即可得到BF2=FG•EF 由条件可求出EF 长则GE 长可解析:12【分析】利用AAS 判定△FEB ≌△FAD ,得BF=DF ,根据有两组角对应相等的两个三角形相似,可得到△BFG ∽△EFB ,根据相似三角形的对应边成比例即可得到BF 2=FG•EF ,由条件可求出EF 长,则GE 长可求出.【详解】解:∵AD//BE ,∴∠1=∠E .在△FEB 和△FAD 中1E EFB AFD BE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△FEB ≌△FAD ;∴BF=DF ,∵∠1=∠E ,∠1=∠2,∴∠2=∠E .又∵∠GFB=∠BFE ,∴△BFG ∽△EFB ,∴BF FG EF BF=, ∴BF 2=FG•EF ,∴DF 2=FG•EF ,∵DF=8,FG=4,∴EF=16,∴GE=EF-FG=16-4=12.故答案为:12.【点睛】 本题考查了三角形全等、相似的性质和判定,熟练掌握全等三角形的判定及相似三角形的判定是关键. 14.如图,为了估算河的宽度,小明采用的办法是:在河的对岸选取一点A ,在近岸取点D ,B ,使得A ,D ,B 在一条直线上,且与河的边沿垂直,测得10m BD =,然后又在垂直AB 的直线上取点C ,并量得30m BC =.如果20m DE =,则河宽AD 为_________m .20【分析】证出ADE 和ABC 相似然后根据相似三角形对应边成比例列式求解即可【详解】解:∵AB ⊥DEBC ⊥AB ∴DE ∥BC ∴ADE ∽ABC ∴即解得:AD =20m 故答案为:20【点睛】本题考查了相似三解析:20【分析】证出ADE 和ABC 相似,然后根据相似三角形对应边成比例列式求解即可.【详解】解:∵AB ⊥DE ,BC ⊥AB ,∴DE ∥BC ,∴ADE ∽ABC , ∴AD DE AB BC =, 即201030AD AD =+, 解得:AD =20m .故答案为:20.【点睛】本题考查了相似三角形的应用,利用相似三角形对应边成比例列出比例式是解题的关键. 15.如图,为估算某河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB BC ⊥,CD BC ⊥,点E 在BC 上,并且点A ,E ,D 在同一条直线上.若测得20BE m =,10EC m =,20CD m =,则河的宽度AB 等于_______.【分析】易证△ABE ∽△DCE 即可求得【详解】∵∠ABE=∠DCE=90°∠BEA=∠DEC ∴△ABE ∽△DCE ∴即故答案为:【点睛】本题考查相似三角形的实际应用掌握相似三角形的判定定理是解题的关键 解析:40m【分析】易证△ABE ∽△DCE ,即可求得.【详解】∵∠ABE=∠DCE=90°,∠BEA=∠DEC∴△ABE ∽△DCE ∴=AB BE CD CE即20=2010AB cm m cm =40AB m故答案为:40m【点睛】本题考查相似三角形的实际应用,掌握相似三角形的判定定理是解题的关键.16.已知:如图,ABC 内接于O ,且BC 是O 的直径,AD BC ⊥于D ,F 是弧BC 中点,且AF 交BC 于E ,6AB =,8AC =.则CD =_________________.AF =_________________.【分析】根据直径所对的圆周角是直角求出BC 的长再用等面积法求出AD 长在用勾股定理求出CD 的长然后连接OF 证明利用对应边成比例求出DE 和OE 的长再利用两次勾股定理分别求出AE 和EF 的长最终得到AF 的长解析:325【分析】根据直径所对的圆周角是直角,求出BC 的长,再用等面积法求出AD 长,在Rt ACD △用勾股定理求出CD 的长,然后连接OF ,证明ADE FOE ,利用对应边成比例求出DE 和OE 的长,再利用两次勾股定理分别求出AE 和EF 的长,最终得到AF 的长.【详解】解:∵BC 是O 的直径,∴90BAC ∠=︒,∵6AB =,8AC =,∴10BC =, 利用等面积法,求出245AB AC AD BC ⋅==, 在Rt ACD △中,325CD ==, 如图,连接OF ,∵F 是弧BC 的中点,∴OF BC ⊥,∵AD BC ⊥,∴//OF AD , ∴ADE FOE , ∴AD DE FO OE=, ∵327555DO CD OC =-=-=, ∴设DE x =,75OE x =-, ∴245755x x =-,解得2435x =, ∴2435DE =,57OE =, 在Rt ADE △中,7AE == 在Rt EFO中,7EF ==,∴77AF AE EF =+=+=故答案是:325;72. 【点睛】 本题考查圆周角定理,垂径定理,相似三角形的性质和判定,解题的关键是掌握这些性质定理进行证明求解.17.如图,⊙O 的直径为5,在⊙O 上位于直径AB 的异侧有定点C 和动点P ,已知BC :CA =4:3,点P 在半圆弧AB 上运动(不与A ,B 重合),过C 作CP 的垂线CD 交PB 的延长线于D 点.则△PCD 的面积最大为______________.【分析】由圆周角定理可知再由可证明最后根据相似三角形对应边成比例及已知条件BC :CA =4:3结合三角形面积公式解题即可【详解】为直径又BC :CA =4:3当点P 在弧AB 上运动时当PC 最大时取得最大值而解析:503【分析】由圆周角定理可知A P ∠=∠,再由90ACB PCD ∠=∠=︒可证明~ACB PDC ,最后根据相似三角形对应边成比例,及已知条件BC :CA =4:3,结合三角形面积公式解题即可.【详解】AB 为直径,90ACB ∴∠=︒PC CD ⊥,90PCD ∴∠=︒又CAB CPD ∠=∠~ACB PDC ∴AC BC CP CD ∴= BC :CA =4:3,43CD PC ∴= 当点P 在弧AB 上运动时, 12PCD S PC CD =⋅△ 2142233PCD S PC PC PC ∴=⨯⋅= 当PC 最大时,PCD S 取得最大值而当PC 为直径时最大,22505=33PCD S ∴=⨯. 【点睛】本题考查圆周角定理、三角形面积、相似三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.18.如图,ED 为△ABC 的中位线,点G 是AD 和CE 的交点,过点G 作GF ∥BC 交AC 于点F ,如果GF =4,那么线段BC 的长是________.12【分析】先判断点G 为△ABC 的重心得到AG=2GD 再证明△AGF ∽△ADC 然后利用相似比求出CD 的长从而得到BC 的长【详解】解:∵ED 为△ABC 的中位线∴DE//ACDE=ADCE 为△ABC 的中解析:12.【分析】先判断点G 为△ABC 的重心得到AG=2GD ,再证明△AGF ∽△ADC ,然后利用相似比求出CD 的长,从而得到BC 的长.【详解】解:∵ED 为△ABC 的中位线,∴DE//AC ,DE=12AC ,AD 、CE 为△ABC 的中线, ∴△DEG ∽△ACG∴12DG DE AG AC == ∴AG=2GD ,∵GF ∥BC ,∴△AGF ∽△ADC , ∴23GF AG CD AD ==, ∴CD=32GF=32×4=6, ∴BC=2CD=12.故答案为12.【点睛】 本题考查了重心的性质:重心到顶点的距离与重心到对边中点的距离之比为2:1. 也考查了三角形中位线和相似三角形的判定与性质.19.如图,在矩形ABCD 中,AB =2,BC =a ,点E 在边BC 上,且BE =35a .连接AE ,将△ABE 沿AE 折叠,若点B 的对应点B′落在矩形ABCD 的边上,则a 的值为______. 或【分析】分两种情况:①点落在AD 边上根据矩形与折叠的性质易得即可求出a 的值;②点落在CD 边上证明根据相似三角形对应边成比例即可求出a 的值【详解】解:分两种情况:①当点落在AD 边上时如图1四边形AB解析:103或253. 【分析】分两种情况:①点'B 落在AD 边上,根据矩形与折叠的性质易得=AB BE ,即可求出a 的值;②点'B 落在CD 边上,证明''ADB B CE ∆∆,根据相似三角形对应边成比例即可求出a 的值.【详解】解:分两种情况:①当点B '落在AD 边上时,如图1.四边形ABCD 是矩形,90BAD B ∴∠=∠=︒,将ABE ∆沿AE 折叠,点B 的对应点B '落在AD 边上,'1452BAE B AE BAD ∴∠=∠=∠=︒, AB BE ∴=,325a ∴=, 103a ∴=;②当点'B 落在CD 边上时,如图2.∵四边形ABCD 是矩形,90BAD B C D ∴∠=∠=∠=∠=︒,AD BC a ==.将ABE ∆沿AE 折叠,点B 的对应点'B 落在CD 边上, '90B AB E ∴∠=∠=︒,'2AB AB ==,'35BE B E a ==, 2224DB B A AD a ''∴-=-3255EC BC BE a a a =-=-=. 在ADB '∆与B CE '∆中,9090B AD EB C AB D D C ∠=∠=︒-∠''⎧⎨∠=∠=︒'⎩, ''ADB B CE ∴∆∆, '''DB AB CE B E ∴=,即2422355a a a -=, 解得125a =,225a = 综上,所求a 的值为10325. 故答案为103或53. 【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质,勾股定理,相似三角形的判定与性质.进行分类讨论与数形结合是解题的关键.20.如果23a c b d ==,其中20b d +≠,那么22a c b d +=+________.【分析】根据已知条件得出再根据b+2d≠0即可得出答案【详解】解:∵∴∵b+2d≠0∴;故答案为:【点睛】本题考查了比例的性质熟练掌握比例的性质是解题的关键解析:23【分析】根据已知条件得出2223a c b d ==,再根据b+2d≠0,即可得出答案. 【详解】解:∵23a c b d ==, ∴2223a cb d ==, ∵b+2d≠0,∴2223a cb d +=+; 故答案为:23. 【点睛】本题考查了比例的性质,熟练掌握比例的性质是解题的关键.三、解答题21.如图,在四边形ABCD 中,90A C ∠=∠=︒,DE ,BF 分别平分ADC ∠,ABC ∠,并交线段AB ,CD 于点E ,F (点E ,B 不重合),在线段BF 上取点M ,N (点M 在BN 之间),使2BM FN =.当点P 从点D 匀速运动到点E 时,点Q 恰好从点M 匀速运动到点N ,记QN x =,PD y =,已知5103y x =-+,当Q 为BF 中点时,53y =.(1)判断DE 与BF 的位置关系,并说明理由:(2)求DE ,BF 的长;(3)若30AED ∠=︒①当DP DF =时,通过计算比较BE 与BQ 的大小关系;②连接PQ,当PQ所在直线经过四边形ABCD的一个项点时,求所有满足条件的x的值.解析:(1)DE∥BF,见解析;(2)DE=10;BF=18;(3)①BQ<BE;②x=6或x=11 16或x=21 8【分析】(1)推出∠AED=∠ABF,即可得出DE∥BF;(2)求出DE=10,MN=6,把53y=代入5103y x=-+,解得x=5,即NQ=5,得出QM=1,由FQ=QB,BM=2FN,得出FN=4,BM=8,即可得出结果;(3)①连接EM并延长交BC于点H,易证四边形DFME是平行四边形,得出DF=EM,求出∠DEA=∠FBE=∠FBC=30°,∠ADE=∠CDE=∠FME=60°,∠MEB=∠FBE=30°,得出∠EHB=90°,DF=EM=BM=8,MH=4,EH=12,由勾股定理得HB=43,BE=83,当DP=DF时,求出BQ=645,即可得出BQ<BE;②(Ⅰ)当PQ经过点D时,y=0,则x=6;(Ⅱ)当PQ经过点C时,由FQ∥DP,得出△CFQ∽△CDP,则FQ CFDP CD=,即可求出x=1116;(Ⅲ)当PQ经过点A时,由PE∥BQ,得出△APE∽△AQB,则PE AEBQ AB=,求出AE=53,AB=133,即可得出x=218,由图可知,PQ不可能过点B.【详解】解:(1)DE与BF的位置关系为:DE∥BF,理由如下:如图1所示:∵∠A=∠C=90°,∴∠ADC+∠ABC=360°-(∠A+∠C)=180°,∵DE、BF分别平分∠ADC、∠ABC,∴∠ADE=12∠ADC,∠ABF=12∠ABC,∴∠ADE+∠ABF=12×180°=90°,∵∠ADE+∠AED=90°,∴∠AED=∠ABF,∴DE∥BF;(2)令x=0,得y=10,∴DE=10,令y=0,得x=6,∴MN=6,把y=53代入5103y x=-+,解得:x=5,即NQ=5,∴QM=6-5=1,∵Q是BF中点,∴FQ=QB,∵BM=2FN,∴FN+5=1+2FN,解得:FN=4,∴BM=8,∴BF=FN+MN+MB=18;(3)①连接EM并延长交BC于点H,如图2所示:∵FM=4+6=10=DE,DE∥BF,∴四边形DFME是平行四边形,∴DF=EM,EH∥CD,∴∠MHB=∠C=90°,∵∠A=90°,∠AED=30°∴AD=12DE=5,∴∠DEA=∠FBE=∠FBC=30°,∴∠ADE=60°,∴∠ADE=∠CDE=∠FME=60°,∴∠DFM=∠DEM=120°,∴∠MEB=180°-120°-30°=30°,∴∠MEB=∠FBE=30°,∴DF=EM=BM=8,∴MH=12BM=4,∴EH=8+4=12,由勾股定理得:HB=2243BM MH-=,∴BE=2283EH HB+=,当DP=DF时,51083x-+=,解得:x=65,∴BQ=14-x=645,∵645<83,∴BQ<BE;②(Ⅰ)当PQ经过点D时,如图3所示:y=0,则x=6;(Ⅱ)当PQ经过点C时,如图4所示:∵BF=18,∠FCB=90°,∠CBF=30°,∴CF=12BF=9,∴CD=9+8=17,∵FQ∥DP,∴△CFQ∽△CDP,∴FQ CFDP CD=,49517103xx+=-+,解得:x=1116;(Ⅲ)当PQ经过点A时,如图5所示:∵PE∥BQ,∴△APE∽△AQB,∴PE AE BQ AB=,由勾股定理得:AE=2253DE AD-=,∴AB=8353133+=,∴510(10)53314133xx--+=-,解得:x=218,由图可知,PQ不可能过点B;综上所述,当x=6或x=1116或x=218时,PQ所在的直线经过四边形ABCD的一个顶点.【点睛】本题是四边形综合题,主要考查了平行四边形的判定与性质、勾股定理、角平分线的性质、平行线的判定与性质、相似三角形的判定与性质、含30°角的直角三角形的性质等知识;本题综合性强,难度较大,熟练掌握平行四边形的判定与性质是解题的关键.22.如图,在平面直角坐标系中,O为坐标原点,点A在x轴的正半轴上,△AOB为等腰三角形,且OA=OB,B(8,6),过点B作y轴的垂线,垂足为D,点C在线段BD上,点D关于直线OC的对称点在腰OB上.(1)求AB的长;(2)求点C的坐标;(3)点P从点C出发,以每秒1个单位的速度沿折线CB﹣BA运动;同时点Q从A出发,以每秒1个单位的速度沿AO向终点O运动,当一点停止运动时,另一点也随之停止运动.设△BPQ的面积为S,运动时间为t,求S与t的函数关系式.解析:(1)210;(2)()3,6;(3)()()231505310310510204t t S t t t ⎧-+≤≤⎪=⎨-≤⎪⎩< 【分析】(1)过点B 作BH OA ⊥,根据勾股定理求出OB ,BH ,再根据已知条件得出OA ,AH ,即可得解;(2)由点B 坐标及BD 垂直y 轴可得OD=6,BD=8,再根据已知条件90CD B CD O CDO ''∠=∠=∠=︒,设点C 的横坐标为c ,则BC=8-c ,在根据勾股定理即可得解;(3)先求出AB 的长,计算点P 运动到终点A 和点Q 运动到终点O 的时间,取更小的时间t 的最大值,由于点P 在折线CB-BA 上运动且BC=5,所以t=5为分解分两种情况讨论即可;【详解】(1)过点B 作BH OA ⊥,∵点B 的坐标为(8,6),BD 垂直y 轴,∴BD=OH=8,DO=BH=6,∴228610OB =+=,∵OB=OA ,∴AH=OA-OH=10-8=2,∴2262210AB =+=;(2)如图,设点D 关于直线OC 的对称点为D ,连接DD ',∴OC 垂直平分DD ',∴OD OD '=,CD CD '=,CD O CDO '∠=∠, 由(1)知OD=6,OB=10, ∴6OD '=,∴1064BD OB OD ''=-=-=,设CD CD c '==,则8BC c =-,∵△Rt BCD '中,222BD CD BC ''+=,∴()22248c c +=-, 解得3c =,∴点C 的坐标为()3,6.(3)由(1)可知210AB =,∵835BC =-=,∴点P 沿折线CB-BA 运动所用的时间内为5210+,∵10<5210+,∴010t ≤≤,当05t ≤≤,点P 在线段CB 上,如图所示,∴5PB BC CP t =-=-,∴()1165=15322S PB BH t t =⨯=⨯⨯--, 当5<t 10≤,点P 在线段BA 上,如图,∴5BP t =-,AQ t =,过点Q 作QG AB ⊥于点G ,∴90AGQ AHB ∠=∠=︒,∵QAG BAH ∠=∠,∴△△AGQ AHB , ∴QG AQ BH AB =, ∴631010210BH AQ t QG t AB ===, ∴()21131031031052210204S PB QG t t t t ==-=-; 综上所述:()()231505310310510204t t S t t t ⎧-+≤≤⎪=⎨-≤⎪⎩<. 【点睛】本题主要考查了相似三角形的判定与性质,勾股定理,轴对称的性质,准确分析计算是解题的关键.23.如图,在△ABC 中,AB =23,AC 43=,点D 在AC 上,且AD =12AB , (1)用尺规作图作出点D(保留作图痕迹,不必写作法);(2)连接BD ,并证明:△ABD ∽△ACB .解析:(1)见解析;(2)见解析【分析】(1)先尺规作线段AB的垂直平分线,再以点A为圆心,以AB的一半作弧,与AC的交点即为点D的位置;(2)根据两边成比例且夹角相等证明即可.【详解】解:(1)点D的位置如图所示:(2)∵31231,222343AD ABAB AC====,且∠A=∠A,∴△ABD∽△ACB.【点睛】本题考查了线段垂直平分线的尺规作图和相似三角形的判定,熟练掌握上述知识是解题的关键.24.如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与C重合,再展开,折痕EF交AD边于点E,交BC边于点F,交AC于点O,分别连接AF和CE.(1)求证:四边形AFCE是菱形;(2)过E点作AD的垂线EP交AC于点P,求证:2AE2=AC•AP;(3)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长.解析:(1)见解析;(2)见解析;(3)24cm【分析】(1)求出∠AOE=∠COF=90°,OA=OC,∠EAO=∠FCO,证△AOE≌△COF,推出OE=OF即可;(2)证△AOE∽△AEP,得出比例式,即可得出答案;(3)设AB=xcm,BF=ycm,根据菱形的性质得出AF=AE=10cm,根据勾股定理求出x2+y2=100,推出(x+y)2-2xy=100①,根据三角形的面积公式求出12xy=24.即xy=48 ②.即可求出x+y=14的值,代入x+y+AF求出即可.【详解】解:(1)证明:当顶点A与C重合时,折痕EF垂直平分AC,∴OA=OC,∠AOE=∠COF=90°,∵在矩形ABCD 中,AD ∥BC ,∴∠EAO=∠FCO ,在△AOE 和△COF 中,AOE COF OA OCEAO FCO ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AOE ≌△COF (ASA ),∴OE=OF ,∵OA=OC ,∴四边形AFCE 是平行四边形,∵EF ⊥AC ,∴平行四边形AFCE 是菱形.(2)证明:∵∠AEP=∠AOE=90°,∠EAO=∠EAP ,∴△AOE ∽△AEP , ∴AE AO AP AE=, 即AE 2=AO•AP , ∵AO=12AC , ∴AE 2=12AC•AP , ∴2AE 2=AC•AP .(3)设AB=xcm ,BF=ycm .∵由(1)四边形AFCE 是菱形,∴AF=AE=10cm .∵∠B=90°,∴x 2+y 2=100.∴(x+y )2-2xy=100①∵△ABF 的面积为24cm 2, ∴12xy=24,即xy=48 ②, 由①、②得(x+y )2=196.∴x+y=14或x+y=-14(不合题意,舍去).∴△ABF 的周长为:x+y+AF=14+10=24(cm ).【点睛】本题综合考查了相似三角形的性质和判定,勾股定理,三角形的面积,全等三角形的性质和判定,平行四边形的性质和判定,菱形的性质和判定等知识点的应用,题目综合性比较强,有一定的难度.25.如图,在ABC 中,AD BC ⊥于点D ,4=AD ,3BD =,8DC =,点P 是BC 边上一点(不与点B 、D 、C 重合),过点P 作PQ BC ⊥交AB 或AC 于点Q ,作点Q 关于直线AD 的对称点M ,连结QM ,过点M 作MN BC ⊥交直线BC 于点N .设BP x =,矩形PQMN 与ABC 重叠部分图形的周长为y .(1)直接写出PQ 的长(用含x 的代数式表示).(2)求矩形PQMN 成为正方形时x 的值.(3)求y 与x 的函数关系式.(4)当过点C 和点M 的直线平分ADC 的面积时,直接写出x 的值.解析:(1)PQ=43x ;PQ=11-x2;(2)x=95;x=235;(3)y=12-43x ;(4)1513x =; 【分析】(1)根据x 的取值范围不同,分两种情况进行讨论;(2)根据正方形的性质,分0<x<3,3<x<11进行讨论即可;(3)由y=PQ+MN+QM+PN 代入值求解即可;(4)连接CM 交AD 于O ,证明△△OME OCD ,即可得解;【详解】(1)①当PQ 交AB 于点Q 时,0<x<3,∵AD ⊥BC ,AD=4,BD=3,∴tan ∠B=43,∵PQ ⊥BC , ∴43PQBP =,∴当0<x<3时,PQ=43x ;②当PQ 交AC 于点Q 时,3<x<11,∵AD ⊥BC ,AD=4,CD=8,∴tan ∠C=12,∵PQ ⊥BC , ∴12PQ PC =,PC=11-x ,∴当3<x<11时,PQ=11-x 2; (2)①当PQ 交AB 于点Q 时,0<x<3,∵四边形PQMN 为正方形,∴PQ=QM=MN=NP ,∵QM=2(3-x ), ∴43x=2(3-x ), 解得x=95; ②当PQ 交AC 于点Q 时,3<x<11,∵四边形PQMN 为正方形,∴PQ=QM=MN=NP ,∵QM=2(x-3),∴()11-x 2=2(x-3), 解得x=235; (3)y=PQ+MN+QM+PN , =2×43x+2×2(3-x ), =12-43x ; (4)如图,连接CM 交AD 于O , 由题可知:122AE DE AD ===, ∵43QP ED x ==, ∴423OE OD DE x =-=-,3EM QE PD x ===-, ∵QM ∥BC ,∴△△OME OCD , ∴EO EM DO DC=, ∴423328x x --=, 化简得:44233x x ⎛⎫-=- ⎪⎝⎭,∴1513x =.【点睛】本题主要考查了相似三角形的判定与性质,结合正方形的性质计算是解题的关键. 26.图①、图②、图③均是6×6的正方形网格,每个小正方形的顶点称为格点,点A 、B 、C 、D 均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,不要求写画法,要求保留必要的作图痕迹.(1)在图①中以线段AD 为边画一个三角形,使它与ABC 相似. (2)在图②中画一个三角形,使它与ABC 相似(不全等).(3)在图③中的线段AB 上画一个点P ,使23AP PB =. 解析:(1)见解析;(2)见解析;(3)见解析【分析】 (1)连接DE ,则DE//BC ,由相似三角形的判定方法可知△ADE ∽△ABC ;(2)如图②,根据勾股定理和相似三角形的判定方法可知△DEF ∽△ABC ;(3)连接DE ,BE ,DE 交AB 于点P ,则DE//BC ,根据平行线分线段成比例定理可知23AP AD PB DC ==. 【详解】解:(1)如图①;(2)如图②;(3)如图③.【点睛】本题考查了相似三角形的判定,平行四边形的判定与性质,以及勾股定理等知识,熟练掌握相似三角形的判定方法是解答本题的管家.①两角分别相等的两个三角形相似;②两边成比例,且夹角相等的两个三角形相似;③三边成比例的两个三角形相似. 27.如图,直线2y x =--交x 轴于点A ,交y 轴于点B ,抛物线2y x bx c α=++的顶点为A ,且经过点B .(1)求该抛物线所对应的函数表达式;(2)点C 是抛物线上的点,ABC ∆是以AB 为直角边的直角三角形,请直接写出点C 的坐标.解析:(1)22212y x x =---;(2)(-4,0)或(-6,-8). 【分析】 (1)先利用一次函数解析式确定A 、B 点的坐标,然后设顶点式,利用待定系数法求抛物线解析式;(2)分情况讨论:点A 是直角顶点或B 是直角顶点,根据题意设出点C 的坐标,再将点C 代入到函数解析式,最后,解一元二次方程即可求解.【详解】解:(1)当y=0时,-x-2=0,解得x=-2,则A (-2,0),当x=0时,y=-x-2=-2,则B (0,-2),设抛物线解析式为()22y a x =+,把B (0,-2)代入得()2022a +=-,解得12a =-,所以抛物线解析式为()2122y x =-+ 即22212y x x =---; (2)如图,当∠BAC=90︒时∵OA=OB ,∴∠OAB=∠OBA=45︒,过点C 作CD ⊥x 轴于点D ,则∠ADC=90︒,∴∠DAC=∠DCA=45︒,令点C 的坐标为(-2-a ,-a )将点C 代入到()2122y x =-+, ()21222a a -=---+ , 解得,10a =(不合题意,舍去),22a =∴点C 的坐标为(-4,-2)若∠ABC=90︒,如图,过点C 作CF ⊥y 轴于点F ,易证△CBF ∽△ABO ,∵OA=OB ,∴BF=CF ,设点F (0,-2-a ),则点C (-a ,-2-a ),将点C 的坐标代入得, ()21222a a --=--+ 解得, 10a =(不合题意,舍去),26a =,∴点C 的坐标为(-6,-8);综上,点C 的坐标为(-4,0)或(-6,-8);【点睛】本题是二次函数的综合题,考察了点的坐标,一次函数 ,二次函数,解一元二次方程,直角三角形的性质,等腰三角形的性质,相似三角形的判定和性质,利用待定系数法求二次函数的解析式及分类讨论思想.28.四边形ABCD 内接于,O AB 是直径,延长AD BC 、交于点E ;若AB BE =.(1)求证:DC DE =(2)若6,43DE CE ==,求AB 的长.解析:(1)见详解;(2)3【分析】(1)根据四边形ABCD 内接于O ,∠BCD+∠ECD=180°,得出∠BAD=∠ECD ,再根据AB=EB ,可得∠BED=∠ECD ,即可得证; (2)连接OD ,先求出AE ,然后证明△BAE ∽△DCE ,根据CE AE =DE BE,即CE AE=DE BC+CE,求出BC ,即可求出答案. 【详解】(1)∵四边形ABCD 内接于O , ∴∠BAD+∠BCD=180°,∵∠BCD+∠ECD=180°,∴∠BAD=∠ECD ,∵AB=EB ,∴∠BAD=∠BED ,∴∠BED=∠ECD ,∴DC=DE ;(2)连接OD ,。

