线性变换的定义

合集下载

第三章第五讲 线性变换

第三章第五讲 线性变换

通识教育平台数学课程系列教材第一节向量空间第二节向量的线性相关性第三节向量空间的基及向量的坐标第四节欧氏空间第五节线性变换定义1一、线性变换的定义设σ是向量空间V 到向量空间W 的一个映射,如果σ满足:1) σ( α+ β) = σ( α) + σ( β),2) σ( k α) = k σ( α).其中α,β为V 中任意向量,k 为任意实数σ有上面的性质也说成σ保持向量的线性运算. 简言之,线性映射就是保持线性关系的映射.则称σ是V 到W 的一个线性映射. σ(α) 称为α在σ下的象,也可记为σα.§5 线性变换向量空间V 到其自身的线性映射称为V 中的线性变换.(1) 向量空间中变换的写法σ: ( x , y ) →( x + y , x -y ), (x , y ) ∈R 2σ( x , y ) = (x + y , x -y ), ( x , y ) ∈R 2注:(2)).()()(2121βαβασσσk k k k +=+可简写成σ(α+ β) = σ(α) + σ(β),σ(k α) = k σ( α).(3) 通常用花体字母T , S , … 来表示V 中的线性变换. 向量α在线性变换T 下的像,记为T (α) 或T α.上一页例1设A为n 阶实矩阵,对任意的n维行向量α,令T(α)=αA, α∈V.事实上, 设α, β∈V,因为T(α+ β) = (α+ β)A= αA+ βA= T(α) + T( β).T(kα) = ( kα)A = k (αA)= k T( α)故T是R n中线性变换.例2设V 是一向量空间,λ∈R . 对任意的α∈V ,令T (α) = λα,则T 是V 中的一个线性变换.所以T 是V 中的线性变换. 称这种变换为数乘变换.E (α) = α, O (α) = 0.上一页事实上, 设α, β∈V ,k ∈R ,因为T (α+ β) = λ(α+ β)= λα+ λβ= T (α) + T ( β).T (k α) = λ( k α)= k (λα)= k T (α)特别地,当λ= 1 时,T (α) = α,T 称为恒等变换,记为E ;当λ= 0时,T (α) = 0,T 称为零变换,记为O ,即例3R 3 中σ( x , y , z ) = (x , y , 0) 是线性变换.事实上, 设α= ( x 1, y 1, z 1) , β=( x 2, y 2, z 2)σ(α+ β) = σ( x 1+ x 2, y 1 + y 2, z 1+ z 2 )= ( x 1+ x 2, y 1 + y 2, 0)= ( x 1, y 1, 0) + ( x 2, y 2, 0)= σ(α) + σ( β).证σ(k α) = σ(k x 1, k y 1, kz 1 )= ( k x 1, k y 1, 0)= k (x 1, y 1, 0)= k σ( α).故σ( x , y , z ) = (x , y , 0) 是R 3 中线性变换,称之为R 3 中向xOy 面的投影变换.x y z ( x , y , z )(x , y , 0)0上一页例4在R 2 中,设0≤ θ<2π, 令σ:(x , y )→(x cos θ-y sin θ, x sin θ+ y cos θ)则σ是R 2的一个线性变换.称线性变换σ是绕原点按逆时针方向旋转θ角的旋转变换.xy ( x , y )0θ事实上,由σ( (x , y )+(x 1 , y 1))=σ(x +x 1, y +y 1)证上一页)cos sin ,sin cos (θθθθy x y x k +-=)cos sin ,sin cos (θθθθky kx ky kx +-=),()),((ky kx y x k σσ=).,(),(11y x y x σσ+=)cos sin ,sin cos (θθθθy x y x +-=)cos sin ,sin cos (1111θθθθy x y x +-+)]cos )(sin )(,sin )(cos )[(1111θθθθy y x x y y x x ++++-+=二、线性变换的性质和运算§5 线性变换定理1设T 是V 中的线性变换,则(1)T 把零向量变到零向量,把α的负向量变到α的像的负向量,即T ( 0 ) = 0, T ( -α) = -T (α).(2)T 保持向量的线性组合关系不变,即)(2211s sk k k ααα+++ T = k 1T (α1)+k 2T (α2)+…+k s T (αs )(3)T 把线性相关的向量组变为线性相关的向量组,即若α1, α2, …, αs 线性相关,则T (α1 ), T (α2), …, T (αs )也线性相关.定义2设L(V) 是向量空间V中的全体线性变换的集合,定义L(V)中的加法、数乘与乘法如下:(1)加法:(T+S)α= T ( α) +S (α) ;(2)数乘:(k T)α= k T (α) ;(3)乘法:(T S)α= T (S (α)) ,其中,α∈V,k∈R,T ,S ∈L(V).易验证,T +S,T S 以及k T 都是V 中的线性变换.§5 线性变换三、线性变换的矩阵设V 是一个m 维向量空间,α1,α2,…,αm 是V 的一组基.T 是V 的一个线性变换.(1)T (α1)=a 11α1+ a 21α2 + … a m 1αm ,T (α2)=a 12α1+ a 22α2 + … a m 2αm ,……………T (αm ) = a 1m α1+ a 2m α2 + … a mm αm ,可用矩阵形式表示为:设则设,,2211m m k k k V ααααα+++=∈∀ (k 1α1+k 2α2+…+ k m αm )= k 1T (α1)+k 2T (α2)+…+k m T (αm )因此,若已知基向量α1,α2, …,αm 在线性变换T 下的像,就可知道V 中任意向量在线性变换T 下的像了.= (α1, α2, …, αm )(T (α1), T (α2), …, T (αm ))⎪⎪⎪⎪⎪⎭⎫ ⎝⎛mm m m m m a a a a a a a a a 212222111211A (T (α1), T (α2), …, T (αm ) ) = (α1, α2, …, αm ) A.