人教版九年级下册数学《第27章相似》单元测试含答案试卷分析解析

人教版九年级下册数学《第27章相似》单元测试含答案试卷分析解析

第27章相似一、选择题1.如果a=3,b=2,且b是a和c的比例中项,那么c=()A. B. C. D.2.已知△ABC∽△DEF,面积比为9:4,则△ABC与△DEF的对应边之比为()A. 3:4B. 2:3C. 9:16D. 3:23.已知△ABC∽△A′B′C′,sinA=m,sinA′=n,则m和n的大小关系为()A. m<nB. m>nC. m=nD. 无法确定4.已知△ABC∽△DEF,且相似比为2:3,则△ABC与△DEF的对应高之比为()A. 2:3B. 3:2C. 4:9D. 9:45.三角尺在灯泡的照射下在墙上形成的影子如图所示。

若OA=20cm,OA′=50cm,则这个三角尺的周长与它在墙上形成的影子的周长的比是()A. 5:2B. 2:5C. 4:25D. 25:46.如图,△ADE∽△ABC,若AD=1,BD=2,则△ADE与△ABC的相似比是().A. 1:2B. 1:3C. 2:3D. 3:27.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是()A. B. C. D.8.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3与点A、B、C,直线DF分别交l1、l2、l3与点D、E、F,AC与DF相交于点H,如果AH=2,BH=1,BC=5,那么的值等于()A. B. C. D.9.如图,矩形AEHC是由三个全等矩形拼成的,AH与BE、BF、DF、DG、CG分别交于点P、Q、K、M、N,设△BPQ, △DKM, △CNH 的面积依次为S1,S2,S3。

若S1+ S3=20,则S2的值为( )A. 8B. 10C. 12D.10.如图,CD是Rt△ABC斜边AB上的高,CD=6,BD=4,则AB的长为()A. 10B. 11C. 12D. 1311.如图,∠1=∠2,则下列各式不能说明△ABC∽△ADE的是()A. ∠D=∠BB. ∠E=∠CC.D.12.如图,小李打网球时,球恰好打过网,且落在离网4m的位置上,则球拍击球的高度h为()A. 0.6mB. 1.2mC. 1.3mD. 1.4m二、填空题13.在一张复印出来的纸上,一个多边形的一条边由原图中的2cm变成了6cm,这次复印的放缩比例是________ .14.已知线段a=2cm,b=8cm,那么线段a和b的比例中项为________ cm.15. 已知△ABC在坐标平面内三顶点的坐标分别为A(0,2)、B(3,3)、C(2,1).以B为位似中心,画出与△ABC相似(与图形同向),且相似比是3的三角形,它的三个对应顶点的坐标分别是 ________.16.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C;过点B的直线DE分别交l1、l3于点D、E.若AB=2,BC=4,BD=1.5,则线段BE的长为________ .17.如图,在△ABC中,AB=9,AC=12,BC=18,D为AC上一点,DC=AC.在AB上取一点E得△ADE.若图中两个三角形相似,则DE的长是________ .18.在比例尺为1:6000的地图上,图上尺寸为1cm×2cm的矩形操场,实际尺寸为________.19.已知△ABC中的三边a=2,b=4,c=3,h a,h b,h c分别为a,b,c上的高,则h a:h b:h c=________.20.有一张矩形风景画,长为90cm,宽为60cm,现对该风景画进行装裱,得到一个新的矩形,要求其长、宽之比与原风景画的长、宽之比相同,且面积比原风景画的面积大44%.若装裱后的矩形的上、下边衬的宽都为acm,左、右边衬的宽都为bcm,那么ab=________ cm221.如图,在四边形ABCD中,对角线AC、BD相交于点E,∠DAB=∠CDB=90°,∠ABD=45°,∠DCA=30°,AB=6,则AE=________.22. 勾股定理与黄金分割是几何中的双宝,前者好比黄金,后者堪称珠玉.生活中到处可见黄金分割的美.如图,线段AB=1,点P1是线段AB的黄金分割点(AP1<BP1),点P2是线段AP1的黄金分割点(AP2<P1P2),点P3是线段AP2的黄金分割点(AP3<P2P3),…,依此类推,则AP n的长度是________.三、解答题(共3题;共15分)23.如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G(1)求证:△AMF∽△BGM;(2)连接FG,如果α=45°,AB=4,BG=3,求FG的长.24.如图,学校旗杆附近有一斜坡,小明准备测量旗杆AB的高度,他发现当斜坡正对着太阳时,旗杆AB 的影子恰好落在水平地面和斜坡的坡面上,此时小明测得水平地面上的影子长BC=20米,斜坡坡面上的影子CD=8米,太阳光AD与水平地面BC成30°角,斜坡CD与水平地面BC成45°的角,求旗杆AB的高度.(=1.732,=1.414,=2.449,精确到1米).25.又到了一年中的春游季节.某班学生利用周末去参观“三军会师纪念塔”.下面是两位同学的一段对话:甲:我站在此处看塔顶仰角为60°;乙:我站在此处看塔顶仰角为30°;甲:我们的身高都是1.6m;乙:我们相距36m.请你根据两位同学的对话,计算纪念塔的高度.(精确到1米)26. 如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.(1)求证:△ADF∽△ACG;(2)若,求的值.27. 如图①,在△ABC中,AB=AC,BC=acm,∠B=30°.动点P以1cm/s的速度从点B出发,沿折线B﹣A ﹣C运动到点C时停止运动.设点P出发x s时,△PBC的面积为y cm2.已知y与x的函数图象如图②所示.请根据图中信息,解答下列问题:(1)试判断△DOE的形状,并说明理由;(2)当a为何值时,△DOE与△ABC相似?参考答案一、选择题C D C A B B B D A D D D二、填空题13.1:314.415.(﹣6,0)、(3,3)、(0,﹣3)16.317.6或818.60m×120m19.6:3:420.5421.222.三、解答题23.证明:(1)∵∠DME=∠A=∠B=α,∴∠AMF+∠BMG=180°﹣α,∵∠A+∠AMF+∠AFM=180°,∴∠AMF+∠AFM=180°﹣α,∴∠AFM=∠BMG,∴△AMF∽△BGM;(2)解:当α=45°时,可得AC⊥BC且AC=BC,∵M为AB的中点,∴AM=BM=2,∵△AMF∽△BGM,∴,∴AF===,AC=BC=4•cos45°=4,∴CF=AC﹣AF=4﹣=,CG=BC﹣BG=4﹣3=1,∴FG== =.24.解:延长AD交BC于E点,则∠AEB=30°,作DQ⊥BC于Q,在Rt△DCQ中,∠DCQ=45°,DC=8,∴DQ=QC=8sin45°=8×=4,在Rt△DQE中,QE=≈9.8(米)∴BE=BC+CQ+QE≈35.5(米)在Rt△ABE中,AB=BEtan30°≈20(米)答:旗杆的高度约为20米.25.解:如图,CD=EF=BH=1.6m,CE=DF=36m,∠ADH=30°,∠AFH=30°,在Rt△AHF中,∵tan∠AFH=,∴FH=,在Rt△ADH中,∵tan∠ADH=,∴DH=,而DH﹣FH=DF,∴﹣=36,即﹣=36,∴AH=18,∴AB=AH+BH=18+1.6≈33(m).答:纪念塔的高度约为33m.26.(1)证明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,∵,∴△ADF∽△ACG.(2)解:∵△ADF∽△ACG,∴,又∵,∴,∴=1.27.(1)解:△DOE是等腰三角形.理由如下:过点A作AM⊥BC于M,∵AB=AC,BC=acm,∠B=30°,∴AM= × = a,AC=AB= a,∴S△ABC= BC•AM= a2,∴P在边AB上时,y= •S△ABC= ax,P在边AC上时,y= •S△ABC= a2﹣ax,作DF⊥OE于F,∵AB=AC,点P以1cm/s的速度运动,∴点P在边AB和AC上的运动时间相同,∴点F是OE的中点,∴DF是OE的垂直平分线,∴DO=DE,∴△DOE是等腰三角形(2)解:由题意得:∵AB=AC,BC=acm,∠B=30°,∴AM= × = a,∴AB= a,∴D(a,a2),∵DO=DE,AB=AC,∴当且仅当∠DOE=∠ABC时,△DOE∽△ABC,在Rt△DOF中,tan∠DOF= = = a,由a=tan30°= ,得a= ,∴当a= 时,△DOE∽△ABC.第11页共11页。

第27章 相似三角形发单元测试卷2022-2023学年人教版九年级数学下册

第27章 相似三角形发单元测试卷2022-2023学年人教版九年级数学下册

人教新版九年级下册《第27章相似三角形》2022年单元测试卷一、单选题(本大题共10小题,共44分)1.(5分)选项图形与如图所示图形相似的是()A. B.C. D.2.(5分)若ΔABC∽ΔDEF,相似比为1:2,则ΔABC与ΔDEF的周长比为()A. 2:1B. 1:2C. 4:1D. 1:43.(5分)如图,点P是△ABC的边AB上的一点,若添加一个条件,使△ABC与△CBP相似,则下列所添加的条件错误的是()A. ∠BPC=∠ACBB. ∠A=∠BCPC. AB:BC=BC:PBD. AC:CP=AB:BC4.(5分)将一个直角三角形的三边扩大3倍,得到的三角形是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定5.(4分)如图,比例规是伽利略发明的一种画图工具,使用它可以把线段按一定比例伸长或缩短,它是由长度相等的两脚AD和BC交叉构成的.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,使A、B两个尖端分别在线段l的两个端点上,若CD=3cm,则AB的长是()A. 9cmB. 12cmC. 15cmD. 18cm6.(4分)如图,在平面直角坐标系中的第一象限内,△ABC的顶点坐标分别是A(1,2),B(1,1),C(3,1),以原点O为位似中心,作出△ABC的位似图形△DEF.若△DEF与△ABC的相似比为2:1.则点F的坐标为()A. (2,4)B. (2,2)C. (6,2)D. (7,2)7.(4分)如图,在正方形ABCD中,E是边AD中点,F是边AB上一动点,G是EF延长线上一点,且GF=EF.若AD=4,则线段CG长度的最小值和最大值分别为()A. 4,4√2B. 2√5,4√2C. 2√5,2√13D. 6,2√138.(4分)如图,在RtΔABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A. 125B. 4 C. 245D. 59.(4分)如图,PA、PB切⊙O于点A、B,点C是⊙O上一点,且∠ACB=65°,则∠P 等于()A. 65°B. 130°C. 50°D. 45°10.(4分)如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②SΔFAB:S四边形CBFG=1:2;③∠ABC=∠ABF;①A D2=FQ⋅AC,其中正确的结论的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共7小题,共28分)11.(4分)如图,已知ADDB =AEEC,AD=6.4cm,DB=4.8cm,EC=4.2cm,则AC=______ cm.12.(4分)如图,表示ΔAOB为O为位似中心,扩大到ΔCOD,各点坐标分别为:A(1,2),B(3,0),D(4,0),则点C坐标为 ______ .13.(4分)如图,已知CB平分∠ACD,CB⊥AB垂足为点B,CD⊥BD垂足为点D,AC=5cm,BC=4cm,则BD=______.14.(4分)如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE、AF于M、N,下列结论:①AF⊥BG;②BN=43NF;③S四边形CGNF=S△ABN;④BMMG=38.其中正确结论的序号有 ______.15.(4分)如图,平行四边形ABCD中,E为AD的中点,已知ΔDEF的面积为1,则四边形ABFE的面积为______.16.(4分)如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为______m.17.(4分)如图,点P1,P2,P3,P4均在坐标轴上,且P1P2⊥P2P3,P2P3⊥P3P4.若点P1,P2的坐标分别为(0,−1),(−2,0),则点P4的坐标为________.三、解答题(本大题共7小题,共28分)18.(4分)如图,一个木框,内外是两个矩形ABCD和EFGH,问按图中所示尺寸,满足什么条件这两个矩形相似?19.(4分)如图所示,在△ABC中,∠ACB=90°,AM是BC边的中线,CN⊥AM于N 点,连接BN.求证:(1)△MCN∽△MAC;(2)∠NBM=∠BAM.20.(4分)如图所示,在△ABC中,DE//BC,EF//CD,AF=4,AB=6.求AD的长.21.(4分)如图,在四边形ABCD中,点E是对角线AC上一点,且ABAC =AEAD=BECD.(1)若∠DAE=22°,求∠BAD的度数;(2)判断△ADE与△ACB是否相似,并说明理由.22.(4分)如图,△ABC内接于⊙O,AB是⊙O的直径,BD与⊙O相切于点B,BD交AC的延长线于点D,E为BD的中点,连接CE.(1)求证:CE是⊙O的切线.(2)连接OE,已知BD=3√5,CD=5,求OE的长.23.(4分)将一个直角三角形纸片AOB,放置在平面直角坐标系中,点A(−√3,0),点B(0,1),点O(0,0).过边OA上的动点M(点M不与点O,A重合)作MN⊥AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′.设AM=m,折叠后的△A′NM与四边形OBNM重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅰ)如图②,当点A′落在第一象限时,A′M与OB相交于点C,试用含m的式子表示S,并直接写出m的取值范围;(Ⅰ)当1⩽m<√3时,求S的取值范围(直接写出结果即可).24.(4分)如图,在△ABC中,AB=BC,AD⊥BC于点D,BE⊥AC于点E.AD交BE 于点F,点G为BC边的中点,作BH⊥AB交直线FG于点H.(1)如图1,当∠ABC=60°,AF=3时,CF=______,BH=______.(2)如图2,当∠ABC=45°时,试探索AF与BH的数量关系,并证明.(3)如图3,当∠ABC=α(0°<α<60°)时,(2)中AF与BH的数量关系 ______成立(填“仍然”或“不再”),请说明理由.答案和解析1.【答案】D;【解析】解:因为相似图形的形状相同,所以A、B、C中形状不同,故选:D.根据相似图形的性质,根据形状相同排除A、B、C,可得出答案.此题主要考查相似图形的性质,掌握相似图形的对应角相等、对应边成比例是解答该题的关键.2.【答案】B;【解析】解:∵ΔABC∽ΔDEF,ΔABC与ΔDEF的相似比为1:2,∴ΔABC与ΔDEF的周长比为1:2.故选:B.根据相似三角形的周长的比等于相似比得出.这道题主要考查了相似三角形的性质:相似三角形(多边形)的周长的比等于相似比.3.【答案】D;【解析】解:A、已知∠B=∠B,若∠BPC=∠ACB,则△ABC与△CBP相似,故A不符合题意;B、已知∠B=∠B,若∠A=∠BCP,则△ABC与△CBP相似,故B不符合题意;C、已知∠B=∠B,若AB:BC=BC:PB,则△ABC与△CBP相似,故C不符合题意;D、若AC:CP=AB:BC,但夹角不是公共等角∠B,则不能证明△ABC与△CBP相似,故D符合题意,故选:D.根据相似三角形的判定逐一进行判断即可.此题主要考查了相似三角形的性质,熟练掌握相似三角形的判定是解答该题的关键.4.【答案】A;【解析】解:将直角三角形的三条边长同时扩大同一倍数,得到的三角形与原三角形相似,因而得到的三角形是直角三角形故选A.根据三组对应边的比相等的三角形相似,依据相似三角形的性质就可以求解.这道题主要考查相似三角形的判定以及性质,得出两三角形相似是解答该题的关键,是基础题,难度不大.5.【答案】A;【解析】解:∵OA=3OD,OB=3CO,∴OA:OD=BO:CO=3:1,∠AOB=∠DOC,∴ΔAOB∽ΔDOC,∴AOOD =ABCD=31,∴AB=3CD,∵CD=3cm,∴AB=9cm,故选:A.首先根据题意利用两组对边的比相等且夹角相等的三角形是相似三角形判定相似,然后利用相似三角形的性质求解.此题主要考查相似三角形的应用,解答该题的关键是熟练掌握相似三角形的判定方法,学会利用相似三角形的性质解决问题.6.【答案】C;【解析】解:∵△ABC与△DEF位似.△DEF与△ABC的相似比为2:1,∴△ABC与△DEF位似比为1:2,∵点C的坐标为(3,1),∴点F的坐标为(3×2,1×2),即(6,2),故选:C.根据位似变换的性质解答即可.此题主要考查的是位似变换的性质、相似三角形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.7.【答案】D;【解析】解:如图,过点G作GH⊥AB于点H,作GK⊥BC交CB的延长线于点K,则∠GHF=∠GHB=∠K=90°,∵四边形ABCD是正方形,∴∠A=∠ABC=90°,AD=AB=BC=4,∵E是边AD中点,∴AE=2,在△AFE和△HFG中,{∠A=∠GHF∠AFE=∠GFHEF=GF,∴△AFE≌△HFG(AAS),∴AF=FH,GH=AE=2,设AF=FH=x,且0⩽x⩽4,则BH=|4−2x|,∵∠HBK=180°−90°=90°=∠K=∠GHB,∴四边形BHGK是矩形,∴GK=BH=|4−2x|,BK=GH=2,∴CK=CB+BK=4+2=6,∴CG2=CK2+GK2=62+(4−2x)2=4(x−2)2+36,∵4>0,∴当x=2时,CG2有最小值36,即CG的最小值为6,∵0⩽x⩽4,∴当x=0或4时,CG2有最大值52,即CG的最大值为√52=2√13,故选:D.如图,过点G作GH⊥AB于点H,作GK⊥BC交CB的延长线于点K,结合正方形的性质可证△AFE≌△HFG(AAS),得出:AF=FH,GH=AE=2,设AF=FH=x,且0⩽x⩽4,则BH=|4−2x|,由勾股定理可得CG2=CK2+GK2=62+(4−2x)2=4(x−2)2+36,再运用二次函数的性质即可求得答案.本题是几何综合题,考查了正方形的性质,矩形的判定和性质,全等三角形的判定和性质,勾股定理,二次函数的性质等,解答该题的关键是学会添加常用辅助线,构造全等三角形解决问题.8.【答案】C;【解析】解:如图,过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,∵AD是∠BAC的平分线.∴PQ=PM,这时PC+PQ有最小值,即CM的长度,∵AC=6,BC=8,∠ACB=90°,∴AB=√AC2+BC2=√62+82=10.∵SΔABC=12AB⋅CM=12AC⋅BC,∴CM=AC.BCAB =6×810=245,即PC+PQ的最小值为245.故选:C.过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,由AD是∠BAC 的平分线.得出PQ=PM,这时PC+PQ有最小值,即CM的长度,运用勾股定理求出AB,再运用SΔABC=12AB⋅CM=12AC⋅BC,得出CM的值,即PC+PQ的最小值.这道题主要考查了轴对称问题,解答该题的关键是找出满足PC+PQ有最小值时点P和Q的位置.9.【答案】C;【解析】解:连接OA,OB.PA、PB切⊙O于点A、B,则∠PAO=∠PBO=90°,由圆周角定理知,∠AOB=2∠C=130°,∵∠P+∠PAO+∠PBO+∠AOB=360°,∴∠P=180°−∠AOB=50°.故选:C.连接OA,OB.根据圆周角定理和四边形内角和定理求解即可.本题利用了切线的概念,圆周角定理,四边形的内角和为360度求解,是中考常见题型.10.【答案】D;【解析】该题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、三角形的面积,矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明ΔFGA≌ΔACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出SΔFAB=1 2FB.FG=12S四边形CBFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出ΔACD∽ΔFEQ,得出对应边成比例,得出AD.FE=AD2=FQ.AC,④正确.解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠GAF+∠AFG=90°,∴∠CAD=∠AFG,在ΔFGA和ΔACD中,{∠G=∠C∠AFG=∠CADAF=AD∴ΔFGA≌ΔACD(AAS),∴FG=AC,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG//BC,∵FG=BC,FG//BC,∴四边形CBFG是平行四边形,又∵FG⊥CA,∴四边形CBFG是矩形,∴∠CBF=90°,SΔFAB=12FB.FG=12S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;易证∠DQB=∠ADC,∴∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴ΔACD∽ΔFEQ,∴ACEF =ADFQ,∴AD.FE=AD2=FQ.AC,④正确;故选D.11.【答案】9.8;【解析】解:∵ADDB =AEEC,∴6.44.8=AE4.2,解得:AE=5.6(cm),则AC=AE+EC=5.6+4.2=9.8(cm),故答案为:9.8.根据ADDB =AEEC,可以先求出AE的长,即可得到AC的长.此题主要考查了比例的基本性质,在比例式中,已知三个就可求得第四个的量.12.【答案】(43,83); 【解析】解:∵ΔAOB 与ΔCOD 是位似图形,OB =3,OD =4,所以其位似比为3:4.∵点A 的坐标为A(1,2),所以点C 的坐标为(43,83).故答案为:(43,83).由图中数据可得两个三角形的位似比,进而由点A 的坐标,结合位似比即可得出点C 的坐标.此题主要考查了位似变换以及坐标与图形结合的问题,能够利用位似比求解一些简单的计算问题.13.【答案】125; 【解析】解:∵CB ⊥AB 垂足为点B ,∴∠ABC =90°,∵AC =5cm ,BC =4cm ,∴AB =√AC 2−BC 2=3(cm ),∵CD ⊥BD 垂足为点D ,∴∠ABC =∠D =90°,∵CB 平分∠ACD ,∴∠ACB =∠BCD ,∴ΔACB ∽ΔBCD ,∴AC BC=AB BD , ∴54=3BD ,∴BD =125,故答案为:125.根据勾股定理得到AB =√AC 2−BC 2=3(cm ),根据角平分线的定义得到∠ACB =∠BCD ,根据相似三角形的性质即可得到结论.此题主要考查了相似三角形的判定和性质,角平分线的定义,垂直的定义,勾股定理,熟练掌握相似三角形的判定和性质定理是解答该题的关键.14.【答案】①③④;【解析】解:过点G 作GH ⊥AB ,垂足为H ,交AE 于点O ,∵四边形ABCD是正方形,∴AD=AB=BC=CD,∠ABC=∠C=∠DAB=∠D=90°,AD//BC,∵BE=EF=FC,CG=2GD,∴BF=23BC,CG=23CD,∴BF=CG,∴△ABF≌△BCG(SAS),∴∠AFB=∠CGB,∵∠CGB+∠CBG=90°,∴∠AFB+∠CBG=90°,∴∠BNF=180°−(∠AFB+∠CBG)=90°,∴AF⊥BG,故①正确;在Rt△ABF中,tan∠AFB=ABBF =AB23BC=32,∴在Rt△BNF中,tan∠AFB=BNNF =32,∴BN=32NF,故②不正确;∵△ABF≌△BCG,∴S△ABF=S△BCG,∴S△ABF−S△BNF=S△BCG−S△BNF,∴S四边形CGNF=S△ABN,故③正确;∵∠DAB=∠D=∠AHG=90°,∴四边形ADGH是矩形,∴AD=GH,DG=AH,AD//GH,∴GH//BC,设DG=AH=a,∴CD=3DG=3a,∴AB=AD=BC=3a,∴BE=13BC=a,∵∠AHO=∠ABE=90°,∠HAO=∠BAE,∴△AHO∽△ABE,∴AHAB =OHBE,∴a3a =OHa,∴OH=13a,∴GO=GH−OH=3a−13a=83a,∵GH//BC,∴∠OGM=∠GBE,∠GOM=∠OEB,∴△GOM∽△BEM,∴GOBE =GMBM=83aa=83,∴BMMG =38,故④正确,所以,正确结论的序号有:①③④,故答案为:①③④.过点G作GH⊥AB,垂足为H,交AE于点O,根据正方形的性质可得AD=AB=BC= CD,∠ABC=∠C=∠DAB=∠D=90°,AD//BC,再根据BE=EF=FC,CG=2GD,从而可得BF=CG,进而可证△ABF≌△BCG,然后利用全等三角形的性质可得∠AFB=∠CGB,从而可得∠AFB+∠CBG=90°,即可判断①;在Rt△ABF中,利用锐角三角函数的定义求出tan∠AFB=32,然后在Rt△BNF中,利用锐角三角函数的定义可得BNNF =32,即可判断②,由①可得△ABF≌△BCG,从而可得S△ABF=S△BCG,即可判断③,根据题意易证四边形ADGH是矩形,从而可得AD=GH,DG=AH,AD//GH,进而可得GH//BC,然后设DG=AH=a,再证明A字模型相似三角形△AHO∽△ABE,从而利用相似三角形的性质求出OH的长,进而求出GO的长,最后再证明8字模型相似三角形△GOM∽△BEM,利用相似三角形的性质即可判断④.此题主要考查了正方形的性质,解直角三角形,全等三角形的判定与性质,相似三角形的判定与性质,熟练掌握全等三角形的判定与性质,相似三角形的判定与性质,以及正方形的十字架模型是解答该题的关键.15.【答案】5;【解析】解:∵四边形ABCD是平行四边形,∴AD//BC,∴DE:BC=EF:FC=DF:FB=1:2,ΔBFC∽ΔDFE,∴SΔBFC=4⋅SΔDEF=4,SΔDFC=2⋅SΔDEF=2,SΔBDC=SΔABD=6,∴S四边形ABFE=SΔABD−SΔDEF=6−1=5,故答案为5.由于四边形ABCD是平行四边形,那么AD//BC,AD=BC,根据平行线分线段成比例定理的推论可得ΔDEF∽ΔBCF,再根据E是AD中点,易求出相似比,从而可求ΔBCF的面积,再利用ΔBCF与ΔDEF是同高的三角形,则两个三角形面积比等于它们的底之比,从而易求ΔDCF的面积,由此即可解决问题;该题考查了平行四边形的性质、平行线分线段成比例定理的推论、相似三角形的判定和性质.解答该题的关键是知道相似三角形的面积比等于相似比的平方、同高两个三角形面积比等于底之比,先求出ΔBCF的面积.16.【答案】9;【解析】解:由题意得,CD//AB,∴ΔOCD∽ΔOAB,∴CDAB =ODOB,即3AB =66+12,解得AB=9.故答案为:9.根据ΔOCD和ΔOAB相似,利用相似三角形对应边成比例列式求解即可.该题考查了相似三角形的应用,是基础题,熟记相似三角形对应边成比例是解答该题的关键.17.【答案】(8,0);【解析】该题考查的是相似三角形的判定和性质以及坐标与图形的性质,掌握相似三角形的判定定理和性质定理是解答该题的关键.根据相似三角形的性质求出P3D的坐标,再根据相似三角形的性质计算求出OP4的长,得到答案.解:∵点P1,P2的坐标分别为(0,−1),(−2,0),∴OP1=1,OP2=2.∵RtΔP1OP2∽RtΔP2OP3,∴OP1OP2=OP2OP3,即12=2OP3,解得OP3=4.∵RtΔP2OP3∽RtΔP3OP4,∴OP2OP3=OP3OP4,即24=4OP4,解得OP4=8,则点P4的坐标为(8,0).故答案为(8,0).18.【答案】解:当两个矩形ABCD和EFGH相似时,ADEH =CDGH,即:mm−2b =nn−2a,整理得:ab =nm,故当ab =nm时两个矩形相似.;【解析】利用相似多边形的对应边的比相等列出比例式即可求得尺寸满足的条件.此题主要考查了相似多边形的性质,解答该题的关键是根据题意列出比例式,难度不大.19.【答案】证明:(1)∵∠ACB=90°,CN⊥AM,∴∠ACB=∠MNC,∵∠NMC=∠CMA,∴△MCN∽△MAC;(2)由(1)得:△MCN∽△MAC,∴MCMA =MNMC,∴MC2=MN•MA,∵AM是BC边的中线,∴MB=MC,∴MB2=MN•MA,∵∠BMN=∠AMB,∴△MNB∽△MBA,∴∠NBM=∠BAM.;【解析】(1)根据两个角相等的两个三角形相似可直接证明;(2)由(1)得:△MCN∽△MAC,则MCMA =MNMC,再根据BM=CM,以及∠BMN=∠AMB,可证△MNB∽△MBA,从而解决问题.此题主要考查了相似三角形的判定与性质,利用两边成比例且夹角相等证明△MNB∽△MBA是解答该题的关键.20.【答案】解:∵DE∥BC,∴△ADE∽△ABC.∴ADAB =AEAC①.∵EF∥CD,∴△AEF∽△ACD.∴AFAD =AEAC②.由①与②,得AFAD =AD AB,∴AD2=AF•AB=4×6=24.∴AD=2√6.;【解析】由DE//BC,EF//CD,得△AEF∽△ACD,可得△ADE∽△ABC分别得AFAD =AEAC,ADAB=AE AC ,进而可证得AFAD=ADAB,便可求得答案.此题主要考查了相似三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.21.【答案】解:(1)∵ABAC =AEAD=BECD.∴△ABE∽△ACD,∴∠DAE=∠BAE=22°,∴∠BAD=44°;(2)△ADE∽△ACB,理由如下:∵ABAC =AEAD,∴ABAE =ACAD,又∵∠DAC=∠BAE,∴△ADE∽△ACB.;【解析】(1)通过证明△ABE∽△ACD,可得∠DAE=∠BAE=22°,即可求解;(2)由两组对应边的比相等且夹角对应相等的两个三角形相似,可证明△ADE∽△ACB.此题主要考查了相似三角形的判定,掌握相似三角形的判定方法是解答该题的关键.22.【答案】(1)证明:如图,连接OC,∵OB=OC,∴∠OBC=∠OCB,∵AB是直径,∴∠ACB=90°,∵E为BD的中点,∴BE=CE=DE,∴∠ECB=∠EBC,∵BD与⊙O相切于点B,∴∠ABD=90°,∴∠OBC+∠EBC=90°,∴∠OCB+∠ECB=90°,∴∠OCE=90°∴OC ⊥CE ,又∵OC 为半径,∴CE 是⊙O 的切线;(2)解:连接OE ,∵∠D=∠D ,∠BCD=∠ABD ,∴△BCD ∽△ABD ,∴BD AD =CD BD ,∴BD 2=AD•CD ,∴(3√5)2=5AD ,∴AD=9,∵E 为BD 的中点,AO=BO ,∴OE=12AD=92.; 【解析】(1)由等腰三角形的性质可得∠OBC =∠OCB ,由圆周角定理可得∠ACB =90°,由直角三角形的性质可得BE =CE =DE ,可得∠ECB =∠EBC ,由切线的性质可得∠ABD =90°,可证OC ⊥CE ,可得结论;(2)通过证明△BCD ∽△ABD ,可得BD AD =CD BD ,可求AD 的长,由三角形中位线定理可求解.此题主要考查了相似三角形的判定和性质,圆的有关知识,等腰三角形的性质,直角三角形的性质,利用相似三角形的性质求出AD 的长是本题的关键.23.【答案】解:(Ⅰ)由题意得BM=AM=m ,∵A (-√3,0),B (0,1),∴OB=1,OA=√3,∴OM=√3-m ,由勾股定理得:BM 2=OB 2+OM 2,∴m 2=12+(√3-m )2,即m2=1+3-2√3m+m2,m=2√33,∴OM=√3−2√33=√33,∴M(-√33,0);(Ⅱ)S=5√38m2+3m−√3,2√33<m≤√3,由(1)知,使A'落在第一象限,则m>2√33,∵OA=√3,∴2√33<m≤√3,∵△MNA'是由△AMN翻折得到,∴S=S△AOB-S△AMN-S△MOC∵OA=√3,OB=1,∴S△AOB=12×√3×1=√32,AB=√OA2+OB2=2,∵AM=m,∴M(-√3+m,0),∵MN⊥AB,∴Sin∠BAO=BOAB =MNAM,∴12=MNm,∴MN=m2,∴AN=√MA2−MN2=√32m,∴S△AMN=12×√32m×m2=√38m2,∵sin∠BAO=12,∴∠BAO=30°,∴∠AMN=∠A′MN=60°,∴∠CMO=180°-∠AMN-∠A′MN=60°,tan60°=√3=COMO,∵MO=√3-m,∴CO=√3(√3−m),∴S△CMO=12×CO×OM=12×√3(√3−m)(√3−m)=√32(√3−m)2∴S=√32−√38m2−√32(√3−m)2=√3 2−√38m2−√32(3−2√3m+m2)=√32−√38m 2−3√32+3m −√32m 2 =-5√38m 2+3m-√3,(Ⅲ)√38<S ≤√35, 由(2)得:S=-5√38m 2+3m-√3, 当m=-2×(−5√38)=4√35时S 取最大值,4√35<m <√3单调递减, ∵4√35>1, ∴顶点为抛物线的最高点,顶点的纵坐标为S 的最大值,S max =4ac−b 24a =4×(−5√38)×√3−94×(−5√38)=√35,S (m=1)=-5√38+3−√3=3−13√38,S (m=√3)=-5√38×(√3)2+3×√3−√3=√38, ∵S (m=√3)<S (m=1),∴√38<S ≤√35.; 【解析】(Ⅰ)由坐标得OA 、OB 的长,再根据勾股定理得m 的值,从而求出OM 的长,得到M 坐标; (Ⅰ)因为使A ′落在第一象限,OA =√3,所以可以确定m 的取值范围;由图可得S =S △AOB −S △AMN −S △MOC ,所以分别求出三个三角形面积(用含m 的式子表示),其中用到三角函数、勾股定理等;(Ⅰ)根据(2)得到的关于S 的二次函数解析式可知,抛物线开口向下,顶点在1⩽m <√3部分,所以顶点的纵坐标是S 的最大值;再分别计算m =1和m =√3时函数值,比较大小,从而求解.本题属于几何代数综合题,考查勾股定理、三角函数、待定系数法求二次函数解析式及最值,解题关键是结合图形,分析题意综合运用以上知识点,计算比较繁琐.24.【答案】3 3 仍然;【解析】解:(1)∵AB =AC ,∠ABC =60°,∴△ABC 是等边三角形,BE ⊥AC ,∴BE 垂直平分AC ,∠CBE =30°,∴AF =CF =3,∵BH ⊥AB ,∴∠HBC =30°,∵AD ⊥BC ,∴∠H =∠BFH =60°,BF =CF ,∴BF=BH=CF=3,故答案为:3,3;(2)AF=BH,理由如下:连接CF,∵∠ABD=45°,AD⊥BC,∴AD=BD,∵BE⊥AC,∴∠AEF=∠BDF=90°,∵∠AFE=∠BFD,∴∠EAF=∠DBF,∴△ADC≌△BDF(ASA),∴DF=DC,∴∠DCF=45°,∵BH⊥AB,∴∠HBG=45°,∴∠HBG=∠FCD,∵BG=CG,∠BGH=∠CGF,∴△CGF≌△BGH(ASA),∴BH=CF,∵BA=BC,BE⊥AC,∴BE是AC的垂直平分线,∴AF=CF,∴AF=BH;(3)仍然成立,理由如下:连接CF,由(2)同理可得,△ADC∽△BDF,∴ADBD =DCDF,∴∠ABD=∠CFD,∵BH⊥AB,∴∠BHG+∠ABD=90°,∴∠HBG=∠FCG,由(2)同理可得,△CGF≌△BGH(ASA),∴BH=CF,∵BA=BC,BE⊥AC,∴BE是AC的垂直平分线,∴AF=CF,∴AF=BH,故答案为:仍然.(1)根据等边三角形的性质可得AF=CF=BF=3,再说明BF=BH,可得答案;(2)连接CF,首先利用ASA证明△ADC≌△BDF,得DF=DC,则∠DCF=45°,再证明△CGF≌△BGH,得BH=CF,从而证明结论;(3)连接CF,首先证明△ADC∽△BDF,得ADBD =DCDF,则有∠ABD=∠CFD,由(2)同理可得,△CGF≌△BGH(ASA),从而解决问题.本题是三角形综合题,主要考查了等腰三角形的性质,等边三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质,证明△CGF≌△BGH是解答该题的关键.。

九年级数学下册初三数学相似单元测试题及答案

九年级数学下册初三数学相似单元测试题及答案

相似单元测评(时间:90分钟,满分:100分)一、选择题(每题3分,共36分)1.下列两个图形:①两个等腰三角形;②两个直角三角形;③两个正方形;④两个矩形;⑤两个菱形;⑥两个正五边形. 其中一定相似的有( )A.2组B.3组C.4组D.5组2.如图,在正方形网格上有6个斜三角形:①△ABC,②△BCD,③△BDE,④△BFG,•⑤△FGH,⑥△EFK,其中②~⑥中与三角形①相似的是( )A.②③④B.③④⑤C.④⑤⑥D.②③⑥3.应中共中央总书记胡锦涛同志的邀请,中国国民党主席连战先生、亲民党主席宋楚瑜先生分别从台湾来大陆参观访问,先后来到西安,都参观了新建成的“大唐芙蓉园”,该园占地面积约为800000m2,若按比例尺1:2000缩小后,其面积大约相当于( )A.一个篮球场的面积B.一张乒乓球台台面的面积C.《陕西日报》的一个版面的面积D.《数学》课本封面的面积4.如图,小明设计两个直角,来测量河宽BC,他量得AB=2米,BD=3米,CE=9米,•则河宽BC为( )A.5米B.4米C.6米D.8米5.如图,已知等腰△ABC中,顶角∠A=36°,BD为∠ABC的平分线,则的值等于( )A. B. C.1 D.6.如果整张报纸与半张报纸相似,则此报纸的长与宽的比是( )A.2:1B.C.4:1D.7.△ABC的面积被平行于BC的两条线段三等分,如果BC=12cm,•那么这两条线段中较短的一条的长是( )A.8cmB.6cmC.D.8.如图,梯形ABCD中,AB∥CD,∠A=90°,E在AD上,且CE平分∠BCD,BE•平分∠ABC,则下列关系式中成立的有( )①;②;③;④CE2=CD×BC;⑤BE2=AE ×BC.A.2个B.3个C.4个D.5个9.下列说法:①位似图形都相似;②位似图形都是平移后再放大(或缩小)得到;③直角三角形斜边上的中线与斜边的比为1:2;④两个相似多边形的面积比为4:9,则周长的比为16:81中,正确的有( )A.1个B.2个C.3个D.4个10.如图,点M在BC上,点N在AM上,CM=CN,,下列结论正确的是( )A.△ABM∽△ACBB.△ANC∽△AMBC.△ANC∽△ACMD.△CMN∽△BCA11.在直角坐标系中,已知点A(-2,0),B(0,4),C(0,3),过C作直线交x轴于D,使以D、O、C为顶点的三角形与△AOB相似.这样的直线最多可以作( )A.2条B.3条C.4条D.6条12.(淄博)如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A 处,沿OA所在的直线行走14米到点B时,人影的长度( )A.增大1.5米B.减小1.5米C.增大3.5米D.减小3.5米二、填空题(每题3分,共24分)13.在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在地面上的影长为40米,则古塔高为________.14.(江苏常州)如图,在△ABC中,D、E分别是AB和AC中点,F是BC延长线上一点,DF平分CE于点G,CF=1,则BC=_______,△ADE•与△ABC•的周长之比为_______,•△CFG与△BFD的面积之比为________.15.已知D、E两点分别在△ABC的边AB、AC上,DE∥BC,且△ADE的周长与△ABC•的周长之比为3:7,则AD:DB=________.16.△ABC三边的长分别是2cm、3cm、4cm,与其相似的△DEF的最短边是8cm,那么它的最长边的边长是________.17.(湖南岳阳)如图,要使△ACD∽△ABC,只需添加条件_______(•只要写出一种合适的条件即可).18.如图是幻灯机的工作情况,幻灯片与屏幕平行,光源距幻灯片30cm,•幻灯片距屏幕1.5m,幻灯片中的小树高8cm,则屏幕上的小树高是______.19.如图,在△ABC中,点D在线段BC上,∠BAC=∠ADC,AC=8,BC=16,那么CD=______.20.如图,梯形ABCD中,AD∥BC,AC、BD交于O点,S△AOD:S△COB=1:9,则S△DOC:S=_______.△BOC三、解答题(第21题~24题每题6分,第25、26题每题8分,共40分)21.(湖北荆州)如图,梯形ABCD中,∠A=∠B=90°,且AD=AB,∠C=45°,将它分割成4个大小一样,都与原梯形相似的梯形(在图形中直接画分割线,不需要说明)22.(苏州)如图,梯形ABCD中,AB∥CD,且AB=2CD,E、F分别是AB、BC的中点,EF与BD相交于点M.(1)求证:△EDM∽△FBM;(2)若DB=9,求BM.23.如图,在离树AB的3米远处竖一长2米的杆子CD,站在离杆子1米远EF处的人刚好越过杆顶C看到树顶A,这个人高EF=1.5米,求树高.24.在《九章算术》“勾股”章中有这样一个问题:“今有邑方不知大小,各中开门,出北门二十步有木,出南门十回步,折而西行一千七百七十五步见木.问邑方几何.”用今天的话说,大意是:如图,DEFG是一座正方形小城,北门H位于DG的中点,南门K位于EF的中点,出北门20步到A处有一树木,出南门14步到C,再向西行1775步到B处,正好看到A处的树木(即点D在直线AB上),求小城的边长.25.一块直角三角形木板,一直角边是1.5米,另一直角边长是2米,要把它加工成面积最大的正方形桌面,甲、乙二人的加式方法分别如左图和右图所示,请运用所学知识说明谁的加工方法符合要求.26.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B 以2cm/s的速度移动,点Q沿DA边从点D开始向A以1cm/s的速度移动.如果P、Q同时出发,用t秒表示移动的时间(0≤t≤6)那么:(1)当t为何值时,△QAP为等腰直角三角形?(2)对四边形QAPC的面积,提出一个与计算结果有关的结论;(3)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?答案与解析一、选择题1.A 提示:③⑥;2.B3.C 提示:面积比相似比的平方;4.B 提示:由题意知△ABD∽△ACE,;5.B 提示:AD=BD=BC,△ABC∽△BCD;6.B 提示:根据题意设报纸的长为x,宽为y,有;7.C 提示:面积比相似比的平方;8.B 提示:②③④成立;9.B 提示:①③正确;10.B 提示:由CM=CN,∴∠CMN=∠CNM,∴∠AMB=∠ANC,又,∴△ANC∽△AMB;11.C 提示:如图:12.D 提示:设AM=x,BN=y,.二、填空题13.30米提示:设古塔高为h,;14.2,1:2,1:615.3:416.16cm17.∠1=∠ABC或∠2=∠ACB或AC2=AD·AB(答案不唯一)18.48cm19.420.1:3 提示:∵S△AOD:S△COB=1:9,,∵△AOD与△DOC等高,∴S△AOD:S△=1:3,DOC∴S△DOC:S△BOC=1:3.三、解答题21.如图22.(1)证:∵E是AB的中点,∴AB=2EB,∵AB=2CD,∴CD=EB.又AB∥CD,•∴四边形CBED是平行四边形.∴CB∥DE,∴∴△EDM∽△FBM.(2)解:∵△EDM∽△FBM,∴.∵F是BC的中点,∴DE=2BF.∴DM=2BM.∴BM=DB=3.23.3.5米提示:延长AE、BF交于点P,由由.24.解:设小城的边长为x步,根据题意,Rt△AHD∽Rt△ACB,因为有,即,去分母并整理,得x2+34x-71000=0,解得x1=250,x2=-284(不合题意,舍去),所以小城的边长为250步.25.乙加工的方法合理.提示:设甲加工桌面长xm,过点C作CM⊥AB,垂足是M,与GF相交于点N,由GF∥DE,可得三角形相似,而后由相似三角形性质可以得到CN:CM=•GF:AB,即(CM-x):CM=x:AB.由勾股定理可得AB=2.5,由面积相等可求得CM=1.2,•故此可求得x=;设乙加工桌面长ym,由FD∥BC,得到Rt△AFD∽Rt△ACB,所以AF:AC=FD:BC,即(2-y):2=y:1.5,解得y=,很明显x<y,故x2<y2,所以乙加工的方法符合要求.26.(1)对于任何时刻t,AP=2t,DQ=t,QA=6-t,当QA=AP时,△QAP•是等腰直角三角形,即6-t=2t,t=2秒.(2)S△QPC=S△QAC+S△APC =(36-6t)+6t=36cm2,在P、Q两点移动的过程中,四边形QAPC的面积始终保持不变(或P、Q两点到对角线AC的距离之和保持不变)(3)分两种情况:①当时△QAP∽△ABC,则从而t=1.2,②当时△PAQ∽△ABC,则从而t=3.。

最新人教版九年级数学下册第二十七章-相似单元测试试题(含解析)

最新人教版九年级数学下册第二十七章-相似单元测试试题(含解析)