称矩阵A 为线性变换T 在基α1, α2, …, αn 下的矩阵.记T (α1, α2, …, αm ) = (T (α1), T (α2), …, T (αm ) )则有T (α1, α2, …, αm ) = (α1, α2, …, αm )A因此,取定V 的一组基后,对于V 的线性变换T 有唯一确定的m 阶方阵A 与它对应.T A在给定基下一一对应(1)V 中的全体线性变换组成的集合L (V ) 与全体实m 阶方阵所成集合R m X m 之间存在一一对应关系.注意:(2)线性变换的和、数乘和乘法对应于相应的矩阵之间的和、数乘和乘法.(3)线性变换可逆(即存在V 的一个变换S ,使得TS =E )当且仅当T 对应的矩阵A 可逆,且T 的逆变换对应的矩阵就是A -1.例2例1R n 中恒等变换E (α) = α在每一组基下的矩阵为n 阶单位阵.R n 中零变换O (α)=0在任意基下的矩阵为零矩阵.R n 中线性变换T (α) = k α,k ∈R . T 在每一组基下的矩阵为数量矩阵k E n .例3求R 3 中的线性变换T (x 1, x 2, x 3)在标准基下的矩阵.T (e 1) = T (1, 0, 0 ) = (a 1 , b 1, c 1) = a 1e 1+b 1e 2+c 1e 3解所以T 在标准基下的矩阵为),,(332211332211332211x c x c x c x b x b x b x a x a x a ++++++=T (e 2) = T (0, 1, 0 ) = (a 2 , b 2, c 2) = a 2e 1+b 2e 2+c 2e 3T (e 3) = T (0, 0, 1 ) = (a 3 , b 3, c 3) = a 3e 1+b 3e 2+c 3e 3.321321321⎪⎪⎪⎭⎫ ⎝⎛=c c c b b b a a a A练习求R 2 中旋转变换σ(x , y ) = (x cos θ-y sin θ, x sin θ+ y cos θ)在标准基e 1= (1, 0), e 2= (0, 1)下的矩阵.σ(e 1) = (cos θ, sin θ) = cos θ⋅e 1+ sin θ⋅e 2,,σ(e 2) = (-sin θ, cos θ) = -sin θ⋅e 1+cos θ⋅e 2,,,.cos sin sin cos ),())(),((2121⎪⎪⎭⎫ ⎝⎛-=θθθθe e e e σσ解若设(x , y )的象σ(x , y )在e 1, e 2下的坐标为(x ', y ')则x ' = x cos θ-y sin θy ' = x sin θ+ y cos θ.cos sin sin cos ''⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛y x y x θθθθ四、象与原象的坐标变换公式设α1,α2, …, αn 是向量空间V 的一组基,线性变换σ在基α1, α2, …, αn 下的矩阵为A. 如果ξ与σ(ξ)在该基下的坐标分别为(x 1, x 2, …, x n ) 和(y 1, y 2, …, y n ),则(3)§5 线性变换得由n n y y y αααξ+++= 2211)(σ),,,(21n ααα =.21⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n y y y nn x x x αααξ+++= 2211).()()()(2211n n x x x ασασασξσ+++=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n n x x x 2121))(,),(),((ααασσσ),,,(21n ααα =.21⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n x x x A 将(3)与(4)比较得.2121⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n n x x x A y y y α的坐σ(α)的坐σ的矩(4)定理2设α1,α2,…,αn 是向量空间V 的一组基,线性变换σ在基α1,α2,…,αn 下的矩阵为A .如果ξ与σ(ξ)在该基下的坐标分别为(x 1,x 2,…,x n )和(y 1,y 2,…,y n ),则.2121⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n n x x x A y y y例4设σ是R 4的一个线性变换,对∀(x 1,x 2,x 3,x 4)∈R 4,σ(x 1,x 2,x 3,x 4)=(2x 1+x 2,3x 1-x 3,x 3,x 1+x 4),求σ在标准基ε1,ε2,ε3,ε4下的矩阵.σ(ε1) = σ(1, 0, 0, 0) = (2, 3, 0, 1)=2ε1+ 3ε2+ε4,σ(ε2) = σ(0, 1, 0, 0)= (1, 0, 0, 0)=ε1,,σ(ε3) = σ(0, 0, 1, 0) = (0, -1, 1, 0)=-ε2 + ε3,σ(ε4) = σ(0, 0, 0, 1) = (0, 0, 0, 1)=ε4.解因为))(),(),(),((4321εεεεσσσσ.1001010001030012),,,(4321⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=εεεε所以σ在ε1, ε2, ε3, ε4下的矩阵为.1001010001030012⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=A 上一页定理3设α1,α2,⋯,αm 和β1,β2,⋯,βm 是向量空间V 的两组基.线性变换σ在这两组基下的矩阵分别为A 与B ,从基α1,α2,⋯,αm 到基β1,β2,⋯,βm 的过渡矩阵是C ,则五、同一线性变换在不同基下的矩阵B =C -1AC .§5 线性变换线性变换与矩阵的对应关系是在取定了空间的一组基的情况下建立的.如果取不同的基,同一线性变换对应的矩阵一般是不相同的.于是得B =C -1AC.