人教版九年级数学下册第二十七章-相似单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果两个相似多边形的周长比是2:3,那么它们的面积比为()A.2:3 B.4:9 C D.16:812、如图,已知直线a∥b∥c,分别交直线m、n于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则DF 的长是()A.92B.4 C.6 D.23、一种数学课本的宽与长之比为黄金比,已知它的长是26cm,那么它的宽是()cmA.B.26 C.D.134、某校开展“展青春风采,树强国信念”科普阅读活动.小明看到黄金分割比是一种数学上的比例关系,它具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值,应用时一般取0.618.特别奇妙的是在正五边形中,如图所示,连接顶点AB ,AC ,ACB ∠的平分线交边AB 于点D ,则点D 就是线段AB 的一个黄金分割点,即0.618AD AB≈,已知10cm AC =,那么该正五边形的周长为( )A .19.1cmB .25cmC .30.9cmD .40cm5、如图,已知AB 、CD 、EF 都与BD 垂直,垂足分别是B 、D 、F ,且AB =4,CD =12,那么EF 的长是( )A .2B .2.5C .2.8D .36、在ABC 中,D ,E 分别是边AB ,AC 上的两个点,并且DE ∥BC ,AD :BD =3:2,则ADE 与四边形BCED 的面积之比为( )A .3:5B .4:25C .9:16D .9:257、在△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC ,交AC 于点D .BC =8,则AC =( )A . 4B . 4C .16D .128、如图, 点 E 是线段 BC 的中点, B C AED ∠∠∠==, 下列结论中, 说法错误的是( )A .ABE △ 与 ECD 相似B .ABE △ 与 AED 相似C .AB AE AE AD = D .BAE ADE ∠=∠9、如图,线段AB 两个端点的坐标分别为(6,6)A ,(8,2)B ,以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 的坐标为( )A .(3,3)B .(4,3)C .(3,1)D .(4,1) 10、如图,H 是平行四边形ABCD 的边AD 上一点,且12AH DH =,BH 与AC 相交于点K ,那么AK :KC 等于()A.1:1 B.1:2 C.1:3 D.1:4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知O是坐标原点,点A、B分别在x轴,y轴上,OA=1,OB=2,若点D在x轴下方,且使得△AOB和△OAD相似(不包括全等),则点D的坐标为__________.2、如图,在△ABC中,∠ABC=45°,过点C作CD⊥AB于点D,过点B作BM⊥AC于点M,连接MD,过点D作DN⊥MD,交BM于点N.CD与BM相交于点E,若点E是CD的中点;下列结论:①∠AMD=45°;②NE﹣EM=MC;③EM:MC:NE=1:2:3;④S△ACD=2S△DNE.其中正确的结论有 _____.(填写序号即可)3、如图,在ABC中,D为AB边上的一点,要使BAC EAD△∽△成立,还需要添加一个条件,你添加的条件是__________4、如图,ABC ∆中,AB AC =,点D 为AB 上一点,4BD AD =,连接CD ,45BCD ︒∠=,132AC =,则BC 的长为________.5、若3x =7y ,则x y=_____.三、解答题(5小题,每小题10分,共计50分)1、小豪为了测量某塔高度,把镜子放在离塔(AB )50m 的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到塔尖A ,再测得DE =2.4m ,小豪目高CD =1.68m ,求塔的高度AB .2、阅读:两千多年前,古希腊数学家欧多克索斯发现了黄金分割,即:点P 是线段AB 上一点(AP >BP ),若满足BP AP AP AB=,则称点P 是AB 的黄金分割点.黄金分割在我们的数学学习中也处处可见,比如我们把有一个内角为36°的等腰三角形称为“黄金三角形”.(1)理解:如图(1),请将内角分别36°,36°,108°的等腰三角形分割成三个“黄金三角形”,并标出每个“黄金三角形”内角的度数;(2)运用:如图(2),已知等腰三角形ABC 为“黄金三角形”,AB=AC ,∠A=36°,BD 为∠ABC 的平分线.求证:点D 是AC 的黄金分割点.3、如图,在等腰直角ABC 中,90ACB ∠=︒,AC BC =,过点C 作射线CP AB ∥,D 为射线CP 上一点,E 在边BC 上(不与,B C 重合)且45DAE ∠=︒,AC 与DE 交于点O .(1)求证:ADC AEB △△;(2)求证:ADE ACB ;(3)如果CD CE =,求证:2CD CO CA =.4、如图,在ABCD 中,BE AB ⊥于点E ,交AC 于点F ,且:1:2AE EB =.(1)求证:AEF CDF∽△△;(2)求AEF与AFD的面积比.5、如图,在Rt△ABC中,∠ACB=90°,BC mAC n,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则DEDF=;(2)数学思考:①如图2,若点E在线段AC上,则DEDF=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC BC=DF=CE的长.---------参考答案-----------一、单选题1、B【解析】【分析】根据相似多边形的周长比求出相似比,再根据相似多边形的面积比等于相似比的平方计算,得到答案.【详解】解:∵两个相似多边形的周长比是2:3,∴这两个相似多边形的相似比是2:3,∴它们的面积比是4:9,故选B.【点睛】本题考查相似多边形的性质,掌握相似多边形的周长比等于相似比,面积比等于相似比的平方是解题的关键.2、A【解析】【分析】由直线////a b c,根据平行线分线段成比例定理,即可得AC BDCE DF=,又由4AC=,6CE=,3BD=,即可求得DF的长即可.【详解】解:////a b c,∴AC BDCE DF=,4AC=,6CE=,3BD=,∴436DF=, 解得:92DF =,故选择A .【点睛】此题考查了平行线分线段成比例定理.题目比较简单,解题的关键是注意数形结合思想的应用.3、D【解析】【分析】根据一种数学课本的宽与长之比为黄金比,即可得到宽:长:1=⎝⎭,由此求解即可. 【详解】解:∵一种数学课本的宽与长之比为黄金比,∴宽:长:1=⎝⎭, ∵长是26cm ,∴宽2613==,故选D .【点睛】本题主要考查了黄金比,解题的关键在于能够熟练掌握黄金分割比例.4、C【解析】【分析】根据正五边形各边相等,各内角相等,得到ADC AEC ≅△△ ,得到AE AD = ,再根据0.618AD AB≈求出AD 即可求解 .【详解】解:∵正五边形每个内角=540=1085︒︒ ,每条边相等,AB AC = , ∴108AEC ECB ∠=∠=︒ ,∵AE EC = , ∴180108362EAC ECA ︒-︒∠=∠==︒ , ∴1083672ACB ECB ECA ∠=∠-∠=︒-︒=︒ ,∵DC 为∠ACB 的平分线,∴1362ACD ACB ∠=∠=︒ , ∵AB AC = ,∴72ABC ACB ∠=∠=︒ , ∴36BAC ∠=︒ , ∵AC AC = ,∴()ADC AEC ASA ≅ , ∴AE AD = , ∵0.618ADAB≈,10cm AB AC ==, ∴100.618 6.18cm AE AD ==⨯= , ∴该五边形周长=6.185=30.9cm ⨯ , 故选:C . 【点睛】本题考查正多边形的性质,三角形全等的判定与性质,黄金比例,通过全等求出正五边形边长是解题关键. 5、D 【解析】 【分析】根据相似三角形的判定得出△DEF ∽△DAB ,△BFE ∽△BDC ,根据相似得出比例式,求出1EF EFAB DC+=,代入求出即可. 【详解】解:∵AB 、CD 、EF 都与BD 垂直,∴AB ∥EF ∥CD ,∴△DEF ∽△DAB ,△BFE ∽△BDC , ∴EF DF AB BD =,EF BFDC BD =, ∴1EF EFAB DC+=, ∵AB =4,CD =12, ∴EF =3, 故选:D . 【点睛】本题考查了相似三角形的性质和判定,能根据相似三角形的性质得出比例式是解此题的关键. 6、C 【解析】 【分析】根据题意先判断△ADE ∽△ABC ,再根据相似三角形的面积之比等于相似比的平方进行分析计算即可得到结论. 【详解】 解:∵DE ∥BC , ∴△ADE ∽△ABC , ∵AD :BD =3:2, ∴:3:5AD AB =, ∴22:3:59:25ADE ABCSS==,∴ADE 与四边形BCED 的面积之比为9:16.【点睛】本题考查相似三角形的判定和性质,注意掌握相似三角形的面积之比等于相似比的平方.7、A【解析】【分析】根据两角对应相等,判定两个三角形相似.再用相似三角形对应边的比相等进行计算求出AC的长.【详解】解:∵AB=AC,∠A=36°,∴∠ABC=∠C=180362︒-︒=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠BDC=∠ABD+∠A=72°,∴∠BDC=∠C=72°,∴AD=BD=BC=8.∵∠A=∠DBC=36°,∠C公共角,∴△ABC∽△BDC,∴BC ACCD BC=,即888ACAC=-,整理得:AC2-8AC-64=0,解方程得:AC AC舍去),故选:A.本题考查的是相似三角形的判定与性质,先用两角对应相等判定两个三角形相似,再用相似三角形的性质对应边的比相等进行计算求出AC 的长. 8、D 【解析】 【分析】根据外角的性质可得BAE DEC ∠=∠,结合已知条件即可证明ABE ECD ∽△△,从而判断A ,进而可得AB AEEC ED=,根据E 是中点,代换BE CE =,进而根据两边成比例夹角相等可证ABE △∽AED ,进而判断B ,C ,对于D 选项,利用反证法证明即可. 【详解】解:AEC BAE B AED DEC ∠=∠+∠=∠+∠,AED B ∠=∠BAE DEC ∴∠=∠又B C ∠=∠ABE ECD ∴∽故A 选项正确ABE ECD ∽△△AB AEEC ED∴= E 为BE 的中点∴BE CE =AB AEBE ED∴= 又B AED ∠=∠∴ABE △∽AED故B 、C 选项正确ABE △∽AEDDAE BAE ∴∠=∠若BAE ADE ∠=∠ 则DAE ADE ∠=∠AE DE ∴=根据现有条件无法判断AE DE =,故BAE ADE ∠∠≠ 故D 选项不正确 故选:D . 【点睛】本题考查了相似三角形的性质与判定,掌握相似三角形的性质与判定是解题的关键. 9、A 【解析】 【分析】利用位似图形的性质结合两图形的位似比进而得出C 点坐标. 【详解】解:∵线段AB 的两个端点坐标分别为A (6,6),B (8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,∴端点C 的横坐标和纵坐标都变为A 点的一半, ∴端点C 的坐标为:(3,3). 故选:A . 【点睛】此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.10、C【解析】【分析】根据AH=12DH求出AH:AD即AH:BC的值是1:3,再根据相似三角形对应边成比例求出AK:KC的值.【详解】解:∵AH=12DH,∴AH:AD=13,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴AH:BC=1 3∴△AHK∽△CBK,∴13 AK AHKC BC==故选:C.【点睛】本题考查了相似三角形的判定和性质,平行四边形的性质,比例式的变形是解题的关键.二、填空题1、(0,-12)或(1,-12)或(15,25-)或(45,25-).【解析】【分析】点D 在y 轴上,根据△AOB ∽△DOA ,可得BO OA AO OD=,即211OD =;当点D 在过点A 平行y 轴的直线上,根据△AOB ∽△D 1AO ,1BO OA OA D A =,即1211D A =;当点D 2在AD 上,作D 2E ⊥x 轴于E ,OD 2⊥AD 于D 2,在Rt △AOB 中,ABOD 2A ∽△AOB ,2BO ABAD OA =,即22AD △D 2EA ∽△DOA ,22AD D E AE AD AO OD ==2112D E AE ==,求出AE =45,D 2E =25,当点D 3在0D 1上,作D 3F ⊥x 轴于F ,AD 3⊥OD 1于D 3,根据△OD 3A ∽△BOA ,3BO ABOD AO =,即32OD,3OD =△D 3FO ∽△D 1AO ,3311OD D F OF OD OA AD ==3112D F OF ==,求出OE =45,D 3F =25即可. 【详解】解:点D 在y 轴上,△AOB ∽△DOA , ∴BO OA AO OD=,即211OD =,解得OD =12, 点D (0,-12);当点D 在过点A 平行y 轴的直线上,△AOB ∽△D 1AO ,∴1BO OA OA D A =,即1211D A =, 解得D 1A =12, 点D 1(1,-12);当点D 2在AD 上,作D 2E ⊥x 轴于E ,OD 2⊥AD 于D 2,在Rt △AOB 中,AB= ∵△OD 2A ∽△AOB ,∴2BO AB AD OA =,即22AD =∴2AD =在Rt △OAD 中,AD= ∵D 2E ⊥x 轴于E ,,OD ⊥x 轴, ∴D 2E∥OD ,∴∠AD 2E =∠ADO ,∠D 2EA =∠DOA =90°, ∴△D 2EA ∽△DOA ,∴22AD D EAE AD AO OD ==2112D E AE ==, ∴AE =45,D 2E =25,∴OE =OA -AE =1-45=15,∴D 2(15,25-)当点D 3在OD 1上,作D 3F ⊥x 轴于F ,AD 3⊥OD 1于D 3, ∵△OD 3A ∽△BOA ,∴3BO AB OD AO =,即32OD ,∴3OD =在Rt △OAD 1中,0D 1=, ∵D 3F ⊥x 轴于F ,OD ⊥x 轴, ∴D 3F∥OD ,∴∠OD 3F =∠QD 1A ,∠D 3FO =∠D 1AO =90°, ∴△D 3FO ∽△D 1AO ,∴3311OD D F OF OD OA AD ==3112D FOF ==, ∴OE =45,D 3F =25,∴D 3(45,25-);△AOB 和△OAD 相似(不包括全等),则点D 的坐标为(0,-12)或(1,-12)或(15,25-)或(45,25-). 故答案为(0,-12)或(1,-12)或(15,25-)或(45,25-).【点睛】本题考查三角形相似的判定与性质,勾股定理,掌握三角形相似判定与性质是解题关键.2、①②③【解析】【分析】①利用ASA证明△BDN≌△CDM,再证明△DMN是等腰直角三角形,即可判断结论①正确;②过点D作DF⊥MN于点F,则∠DFE=90°=∠CME,可利用AAS证明△DEF≌△CEM,即可判断结论②正确;③先证明△BDE∽△CME,可得出CMEM=BDDE=2,进而可得CM=2EM,NE=3EM,即可判断结论③正确;④先证明△BED≌△CAD(ASA),可得S△BED=S△CAD,再证明BN<NE,可得S△BDN<S△DEN,进而得出S△BED<2S△DNE,即可判断结论④不正确.【详解】解:①∵CD⊥AB,∴∠BDC=∠ADC=90°,∵∠ABC=45°,∴BD=CD,∵BM⊥AC,∴∠AMB=∠ADC=90°,∴∠A+∠DBN=90°,∠A+∠DCM=90°,∴∠DBN=∠DCM,∵DN⊥MD,∴∠CDM+∠CDN=90°,∵∠CDN+∠BDN=90°,∴∠CDM=∠BDN,∴△BDN≌△CDM(ASA),∴DN =DM ,∵∠MDN =90°,∴△DMN 是等腰直角三角形,∴∠DMN =45°,∴∠AMD =90°-45°=45°,故①正确;②如图1,由(1)知,DN =DM ,过点D 作DF ⊥MN 于点F ,则∠DFE =90°=∠CME ,∵DN ⊥MD ,∴DF =FN ,∵点E 是CD 的中点,∴DE =CE ,在△DEF 和△CEM 中,DEF CEM DFE CME DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DEF ≌△CEM (AAS ),∴ME =EF ,CM =DF ,∴FN =CM ,∵NE-EF=FN,∴NE-EM=MC,故②正确;③由①知,∠DBN=∠DCM,又∵∠BED=∠CEM,∴△BDE∽△CME,∴CMEM=BDDE=2,∴CM=2EM,NE=3EM,∴EM:MC:NE=1:2:3,故③正确;④如图2,∵CD⊥AB,∴∠BDE=∠CDA=90°,由①知:∠DBN=∠DCM,BD=CD,∴△BED≌△CAD(ASA),∴S△BED=S△CAD,由①知,△BDN≌△CDM,∴BN=CM,∴BN=FN,∴BN<NE,∴S△BDN<S△DEN,∴S△BED<2S△DNE.∴S△ACD<2S△DNE.故④不正确,故答案为:①②③.【点睛】本题考查全等三角形的判定和性质、等腰直角三角形的性质、相似三角形的判定和性质、三角形面积等知识,解题的关键是熟练掌握全等三角形的判定和性质.3、AED ABC∠=∠∠=∠或ADE ACB【解析】【分析】根据图形可以看出两个三角形有一个公共角A∠,相似证明中,有两个角对应相等即可证明两三角形相似,即添加对应角相等即可.【详解】解:由图可知,在BAC EAD∠=∠△与△中,BAC EAD∴添加的条件为:AED ABC∠=∠∠=∠或ADE ACB故答案为:AED ABC∠=∠∠=∠或ADE ACB【点睛】本题主要考查三角形相似的判定,掌握判定相似的条件是解题的关键.4、【分析】过A点作AH⊥BC,过D点作DE⊥BC,得到BH=CH,△ABH∽△DBE,设BC=10a,求出BE=4a、DE=6a,根据Rt△BDE中,BD2=DE2+BE2,求出a,故可求解.【详解】过A点作AH⊥BC,过D点作DE⊥BC∵AB AC=∴BH=CH,设BC=10a∴BH=CH=5a∵132AC==AB,4BD AD=∴BD=426 55 AB=∵AH⊥BC,DE⊥BC ∴DE∥AH∴△ABH∽△DBE∴AB HBDB EB=∵4BD AD=∴5=4 AB HB DB EB=∴BE=4a∴CE=10a-4a=6a∵45BCD︒∠=,DE⊥BC∴∠CDE=180°-45°-90°=45°∴△ADE是等腰直角三角形∴DE=CE=6a在Rt△BDE中,BD2=DE2+BE2即(265)2=(6a)2+(4a)2解得a∴BC=10a=故答案为:【点睛】此题主要考查三角形内线段求解,解题的关键是熟知相似三角形的判定与性质、等腰三角形的性质及勾股定理的运用.5、7 3【解析】【分析】依据比例的基本性质,即两内项之积等于两外项之积,即可进行解答.【详解】解:若3x=7y,则73 xy故答案为:7 3【点睛】此题主要考查比例的基本性质,掌握比例的性质是解题的关键.三、解答题1、35m【解析】【分析】根据题意得:∠ABE=∠CDE=90°,BB=50m BE=50m,由光的反射定律得:∠AEB=∠CED,从而得到△ABE∽△CDE,再由相似三角形的性质,即可求解.【详解】解:根据题意得:∠ABE=∠CDE=90°,BE=50m,由光的反射定律得:∠AEB=∠CED,∴△ABE∽△CDE,∴BBBB=BBBB,∴BB1.68=502.4,解得:BB=35m,即塔的高度为35m.【点睛】本题主要考查了相似三角形的实际应用,明确题意,准确得到相似三角形是解题的关键.2、(1)见解析;(2)见解析【解析】【分析】(1)根据“黄金三角形”的定义进行分割即可;(2)证明△CBD∽△CAB,结合图形、根据黄金分割的定义判断即可.【详解】解:(1)如图,(2)∴∠ABC=∠C=72°又∵BD平分∠ABC∴∠ABD=∠CBD=12∠ABC=36°∴∠BDC=180°-∠C-∠CBD=72°∴AD=BD,BC=BD即AD=BC=BD·又∵∠C=∠C,∠CBD=∠A∴△CBD∽△CAB∴BBBB=BBBB∴BBBB=BBBB·即D点是AC的黄金分割点【点睛】本题考查的是黄金分割的概念和性质,掌握把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB 和BC的比例中项,叫做把线段AB黄金分割是解题的关键.3、(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)根据题意先由等腰直角△ABC得到∠BAC=∠B=45°,从而结合∠DAE=45°得到∠DAC=∠EAB,再由平行线的性质得到∠ACP=∠BAC=∠B=45°,从而得到△ADC∽△AEB;(2)根据题意由相似三角形的性质得到AD:AE=AC:AB,转化为AD:AC=AE:AB,结合∠DAE=∠CAB=45°得证结果;(3)根据题意结合∠ACD=45°和∠ACB=90°,由CD=CE得到∠CDE=∠CED=22.5°,从而得到∠DAC=22.5°,然后得到△OCD∽△DCA,最后即可求证.【详解】解:(1)证明:∵ABC是等腰直角三角形,∴∠BBB=∠B=45°,∵∠BBB=45°,BB∥BB,∴∠BBB=∠BBB,∠BBB=∠BBB=∠B=45°,∴ΔBBB∼ΔBBB;(2)证明:∵ΔBBB∼ΔBBB∴BBBB=BBBB,即BBBB=BBBB,∵∠BBB=∠BBB=45°,∴ΔBBB∼ΔBBB;(3)∵∠BBB=45°,∠BBB=90°,∴∠BBB+∠BBB=180°−90°−45°=45°,∵CD CE=,∴∠BBB=∠BBB=22.5°,∵ΔBBB∼ΔBBB,∴∠BBB=∠BBB=90°,∴∠BBB=180°−∠BBB−∠BBB−∠BBB=180°−90°−22.5°−45°=22.5°∴∠BBB=∠BBB,又∵∠BBB=∠BBB,∴ΔBBB∼ΔBBB,∴BBBB=BBBB,∴2CD CO CA=【点睛】本题考查相似三角形的判定与性质以及等腰直角三角形的性质,解题的关键是通过线段的比例关系得到三角形相似.4、(1)见解析;(2)1:3【解析】【分析】(1)由ABCD得出BB∥BB,由平行线的性质得∠BBB=∠BBB,∠BBB=∠BBB,即可证明△BBB∼△BBB;(2)由:1:2AE EB=得出BB:BB=1:3,由相似三角形的性质得BBBB =BBBB=13由BE AB⊥得∠BBB=90°,由三角形的面积公式得B△BBB=12×BB×BB,B△BBB=12×BB×BB,即可求出B△BBB:B△BBB.【详解】(1)∵四边形ABCD 是平行四边形,∴BB ∥BB ,∴∠BBB =∠BBB ,∠BBB =∠BBB ,∴△BBB ∼△BBB ;(2)∵BB :BB =1:2,∴BB :BB =BB :BB =1:3,∵△BBB ∼△BBB ,∴BB BB =BB BB =13,∵BB ⊥BB ,∴∠BBB =90°,∵B △BBB =12×BB ×BB ,B △BBB =12×BB ×BB ,∴B △BBB :B △BBB =BB :BB =1:3.【点睛】本题考查相似三角形的判定与性质、三角形的面积公式,掌握相似三角形的判定定理以及性质是解题的关键.5、(1)1;n m ;(2)①n m ;②n m ;(3)CE =CE =【解析】【分析】(1)先用等量代换判断出ADE CDF ∠=∠,A DCB ∠=∠,得到ADE ∽CDF ,再判断出ADC ∽CDB △即可;(2)方法和()1一样,先用等量代换判断出ADE CDF ∠=∠,A DCB ∠=∠,得到ADE ∽CDF ,再判断出ADC ∽CDB △即可;(3)由()2的结论得出ADE ∽CDF ,判断出2CF AE =,求出DE ,再利用勾股定理,计算出即可.【详解】解:()1当m n =时,即:BC AC =,90ACB ∠=,90A ABC ∴∠+∠=,CD AB ⊥,90DCB ABC ∴∠+∠=,A DCB ∴∠=∠,90FDE ADC ∠=∠=,FDE CDE ADC CDE ∴∠-∠=∠-∠,即ADE CDF ∠=∠,ADE ∴∽CDF ,DE AD DF DC∴=, A DCB ∠=∠,90ADC BDC ∠=∠=,ADC ∴∽CDB △,1AD AC DC BC ∴==,1DE DF∴= ()290ACB ∠=①,90A ABC ∴∠+∠=,CD AB ⊥,90DCB ABC ∴∠+∠=,A DCB ∴∠=∠,90FDE ADC ∠=∠=,FDE CDE ADC CDE ∴∠-∠=∠-∠,即ADE CDF ∠=∠,ADE ∴∽CDF ,DE AD DF DC∴=, A DCB ∠=∠,90ADC BDC ∠=∠=,ADC ∴∽CDB △,AD AC n DC BC m ∴==,DE n DF m∴= ②成立.如图3,90ACB ∠=,90A ABC ∴∠+∠=,又CD AB ⊥,90DCB ABC ∴∠+∠=,A DCB ∴∠=∠,90FDE ADC ∠=∠=,FDE CDE ADC CDE ∴∠+∠=∠+∠,即ADE CDF ∠=∠,ADE ∴∽CDF ,DE AD DF DC∴=, A DCB ∠=∠,90ADC BDC ∠=∠=,ADC ∴∽CDB △,AD AC n DC BC m∴==, DE n DF m∴=. ()3由()2有,ADE ∽CDF , 12DE AC DF BC ==, 12AD AE DE CD CF DF ∴===, 2CF AE ∴=,如图4图5图6,连接EF .在Rt DEF △中,DE =DF =EF ∴= ①如图4,当E 在线段AC 上时,在Rt CEF 中,())222CF AE AC CE CE ==-=,EF =根据勾股定理得,222CE CF EF +=,)22[2]40CE CE ∴+=CE ∴=CE =舍) ②如图5,当E 在AC 延长线上时,在Rt CEF 中,())222CF AE AC CE CE ==+=,EF = 根据勾股定理得,222CE CF EF +=,)22[2]40CE CE ∴+=,CE ∴CE =-舍),③如图6,当E 在CA 延长线上时,在Rt CEF 中,()(222CF AE CE AC CE ==-=,EF =根据勾股定理得,222CE CF EF +=,(22[2]40CE CE ∴+=,CE ∴=CE =,综上:CE =CE =【点睛】本题是三角形综合题,主要考查了三角形相似的性质和判定,勾股定理,判断相似是解决本题的关键,求CE 是本题的难点.。

最新人教版初中数学九年级数学下册第二单元《相似》测试题(有答案解析)(1)

最新人教版初中数学九年级数学下册第二单元《相似》测试题(有答案解析)(1)

一、选择题1.如图,在△ABC 中,DE ∥BC ,∠ADE =∠EFC ,AD:BD=5:3,CF =6,则DE 的长为( )A .6B .8C .10D .122.如图,在平行四边形ABCD 中,以对角线AC 为直径的圆O 分别交BC ,CD 于点M ,N ,若13AB =,14BC =,9CM =,则线段MN 的长为( )A .18013B .10C .12613D .13.如图,一次函数y =﹣2x +10的图象与反比例函数y =k x(k >0)的图象相交于A 、B 两点(A 在B 的右侧),直线OA 与此反比例函数图象的另一支交于另一点C ,连接BC 交y 轴于点D ,若52BC BD =,则△ABC 的面积为( )A .12B .10C .9D .84.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若()0,8A ,4CF =,则点E 的坐标是( )A .()8,4-B .()10,3-C .()10,4-D .()8,3- 5.如图所示,在矩形ABCD 中,AB =2,BC =2,对角线AC 、BD 相交于点O ,过点O 作OE 垂直AC 交AD 于点E ,则AE 的长是( )A .2B .3C .1D .1.56.如图,△ABC 是等腰直角三角形,∠ACB =90°,点E 、F 分别是边BC 、AC 的中点,P 是AB 上一点,以PF 为一直角边作等腰直角△PFQ ,且∠FPQ =90°,若AB =12,PB =3,则QE 的值为( )A .42B .4C .32D .37.如图,地面上点A 处有一只兔子,距它10米的B 处有一根高1.6米的木桩,大树、木桩和兔子刚好在一条直线上.一只老鹰在9.6米高的树顶上刚好看见兔子,则大树C 离木桩B( )米.A .60B .50C .40D .458.△ABC 与△DBC 如图放置,已知,∠ABC =∠BDC =90°,∠A =60°,BD =CD =2,将△ABC 沿BC 方向平移至△A'B'C'位置,使得A'C 边恰好经过点D ,则平移的距离是( )A .1B .22﹣2C .23﹣2D .26﹣4 9.已知a 3b 4=,则下列变形错误的是( ) A .34a b = B .34a b = C .4a=3b D .43b a = 10.如图,ABC 是等边三角形,被一平行于BC 的矩形所截(即:FG ∥BC),若AB 被截成三等分,则图中阴影部分的面积是ABC 的面积的( )A .19B .29C .13D .4911.如图,正方形ABCD 中,ABC 绕点A 逆时针旋转到AB C ''△,AB '、AC '分别交对角线BD 于点E 、F ,若4AE =,则EF ED ⋅的值为( )A .4B .6C .8D .1612.下列判断中,不正确的有( )A .三边对应成比例的两个三角形相似B .两边对应成比例,且有一个角相等的两个三角形相似C .有一个锐角相等的两个直角三角形相似D .有一个角是100°的两个等腰三角形相似二、填空题13.如图,已知点M 是△ABC 的重心,AB =123MN ∥AB ,则MN =__________14.如图1,课本中有一道例题:有一块三角形余料ABC ,它的边120BC mm =,高80AD mm =.要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB ,AC 上.设PN xmm =,用x 的代数式表示AE =________mm ,由//PN BC ,可得APN ABC ∽△△,再利用相似三角形对应高的比等于相似比,可求得PN =________mm .拓展:原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图2,此时,PN =________mm .15.如图,在△ABO 的顶点A 在函数k y x=(x >0)的图像上∠ABO=90°,过AO 边的三等分点M 、N 分别作x 轴的平行线交AB 于点P 、Q .若四边形MNQP 的面积为3,则k 的值为________.16.如图,把正ABC ∆沿AB 边平移到''A B C '的位置,它们的重叠部分(即图中阴影部分)的面积是ABC ∆的面积的一半,若23AB =,则此三角形平移距离'CC 的长度是_________.17.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”.如图,P 为AB 的黄金分割点()AP PB >,如果AB 的长度为8cm ,那么AP 的长度是_____________.18.如图,ED 为△ABC 的中位线,点G 是AD 和CE 的交点,过点G 作GF ∥BC 交AC 于点F ,如果GF =4,那么线段BC 的长是________.19.如图4,我国现代数学著作《九章算术》中有“井深几何”问题如下:今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?它的题意可以由如图所示获得,井深BC 为_________尺.20.如图,AB 是⊙O 的直径,AB =20cm ,弦BC =12cm ,F 是弦BC 的中点.若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,设运动时间为t (s )(0≤t≤10),连接EF ,当△BEF 是直角三角形时,t (s )的值为_______.三、解答题21.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“友爱四边形”,这条对角线叫“友爱线”.(1)如图1,在44⨯的正方形网格中,有一个网格Rt ABC △和两个网格四边形ABCD 与四边形ABCE ,其中是被AC 分割成的“友爱四边形”的是______.(2)如图2,四边形ABCD 是“友爱四边形”,对角线AC 是“友爱线”,同时也是BCD ∠的角平分线,若ABC 中,2AB =,3BC =,4AC =,求友爱四边形ABCD 的周长.(3)如图3,在ABC 中,AB BC ≠,60ABC ∠=︒,ABC 的面积为33,点D 是ABC ∠的平分线上一点,连接AD ,CD .若四边形ABCD 是被BD 分割成的“友爱四边形”,求BD 的长.22.求证:相似三角形对应边上的角平分线之比等于相似比.要求:①根据给出的ABC 及线段A B '',A '∠(A A ∠'=∠),以线段A B ''为一边,在给出的图形上用尺规作出A B C ''',使得A B C ABC ''''∽△△,不写作法,保留作图痕迹.②在已有的图形上画出一组对应角平分线,并据此写出已知、求证和证明过程.23.如图,已知O 的半径长为1,AB 、AC 是O 的两条弦,且=AB AC ,BO 的延长线交AC 于点D ,联结OA 、OC .(1)求证:OAD ABD ∽△△.(2)当OCD 是直角三角形时,求B 、C 两点的距离.(3)记AOB 、AOD △、COD △的面积分别为1S 、2S 、3S ,如果2S 是1S 和3S 的比例中项,求OD 的长.24.如图,在等边ABC ∆中,点D 是边AC 上一动点(不与点,A C 重合),连接BD ,作AH BD ⊥于点H ,将线段AH 绕点A 逆时针旋转60︒至线段AE ,连接CE (1)①补全图形;②判断线段BH 与线段CE 的数量关系,并证明;(2)已知4AB =,点M 在边AB 上,且1BM=,作直线HE . ①是否存在一个定点P ,使得对于任意的点D ,点P 总在直线HE 上,若存在,请指出点P 的位置,若不存在,请说明理由;②直接写出点M 到直线HE 的距离的最大值.25.在如图小正方形的边长均为1的正方形网格中,△ABC 的顶点都在格点上.(1)以点O 为位似中心画△ABC 的位似图形△A 1B 1C 1,位似比为1:2.(2)在(1)中所画得图形中,△ABC 的中线CD 与△A 1B 1C 1的中线C 1D 1的位置关系为 .26.如图,ABC 内接于⊙O ,AB AC =,过点C 作AB 的垂线CD ,垂足为点E ,交O 于点F ,连接AD ,并使AD BC ∥.(1)求证:AD 为O 的切线;(2)若5AC =,2BE =,求AD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由DE //BC 可得出53AD AE BD EC ==,∠AED =∠C ,结合∠ADE =∠EFC 可得出△ADE ∽△EFC ,根据相似三角形的性质可得出53AE DE EC FC ==,再根据CF =6,即可求出DE 的长度.【详解】解:∵DE //BC , ∴53AD AE BD EC ==,∠AED =∠C . 又∵∠ADE =∠EFC ,∴△ADE ∽△EFC , ∴53AE DE EC FC ==, ∵CF =6, ∴563DE =, ∴DE =10.故选C【点睛】 本题考查了相似三角形的判定与性质、平行线分线段成比例定理,根据平行线分线段成比例定理和相似三角形的性质列出比例式是解题的关键.2.A解析:A【分析】连结AM ,AN ,根据圆周角定理可知△ABM 是直角三角形,利用勾股定理即可求出AC 的长;易证△AMN ∽△ACD ,根据相似三角形的性质即可求出MN 的长.【详解】解:连结AM ,AN ,∵AC 是⊙O 的直径,∴∠AMC=90°,∠ANC=90°,∵AB=13,BM=5,∴22AB BM -,∵CM=9,∴AC=15,∵∠MCA=∠MNA ,∠MCA=∠CAD ,∴∠MNA=∠CAD ,∵∠AMN=∠ACN ,∴∠AMN=∠ACN ,∵△NMA ∽△ACD ,∴AM :MN=CD :AC ,∴12:MN=13:15,∴MN=18013. 故选:A .【点睛】本题考查了圆周角定理运用、勾股定理的运用、相似三角形的判定和性质,题目的综合性较强,难度中等,解题的关键是添加辅助线构造相似三角形.3.B解析:B【分析】过点B 作BM y ⊥轴于M ,过点C 作CN y ⊥轴于N ,连接AD ,则//BM CN ,可证得23BM BC CN CD ==,设点2,2k B x x ⎛⎫ ⎪⎝⎭,点3,3k C x x ⎛⎫-- ⎪⎝⎭.根据对称性可得点3,3k A x x ⎛⎫ ⎪⎝⎭,由已知可求得A 、B 、C 的坐标,则可求得直线BC 的解析式,进而求得点D 、F 的坐标,由ABD ADF BDF S S S -=△△△及:2:5ABD ABC S S =△△可求得ABC S .【详解】过点B 作BM y ⊥轴于M ,过点C 作CN y ⊥轴于N ,连接AD ,如图,则有//BM CN ,∴BMD CND ∽,又52BC BD = ∴23BM BD CN CD ==, 设点2,2k B x x ⎛⎫ ⎪⎝⎭,点3,3k C x x ⎛⎫-- ⎪⎝⎭.根据对称性可得点3,3k A x x ⎛⎫ ⎪⎝⎭. ∵点A ,B 在直线AB 上, ∴2210223103k x x k x x⎧=-⨯+⎪⎪⎨⎪=-⨯+⎪⎩ ∴解得:112x k =⎧⎨=⎩, ∴点()3,4A ,点()2,6B 、点()3,4C --. 设直线BC 的解析式为y=mx+n ,则有:2634m n m n +=⎧⎨-+=-⎩, 解得:22m n =⎧⎨=⎩, ∴直线BC 解析式为22y x =+, ∴点()0,2D ,∵点F 是直线AB 与y 轴的交点, ∴点()0,10F∴()()10232102224ABD ADF BDF S S S -==-⨯÷--⨯÷=△△△ 又∵:2:5ABD ABC S S =△△, ∴55S 41022ABC ABD S ==⨯=,【点睛】本题考查了一次函数与反比例函数的图象交点问题、待定系数法求一次函数解析式、相似三角形的判定与性质、直线上点的坐标特征、等高三角形的面积比等于底的比等知识,求出点A 、B 的坐标和作辅助线借助相似三角形解决问题是解答的关键.4.B解析:B【分析】根据题意可求得CE 、OF 的长度,根据点E 在第二象限,从而可以得到点E 的坐标.【详解】解:∵四边形ABCO 是矩形∴90ECF FOA B ∠=∠=∠=︒∵将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若()0,8A∴90AFE B ∠=∠=︒∴90CEF CFE OFA CFE ∠+∠=∠+∠=︒∴CEF OFA ∠=∠∴Rt ECF Rt FOA ∽根据题意可设CE x =,则8BE x =-,则8BE x =-∵4CF =∴在Rt ECF △中,()22248x x +=- ∴3x =根据题意可设OF y =∵Rt ECF Rt FOA ∽ ∴CE CF OF OA= ∴348y = ∴6y =∴6OF =∴10CO CF OF =+=∴点E 的坐标为()10,3-.故选:B【点睛】本题考查了勾股定理、矩形的性质、翻折变换、坐标与图形变化(轴对称)、相似三角形的判定和性质等知识点,解题的关键是明确题意找出所求问题需要的条件,利用数形结合的思想进行解答.5.D【分析】先求出AC ,进而求出OA ,再证明△AOE ∽△ADC ,得到AE OA AC AD =,即可求解. 【详解】解:∵四边形ABCD 是矩形,∴∠ABC =∠ADC =90°,AD =BC =2,CD =ABOA =OC =12AC ,∴AC=∴OA =2, ∵OE ⊥AC , ∴∠AOE =90°,∴∠AOE =∠ADC ,又∵∠OAE =∠DAC ,∴△AOE ∽△ADC , ∴AE OA AC AD=,22=, ∴AE =1.5.故选:D .【点睛】本题考查了矩形的性质,勾股定理,相似三角形的性质与判定等知识,能根据已知条件判定△AOE ∽△ADC 是解题关键.6.C解析:C【分析】取AB 的中点D ,连结FD ,根据等腰直角三角形的性质得到∠A=45°,根据三角形中位线定理得到EF ∥AB ,EF=12AB=6,DF=12,证明△FDP ∽△FEQ ,根据相似三角形的性质列出比例式,代入计算,得到答案.【详解】解:如图,取AB 的中点D ,连结FD ,∵△ABC 为等腰直角三角形,AB=12,∴2∠A=45°,∵点D 、E 、F 分别是△ABC 三边的中点,AB=12,PB=3,∴AD=BD=6,DP=DB-PB=6-3=3,EF 、DF 为△ABC 的中位线,∴EF ∥AB ,EF=12AB=6,DF=122,∠EFP=∠FPD , ∴∠FDA=45°,32262DF EF ==, ∴∠DFP+∠DPF=45°,∵△PQF 为等腰直角三角形,∴∠PFE+∠EFQ=45°,FP=PQ ,∴∠DFP=∠EFQ ,∵△PFQ 是等腰直角三角形, ∴2PF FQ = ∴DF PF EF FQ =, ∵DF PF EF FQ=,∠DFP=∠EFQ , ∴△FDP ∽△FEQ , ∴2QE EF DP DF ==,即23QE =, 解得,2,故选:C .【点睛】本题考查了等腰直角三角形,相似三角形的判定和性质,根据题意作出辅助线,构造出三角形的中位线是解题的关键.7.B解析:B【分析】如图,证明△ABE ∽△ACD ,根据相似三角形的性质列式求解即可.【详解】解:如图,根据题意得,△ABE ∽△ACD , ∴AB BE AC CD= ∵AB=10m ,BE=1.6m ,CD=9.6m ∴10 1.6=9.6AC ∴AC=60m ∴BC=AC-AB=60-10=50m故选:B .【点睛】此题主要考查了相似三角形的应用,善于观察题目的信息是解题以及学好数学的关键. 8.C解析:C【分析】过点D 作DJ ⊥BC 于J ,根据勾股定理求出BC ,利用等腰直角三角形的性质求出DJ 、BJ 、JC ,利用平行线分线段成比例定理求出JC′即可解决问题.【详解】解:过点D 作DJ ⊥BC 于J .∵DB =DC =2,∠BDC =90°,∴BC ()()222222+4,DJ =BJ =JC =2,∵∠ABC =90°,∠A =60°,∴∠ACB =30°,∴AC=2AB ,∵AB 2+42=(2AB)2,∴A′B′=AB 43, ∵DJ//A′B′,∴DJ A B ''=C J C B''',∴34C J',∴C′J=∴JB′=4﹣∴BB′=2﹣(4﹣=﹣2.故选:C.【点睛】本题考查了平移的性质,直角三角形的性质,等腰三角形的性质,勾股定理,以及平行线分线段成比例定理.9.A解析:A【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【详解】解:由34ab=得,4a=3b,A、由等式性质可得:ab=12,原变形错误,故这个选项符合题意;B、由等式性质得到4a=3b,原变形正确,故这个选项不符合题意;C、由等式性质可得:4a=3b,原变形正确,故这个选项不符合题意;D、由等式性质可得:4a=3b,原变形正确,故这个选项不符合题意;故选:A.【点睛】本题考查比例的性质.熟练掌握内项之积等于外项之积是解题的关键.10.C解析:C【分析】AB被截成三等分,可得AB=3AE,AF=2AE,由EH∥FG∥BC,可得△AEH∽△AFG∽△ABC,则S△AEH:S△AFG:S△ABC=AE2:AF2:AB2,S阴影= S△AFG- S△AEH =13S△ABC.【详解】∵AB被截成三等分,∴AB=3AE,AF=2AE,∵EH∥FG∥BC,∴△AEH∽△AFG∽△ABC,∴S△AEH:S△AFG:S△ABC=AE2:AF2:AB2=AE2:(2AE)2:(3AE)2=1:4:9,∴S△AEH=19S△ABC, S△AFG=4 S△AEH,S 阴影= S △AFG - S △AEH =3 S △AEH =3×19 S △ABC =13S △ABC . 故选择:C .【点睛】 本题考查阴影部分面积问题,关键是利用相似三角形的面积比等于相似比的平方,找到阴影面积与△AEH 的关系,由△AEH 与△ABC 的关系来转化解决问题.11.D解析:D【分析】先根据正方形的性质、旋转的性质可得45EAF EDA ∠=∠=︒,再根据相似三角形的判定与性质即可得.【详解】四边形ABCD 是正方形,45BAC EDA ∴∠=∠=︒,由旋转的性质得:B AC BAC ''∠=∠,B AC EDA ''∴∠=∠,即EAF EDA ∠=∠,在AEF 和DEA △中,EAF EDA AEF DEA ∠=∠⎧⎨∠=∠⎩, AEF DEA ∴~,EF AE AE DE ∴=,即44EF DE=, 16EF DE ∴⋅=,故选:D .【点睛】本题考查了正方形的性质、旋转的性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.12.B解析:B【分析】由相似三角形的判定依次判断可求解.【详解】解:A 、三边对应成比例的两个三角形相似,故A 选项不合题意;B 、两边对应成比例,且夹角相等的两个三角形相似,故B 选项符合题意;C 、有一个锐角相等的两个直角三角形相似,故C 选项不合题意;D 、有一个角是100°的两个等腰三角形,则它们的底角都是40°,所以有一个角是100°的两个等腰三角形相似,故D 选项不合题意;故选:B .【点睛】本题考查了相似三角形的判定,熟练运用相似三角形的判定是本题的关键.二、填空题13.【分析】根据三角形重心的性质可得AD=BD=CM :CD=2:3由MN ∥AB 可得△CMN ∽△CDB 再根据相似三角形的性质求解即可【详解】解:∵点M 是△ABC 的重心∴AD=BD=CM :CD=2:3∵MN解析:【分析】根据三角形重心的性质可得AD=BD=12AB =CM :CD=2:3,由MN ∥AB 可得△CMN ∽△CDB ,再根据相似三角形的性质求解即可.【详解】解:∵点M 是△ABC 的重心,∴AD=BD=12AB =CM :CD=2:3, ∵MN ∥AB ,∴△CMN ∽△CDB , ∴23MN CM DB CD ==,23=,解得MN =.故答案为:【点睛】本题考查了三角形的重心和相似三角形的性质,熟练掌握上述知识是解题的关键. 14.48【分析】根据相似三角形的性质可得对应高的比等于相似比进行计算然后根据矩形的性质可设则进行求解即可;【详解】设则∵PN ∥BC ∴∴即解得∴拓展:设则∵PN ∥BC ∴∴∴解得∴;故答案是:;48;【点睛解析:80x -484807 【分析】根据相似三角形的性质可得对应高的比等于相似比进行计算,然后根据矩形的性质可设BQ x =,则2PN x =,80AE x =-,进行求解即可;【详解】设PN xmm =,则PN PQ ED xmm ===,()80AE AD ED x mm =-=-,∵PN ∥BC ,∴APN ABC ,∴PN AE BC AD =, 即8012080x x -=,解得48x =, ∴48PN mm =,拓展:设PQ xmm =,则2PN xmm =,()80AE AD ED x mm =-=-,∵PN ∥BC ,∴APN ABC , ∴PN AE BC AD =, ∴28012080x x -=,解得2407x =, ∴48027PN x ==; 故答案是:80x -;48;4807. 【点睛】 本题主要考查了相似三角形的应用,准确分析计算是解题的关键.15.【分析】易证△ANQ ∽△AMP ∽△AOB 由相似三角形的性质:面积比等于相似比的平方可求出△ANQ 的面积进而可求出△AOB 的面积则k 的值也可求出【详解】∵NQ ∥MP ∥OB ∴△ANQ ∽△AMP ∽△AOB解析:18【分析】易证△ANQ ∽△AMP ∽△AOB ,由相似三角形的性质:面积比等于相似比的平方可求出△ANQ 的面积,进而可求出△AOB 的面积,则k 的值也可求出.【详解】∵NQ ∥MP ∥OB ,∴△ANQ ∽△AMP ∽△AOB ,∵M 、N 是OA 的三等分点, ∴11,23AN AN AM AO ==, ∴14ANQ AMP SS =, ∵四边形MNQP 的面积为3, ∴314ANQ ANQ S S =+,∴S △ANQ =1, ∵2119AOB AN S AO ⎛⎫== ⎪⎝⎭, ∴S △AOB =9,∴k =2S △AOB =18,故答案为:18.【点睛】本题考查了相似三角形的判定和性质以及反比例函数k 的几何意义,正确的求出S △ANQ =1是解题的关键.16.【分析】根据题意可知△ABC 与阴影部分为相似三角形且面积比为2:1所以AB :A′B=:1推出A′B=从而得到AA′的长【详解】解:∵△ABC 沿AB 边平移到△A′B′C′的位置∴AC ∥A′C′∴△AB解析:【分析】根据题意可知△ABC 与阴影部分为相似三角形,且面积比为2:1,所以AB ::1,推出,从而得到AA′的长.【详解】解:∵△ABC 沿AB 边平移到△A′B′C′的位置,∴AC ∥A′C′,∴△ABC ∽△A′BD , ∴21()2A BDABC S A B S AB ''∆∆==, ∴AB ::1,∵AB=∴,∴AA′=.由平移可得' 'CC AA =∴'6CC =故答案为:.【点睛】本题主要考查相似三角形的判定和性质、平移的性质,关键在于求证△ABC 与阴影部分为相似三角形.17.()cm 【分析】利用黄金分割的定义计算出AP 【详解】为的黄金分割点故答案为:()cm 【点睛】此题考查黄金分割的定义黄金分割物体的较大部分等于与整体的解析:(4)cm【分析】利用黄金分割的定义计算出AP .【详解】 P 为AB 的黄金分割点()AP PB >,()84AP AB cm ∴===故答案为:(4)cm.【点睛】此题考查黄金分割的定义,黄金分割物体的较大部分等于与整体的12. 18.12【分析】先判断点G 为△ABC 的重心得到AG=2GD 再证明△AGF ∽△ADC 然后利用相似比求出CD 的长从而得到BC 的长【详解】解:∵ED 为△ABC 的中位线∴DE//ACDE=ADCE 为△ABC 的中解析:12.【分析】先判断点G 为△ABC 的重心得到AG=2GD ,再证明△AGF ∽△ADC ,然后利用相似比求出CD 的长,从而得到BC 的长.【详解】解:∵ED 为△ABC 的中位线,∴DE//AC ,DE=12AC ,AD 、CE 为△ABC 的中线, ∴△DEG ∽△ACG ∴12DG DE AG AC == ∴AG=2GD ,∵GF ∥BC ,∴△AGF ∽△ADC , ∴23GF AG CD AD ==, ∴CD=32GF=32×4=6, ∴BC=2CD=12.故答案为12.【点睛】 本题考查了重心的性质:重心到顶点的距离与重心到对边中点的距离之比为2:1. 也考查了三角形中位线和相似三角形的判定与性质.19.575【分析】由题意可得△AFB ∽△ADC 根据相似三角形的性质和已知条件即可得到井深尺寸【详解】解:由题意可知:△AFB∽△ADC∴可设BC=x则有解之可得:BC=575(尺)故答案为575【点睛】解析:57.5【分析】由题意可得△AFB∽△ADC,根据相似三角形的性质和已知条件即可得到井深尺寸.【详解】解:由题意可知:△AFB∽△ADC,∴AB FB AC DC=,可设BC=x,则有50.455x=+,解之可得:BC=57.5(尺),故答案为57.5.【点睛】本题考查相似三角形的应用,熟练掌握三角形相似的判定和性质是解题关键.20.5或82【分析】求出BF和AO的长分为两种情况①∠EFB=90°②∠FEB=90°分别利用三角形中位线的性质以及相似三角形的判定和性质求出AE的长再求出t即可【详解】∵AB是⊙O的直径∴∠C=90°解析:5或8.2【分析】求出BF和AO的长,分为两种情况,①∠EFB=90°,②∠FEB=90°,分别利用三角形中位线的性质以及相似三角形的判定和性质求出AE的长,再求出t即可.【详解】∵AB是⊙O的直径,∴∠C=90°,∵AB=20cm,弦BC=12cm,F是弦BC的中点,∴BF=12BC=6cm,有两种情况:①当∠EFB=90°时,如图:∵AB是⊙O的直径,∴∠C=90°,∵∠EFB=90°,∴AC∥EF,∵F为BC的中点,∴E 为AB 的中点,即E 和O 重合,∵AB=20cm ,∴AE=AO=12AB=10cm , ∴1052t ==; ②当∠FEB=90°时,如图:∵∠B=∠B ,∠FEB=∠C=90°,∴△FEB ∽△ACB ,∴BE BF BC AB =, ∴61220BE =, 解得:BE=3.6(cm ),∵AB=20cm ,∴AE=AB-BE=16.4cm ,∴16.48.22t ==; 故答案为:5或8.2.【点睛】本题考查了圆周角定理,三角形中位线定理,相似三角形的性质和判定等知识点,分类讨论是解此题的关键.三、解答题21.(1)四边形ABCE ;(2)13或10;(2)3【分析】(1)根据勾股定理分别求出三个三角形的各边长,根据三边对应成比例的三角形相似、“友爱四边形”的定义判断;(2)根据旋转变换的性质、平行线的性质、两角相等的两个三角形相似证明;(3)AM ⊥BC ,根据含30°的直角三角形的特殊性质及勾股定理用AB 表示出AM ,根据三角形的面积公式得到BC ×AB =12,根据相似三角形的性质列式计算,得到答案.【详解】解:(1)∵AB =2,BC =1,AD =4,∴由勾股定理得,ACCDAE =CE 5,∴BC AC =AB AE =AC CE , ∴ABC ∽EAC ,∴四边形ABCE 是“友爱四边形”, ∵BC AC ≠AC CD , ∴ABC 与ACD 不相似,∴四边形ABCD 不是“友爱四边形”,故答案为:四边形ABCE ;(2)∵AC 平分∠BCD ,∴∠ACB=∠ACD ,当∠B=∠DAC 时,ABC ∽DAC , 则BC AC =AB AD =AC CD, ∵2AB =,3BC =,4AC =, ∴34=2AD =4CD, 解得AD =83,CD =163, ∴友爱四边形ABCD 的周长为816321333+++=; 当∠B=∠D 时,ABC ∽ADC , 则BC DC =AB AD =AC AC=1, ∵2AB =,3BC =,4AC =, ∴3DC =2AD=1, 解得AD =2,CD =3,∴友爱四边形ABCD 的周长为233210+++=,综上所述,友爱四边形ABCD 的周长为13或10;(3)如图3,过点A 作AM ⊥BC 于M ,则∠AMB =90°,∵60ABC ∠=︒,∴∠BAM =30°,∴BM =12AB ,∴在Rt △ABM 中,AM =22AB BM - =221()2AB AB - =32AB , ∵ABC 的面积为33, ∴12BC ×32AB =33, ∴BC ×AB =12,∵四边形ABCD 是被BD 分割成的“友爱四边形”,且AB ≠BC ,∴ABD ∽DBC ∴AB BD BD BC=, ∴BD 2=AB ×BC =12,∴BD =12=23.【点睛】本题考查的是相似三角形的判定和性质、旋转变换的性质、三角形的面积计算,掌握相似三角形的判定定理和性质定理、理解“友爱四边形”的定义是解题的关键.22.(1)见解析;(2)见解析【分析】(1)根据相似三角形的判定,只需作出∠Bˊ=∠B 即可得到A B C ''';(2)先根据题意写出已知、求证,再根据相似三角形的性质和角平分线定义可证得ACD A C D '''∠=∠,进而可证得ACD A C D '''∽△△,则有CD AC C D A C=''''=k . 【详解】解:(1)如图所示,A B C '''即为所求.(2)已知:如图,ABC A B C '''∽△△,相似比为k ,CD 、C D ''分别平分ACB ∠,A C B '''∠,求证:CD AC k C D A C ==''''. 证明:∵ABC A B C '''∆∆∽, ∴A A '∠=∠,ACB A C B '''∠=∠,AC k A C ='' ∵CD 、C D ''分别平分ACB ∠,A C B '''∠, ∴12ACD ACB ∠=∠,12A B C C D A '∠∠'='''', ∴ACD A C D '''∠=∠,∵A A '∠=∠,∴ACD A C D '''∽△△, ∴CD AC k C D A C ==''''. 【点睛】 本题考查了基本尺规作图-作与已知角相等的角、相似三角形的判定与性质,解答的关键是熟练掌握相似三角形的判定与性质,注意文字叙述性命题的证明格式.23.(1)见解析;(2)3BC =2;(3)51OD -=. 【分析】(1)由△AOB ≌△AOC ,推出∠C=∠B ,由OA=OC ,推出∠OAC=∠C=∠B ,由∠ADO=∠ADB ,即可证明△OAD ∽△ABD ;(2)如图2中,当△OCD 是直角三角形时,需要分类讨论解决问题;(3)如图3中,作OH ⊥AC 于H ,设OD=x .想办法用x 表示AD 、AB 、CD ,再证明AD 2=AC•CD ,列出方程即可解决问题;【详解】解:(1)在AOB 和AOC △中, OA OA AB AC OB OC =⎧⎪=⎨⎪=⎩,∴AOB AOC △≌△,C B ∴∠=∠,又∵OA OC =,OAC C B ∴∠=∠=∠,而ADO ADB ∠=∠,OAD ABD ∴∽△△.(2)如图:①当90ODC ∠=︒时,BD AC ⊥,OA OC =,AD DC ∴=,BA BC AC ∴==,ABC ∴是等边三角形,在Rt OAD 中,1OA =,30OAD ∠=︒,1122OD OA ∴==, 2232AD OA OD ∴=-=, 23BC AC AD ∴===.②90COD ∠=︒,90BOC ∠=°,22112BC =+=.③OCD ∠显然90≠︒,不需要讨论.综上所述,3BC =或2.(3)如图:作OH AC ⊥于H ,设OD x =,DAO DBA ∽△△,AD OD OA DB AD AB ∴==. 11AD x x AD AB∴==+.AD ∴=,AB =. 又2S 是1S 和3S 的比例中项,2213S S S ∴=⋅, 而212S AD OH =⋅,112OAC S S AC OH ==⋅△,312S CD OH =⋅⨯, 2111222AD OH AC OH CD OH ⎛⎫⎛⎫∴⋅=⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭, 即2AD AC CD =⋅,又AC AB =,CD AC AD =-=, 代入上式可得:210x x +-=,求得x =,经检验,x =OD ∴=. 【点睛】 本题属于圆的综合题、全等三角形的判定和性质、相似三角形的判定和性质、比例中项等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.24.(1)①见解析;②BH CE =,证明见解析;(2)①存在,点P 是边BC 的中点;【分析】(1)①按要求画出图形即可;②根据全等三角形对应边相等来回答;(2)①点P 为直线HE 与BC 的交点;②通过△BPM ∽△BAP 问题可解;【详解】(1)①如图;②BH CE =证明ABH ACE ∆≅∆即可(2)①存在点P 是边BC 的中点,理由:设直线HE 与边BC 交于点P可由60ACB AEP ︒∠=∠=得点,,,A E C P 共圆,因为90AEC ︒∠=,所以90APC ︒∠=,即P 是BC 的中点.②如图, 当MP ⊥HE 时,MP 最大,理由:4,2,1AB BP BM ===, BM BP BP AB ∴=, B B ∠∠=,∴△BPM ∽△BAP ,∴∠BMP=∠BPA=90︒ ,2222213BP BP BP ∴=-=-=【点睛】本题考查等腰三角形的性质,全等三角形的判定和性质,点到直线的距离,旋转,相似三角形的判定和性质,勾股定理和圆的有关知识知识,综合性较强.25.(1)画图见解析;(2)11//CD C D【分析】(1)根据位似图形的性质可以得解;(2)根据位似图形的性质可得解.【详解】(1)如图△A 1B 1C 1就是所求作的图形.分别在射线AO 、BO 、CO 上截取1112OA OA OB OB OC OC ===,,,连结 111,,A B C 即得所作图形;(2)∵在(1)中所画的图形中,△ABC 的中线CD 与111A B C 的中线 11C D 是对应线段, ∴由“位似图形中不经过位似中心的对应线段平行”的性质可以得到:CD ∥11C D .【点睛】本题考查位似图形的应用与作图,熟练掌握位似图形的意义和性质是解题关键. 26.(1)证明见解析;(2)35【分析】(1)连接AO 后交DC 于点H ,交BC 于点G ,由垂径定理可知AG ⊥BC ,然后根据互余关系得到∠HAE=∠HCG ,然后利用平行关系得到∠ADE=∠HCG=∠HAE ,等量代换后可得∠HAE +∠EAD=90°;(2)根据AC 和BE 可算出AE ,然后在Rt △AEC 中算出EC ,然后证明△AED ∽△BEC ,然后利用比例关系算出DE ,在Rt △AED 中计算AD 即可.【详解】解:(1)如图,连接AO 交DC 于点H ,交BC 于点G ,则AG ⊥BC∵AG ⊥BC ,AB ⊥DC ,∠AHE=∠CHG∴∠HAE=∠HCG∵AB⊥DC∴∠ADE+∠EAD=90°∵AD∥BC∴∠ADE=∠HCG=∠HAE∴∠HAE +∠EAD=90°∴AD为O的切线(2)∵AC=AB,AC=5,BE=2∴AE=3在Rt△AEC由勾股定理可得:4EC=∵AD∥BC∴△AED∽△BEC∴BE EC=AE DE∴DE=6在Rt△AED由勾股定理可得:=【点睛】本题主要考查圆的相关定理,掌握切线的证明方法,灵活转化角关系是证明切线的关键,在圆中计算线段长度,找准相似三角形,结合勾股定理,是解题的关键.。