●●●由 证,),,(),,(2121A m m αααααα =σ,),,(),,(2121B m m ββββββ =σ.),,,(),,(2121C m m αααβββ =),,(21m βββ σ[][]C C m m ),,,(),,,(2121αααααα σσ==AC m ),,(21ααα =.),,,(121AC C m -=βββ (线性变换保持线性关系)定义4设A,B为两个n阶矩阵,如果存在可逆矩阵C,使得B=C-1AC,则称A与B相似,记作A~B.由定理3知线性变换在不同基下的矩阵是相似的;反之,若两矩阵相似,那么它们可以看作同一线性变换在不同基下的矩阵.定理设B=C-1AC,如果线性变换σ在基α1,α2,⋯,αn下的矩阵为A,且则σ在基β1, β2, ⋯, βn 下的矩阵为B.(β1, β2, ⋯, βn) = (α1, α2, ⋯, αn )C.σ基α1, α2, ⋯, αn下Aσ基(β1, ⋯, βn) = (α1, ⋯, αn)CBB = C-1AC.下上一页*相似是矩阵之间的一种关系,它具有下面三个性质:1. 反身性:A~A;2. 对称性:如果A ~B, 则B ~A;3. 传递性:如果A~B, B ~C, 则A~C.例2线性变换σ在基β1, β2下的矩阵为上一页设α1,α2与β1 , β2 是向量空间V 的两组基,由基α1,α2到基β1, β2的过渡矩阵为C ,线性变换σ在基α1,α2下的矩阵为求线性变换σ在基β1, β2下的矩阵B.,2111⎪⎪⎭⎫ ⎝⎛--=C ,0112⎪⎪⎭⎫ ⎝⎛-=A 解AC C B 1-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=-2111011221111⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=11011112.1011⎪⎪⎫ ⎛=定理4设σ是欧氏空间的一个线性变换,则下面几个命题等价:六、正交变换(1) σ是正交变换;§5 线性变换定义5设σ为欧氏空间V 中的线性变换, 如果对于任意的α, β∈V , 都有),,(),(βασβσα=则称σ为V 中的正交变换.(2) σ保持向量的长度不变,即对于任意的;)(,αασα=∈V 的标准正交基;也是的标准正交基,则是如果V V m m )(,),(),(,,,)3(2121ασασασααα (4) σ在任一组标准正交基下的矩阵都是正交矩阵.B =C -1AC .例6定义映射上述映射显然为一个线性变换,σ在标准正交基下的矩阵为(,)(cos sin ,sin cos ).x y x y x y σθθθθ=-+.cos sin sin cos ⎪⎪⎭⎫⎝⎛-=θθθθA .,为正交矩阵即且满足A E AA A A T T ==故坐标旋转变换是一个正交变换,它保持向量的长度不变.七、线性变换的特征值与特征向量§5 线性变换给定V 中的一个线性变换σ,是否存在V 的一组基,使σ在此组基下的矩阵为对角矩阵?事实上,的特征向量的属于特征值也是,非零实数的特征向量,则对任意的属于特征值是如果.λσξλσξk k 定义6设σ是向量空间V 的一个线性变换,如果存在实数λ和V 中一非零向量ξ,使得λξξ=)(σ那么λ称为σ的一个特征值, ξ称为σ的属于特征值λ的一个特征向量.1.线性变换的特征值与特征向量的概念例7设σ是数乘变换:σ(α)=λα, α∈V,则λ是σ的特征值,V中非零向量都是σ的属于特征值λ的特征向量.2. 线性变换可对角化的条件定理5设V为m维向量空间,为V中的一个线性变换.那么存在V的一组基,使得σ在这组基下的矩阵为对角矩阵的充要条件是σ有m个线性无关的特征向量.设σ可对角化, 则存在V 的一组基α1, α2, ⋯αm , 使σ在此基下的矩阵为对角形矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=m Λλλλ 21即σ(α1, α2, …, αm ) = (α1, α2, …, αm )Λ证则mi i i i ,2,1,)(==ααλσ反之,如果σ有m 个线性无关的特征向量,就取它们为基,则σ在此基下的矩阵就是对角形矩阵.因此α1,α2,⋯αm 就是σ的m 个线性无关的特征向量.上一页注意:从以上证明可知,如果线性变换σ在某一组基下的矩阵为对角阵A ,则这组基由σ的特征向量组成,且矩阵A 的对角元就是线性变换σ的特征值.方阵与线性变换是一一对应的,可类似引入方阵的特征值与特征向量的概念.3.矩阵的特征值与特征向量的概念定义1设A 是一个m 阶实方阵, 如果存在实数λ和非零的m 维列向量ξ, 使得λξξ=A 那么λ称为方阵A 的一个特征值, ξ称为A 的属于特征值λ的一个特征向量.(1)设m 阶方阵A 是m 维向量空间V 上线性变换σ在一组基下的矩阵,则λ是σ的特征值的充要条件是λ为矩阵A 的特征值.结论:从线性变换与矩阵的对应关系可得如下结论.设R m 中线性变换σ在基α1, α2, …, αm 下的矩阵为A . 即的特征向量于特征值的属是矩阵是的特征向量的充要条件征值的属于特是线性变换则为下的坐标中非零向量,它在基为..),,,(,,,2121λλσξαααξA X x x x X V Tm m =(2)m 阶矩阵A 可对角化的充要条件是A 有m 个线性无关的特征向量.即m 阶矩阵A 相似于对角矩阵的充要条件是A 有m 个线性无关的特征向量.σ的特征值= A 的特征值ξ= (α1, α2, …, αm ) XA 的属于λ的特征向量σ的属于λ的特征向量练习设R 2 的线性变换σ为σ: (x 1, x 2)→(2x 1+ 4x 2, -x 1),求σ在基α1= (1, -1), α2= (-1, 2) 下的矩阵.上一页σ在标准基ε1, ε2下的矩阵为,0142⎪⎪⎭⎫ ⎝⎛-=A 而由ε1, ε2 到α1, α2 的过渡矩阵为,2111⎪⎪⎭⎫ ⎝⎛--=C 解那么σ在α1, α2 下的矩阵为B =C -1AC ⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=-2111014221111⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=211101421112.73135⎪⎪⎭⎫ ⎝⎛--=。