九年级数学相似三角形单元测试题及答案

九年级数学相似三角形单元测试题及答案

九年级数学 相似 单元测试(1)一.选择题(每小题3分,共30分)1.在比例尺为1:5000的地图上,量得甲,乙两地的距离25,则甲,乙的实际距离是( )2.已知0432≠==c b a ,则cb a +的值为 ( )A.54 B.45 C.2 D.213.已知⊿的三边长分别为2,6,2,⊿A ′B ′C ′的两边长分别是1和3,如果⊿及⊿A ′B ′C ′相似,则⊿A ′B ′C ′的第三边长应该是 ( )A.2B.22C.26 D.33 4.在相同时刻,物高及影长成正比。

如果高为1.5米的标杆影长为2.5米,则影长为30米的旗杆的高为 ( )A 20米B 18米C 16米D 15米 5.如图,∠∠90°,要使⊿∽⊿,只要等于 ( )A.cb 2B.ab 2C.cabD.ca 26.一个钢筋三角架三 长分别为20,50,60,现要再做一个及其相似的钢筋三角架,而只有长为30和50的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有 ( )A.一种B.两种C.三种D.四种7、用位似图形的方法,可以将一个图形放大或缩小,位似中心的位置可以选在( )A 原图形的外部B 原图形的内部C 原图形的边上D 任意位置8、如图,□中,∥,∶ = 2∶3, = 4,则的长( ) A . B .8 C .10 D .169、如图,一束平行的光线从教室窗户射入教室的平面示意图,测得光线及地面所成的角∠=︒AMC 30,窗户的高在教室地面上的影长23米,窗户的下檐到教室地面的距离1米(点M 、N 、C 在同一直线上),则窗户的高为 ( )A .3米B .3米C .2米D .1.5米10、某校计划在一块三角形的空地上修建一个面积最大的正方形水池,使得水池的一边在△的边上,△中边60m ,高30m ,则水池的边长应为( )A 10mB 20mC 30mD 40m 二.填空题(每小题3分,共30分) 11、已知43=yx ,则._____=-yy x12、.已知点C 是线段的黄金分割点,且>,则∶.13、.把一矩形纸片对折,如果对折后的矩形及原矩形相似,则原矩形纸片的长及宽之比为.14、如图,⊿中分别是上的点(),当或或时,⊿及⊿相似.15、在△中,∠B=25°,是边上的高,并且2 ·,则∠的度数为。

人教版九年级下册数学《相似》单元测试卷(含答案)

人教版九年级下册数学《相似》单元测试卷(含答案)

人教版九年级下册数学《相似》单元测试卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知a b c k b ca ca b===+++,则直线2y kx k =+一定经过( )A .1第,2象限B .2第,3象限C .3第,4象限D .1第,4象限A .13B .2C .5D .33.若:2:3x y =,则下列各式不成立的是( )A .53x y y += B .13y x y -= C . 123x y = D .1314x y +=+ 4.如图,在平行四边形ABCD 中,4AC =,6BD =,P 是BD 上的任一点,过点P 作EF AC ∥,与平行四边形的两条边分别交于点E 、F ,设BP x =,EF y =,则能反映y 与x 之间关系的图象是( )A .B .C .D . 5.如图,已知ABC ∆中,:1:3AE EB =,:2:1BC CD =,AD 与CE 相交于F ,则AF EFFCFD+的值为( )A .52 B .1 C .32D .2 6.如图,小明站在C 处看甲、乙两楼顶上的点A 和点E C E A ,、、三点在同一直线上,点B D 、分别在点E A 、的正下方,且D B C 、、三点在同一直线上,B C 、相距20米,D C 、相距40米,乙楼BE 高15米,则甲楼AD 的高为(小明身高忽略不计)( )A .40米B . 20米C . 15米D . 30米 7.若a b c t b c c a a b===+++,则一次函数2y tx t =+的图象必定经过的象限是( ) A .第一、二象限 B .第一、二、三象限 C .第二、三、四象限 D .第三、四象限8.若两个相似三角形的面积之比为14∶,则它们的周长之比为( )A .12∶B .14∶C .15∶ D .116∶ 9.某校每位学生上、下学期各选择一个社团,下表为该校学生上、下学期各社团的人数比例.若该校上、下学期的学生人数不变,相较于上学期,下学期各社团B .舞蹈社不变,溜冰社不变C .舞蹈社增加,溜冰社减少D .舞蹈社增加,溜冰社不变A DEFCB10.已知,AB 是⊙O 的直径,且C 是圆上一点,小聪透过平举的放大镜从正上方看到水平桌面上的三角形图案的B ∠(如图所示),那么下列关于A ∠与放大镜中的B ∠关系描述正确的是( )A.090A B ∠+∠=B.=A B ∠∠C.090A B ∠+∠>D.A B ∠+∠的值无法确定二 、填空题(本大题共5小题,每小题3分,共15分)11.如图所示,乐器上的一根弦80AB cm =,两个端点A B ,固定在乐器面板上,支撑点C 是靠近点B 的黄金分割点(即AC 是AB 与BC 的比例中项),支撑点D 是靠近点A 的黄金分割点,则AC = cm ,DC = cm .12.在ABC △和DEF △中,22AB DE AC DF A D ==∠=∠,,,如果ABC △的周长是16,面积是12,那么DEF △的周长、面积依次为 .13.如图,已知梯形ABCD 中,AD BC ∥,对角线AC 、BD 分别交中位线EF 于点H 、G ,且121EG GH HF =∶∶∶∶,那么AD BC ∶等于 .14.如图,在ABC △中,CD 是高,CE 为ACB ∠的角平分线,若15,20,12AC BC CD ===,则CE 的长等于 .15.如图,点1234,,,A A A A 在射线OA 上,点123,,B B B 射线OB 上,且112233A B A B A B ∥∥,CDHGFE DCBA ABCD E21A B ∥32A B 43A B ∥.若212323,A B B A B B △△的面积分别为1,4,则图中三个阴影三角形面积之和为 .三 、解答题(本大题共7小题,共55分)16.已知,如图,四边形ABCD ,两组对边延长后交于E 、F ,对角线BD EF ∥,AC的延长线交EF 于G .求证:EG GF =.17.如图,矩形ABCD 中,3AD =厘米,AB a =厘米(3a >).动点M N ,同时从B 点出发,分别沿B A →,B C →运动,速度是1厘米/秒.过M 作直线垂直于AB ,分别交AN ,CD 于P Q ,.当点N 到达终点C 时,点M 也随之停止运动.设运动时间为t 秒.⑴若4a =厘米,1t =秒,则PM =______厘米;⑵若5a =厘米,求时间t ,使PNB PAD △∽△,并求出它们的相似比; ⑶若在运动过程中,存在某时刻使梯形PMBN 与梯形PQDA 的面积相等,求a 的取值范围;⑷是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN ,梯形PQDA ,梯形PQCN 的面积都相等?若存在,求a 的值;若不存在,请说明理由.4321G FECDBAP N NMQDC BAQPMDCBA18.如图所示,已知四边形BDEF 是菱形,12DC BD =,且4DC =,求AF 的长.19.如图,在ABC △中,AD 平分BAC ∠,AD 的垂直平分线交AD 于E ,交BC 的延长线于F ,求证:2FD FB FC =⋅.20.如图, Rt ABC △中,90C ∠=︒,有一内接正方形DEFC ,连接AF 交DE 于G ,15AC = ,10BC =,求GE .21.如图所示,以长为2的定线段AB 为边作正方形ABCD ,取AB 的中点P ,连接PD ,在BA 的延长线上取点F F ,使PF PD =,以AF 为边作正方形AMEF ,点M 在AD 上.(1)求,AM DM 的长;(2)点M 是AD 的黄金分割点吗?为什么?ABCDEF EFD C B AGABC DEP22.在ABC ∆中,120BAC ∠=︒,AD 平分BAC ∠交BC 于点D ,求证:AD AB AC=+.D CB A人教版九年级下册数学《相似》单元测试卷答案解析一 、选择题1.B;当0a b c ++≠时,根据比例的等比性质,得:()122a b c k a b c ++==++,此时直线为112y x =+,直线一定经过1,2,3象限. 当0a b c ++=时,即a b c +=-,则1k =-,此时直线为2y x =--,即直线必过2,3,4象限.综合两种情况,则直线必过第2,3象限. 【解析】分情况讨论:3.D;根据比例的性质公式:bd b d =⇔=;b d b d=⇔=可知,,A B C 正确,只有D 错误. 4.C;设AC 交BD 于O ,∵四边形ABCD 是平行四边形, ∴132OD OB BD ===,当P 在OB 上时, ∵EF AC ∥,∴BP BF EF OB BC AC ==,∴34x y =,∴43y x =, 当P 在OD 上时,同法可得:DP DF EF OD DC AC ==,∴634x y -=,∴483y x =-+,∵两种情况都是一次函数,图象是直线.故选CPFEDCBA5.C;这类题的解法:找适当的点,作适当的平行线,构造基本图形解题,或者直接运用梅氏定理来解题. 6. D ;BC BECD AD=20BC DB == 15BE = ∴30AD = 7.A;由已知得()b c t a +=;()c a t b +=;()a b t c +=,三式相加得:()2a b c t a b c ++=++,①当0a b c ++≠时,12t =;②当0a b c ++=时,a b c +=-,1t =-. ∴一次函数2y tx t =+为1y x =-+或1124y x =+ ∵1y x =-+过第一、二、四象限;1124y x =+过第一、二、三象限; ∴一次函数2y tx t =+的图象必定经过的象限是第一、二象限.【解析】先根据等式求出t 的值,从而得到一次函数的解析式,再根据一次函数的性质分析经过的象限即可.(注意有两种情况). 8.A10.A二 、填空题11.40;点C 是靠近点B 的黄金分割点,∴:AC AB =,即8040AC AB ==,又∵点D 是靠近点A 的黄金分割点,∴160-40BD =,∴8080160DC AC BD AB =+-=-=12.8;3【解析】根据已知可证ABC DEF △∽△,且ABC △和DEF △的相似比为2,再根据相似三角形周长的比等于相似比,面积的比等于相似比的平方即可求DEF △的周长、面积.13.1∶3;∵根据平行线分线段成比例定理可得:EG 、GF 分别是ABD △和DBC △的中位线.那么2AD EG =,2BC GF =. ∴:21:[221]1:3AD BC =⨯⨯+=()()由勾股定理知9,16AD BD ==.所以,25AB AD BD =+=. 故由勾股定理的逆定理知ACB △为直角三角形,且90ACB ∠=︒. 作EF BC ⊥,垂足为F .设EF x =.由1452ECF ACB ∠=∠=︒,得CF x =.于是,20BF x =-. 因为EF AC ∥,所以,EF BF AC BC =,即206015207x x x -=⇒=.因此,7CE ==.15.10.5∵212A B B △,323A B B △的面积分别为1,4 又∵22332132,A B A B A B A B ∥∥ ∴2233212323,OB A OB A A B B A B B ∠=∠∠=∠ ∴122233B B A B B A △∽△ ∴1222233312B B A B B B A B == FE DCBA∴233412A A A A = ∵22323322323331,4A B A B A B S A B A B B S A B ==△△△的面积是4 ∴223323122A B A A B B S S ==△△(等高的三角形的面积的比等于底边的比)同理可得:3343232248A B A A B B S S ==⨯=△△,1122121110.522A B A A B B S S ==⨯=△△∴三个阴影面积之和为0.52810.5++=.【解析】由平行得到相似的三角形.已知212A B B △△A 2B 1B 2,323A B B △的面积分别为1,4,且两三角形相似,因此可得出223312A B A B =,由于223A B A △与233B A B △是等高不等底的三角形,所以面积之比即为底之边比,因此这两个三角形的面积比为1:2,根据323A B B △的面积为4,可求出223A B A △的面积,同理可求出334A B A △和112A B A △的面积.即可求出阴影部分的面积.三 、解答题16.证法一:过C 作MN EF ∥交AE 、AF 于M N ,, 则有MC EM FN CNBD EB FD BD===, ∴MC CN =, 又∵MN EF ∥, ∴MC AC CNEG AG GF==, ∴EG GF =.证法二:由塞瓦定理的充分性可得:1EG FD AB GF DA BE ⋅⋅=.又因为AB ADBE DF=,代入上式得1EG FD AD GF DA DF ⋅⋅=,即1EGGF=.所以.EG GF =NM G FECD B A17.⑴ 34PM =,⑵ 2t =,使PNB PAD △∽△,相似比为3:2⑶ ∵PM AB CB AB AMP ABC ∠=∠⊥,⊥,,AMP ABC △∽△,∴PM AM BN AB =即PM a t t a -=,∵()t a t PM a -=, ∵(1)3t a QM a-=- 当梯形PMBN 与梯形PQDA 的面积相等,即()()22QP AD DQ MP BN BM ++= ()33(1)()22t a t t a a t t t a a -⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭==化简得66a t a =+, ∵3t ≤,∴636a a+≤,则6a ≤,∴36a <≤, ⑷ ∵36a <≤时,梯形PMBN 与梯形PQDA 的面积相等∴梯形PQCN 的面积与梯形PMBN 的面积相等即可,则CN PM = ∴()3ta t t a -=-,把66a t a=+代入,解之得a =±a = 所以,存在a,当a =PMBN 与梯形PQDA 的面积、梯形PQCN 的面积相等.18.由平行线的性质能判定AFE △和EDC △的任意两个角相等,证明AFE EDC△∽△得到对应线段成比例21FE AF DC DE ==,4DC =,8FE DE BD BF ====,所以16AF =. 19.连接AF∵EF 垂直平分AD ,∴AF DF =,∴4DAF ∠=∠,即423∠=∠+∠,又∵41B ∠=∠+∠,∴231B ∠+∠=∠+∠,∵AD 平分BAC ∠,∴12∠=∠,∴3B ∠=∠,4321AEB DC F又∵CFA AFB ∠=∠,∴CFA AFB ∆∆∽,∴2FA FC FB =⋅.又∵AF DF =,∴2FD FB FC =⋅20.设正方形的边长为a ,则15-AD a =∵DE BC ∥ ∴AD DE AC BC = 15-1510a a = 解得6a =又在AFB △中GE BF ∥ 有GE AE DE BF AB BC==, GE AD BP AC =∴9415GE = 125GE =21.1,3AM DM =M 是AD 的黄金分割点.(1)在Rt APD △中,1,2AP AD ==,由勾股定理知:PD ==∴1AM AF PF AP PD AP ==-=-,3DM AD AM =-=故1,3AM DM ==(2)点M 是AD 的黄金分割点.由于AM DM AD AM = ∴点M 是AD 的黄金分割点.【解析】(1)要求AM 的长,只需求得AF 的长,又AF PF AP =-,PF PD ==1,3AM AF DM AD ===(2)根据(1)中的数据得:,AM DM AD AM =根据黄金分割点的概念,则点M 是AD 的黄金分割点.22.解法一:本题可根据角平分线类相似的模型首先试着作出辅助线:过点D 作AB 的平行线,由于所给120BAC ∠=︒平分之后有两个60的特殊角,可判定ADE △为等边三角形,再根据相似和平行导出线段的比例关系,最关键的一步是,将所得的两组线段整体相加,得到一个新的等式,最后发现问题得证.解法二:分别以,AB AC 为边向外作两个等边三角形,即ABM △和ACN △,由平分后的角度为60,可轻易证明AD BM CN ∥∥得到两组比例线段CD AD BC BM=和BD AD BC CN=,两者相加后又重新得到一个新的等式,再根据等边三角形的特点代换相等的线段,最后问题也得证. (本题只给出第一种解法的步骤).【解析】过点D 作AB 的平行线,交AC 于点E . ∵120BAC ∠=︒,BAD CAD ∠=∠, ∴60BAD CAD ∠=∠=︒∵DE AB ∥,∴60ADE BAD ∠=∠=︒∴AD AE DE == ∵DE CD DE AB AB BC ⇒=∥,AE BD AC BC = ∴1DE AE CD BD AB AC BC BC+=+= 等式两边同除以AD ,则有:111AB AC AD += E D C B ANM DC B A。

九年级数学(下)第二十七章《相似》单元测试含答案

九年级数学(下)第二十七章《相似》单元测试含答案

c b a 第2题图n m F E D C B A 第3题图E D C B A第4题图F E D C B A 第7题图PD C BA E 第8题图DC B A九年级数学(下)第二十七章《相似》单元测试一、 选择题:(本大题共12小题,每小题2分,共24分)1.下列四组线段中,不能成比例的是.A. a =3,b =6,c =2,d =4B. a =1,b =3,c =4,d =12C. a =4,b =6,c =5,d =10D. a =2,b =3,c =4,d =62.如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于A 、C 、E 、B 、D 、F , AC =4,CE =6,BD =3,则BF =.A. 7B. 7.5C. 8D. 8.53.如图,在△ABC 中,已知DE ∥BC ,AD =3,DB =6,DE =2,则BC =. A. 4 B. 6 C. 10 D. 84.如图,E 是□ABCD 的边BC 的延长线上的一点,连接AE 交CD 于F ,则图中共有相似三角形.A. 1对B. 2对C. 3对D. 4对 5.把一张矩形的纸片对折后和原矩形相似,那么大矩形与小矩形的相似比是. A. ∶1 B. 4∶1 C. 3∶1 D. 2∶1 6.已知a 、b 、c 为正数,且===k ,下列四个点中,在正比例函数y =k x 的图像上的是. A.(1,) B.(1,2) C.(1,-) D.(1,-1)7.如图,已知AB ∥CD ,AD 与BC 相交于点P ,AB =4,CD =7,AD =10,则AP 的长等于. A. B. C. D.8.如图,在△ABC 中,∠BAC =90°,D 是BC 中点, AE ⊥AD 交CB 的延长线于E ,则下列结论正确的是 A.△AED ∽△ACB B. △AEB ∽△ACDC.△BAE ∽△ACED.△AEC ∽△DAC9.要作一个多边形与已知多边形相似,且使面积 扩大为原来16倍,那么边长为原来.A. 2倍B. 3倍C. 4倍D. 5倍10.在Rt △ABC 中,∠ACB =90°,CD 为AB 边上的高,则下列结论:①AC 2=AD ·AB ; ②CD 2=AD ·BD ;③BC 2=BD ·AB ;④CD ·AD =AC ·BC ;⑤=.第10题图D C BA 第11题图第12题图F ED C B A第14题图E D C B A第16题图ED C B A 第15题图E D C B A QKGF D AG D A E D A正确的个数有.A.2个B.3个C.4个D.5个11.如图,△ABC 中,A 、B 两个顶点在x 轴的上方,点C 的坐标是(-1,0),以点C为位似中心,在x 轴的下方作△ABC 的位似图形△A /B /C ,并把△ABC 的边长放大到原来的2倍.设点B 的对应点B /的横坐标是a ,则点B /的横坐标是. A. -a B. - C. - D. -12.如图,已知正方形ABCD 的边长为4,E 是BC 边上的一个动点,AE ⊥EF ,EF 交DC于点F ,设BE =x ,FC =y ,则当点E 从点B 运动到点C 时,关于x 的函数图像是二、填空题:(本大题共10小题,每小题2分,共20分)13.如果两个相似三角形的面积比是1∶2,那么它们对应边的比是. 14.如图,DE 是△ABC 的中位线,已知=2,则四边形BCED 的面积为.15.如图,在矩形ABCD 中,AB =2,BC =1,E 是DC 上一点,∠DAE =∠BAC , 则EC 长为.16.顶角为36°的等腰三角形称为黄金三角形,如图,△ABC 、△BDC 、△DEC 都是黄金的三角形,已知AB =1,则DE =.17.如图,Rt △ABC 内有三个内接正方形,DF =9cm ,GK =6cm ,则第三个正方形的边长PQ 的长是.第22题图P E D C B A 第23题图D C B A P M F D C18.如图,已知△ABC 中,若BC =6,△ABC 的面积为12,四边形DEFG 是△ABC 的内接的正方形,则正方形DEFG 的边长是.19.如图,以A 为位似中心,将△ADE 放大2倍后,得位似形△ABC ,若S 1表示△ADE的面积,S 2表示四边形DBCE 的面积,则S 1∶S 2=.20.直角三角形的两条直角边的长分别为a 和b ,则它的斜边上的高与斜边比为21.如图,直角坐标系中,矩形OABC 的顶点O 是坐标原点,边OA 在x 轴上,OC 在y轴上,如果矩形OA /B /C /与矩形OABC 关于点O 位似,且矩形OA /B /C /的面积等于矩形OABC 面积的,那么点B /的坐标是.22.△ABC ≌Rt △ADE ,∠A =90°,BC 和DE 交于点P ,若AC =6,AB =8, 则点P 到AB 边的距离是. 三、解答题:(本大题共56分)23.(6分)如图,点C 、D 在线段AB 上,△PCD 是等边三角形. ⑴当AC 、CD 、DB 满足怎样的关系式时,△ACP ∽△PDB ? ⑵当△ACP ∽△PDB 时,求∠APB 的度数.24.(10分)如图,在梯形ABCD 中,AB ∥CD ,且AB =2CD ,E 、F 分别是AB 、BC 的中点,EF 与BD 相交于点M. ⑴求证:△EDM ∽△FBM ; ⑵若DB =9,求BM.第26题图B25.(10分)已知△ABC 的三边长分别为20cm 、50cm 、60cm ,现要利用长度分别为30cm和60cm 的细木条各一根,做一个三角形木架与△ABC 相似,要求以其中一根为一边,将另一根截成两段(允许有余料)作为另外两边,求另外两边的长度(单位:cm )26.(10分)如图,在△ABC 中,∠ACB =90°,以BC 上一点O 为圆心,OB 为半径的圆交AB 于点M ,交取于点N , ⑴求证:BA ·BM =BC ·BN ;⑵如果CM 是⊙O 的切线,N 是OC 的中点,当AC =3时,求AB 的值.第27题图F E D C BAC27.(10分)如图,已知△ABC ,延长BC 到D ,使CD =BC ,取AB 的中点F ,连结FD 交AC于点E. ⑴求AE ∶AC 的值;⑵若AB =a ,FB =EC ,求AC 的长.28.(10分)如图,在△ABC 中,AB =10cm ,BC =20cm ,点P 从点A 开始沿AB 边向B点以2cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以4cm/s 的速度移动,如果点P 、Q 分别从A 、B 同时出发,问经过几秒钟,△PBQ 与△ABC 相似.F第22题图PE DC B A第23题图DC BA P D C第11题图第12题图F EDCBA参考答案:一、 选择题:1.C ;2.B ;3.B ;4.C ;5.A ;6.A ;7.C ;8.C ;9.C ;10.C ;11.D ;12.A ; 二、填空题:13. 1∶;14. 6;15. 25;16.;17. 4cm ;18. 2.4;19. 1∶3;20.;21.(3,2)或(-3,-2);22.;11.解:把图形向右平移1个单位长度,则点C 的坐标 与原点O 重合,与B /的对应点B //的横坐标变为a +1,此时△ABC 以原点O 为位似中心的位似图形是△A //B //C ,则与点B //对应的点的横坐标为-(a +1) 一个单位,则得到B 的横坐标为-(a +1.选择D.12.解:特别的,当BE =0和4时,FC =0.当0<BE <4时,易证: Rt △ABE ∽Rt △ECF ∴= ∴=∴y =x 2+x ∴y 是x 的函数.当x =2时,y 有最大值,最大值是1. 选择A. 22题:解:作PF ⊥AB 于点F设PF =x ,由题意:BE =CD =2, ∴Rt △EFP ∽Rt △EAD. ∴=∴EF =x∴Rt △BFP ∽Rt △BAC ∴=∴=∴x =三、解答题:23.解:⑴∵△PCD 是等边三角形∴∠PCD =∠PDC =60°PC =PD =CD ∴∠PCA =∠PDB =120° ∴当AC 、CD 、DB 满足 CD 2=AC ·BD即 = 时,△ACP ∽△PDB⑵当△ACP ∽△PDB 时由∠A =∠BPD ,∠B =∠APC∴∠PCD =∠A +∠APC =60°=∠A +∠B ∠PDC =∠B +∠BPD =60°∴∠APB =60°+∠APC +∠BPD =60°+60°-∠A +∠60°-∠B =180°-(∠A +∠B )=180°-60°=120° 24.解:⑴∵AB =2CD AE =BEB G第27题图F E D C B APA ∴CD =BE又∵AB ∥CD ∴CD ∥BE 且CD =BE ∴四边形EBCD 是平行四边形 ∴DE ∥BC∴△EDM ∽△FBM ⑵∵△EDM ∽△FBMFB =BC =DE ∴==∴=∴= ∴BM =3.25.解:⑴如果将长度为60cm 木条作为其中一边,把30cm 木条截成两段,其三角形不存在;⑵如果将长度为30cm 的木条作为其中一边,把60cm 的木条截成两边,则:①将30cm 的木条作最长边,于是有 == 三边成比例.此时三角形木架与△ABC 相似;②将30cm 的木条作为第二长的边,于是有 == 三边成比例,此时三角形木架与△ABC 相似;③将30cm 的木条作为最短边,则三边对应不成比例; 因此,另外两边的长度分别为10cm 、25cm 或12cm 、36cm.26.解:⑴证明:连NM∵NB 是⊙O 的直径 ∴NM ⊥BM 在△ACB 和△NMB 中∠ACB =∠NMB =90°∠ABC =∠NBM ∴△ACB ∽△NMB∴= 即 BA ·BM =BC ·BN ⑵连OM ∵CM 是⊙O 的切线 ∴CM ⊥OM ∴△CMO 是直角三角形 ∵CN =ON ∴MN =OC =ON ∵ON =OM ∴△OMN 是等边三角形 ∴∠MON =60°∵OM =OB ∴∠B =30°∴在Rt △ACB 中,AB =6. 27.解:⑴证明:过点C 作CG ∥AB 交DF 于G则 △EAF ∽△ECG △DCG ∽△DBF ∴==又∵AF =BF ∴= ∵BC =CD ∴= ∴= 即=⑵∵AB =a ,BF =AB =a ,又∵FB =EC ,∴EC =a ∵= ,∴AC =3EC =a.28.解:设经过t s 时,△PBQ ∽△ABC ,则 AP =2t ,BQ =4t ,BP =10-2t⑴ 如图①第28题图②QPCBA 当△PBQ ∽△ABC 时,有 =即 =∴t =2.5⑵ 如图②当△QBP ∽△ABC 时,有= 即 = ∴t =1综合以上可知:经过2.5秒或1秒时, △QBP 和△ABC 相似.。

数学相似单元测试题及答案

数学相似单元测试题及答案

数学相似单元测试题及答案一、选择题(每题2分,共20分)1. 如果两个三角形的对应边成比例,那么这两个三角形是相似的。

这个说法是:A. 正确B. 错误2. 三角形ABC与三角形DEF相似,且AB:DE = 1:2,那么AC:DF的比例是:A. 1:2B. 2:1C. 1:4D. 4:13. 在相似三角形中,对应角相等,对应边成比例。

这个说法是:A. 正确B. 错误4. 如果一个三角形的三个角分别是60度、40度和80度,那么这个三角形是:A. 直角三角形B. 锐角三角形C. 钝角三角形B. 等边三角形5. 根据相似三角形的性质,如果两个三角形的面积比为1:9,那么它们的对应边长比是:A. 1:3B. 1:√3C. 3:1D. √3:1二、填空题(每题2分,共20分)6. 如果三角形ABC与三角形DEF相似,且相似比为2:3,那么三角形ABC的面积与三角形DEF的面积比是________。

7. 在直角三角形中,如果斜边与一条直角边的比是5:3,那么另一条直角边与斜边的比是________。

8. 已知三角形ABC的三边长分别为3、4、5,那么三角形ABC与三角形DEF相似的条件是DEF的三边长分别为________。

9. 如果一个三角形的内角和为180度,那么这个三角形的外角和是________。

10. 相似三角形的对应高线之比等于________。

三、解答题(每题30分,共60分)11. 已知三角形ABC与三角形DEF相似,且AB = 6cm,BC = 8cm,DE = 9cm。

求三角形DEF的边长DF。

12. 一个三角形的底边长为10cm,高为6cm,求这个三角形与一个底边长为20cm的相似三角形的面积比。

答案:一、选择题1. A2. A3. A4. B5. B二、填空题6. 4:97. 3:58. 6cm, 8cm, 10cm9. 360度10. 相似比的平方三、解答题11. 由于三角形ABC与三角形DEF相似,且AB:DE = 6:9 = 2:3,根据相似三角形的性质,对应边成比例,所以DF = (3/2) * BC = (3/2) * 8cm = 12cm。

人教版九年级下《27.2相似三角形》同步练习(有答案)

人教版九年级下《27.2相似三角形》同步练习(有答案)

相似三角形同步练习一、选择题1.在△ABC与△A′B′C′中,有下列条件:,;(3)∠A=∠A′;(4)∠C=∠C′,如果从中任取两个条件组成一组,那么能判断△ABC∽△A′B′C′的共有()A. 1组B. 2组C. 3组D. 4组2.如图在△ABC中,DE//FG//BC,AD:AF:AB=1:3:6,则S△ADE:S四边形DEGF:S四边形FGCB=()A. 1:8:27B. 1:4:9C. 1:8:36D. 1:9:363.如图所示,四边形ABCD是正方形,E是CD的中点,P是BC边上的一点,下列条件:①∠APB=∠EPC;②∠APE=∠APB;③P是BC的中点;④BP:BC=2:3,其中能推出△ABP∽△ECP的有()A. 1个B. 2个C. 3个D. 4个4.如图,直角△ABC中,∠B=30∘,点O是△ABC的重心,连接CO并延长交AB于的值为()点E,过点E作EF⊥AB交BC于点F,连接AF交CE于点M,则MOMFA. 12B. √54C. 23D. √335.如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=30m,EC=15m,CD=30m,则河的宽度AB长为()A.90mB. 60mC. 45mD. 30m6.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm 时,则AB的长为()A. 7.2cmB. 5.4cmC. 3.6cmD. 0.6cm7.如图,已知在Rt△ABC中,∠ABC=90∘,点D沿BC自B向C运动(点D与点B、C不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值()A.不变B. 增大C. 减小D. 先变大再变小8.如图△ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直线AG分别交DE、BC于M、N两点.若∠B=90∘,AC=5,BC=3,DG=1,则BN的长度为()A.43B. 32C. 85D. 1279.如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是()A.√5B. 136C. 1D. 5610.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN的,其中正确结论的个数是()最小值是12A. 2B. 3C. 4D. 5二、填空题11.在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE=______时,以A、D、E为顶点的三角形与△ABC相似.12.如图,△ABC中,D、E分别在AB、AC上,DE//BC,AD:AB=1:3,则△ADE与△ABC的面积之比为______.13.在△ABC中,AB=6cm,点P在AB上,且∠ACP=∠B,若点P是AB的三等分点,则AC的长是______.14.如图,矩形ABCD中,点E是边AD的中点,BE交对角线AC于点F,则△AFE与△BCF的面积比等于______.15.如图,梯形ABCD中,AD//BC,且AD:BC=1:3,对角线AC,BD交于点O,那么S△AOD:S△BOC:S△AOB=______.三、计算题16.如图,在△ABC中,∠C=90∘,在AB边上取一点D,使BD=BC,过D作DE⊥AB交AC于E,AC=8,BC=6.求DE的长.17.如图,在矩形ABCD,AB=1,BC=2,点E在AD上,且ED=3AE.(1)求证::△ABC∽△EAB.(2)AC与BE交于点H,求HC的长.18.小亮同学想利用影长测量学校旗杆AB的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上BD处,另一部分在某一建筑的墙上CD处,分别测得其长度为9.6米和2米,求旗杆AB的高度.【答案】1. C2. A3. B4. D5. B6. B7. C8. D9. D 10. D 11. 125或53 12. 1:9 13. 2√3cm 或2√6cm14. 1415. 1:9:316. 解:在△ABC 中,∠C =90∘,AC =8,BC =6, ∴AB =√AC 2+BC 2=10,(2分)又∵BD =BC =6,∴AD =AB −BD =4,(4分) ∵DE ⊥AB ,∴∠ADE =∠C =90∘,(5分) 又∵∠A =∠A ,∴△AED∽△ABC ,(6分)∴DE BC =ADAC ,(7分)∴DE =AD AC⋅BC =48×6=3.(8分) 17. (1)证明:∵四边形ABCD 是矩形,∴AB =CD =1,BC =AD =2,∠ABC =∠BAD =90∘, ∵ED =3AE ,∴AE =12,ED =32,∵AB AE =2,BC AB =2,∴AB AE =BC AB ,∵∠ABC =∠BAE =90∘,∴△ABC∽△EAB .(2)解:∵△ABC∽△EAB ,∴∠ACB =∠ABE ,∵∠ABE +∠CBH =90∘,∴∠ACB +∠CBE =90∘,∴∠BHC =90∘,∴BH ⊥AC ,在Rt△ACB中,∵∠ABC=90∘,AB=1,BC=2,∴AC=√AB2+BC2=√12+22=√5,∵12⋅AB⋅BC=12⋅AC⋅BH,∴BH=AB⋅BCAC =2√55,∴CH=√CB2−BH2=4√55.18. 解:如图,∵某一时刻立1米长的标杆测得其影长为1.2米,∴CD:DF=1:1.2,∴DF=1.2CD=1.2×2=2.4,∴BF=BD+DF=9.6+2.4=12,∵AB:BF=1:1.2,∴AB=12×11.2=10.答:旗杆AB的高度为10m.。

人教版九年级数学下《第27章相似》单元同步检测试题附答案

 人教版九年级数学下《第27章相似》单元同步检测试题附答案

人教版九年级数学下《第27章相似》单元同步检测试题附答案完成时间:120分钟满分:150分姓名成绩一、选择题(本大题10小题,每小题4分,共40分。

每小题给出的四题号 1 2 3 4 5 6 7 8 9 10答案1.观察下列每组图形,相似图形是()A. B. C. D.2.用一个10倍的放大镜看一个15°的角,看到的角的度数为()A.150°B.105°C.15°D.无法确定大小3.已知四条线段的长度分别为2,x-1,x+1,4,且它们是成比例线段,则x的值为()A.2 B.3 C.-3 D.3或-34.如图,在大小为4×4的正方形网格中,是相似三角形的是()A.①和②B.②和③C.①和③D.②和④5.如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,则DE的长为()A.6 B.8 C.10 D.12第5题图第6题图第7题图6.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABC C.APAB=ABAC D.ABBP=ACCB7.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF∶FC等于()A.3∶2 B.3∶1 C.1∶1 D.1∶28.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半得分评卷人圆分别与AC 、BC 相切于点D 、E ,则AD 为( ) A .2.5 B .1.6 C .1.5 D . 1第8题图 第9题图9.如图,在▱ABCD 中,AC ,BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD 于点F ,已知S △AEF =4,则下列结论:①AFFD=12;②S △BCE =36;③S △ABE =12;④△AEF ~△ACD ,其中一定正确的是( )A .①②③④B .①④C .②③④D .①②③10.如图,矩形ABCD 中,AB =3,BC =4,点P 从A 点出发,按A →B →C 的方向在AB 和BC 上移动,记PA =x ,点D 到直线PA 的距离为y ,则y 关于x 的函数图象大致是( )A B C D 5分,共20分)11.如图,在△ABC 中,MN ∥BC 分别交AB ,AC 于点M ,N.若AM =1,MB =2,BC =3,则MN 的长为 .第11题图 第12题图 第13题图 第14题图12.如图,已知零件的外径为25 mm ,现用一个交叉卡钳(两条尺长AC 和BD 相等,OC =OD)量零件的内孔直径AB.若OC ∶OA =1∶2,量得CD =10 mm ,则零件的厚度x = mm. 13.如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上.若幻灯片到光源的距离为20 cm ,到屏幕的距离为40 cm ,且幻灯片中图形的高度为6 cm ,则屏幕上图形的高度为 cm .14.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和得 分 评卷人谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为.三、解答题(共90分)15.(10分)如图,A、B、C、P四点均在边长为1的小正方形网格格点上.(1)判断△PBA与△ABC是否相似,并说明理由;(2)求∠BAC的度数.16.(10分)如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度.17.(10分)如图,等边△ABC的边长为3,P为BC上一点,且BP=1,D为AC上得分评卷人一点,若∠APD=60°,求CD的长.18.(12分)如图,△ABC中,∠ACB=90°,AB的垂直平分线交AB于D,交AC于点E,交BC延长线于F.求证:CD2=DE·DF.19.(12分)如图,已知CE是Rt△ABC的斜边AB上的高,BG⊥AP.求证:CE2=ED·EP.20.(12分)如图,AB⊥BD,CD⊥BD,AB=6cm,CD=4cm,BD=14cm,点P在BD上由点B向点D方向移动,当点P移到离点B多远时,△APB和△CPD相似?21.(12分)如图,矩形ABCD中,AB=20,BC=10,点P为AB边上一动点,DP交AC 于点Q.(1)求证:△APQ∽△CDQ;(2)P点从A点出发沿AB边以每秒1个单位长度的速度向B点移动,移动时间为t秒.当t为何值时,DP⊥AC?22.(12分)如图,在△ABC中,∠ACB=90°,CD是斜边AB上的高,G是DC延长线上一点,过B作BE⊥AG,垂足为E,交CD于点F.求证:CD2=DF·DG.人教版九年级数学第27章《相似》单元同步检测试题参考答案完成时间:120分钟满分:150分得分评卷人姓名成绩一、选择题(本大题10小题,每小题4分,共40分。