工程数学第六章 线性变换

工程数学第六章 线性变换
第六章




例5. 下列变换:
σ1:(a1, a2, …, an) →(a1, 0, 0, …, 0); σ2:(a1, a2, …, an) →(a1, a2, a3, …, an−1, 0); σ3:(a1, a2, …, an) → k(a1, a2, a3, …, an); σ4:(a1, a2, …, an) → ( ∑ b1 j a j , ∑ b2 j a j ,L, ∑ bnj a j )
= k1σ (α1 ) + k 2σ (α 2 ) + L + k sσ (α s );
(3) 若α1, α2, …, αs 线性相关,则 σ (α1 ), σ ( α2), …, σ ( αs)也线性相关.
第六章




§2 线性变换和矩阵
R2 中变换σ (x, y)=(2x+y, x−3y) 是一个线性变换.
x' cosθ = y ' sin θ
象的坐标
− sin θ x cos θ y
原象的坐标 第六章




二、象与原象的坐标变换公式
设 ξ∈V, ξ 在基α1, α2, …, αn下的坐标为(x1, x2, …, xn ), 设 σ (ξ )在基 α1, α2, …, αn下的坐标 为 (y1, y2, …, yn ), 则
y1 y2 M =A y n
σ(α)
的 坐 标
x1 x2 M x n
α
的 坐 标 第六章
σ
的 矩 阵