人教版九年级数学下册 第27章《相似》单元测试题及答案

人教版九年级数学下册 第27章《相似》单元测试题及答案

人教版九年级数学下册第27章《相似》单元测试题时间:120分钟满分:120分题号一二三四五六总分得分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.下列各组线段(单位:cm)中,成比例线段的是( ) A.1,2,3,4 B.1,2,2,4C.3,5,9,13 D.1,2,2,32.如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是()A.4B.4.5C.5D.5.5 3.已知△ABC∽△DEF,且AB∶DE=1∶2,则△ABC的面积与△DEF的面积之比为( )A.1∶2 B.4∶1 C.2∶1 D.1∶44下列四组图形中,一定相似的图形是( )A.各有一个角是30°的两个等腰三角形B.有两边之比都等于2∶3的两个三角形C.各有一个角是120°的两个等腰三角形D.各有一个角是直角的两个三角形5.如图,正方形ABCD 中,M 为BC 上一点,ME ⊥AM ,ME 交AD 的延长线于点E .若AB =12,BM =5,则DE 的长为( )A .18 B.1095 C.965 D.2536.如图,在锐角△ABC 中,BC =6,S △ABC =12,两动点M ,N 分别在边AB ,AC 上滑动,且MN ∥BC ,MP ⊥BC ,NQ ⊥BC ,得矩形MPQN .设MN 的长为x ,矩形MPQN 的面积为y ,则y 关于x 的函数图象大致形状是( )二、填空题(本大题共6小题,每小题3分,共18分) 7.如图,已知点B ,E ,C ,F 在同一条直线上,∠A =∠D ,要使△ABC ∽△DEF ,还需添加一个条件,你添加的条件是____________(只需写一个条件,不添加辅助线和字母).8.《孙子算经》是我国古代重要的数学著作,成书于约一千五百年前,其中有道歌谣算题:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问杆长几何?”歌谣的意思是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五,同时立一根一尺五的小标杆,它的影长五寸(提示:仗和尺是古代的长度单位,1丈=10尺,1尺=10寸),可以求出竹竿的长为________尺.9.若△ABC与△DEF相似且面积之比为25:16,则△ABC与△DEF的周长之比为 __________ .10.如图,线段AB的两个端点坐标分别为A(1,1),B(2,1),以原点O为位似中心,将线段AB放大后得到线段CD,若CD=2,则端点C的坐标为__________ .11.如图将正方形与直角三角形纸片按如图所示方式叠放在一起,已知正方形的边长为20cm,点O为正方形的中心,AB=5cm,则CD的长为cm.12.如图,平面直角坐标系中,已知点A(4,0)和点B(0,3),点C是AB的中点,点P在折线AOB上,直线CP截△AOB,所得的三角形与△AOB相似,那么点P的坐标是________________________.三、(本大题共5小题,每小题6分,共30分)13.如图,四边形ABCD∽四边形A′B′C′D′,求x,y的值和α的大小.14.如图,已知△ABC中,AB=20,BC=14,AC=12,△ADE与△ACB相似,∠AED=∠B,DE=5.求AD,AE的长.15.如图所示,已知AB∥CD,AD,BC相交于点E,F为BC上一点,且∠EAF=∠C.求证:(1) ∠EAF=∠B;(2) AF2=FE·FB.16如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2;(1)把△ABC绕点O顺时针旋转90°得到△A1B1C1;(2)以图中的O为位似中心,在△A1B1C1的同侧将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2.17.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度.四、(本大题共3小题,每小题8分,共24分)18.如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△AC D∽△BFD;(2)当tan∠ABD=1,AC=3时,求BF的长.19.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.(1)求证:BC是⊙O切线;(2)若BD=5,DC=3,求AC的长.20.一天晚上,李明和张龙利用灯光下的影子来测量一路灯CD的高度,如图,当李明走到点A处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m.已知李明直立时的身高为1.75m,求路灯CD的高.五、(本大题共2小题,每小题9分,共18分)21.如图,在边长为2的圆内接正方形ABCD中,AC是对角线,P为边CD的中点,延长AP交圆于点E.(1)∠E= 度;(2)写出图中现有的一对不全等的相似三角形,并说明理由;(3)求弦DE的长.22.一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图①,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1) 求证:△AEF∽△ABC;(2) 求这个正方形零件的边长;(3) 如果把它加工成矩形零件如图②,问这个矩形的最大面积是多少?六、(本大题共12分)23.如图,在平面直角坐标系xOy 中,抛物线y =-16x2+bx +c 过点A(0,4)和C(8,0),P(t ,0)是x 轴正半轴上的一个动点,M 是线段AP 的中点,将线段MP 绕点P 顺时针旋转90°得线段PB ,过点B 作x 轴的垂线,过点A 作y 轴的垂线,两直线相交于点D. (1) 求b ,c 的值;(2) 当t 为何值时,点D 落在抛物线上;(3) 是否存在t ,使得以A ,B ,D 为顶点的三角形与△AOP 相似?若存在,求此时t 的值;若不存在,请说明理由.答案与解析 一、1.B 2.B 3.D 4.C 5.B6.B 解析:如图,过点A 作AD ⊥BC 于点D ,交MN 于点E .∵在锐角△ABC 中,BC =6,S △ABC =12,∴AD ·BC 2=AD ×62=12,解得AD =4.由MN ∥BC ,MP ⊥BC ,NQ ⊥BC ,AD ⊥BC ,易得四边形MPDE 为矩形,∴MP =ED .∵MN ∥BC ,∴△AMN ∽△ABC ,∴AE AD =MN BC ,即AE 4=x6,解得AE =2x 3,∴ED =AD -AE =4-2x 3,∴MP =4-2x3,∴矩形MPQN 的面积y =MN ·MP =x ⎝⎛⎭⎪⎫4-2x 3=-23x 2+4x =-23(x -3)2+6,∴y 关于x 的函数是二次函数,其函数图象的顶点坐标是(3,6).故选B.二、7.∠B =∠DEC (答案不唯一) 8.45 9. 5:410.10.(2,1) 11 .2012.⎝ ⎛⎭⎪⎫0,32或(2,0)或⎝ ⎛⎭⎪⎫78,0 解析:∵点A 的坐标为(4,0),点B 的坐为(0,3),∴OA =4,OB =3,∴AB =32+42=5.当PC ∥OA 时,△BPC ∽△BOA .∵点C 是AB 的中点,∴P 为OB 的中点,此时点P 的坐标为⎝⎛⎭⎪⎫0,32;当PC ∥OB 时,△ACP ∽△ABO .∵点C 是AB 的中点,∴P 为OA 的中点,此时点P 的坐标为(2,0);当PC ⊥AB 时,如图所示.∵∠CAP =∠OAB ,∠ACP =∠AOB =90°,∴△APC ∽△ABO ,∴AC OA =APAB.∵点C 是AB 的中点,∴AC =52,∴524=AP 5,∴AP =258,∴OP =OA -AP=4-258=78,此时点P 的坐标为⎝ ⎛⎭⎪⎫78,0.综上所述,满足条件的点P的坐标为⎝ ⎛⎭⎪⎫0,32或(2,0)或⎝ ⎛⎭⎪⎫78,0.三、13.解:∵四边形ABCD ∽四边形A ′B ′C ′D ′,∴x 8=y 11=96,∠C =α,∠D =∠D ′=140°,(3分)∴x =12,y =332,α=∠C =360°-∠A -∠B -∠D =360°-62°-75°-140°=83°.(6分)14.15.证明:(1)∵AB ∥CD ,∴∠B =∠C ,又∠C =∠EAF ,∴∠EAF =∠B(2)∵∠EAF =∠B ,∠AFE =∠BFA ,∴△AFE ∽△BFA ,则AF BF =FEFA,∴AF 2=FE ·FB16.解:(1)如图,△A 1B 1C 1为所作; (2)如图,△A 2B 2C 2为所作.17.解:由题意可得:△DEF ∽△DCA , 则ACEFDC DE =, ∵DE=0.5米,EF=0.25米,DG=1.5m ,DC=20m , ∴AC25.0205.0=, 解得:AC=10,故AB=AC+BC=10+1.5=11.5(m ), 答:旗杆的高度为11.5m . 四、18.(1)证明:∵AD ⊥BC ,BE ⊥AC ,∴∠BDF=∠ADC=∠BEC=90°, ∴∠C+∠DBF=90°,∠C+∠DAC=90°,∴∠DBF=∠DAC ,∴△ACD ∽△BFD .(2)∵tan ∠ABD=1,∠ADB=90°∴=1,∴AD=BD ,∵△ACD ∽△BFD ,∴==1,∴BF=AC=3.19.(1)证明:连接OD;∵AD是∠BAC的平分线,∴∠1=∠3.∵OA=OD,∴∠1=∠2.∴∠2=∠3.∴OD∥AC.∴∠ODB=∠ACB=90°.∴OD⊥BC.∴BC是⊙O切线.(2)解:过点D作DE⊥AB,∵AD是∠BAC的平分线,∴CD=DE=3.在Rt △BDE中,∠BED=90°,由勾股定理得:BE=4 ∵∠BED=∠ACB=90°,∠B=∠B,∴△BDE∽△BAC.∴.∴AC=6.20.解:设CD=x m.由题意知AM⊥BE,AE=AM=1.75m,∴∠E =45°,∴EC=CD=x m,AC=EC-AE=(x-1.75)m.(2分)∵CD⊥EC,BN⊥EC,∴BN∥CD,∴△ABN∽△ACD,(5分)∴BNCD=ABAC,即1.75x=1.25x-1.75,解得x=6.125.(7分)答:路灯CD的高为6.125m.(8分)五、21.解:(1)∵∠ACD=45°,∠ACD=∠E,∴∠E=45°.(2)△ACP∽△DEP,理由:∵∠AED=∠ACD,∠APC=∠DPE,∴△ACP ∽△DEP.(3)∵△ACP∽△DEP,∴.∵P为CD边中点,∴DP=CP=1∵AP=,AC=,∴DE=.22.解:(1)∵四边形EFHG 为正方形,∴BC ∥EF ,∴△AEF ∽△ABC(2)∵四边形EFHG 为正方形,∴EF ∥BC ,EG ⊥BC ,又∵AD ⊥BC ,∴EG ∥AD ,设EG =EF =x ,则KD =x ,∵BC =120 mm ,AD =80 mm ,∴AK =80-x ,∵△AEF ∽△ABC ,∴EF BC =AK AD ,即x 120=80-x80,解得x =48,∴这个正方形零件的边长是48 mm(3)设EG =KD =m ,则AK =80-m ,∵△AEF ∽△ABC ,∴EF BC =AKAD ,即EF 120=80-m 80,∴EF =120-32m ,∴S 矩形EFHG =EG ·EF =m ·(120-32m)=-32m2+120m =-32(m -40)2+2400,故当m =40时,矩形EFHG 的面积最大,最大面积为2400 mm223.解:(1)连接OC ,∵ED ⊥AB ,∴∠BFG =90°,∴∠B +∠BGF =90°,又∵PC =PG ,∴∠PCG =∠PGC ,而∠PGC =∠BGF ,∴∠B +∠PCG =90°,又∵OB =OC ,∴∠B =∠BCO.∴∠BCO +∠PCG =90°,则∠PCO =90°,即OC ⊥PC ,而OC 是半径,∴PC 是⊙O 的切线(2)连接OG ,∵BG2=BF ·BO ,∴BG BF =BOBG ,而∠B =∠B ,∴△BFG∽△BGO ,∴∠BGO =∠BFG =90°,∴OG ⊥BC ,∴点G 是BC 的中点(3)连接OE ,∵AB 是⊙O 的直径,ED ⊥AB ,∴EF =12ED ,∵AB =10,ED =46,∴EF =26,OE =OB =12AB =5.在Rt △OEF 中,OF =OE2-EF2=1,∴BF =OB -OF =5-1=4,∴BG =BF ·BO =2 5 六、23. 解:(1)由抛物线y =-16x2+bx +c 过点A(0,4)和C(8,0),可得⎩⎪⎨⎪⎧c =4,-16×64+8b +c =0,解得⎩⎪⎨⎪⎧c =4b =56(2)∵∠AOP =∠PEB =90°,∠OAP =90°-∠APO =∠EPB ,∴△AOP ∽△PEB ,且相似比为AO PE =APPB=2,∵AO =4,PE =2,OE =OP +PE =t +2,又∵DE =OA =4,∴点D 的坐标为(t +2,4),∴点D 落在抛物线上时,有-16(t +2)2+56(t +2)+4=4,解得t =3或t =-2,∵t >0,∴t =3,故当t 为3时,点D 落在抛物线上(3)存在t ,能够使得以A ,B ,D 为顶点的三角形与△AOP 相似.理由:①当0<t <8时,若△POA ∽△ADB ,则PO AD =AO BD ,即t t +2=44-12t,整理,得t2+16=0,∴t 无解,若△POA ∽△BDA ,同理,解得t =-2+25(负值舍去);②当t >8时,若△POA ∽△ADB ,则PO AD =AOBD ,即t t +2=412t -4,解得t =8+45(负值舍去),若△POA ∽△BDA ,同理,解得t 无解.综上所述,当t =-2+25或t =8+45时,以A ,B ,D 为顶点的三角形与△AOP 相似。

最新浙教版九年级数学下册单元同步测试题及答案全套

最新浙教版九年级数学下册单元同步测试题及答案全套

最新浙教版九年级数学下册单元同步测试题及答案全套九年级下册第1章解直角三角形1.1锐角三角函数第1课时锐角三角函数的概念基本问题知识点1三角函数的定义1.(温州高中入学考试)如图所示△ 美国广播公司,∠ C=90°,ab=5,BC=3,则cosa的值为(d)3a.44b。

三3c.54d。

五12.(湖州高中入学考试)如图所示,在RT中△ 美国广播公司,∠ C=90°,AC=4,Tana=,则BC的长度为(a)2a、二,b.8c、 25d.453.在RT中△ 美国广播公司,∠ B=90°如果AC=2BC,则sinc的值为(c)13a、 b.2c。

d、 3224.把rt△abc各边的长度都扩大3倍得rt△a′b′c′,那么∠a,∠a′的余弦值的关系为(a)a、Cosa=Cosa′B.Cosa=3cosa′C.3cosa=Cosa′D.不确定5.如图,在8×4的矩形网格中,每个小正方形的边长都是1,若△a bc的三个顶点在图中相应的格点上,则tan∠acb的值为(a)1a。

三1b.2c、 32d.36.(乐山中学入学考试)如图所示,在RT中△ 美国广播公司,∠ BAC=90°,ad⊥ BC在D点,以下结论不正确(c)ada、 sinb=abadc、 sinb=ac交流电b.sinb=bccdd.sinb=交流电47.如图,在rt△abc中,∠acb=90°,点d为斜边ab的中点,bc=4,cd=2.5,则sina=.五8.如图,角α的顶点在直角坐标系的原点,一边在x轴上,另一边经过点p(2,23),则sinα=1cosα=3,tanα=3。

23,2知识点2互余两角的三角函数之间的关系9.如图所示,在RT中△ 美国广播公司,∠ C=90°,a、B和C分别代表∠ A.∠ B 和∠ RT中的C△ 美国广播公司。

查找:(1)sina,cosb;(2)tana,tanb;(3)通过观察(1)(2)中的计算结果,你能找到新浪和CoSb、Tana和tanb之间的关系吗?(4)申请:22①在rt△abc中,∠c=90°,sina=,则cosb=;331② 在RT中△ 美国广播公司,∠ C=90°,Tana=2,然后tanb=2解决方案:(1)RT△ 美国广播公司,∠ C=90°,BCA∴sina==,abcbcacosb=1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级下册数学同步练习相似单元测试题及答案一·选择题(每题3分,共36分)1.下列两个图形:①两个等腰三角形;②两个直角三角形;③两个正方形;④两个矩形;⑤两个菱形;⑥两个正五边形. 其中一定相似的有( )A.2组B.3组C.4组D.5组2.如图,在正方形网格上有6个斜三角形:①△ABC,②△BCD,③△BDE,④△BFG,•⑤△FGH,⑥△EFK,其中②~⑥中与三角形①相似的是( )A.②③④B.③④⑤C.④⑤⑥D.②③⑥3.应中共中央总书记胡锦涛同志的邀请,中国国民党主席连战先生·亲民党主席宋楚瑜先生分别从台湾来大陆参观访问,先后来到西安,都参观了新建成的“大唐芙蓉园”,该园占地面积约为800000m2,若按比例尺1:2000缩小后,其面积大约相当于( )A.一个篮球场的面积B.一张乒乓球台台面的面积C.《陕西日报》的一个版面的面积D.《数学》课本封面的面积4.如图,小明设计两个直角,来测量河宽BC,他量得AB=2米,BD=3米,CE=9米,•则河宽BC为( )A.5米B.4米C.6米D.8米5.如图,已知等腰△ABC中,顶角∠A=36°,BD为∠ABC的平分线,则的值等于( )A. B. C.1 D.6.如果整张报纸与半张报纸相似,则此报纸的长与宽的比是( )A.2:1B.C.4:1D.7.△ABC的面积被平行于BC的两条线段三等分,如果BC=12cm,•那么这两条线段中较短的一条的长是( )A.8cmB.6cmC.D.8.如图,梯形ABCD中,AB∥CD,∠A=90°,E在AD上,且CE平分∠BCD,BE•平分∠ABC,则下列关系式中成立的有( )①;②;③;④CE2=CD×BC;⑤BE2=AE ×BC.A.2个B.3个C.4个D.5个9.下列说法:①位似图形都相似;②位似图形都是平移后再放大(或缩小)得到;③直角三角形斜边上的中线与斜边的比为1:2;④两个相似多边形的面积比为4:9,则周长的比为16:81中,正确的有( )A.1个B.2个C.3个D.4个10.如图,点M在BC上,点N在AM上,CM=CN,,下列结论正确的是( )A.△ABM∽△ACBB.△ANC∽△AMBC.△ANC∽△ACMD.△CMN∽△BCA11.在直角坐标系中,已知点A(-2,0),B(0,4),C(0,3),过C作直线交x轴于D,使以D·O·C 为顶点的三角形与△AOB相似.这样的直线最多可以作( )A.2条B.3条C.4条D.6条12.(淄博)如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A处,沿OA所在的直线行走14米到点B时,人影的长度( )A.增大1.5米B.减小1.5米C.增大3.5米D.减小3.5米二·填空题(每题3分,共24分)13.在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在地面上的影长为40米,则古塔高为________.14.(江苏常州)如图,在△ABC中,D·E分别是AB和AC中点,F是BC延长线上一点,DF 平分CE于点G,CF=1,则BC=_______,△ADE•与△ABC•的周长之比为_______,•△CFG与△BFD的面积之比为________.15.已知D·E两点分别在△ABC的边AB·AC上,DE∥BC,且△ADE的周长与△ABC•的周长之比为3:7,则AD:DB=________.16.△ABC三边的长分别是2cm·3cm·4cm,与其相似的△DEF的最短边是8cm,那么它的最长边的边长是________.17.(湖南岳阳)如图,要使△ACD∽△ABC,只需添加条件_______(•只要写出一种合适的条件即可).18.如图是幻灯机的工作情况,幻灯片与屏幕平行,光源距幻灯片30cm,•幻灯片距屏幕1.5m,幻灯片中的小树高8cm,则屏幕上的小树高是______.19.如图,在△ABC中,点D在线段BC上,∠BAC=∠ADC,AC=8,BC=16,那么CD=______.20.如图,梯形ABCD中,AD∥BC,AC·BD交于O点,S△AOD:S△COB=1:9,则S△DOC:S△=_______.BOC三·解答题(第21题~24题每题6分,第25·26题每题8分,共40分)21.(湖北荆州)如图,梯形ABCD中,∠A=∠B=90°,且AD=AB,∠C=45°,将它分割成4个大小一样,都与原梯形相似的梯形(在图形中直接画分割线,不需要说明)22.(苏州)如图,梯形ABCD中,AB∥CD,且AB=2CD,E·F分别是AB·BC的中点,EF与BD相交于点M.(1)求证:△EDM∽△FBM;(2)若DB=9,求BM.23.如图,在离树AB的3米远处竖一长2米的杆子CD,站在离杆子1米远EF处的人刚好越过杆顶C看到树顶A,这个人高EF=1.5米,求树高.24.在《九章算术》“勾股”章中有这样一个问题:“今有邑方不知大小,各中开门,出北门二十步有木,出南门十回步,折而西行一千七百七十五步见木.问邑方几何.”用今天的话说,大意是:如图,DEFG是一座正方形小城,北门H位于DG的中点,南门K位于EF的中点,出北门20步到A处有一树木,出南门14步到C,再向西行1775步到B处,正好看到A处的树木(即点D在直线AB上),求小城的边长.25.一块直角三角形木板,一直角边是1.5米,另一直角边长是2米,要把它加工成面积最大的正方形桌面,甲·乙二人的加式方法分别如左图和右图所示,请运用所学知识说明谁的加工方法符合要求.26.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/s 的速度移动,点Q沿DA边从点D开始向A以1cm/s的速度移动.如果P·Q同时出发,用t 秒表示移动的时间(0≤t≤6)那么:(1)当t为何值时,△QAP为等腰直角三角形?(2)对四边形QAPC的面积,提出一个与计算结果有关的结论;(3)当t为何值时,以点Q·A·P为顶点的三角形与△ABC相似?答案与解析一·选择题1.A 提示:③⑥;2.B3.C 提示:面积比相似比的平方;4.B 提示:由题意知△ABD∽△ACE,;5.B 提示:AD=BD=BC,△ABC∽△BCD;6.B 提示:根据题意设报纸的长为x,宽为y,有;7.C 提示:面积比相似比的平方;8.B 提示:②③④成立;9.B 提示:①③正确;10.B 提示:由CM=CN,∴∠CMN=∠CNM,∴∠AMB=∠ANC,又,∴△ANC∽△AMB;11.C 提示:如图:12.D 提示:设AM=x,BN=y,.二·填空题13.30米提示:设古塔高为h,;14.2,1:2,1:615.3:416.16cm17.∠1=∠ABC或∠2=∠ACB或AC2=AD·AB(答案不唯一)18.48cm19.420.1:3 提示:∵S△AOD:S△COB=1:9,,∵△AOD与△DOC等高,∴S△AOD:S△=1:3,DOC∴S△DOC:S△BOC=1:3.三·解答题21.如图22.(1)证:∵E是AB的中点,∴AB=2EB,∵AB=2CD,∴CD=EB.又AB∥CD,•∴四边形CBED是平行四边形.∴CB∥DE,∴∴△EDM∽△FBM.〔2)解:∵△EDM∽△FBM,∴.∵F是BC的中点,∴DE=2BF.∴DM=2BM.∴BM=DB=3.23.3.5米提示:延长AE·BF交于点P,由由.24.解:设小城的边长为x步,根据题意,Rt△AHD∽Rt△ACB,因为有,即,去分母并整理,得x2+34x-71000=0,解得x1=250,x2=-284(不合题意,舍去),所以小城的边长为250步.25.乙加工的方法合理.提示:设甲加工桌面长xm,过点C作CM⊥AB,垂足是M,与GF相交于点N,由GF∥DE,可得三角形相似,而后由相似三角形性质可以得到CN:CM=•GF:AB,即(CM-x):CM=x:AB.由勾股定理可得AB=2.5,由面积相等可求得CM=1.2,•故此可求得x=;设乙加工桌面长ym,由FD∥BC,得到Rt△AFD∽Rt△ACB,所以AF:AC=FD:BC,即(2-y):2=y:1.5,解得y=,很明显x<y,故x2<y2,所以乙加工的方法符合要求.26.(1)对于任何时刻t,AP=2t,DQ=t,QA=6-t,当QA=AP时,△QAP•是等腰直角三角形,即6-t=2t,t=2秒.(2)S△QPC=S△QAC+S△APC =(36-6t)+6t=36cm2,在P·Q两点移动的过程中,四边形QAPC的面积始终保持不变(或P·Q两点到对角线AC的距离之和保持不变)〔3)分两种情况:①当时△QAP∽△ABC,则从而t=1.2,②当时△PAQ∽△ABC,则从而t=3.。

相关文档
最新文档