程 定理1 定理

线性变换总结篇高等代数

线性变换总结篇高等代数

第 7章 线性变换知识点归纳与要点解析一.线性变换的概念与判别 1.线性变换的定义数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ和数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=; 注:V 的线性变换就是其保持向量的加法与数量乘法的变换;2.线性变换的判别设σ为数域P 上线性空间V 的一个变换,那么:σ为V 的线性变换⇔()()()k l k l ,,V ,k,l P σαβσασβαβ+=+∀∈∀∈ 3.线性变换的性质设V 是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα∀∈;性质1. ()()00,σσαα==-; 性质2. 若12s ,,,ααα线性相关,那么()()()12s ,,,σασασα也线性相关;性质3. 设线性变换σ为单射,如果12s ,,,ααα线性无关,那么()()()12s ,,,σασασα也线性无关;注:设V 是数域P 上的线性空间,12,,,m βββ,12,,,s γγγ是V 中的两个向量组,如果:11111221221122221122s s s s m m m ms sc c c c c c c c c βγγγβγγγβγγγ=+++=+++=+++记:()()1121112222121212,,,,,,m m m s s s ms c c c c c c c c c βββγγγ⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭于是,若()dim V n =,12,,,n ααα是V 的一组基,σ是V 的线性变换, 12,,,m βββ是V 中任意一组向量,如果:()()()11111221221122221122n n n n m m m mn nb b b b b b b b b σβααασβααασβααα=+++=+++=+++记:()()()()()1212,,,,m m σβββσβσβσβ=那么:()()1121112222121212,,,,,,m m m n n n mn b b c b b c b b c σβββααα⎛⎫⎪ ⎪= ⎪⎪⎝⎭设112111222212m m n n mn b b c b b c B b b c ⎛⎫⎪⎪= ⎪⎪⎝⎭,12,,,m ηηη是矩阵B 的列向量组,如果12,,,r i i i ηηη是12,,,m ηηη的一个极大线性无关组,那么()()()12,ri i iσβσβσβ就是()()()12,m σβσβσβ的一个极大线性无关组,因此向量组()()()12,m σβσβσβ的秩等于秩()B ;4. 线性变换举例1设V 是数域P 上的任一线性空间;零变换: ()00,V αα=∀∈; 恒等变换:(),V εααα=∀∈;幂零线性变换:设σ是数域P 上的线性空间V 的线性变换,如果存在正整数m ,使得σ=m 0,就称σ为幂零变换;幂等变换:设σ是数域P 上的线性空间V 的线性变换,如果2σσ=,就称σ为幂等变换;2nV P =,任意取定数域P 上的一个n 级方阵A ,令:111222n n n n x x x x x x A ,P x x x σ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=∀∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 3[]V P x =,()()()()[]D f x f x ,f x P x '=∀∈; 4n nV P⨯=,()ij A a =是V 中一固定矩阵,()n n X AX ,X P τ⨯=∀∈;二.线性变换的运算、矩阵 1. 加法、乘法、数量乘法1 定义: 设V 是数域P 上的线性空间,,στ是V 的两个线性变换,定义它们的和στ+、乘积στ分别为:对任意的V α∈()()()()στασατα+=+,()()()()σταστα=任取k P ∈,定义数量乘积k σ为:对任意的V α∈()()()k k σασα=σ的负变换-σ为:对任意的V α∈()()()-=-σασα则στ+、στ、k σ与-σ都是V 的线性变换;2()L V ={σσ为V 的线性变换},按线性变换的加法和数乘运算做成数域P 上的维线性空间;2. 线性变换的矩阵1定义:设V 是数域P 上的n 维线性空间,σ是V 的线性变换,12,,,n ααα是V 的一组基,如果:()()()11111221221122221122n n n n n n n nn na a a a a a a a a σαααασαααασαααα=+++=+++=+++那么称矩阵112111222212n n nnnn a a a a a a A a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭为线性变换σ在基12,,,n ααα下的矩阵;此时:()()()()()()121212,,,,,,,n n n A σααασασασαααα==2线性变换的和、乘积、数量乘积、逆变换、负变换及线性变换多项式的矩阵:设12,,,n ααα是数域P 上的n 维线性空间V 的一组基,(),L V στ∀∈,设它们在12,,,n ααα下的矩阵分别为A,B ;1():n n f L V P ⨯→,A σ是数域P 上的线性空间()L V 到数域P 上的线性空间n n P ⨯的同构映射,因此()n n L V P ⨯≅;2σ可逆⇔A 可逆3①στ+、στ与-σ在基12,,,n ααα下的矩阵分别为A B,AB +与A -; ② 任取k P ∈,k σ在基12,,,n ααα下的矩阵为kA ;③ 若σ为可逆线性变换,则1σ-在基12,,,n ααα下的矩阵为1A -;④ 设()1110mm m m f x a x a xa x a --=++++为数域P 上的任一多项式,那么()1110m m m m f a a a a σσσσε--=++++ε为V 的恒等变换在基12,,,n ααα下的矩阵为:()1110m m m m n f A a A a A a A a E --=++++;三.特征值、特征向量与对角矩阵1. 矩阵的特征值与特征向量1矩阵的特征多项式:设A 为n 级复方阵,将多项式()λλ=-A n f E A 称为A 的特征多项式;注: 1若()ijnnA a =,则:()()()()1112211λλλλ-=-=+-+++++-nn n A n nn f E A a a a A()()()11tr 1λλ-=+-++-nn n A A2 将λ-n E A 称为矩阵A 的特征矩阵,0λ-=n E A 称为矩阵A 的特征方程;2 定义:n 级方阵A 的特征多项式()λλ=-A n f E A 在复数域上的所有根都叫做其特征值根,设0λ∈C 是A 的特征值,齐次线性方程组()0λ-=n E A X 的每个非零解都叫做矩阵A 的属于其特征值0λ的特征向量;3求法:1求()λλ=-A n f E A 在复数域上的所有根12λλλn ,,,重根按重数计算;2对()1λ=k k ,n 解齐次线性方程组()0λ-=k n E A X ,得其一个基础解系12,,,,ηηηk k k k l =-k l n 秩()λ-k n E A ,则矩阵A 的属于特征值λk 的全部特征向量为1122,,ηηη+++k k k k k k k l k l s s s ,其中12,,,,k k k k l s s s 为不全为零的任意常数复数;4 重要结论:1设0λ∈C 是A 的特征值,0X 是A 的属于其特征值0λ的特征向量,()g x 为一复系数多项式;① ()0λg 为()g A 的特征值,0X 为()g A 的属于特征值()0λg 的特征向量; ② 如果A 还是可逆矩阵,那么1λ与λA分别为1-A 和*A 的特征值,0X 为1-A 的属于特征值1λ的特征向量,0X 为*A 的属于特征值λA的特征向量,③ 若12λλλn ,,,是矩阵A 的全部特征值,那么()()()12λλλn g ,g ,,g 就是()g A 的全部特征值,如果A 还是可逆矩阵,则12111λλλn,,,为1-A 的全部特征值,12λλλnA A A,,,为*A 的全部特征值;2若12λλλn,,,是矩阵A的全部特征值,那么()12tr λλλ=+++n A ,12λλλ=n A ;2. 线性变换的特征值与特征向量1定义:设σ是数域P 上的线性空间V 的线性变换,0λ∈P ,若存在0α≠∈V ,使得()0σαλα=,就称0λ为σ的一个特征值,α为σ的一个属于特征值0λ的特征向量;2线性变换的特征多项式设σ是数域P 上的n 维线性空间V 的线性变换,任取V 的一组基12,,,n ααα,设σ在该基下的矩阵为A ,称矩阵为A 的特征多项式λ-n E A 为σ的特征多项式,记为()σλλ=-n f E A ,即线性变换的特征多项式为其在任意基下矩阵的特征多项式;3求法:设σ是数域P 上的n 维线性空间V 的线性变换;1取定V 的一组基12,,,n ααα,求出σ在该基下的矩阵A ;2求()σλλ=-n f E A 在P 中的所有根12λλλm ,,,0≤≤m n ,重根按重数计算,且0=m 表示σ无特征值;3若0>m ,对()1λ=k t ,s 解齐次线性方程组()0λ-=k n E A X ,得其一个基础解系12,,,,ηηηk k k k l =-k l n 秩()λ-k n E A ,则线性变换σ的属于特征值λk 的全部特征向量为()()121122,,,,,αααηηη+++k k n k k k k k l k l s s s ,其中12,,,,k k k k l s s s 为P 中不全为零的任意常数;3. 矩阵相似1定义:设A,B 是数域P 上的两个n 级方阵,如果存在数域P 上的n 级可逆矩阵T ,使得1-=T AT B ,就称矩阵A 相似于矩阵B ,记为A B ;2性质:1矩阵相似是等价关系,即:设A,B,C 都是n 级方阵,那么:①A A ; ② 若A B ,那么B A ;③ 若A B 且B C ,则A C ;2若AB ,那么()()λλλλ=-==-A n B n f E A f E B ,因此矩阵A 与矩阵B 有相同的特征值,相同的迹()()tr tr =A B ,相同的行列式=A B ;3两个实对称阵相似⇔它们有相同的特征值;3有限维线性空间上的线性变换在不同基底下的矩阵彼此相似;4若1-=T AT B ,那么1-+=∀∈kkB T A T ,k Z ;4. 线性变换与矩阵可对角化 1矩阵可对角化1设A 是n 级方阵,如果存在n 级可逆矩阵T ,使得1-T AT 为对角阵,则称A 可对角化;2n 级方阵A 可对角化⇔A 有n 个线性无关特征向量; 3如果n 级方阵A 有n 个不同的特征值,则A 可对角化; 4设12λλλk ,,,是n 级方阵A 的所有不同的特征值,()()()()1212λλλλλλλλ=-=---klll A n k f E A称()12=i l i ,,,k 为λi 的代数重数;称=-i s n 秩()()12λ-=i n E A i ,,,k 为λi 的几何重数;()12≤=i i s l i ,,,k ;n 级方阵A 可对角化⇔对12=i ,,,k 都有λi 的代数重数=λi 的几何重数;注:1. 设齐次线性方程组()0λ-=i n E A X 的解空间为i W ,则()dim =i i s W2. 称{}λααλα=∈=i ni V CA 为n 级方阵A 的属于特征值λi 的特征子空间,那么()dim λ=i i s V2线性变换可对角化1 设σ是数域P 上的n 维线性空间V 的线性变换,如果存在V 的一组基,使得σ 在该基下的矩阵为对角阵,就称σ可对角化;2数域P 上的n 维线性空间V 的线性变换σ可对角化⇔σ有n 个线性无关特征向量; 3设σ是数域P 上的n 维线性空间V 的线性变换,如果σ有n 个不同的特征值,则σ可对角化;4设σ是数域P 上的n 维线性空间V 的线性变换,σ在V 的一组基下的矩阵为A , 设12λλλk ,,,是n 级方阵A 的所有不同的特征值;① 若12λλλ∈k ,,,P ,那么:σ可对角化⇔对12=i ,,,k 都有λi 的代数重数=λi 的几何重数;② 若12λλλk ,,,不全在数域P 中,则σ不可对角化;注:λi 的几何重数 =()dim λi V ,其中(){}λασαλα=∈=i iV V 为σ的属于特征值λi 的特征子空间;四.线性变换的值域与核1.定义:设σ是数域P 上的线性空间V 的线性变换,将()(){}100V σασα-=∈=,(){}V V σσαα=∈分别称为线性变换σ的核与值域()10σ-与V σ也分别记为ker σ与Im σ;2.线性变换的秩与零度: V σ与()10σ-都是V 的子空间,将()dim V σ 与()()1dim 0σ-分别称为σ的秩和零度;3. 有限维线性空间的线性变换的值域与核设V 是数域P 上的n 维线性空间,σ是V 的线性变换,12,,,n ααα为V 的一组基,σ 在该基下的矩阵为A ,=r 秩()A ,1122n n a a a V αααα=+++∈;1()1210n a a a ασ-⎛⎫ ⎪ ⎪∈⇔ ⎪ ⎪⎝⎭是齐次线性方程组0=AX 的解;2若12,,,ηηη-n r 是0=AX 的一个基础解系,那么12,,,γγγ-n r 其中()()12,,,1,2,,γαααη==-k n k k n r 就是()10σ-的一组基,于是:()()1dim0n r σ-=-()(){}1121122120n r n r n r n r L ,,,k k k k ,k ,,k P σγγγγγγ-----==+++∈因此σ的秩和零度为n r -; 3()()()()12n V L,,,σσασασα=于是()()()12σασασαn ,,,的一个极大线性无关组就是V σ的一组基,而()()()12σασασαn ,,,的秩等于秩()A =r ,所以()dim V r σ=,即σ的秩为秩()A =r ; 4()()()1dim dim 0V n σσ-+=;3. 求法:设V 是数域P 上的n 维线性空间,σ是V 的线性变换; 1()10σ-的求法:① 取定V 的一组基12,,,n ααα,求出σ在该基下的矩阵A ;② 解齐次线性方程组0=AX ,得其一个基础解系12,,,ηηη-n r =r 秩()A ;③ 令()()12,,,1,2,,γαααη==-k n k k n r ,得()10σ-的一组基12,,,γγγ-n r ,()(){}1121122120n r n r n r n r L ,,,k k k k ,k ,,k P σγγγγγγ-----==+++∈2V σ的求法:① 取定V 的一组基12,,,n ααα,求出σ在该基下的矩阵A ;② 设矩阵A 的列向量组为12,,,n ηηη,求出12,,,n ηηη的一个极大线性无关组12,,,r i i i ηηη就得到()()()12σασασαn ,,,的一个极大线性无关组()()()12σασασαri i i ,,,,()()()12σασασαri i i ,,,就是V σ的一组基;()()()()12ri i i V L ,,,σσασασα=()()(){}112212σασασα=+++∈r r r i i i i i i i i i l l l l ,l ,,l P五.不变子空间1. 定义:设σ是数域P 上的线性空间V 的线性变换,W 是V 的子空间,如果对α∀∈W ,都有()σα∈W 即()σ⊆W W ,就称W 是σ的不变子空间,也称σ-子空间; 2. 设V 是数域P 上的线性空间,那么{}0与V 都是V 的任一线性变换的不变子空间; 3. 设σ是数域P 上的线性空间V 的线性变换,λ是σ的任意一个特征值,那么σ的特征子空间(){}λασαλα=∈=V V 都是σ的不变子空间;4. 线性变换的循环子空间:设σ是数域P 上的0n >维线性空间V 的线性变换,任取0V α≠∈,必存在正整数m ,使得()()1m ,,,ασασα-线性无关,而()()m ,,,ασασα线性相关,令()()()1m W L ,,,ασασα-=,则W 是σ的不变子空间,称W 为σ的循环子空间;5. 设V 是数域P 上的n 维线性空间,σ是V 的线性变换,W 是σ的不变子空间,()0<dim =<W m n ,取W 的一组基12,,,αααm ,将其扩充为V 的一组基121,,,,,,ααααα+m m n ,那么σ在该基下的矩阵为1230⎛⎫⎪⎝⎭A A A ,其中1A 为σW在W 的基12,,,αααm 下的矩阵;六.若尔当 Jordan 标准形1.若尔当块与若尔当形矩阵: 1若尔当块:形式为()0000100000100001t tJ ,t λλλλλ⨯⎛⎫⎪ ⎪⎪=⎪⎪ ⎪⎝⎭ 的矩阵称为若尔当块,其中λ为复数;2若尔当形矩阵:由若干个若尔当块组成的准对角阵称为若尔当形矩阵,其一般形状如:12s A A A ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭其中:111i ii ii ii k k A λλλλ⨯⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭,且12s ,,,λλλ中有些可以相等;2. 复数域上有限维线性空间上的线性变换与复方阵1设σ是复数域C 上的0n >维线性空间V 的任意一个线性变换,那么必存在V 的一组基,使得σ在该基下的矩阵为若尔当形矩阵;2每个n 级复矩阵都与一个若尔当形矩阵形矩阵相似;3. 设σ是复数域上的0n >维线性空间V 的线性变换,那么σ幂零⇔σ的特征值都为零;。

7线性变换的定义.

7线性变换的定义.
即 旋转 角之后的坐标是按照公式
x cos sin x

y


sin
cos

y

来计算的.同样空间中绕轴的旋转也是一 个线性变换
设 是几何空间中一固定非零向量, 把每个向量 变到 它在 上的 内射影的 变换也是一个线性变换,以 表示 它.用 公式表示就是
这是一个线性变换,称为由数 k 决定 的数乘变换,可用K表示.显然当k 时1, 便得恒等变换,当 k时 ,0 便得零
变换.
二、线性变换的简单性质 设A是的线性变换,则
A (0)=0, A ( )=-A ( ).
线性变换保持线性组合与线性关系式不变.换 句话说,如果 是1,2, ,r的线性组合:
k11 k22 krr
那么经过线性变换A之后,A ( )是A (1), A (2 ),…, A (r)同样的线性组合. A( )=A(1)+A(2)+…+ A (r )
线性变换把线性相关的向量组变成 线性相关的向量组.但线性变换把线 性无关的向量组可能变成线性相关 的向量组.例如零变换就是如此.
定义中等式所表示的性质,有时 也说成线性变换保持向量的加法 与数量乘法
平面上的向量构成实数域上的二维线性
空间.把平面围绕坐标原点按反时钟方向 旋转 角,就是一个线性变换,用ℐ 表示. 如果平面上一个向量 在直角坐标系下的
坐标是 (x, y) ,那么像ℐ ( )的坐标 (x, y),源自()
(, ) (, )

这里( , ), ( , ) 表示内积.
线性空间V中的恒等变换或称单位变 换E,即
E () ( V ) 以及零变换ℴ,即

线性变换

线性变换

例1. 设V是数域P上的线性空间,c是数域P中的一个常 数,定义变换
LINEAR LINEAR ALGEBRA ALGEBRA
A : ∀α ∈ V Aα = cα
则 A为V的一个变换。通常称为数乘变换 。 当 c = 1 时,称上面的数乘变换为恒等变换。并记为 ε 当 c = 0 时,称上面的数乘变换为零变换。并记为θ
LINEAR LINEAR ALGEBRA ALGEBRA
第六章
线



西南交通大学峨眉校区基础课部数学教研组
2006年制作
第六章 线性变换 线性变换
LINEAR LINEAR ALGEBRA ALGEBRA
内容
1.线性变换的概念 线性变换的概念 2.线性变换与矩阵 线性变换与矩阵 3.线性变换的特征子空间﹑值域和核 线性变换的特征子空间﹑ 线性变换的特征子空间 4.欧氏空间的正交变换和对称变换 欧氏空间的正交变换和对称变换
西南交通大学峨眉校区基础课部数学教研组
2006年制作
二、线性变换与矩阵 线性变换与矩阵
(2)
LINEAR LINEAR ALGEBRA ALGEBRA

x1 x1 + x2 A1 x2 = x3 有: x x 3 1 2 2 3 A1α1 = 0 , A1α 2 = 0 , A1α 3 = 1 2 1 1
西南交通大学峨眉校区基础课部数学教研组
2006年制作
一、线性变换的概念 线性变换的概念
例2 . 设 V = P[ x]是实数域R上的全体一元实系数多项 式组成的实线性空间,定义微分变换
LINEAR LINEAR ALGEBRA ALGEBRA

第七章 线性变换

第七章 线性变换

第七章 线性变换一. 内容概述1. 线性变换的概念设n V 是n 维线性空间,T 是n 维线性空间n V 中的变换,且满足1) 对任意向量n V ∈βα,,有 )()()(βαβαT T T +=+ 2) 对任意向量F k V n ∈∈,α,有)()(ααkT k T =则称为中的线性变换。

2. 线性变换的性质及运算1)0)0(=T )()(ααT T -=-2) )()()()(22112211n n n n T k T k T k k k k T αααααα+++=+++ΛΛ3)设向量组n ααα,,,21Λ线性相关,则向量组)(),(),(21n T T T αααΛ也线性相关。

线性变换的和:)()())((2121αααT T T T +=+ 线性变换的积:))(())((2121ααT T T T = 数乘变换:)())((αλαλT T = 线性变换T 可逆时,逆变换1-T都是线性变换。

线性变换的多项式:0111)(a a a a f m m m m ++++=--σσσσΛ 3. 线性变换的矩阵设σ是V 的一个线性变换,n εεε,,,21Λ是V 的一个基,且n n a a a εεεεσ12211111)(+++=Λn n a a a εεεεα22221122)(+++=ΛΛΛΛΛn nn n n n a a a εεεεσΛ++=2211)(记))(),(),((),,,(2121n n εσεσεσεεεσΛΛ=A n n n ),,,())(,),(),((),,,(212121εεεεσεσεσεεεσΛΛΛ== 则称A 为线性变换σ在基n εεε,,,21Λ下的矩阵。

4. 设n εεε,,,21Λ是数域P 上n 维线性空间V 的一组基,在这组基下,每个线性变换按公式)(*对应一个n n ⨯矩阵,这个对应具有以下性质:1) 线性变换的和对应与矩阵的和; 2) 线性变换的积对应与矩阵的积;3) 线性变换的数量乘积对应与矩阵的数量乘积;4) 可逆的线性变换与可逆矩阵对应,且逆变换对于与逆矩阵。

线性代数课件PPT第五章 线性变换 S1 线性变换的定义

线性代数课件PPT第五章 线性变换 S1 线性变换的定义

由于T1(p+q)=1, 但T1(p)+T1(q)=1+1=2,
所以
T1(p+q)T1(p)+T1(q).
18
5
T(kp1)=A(kp1)=kAp1=kT(p1).
所以, 变换T是线性变换.
y P'

x y
r cos r sin
, 于是
T
x y
x cos x sin
y sin y cos
p
o
x
r r
cos cos
cos sin
r sin sin r sin cos
r r
cos( sin(
)),
例5 设V是数域F上的线性空间,k是F中的某个数 , 定义V的变换如下:
k
这是一个线性变换,称为由数k决定的数乘变换.
当k=1时,便得恒等变换,当k=0时,便得零变换 .
8
例6: 在R3中定义变换: T(x1, x2, x3)= (x12, x2+x3, 0),
则T不是R3的一个线性变换.
证明: 对任意的=(a1, a2, a3), =(b1, b2, b3)R3, T( + )=T(a1+b1, a2+b2, a3+b3)
上式表明: 变换T把任一向量按逆时针方向旋转角.
一般地, 在线性空间Rn中, 设A为n阶方阵, xRn, 变换 T(x)=Ax是本节所定义的线性变换.
事实上, 对任意的x, xRn,
T(x+x) =A(x+x) =Ax+Ax =T(x)+T(x),
T(kx) =A(kx)=kAx =kT(x).
6

高等代数.第七章.线性变换.课堂笔记

高等代数.第七章.线性变换.课堂笔记

第七章 线性变换§7.1 线性变换的定义与判别一、线性变换的定义:定义1 设V 为数域P 上线性空间,A 为V 的一个变换(即V ⟶V 的映射),若A 保持加法和数乘运算,即A (α+β)=A (α)+ A (β),∀α,β∈V ,A (kα)=k A (α),∀k ∈P ,则称A 为V 的一个线性变换.注记: 以后我们用花体拉丁字母A,B,C,...表示V 的线性变换,除了特别说明外,本章节中V 均指数域P 上有限维线性空间.例1.说明下列变换均为线性变换: (1)把V 中任一向量都映射为0(称为零变换,记作0); (2)把V 中任一向量α映射为本身(恒等变换,记作E ); (3)取定k ∈P ,把V 中的每一个向量α映射为kα(数乘变换,记作k ).例2.判定下列规则σ是否为指定线性空间的线性变换: (1)ℝ,x -:σ(f (x ))=f′(x );(2)C ,a,b -: σ(f (x ))=∫f (t )dt x0;(3)P n×n : σ(A )=A +A ′,σ2(A )=SAT ,S,T 为固定二个n ×n 矩阵. (4)ℝ,x -n : σ1(f (x ))=xf (x ),σ2(f (x ))=f (x )+1. 解:可验证(1)-(3)均为线性变换,下面证明(1): ∀ f (x )∈ℝ,x -,其导函数唯一确定,且f (x )∈ℝ,x -,因而σ为V ⟶V 的变换,即V 的一个变换,σ(f (x )+g (x ))=(f (x )+g (x ))′=f ′(x )+g ′(x )= σ(f (x ))+ σ(g (x )), ∀k ∈ℝ,σ(kf (x ))=(kf (x ))′=kf ′(x )=kσ(f (x )).(4): σ1与σ2均不是线性变换,取f (x )=x n−1+1=ℝ,x -n ,但σ1(f (x ))=xf (x )=x n +x ∉ℝ,x -n , 因而σ1不是ℝ,x -n 的一个变换, σ2是ℝ,x -n 的一个变换,但运算不保持,因而不是线性变换.习题:P320、1例3.设α为通常几何空间ℝ3中固定的向量,把空间中每个向量η映射为η在α上的内映射(正投影),即Πα: η⟶(α∙η)(α∙α)α是ℝ3的线性变换,这里(α∙η),(α∙α)表示通常向量的内积.证:如图,Πα(η)=OD ⃗⃗⃗⃗⃗ =ηcos (η∙α)α|α|=(α∙η)(α∙α)α,唯一确定, 从而Πα为ℝ3的一个变换,如图,AC ⊥W(垂足为C),OCD LA Wα1α2η因此L 与W 为ℝ3的子空间且ℝ3=W ⊕L ,令 η=α1+α2,α1=OD⃗⃗⃗⃗⃗ =Πα(η),α2∈W , δ=β1+β2,β1=Πα(δ)∈L,β2∈W ,则η+δ=(α1+β1)+(α2+β2),α1+β1∈L,α2+β2∈W , 从而Πα(η+δ)=α1+β1=Πα(η)+Πα(δ), 同理,Πα(kη)=kΠα(η).二、线性变换的性质: 设A 为V 的线性变换,则: (1) A (0)=0, A (−α)=−A (α),∀α∈V ; (2) A (k 1α1+k 2α2+⋯+k t αt )=k 1A (α1)+k 2A (α2)+⋯+k t A (αt ); (3) A 把线性相关的向量组映射为线性相关的向量组(反之不真).2011-04-02A : V ⟶V 线性变换性质: (3) A 为V 中线性相关的向量组,映为V 中线性相关的向量组,即α1,α2,…,αs 相关⟹A (α1), A (α2),…, A (αs )相关;但A (α1), A (α2),…, A (αs )线性相关⇒α1,α2,…,αs 相关. 如A =0,∀ α∈V,α≠0, A (α)=0.(4)设α1,α2,…,αn 为V 的一个基,∀ α∈V,α=x 1α1+x 2α2+⋯+x n αn ⟹A (α)=A (x 1α1+x 2α2+⋯+x n αn ) 线性变换A 由V 中一个基中的像唯一确定;(5)设α1,α2,…,αn 为V 的一个基,则对V 中任一向量组β1,β2,…,βn 必存在一个线性变换 A : V ⟶V ,使得:A (αi )=βi ,1≤i ≤n ;证:作V ⟶V 映射:A (α)= x 1β1+x 2β2+⋯+x n βn ,其中:α=x 1β1+x 2β2+⋯+x n βn ,则A (αi )=βi ,1≤i ≤n ; 下证:A 为V 的线性变换:∀ α=x 1α1+x 2α2+⋯+x n αn ∈V,β=y 1α1+y 2α2+⋯+y n αn ∈V,A (α+β)= A .(x 1+y 1)α1+(x 2+y 2)α2+⋯+(x n +y n )αn /=(x 1+y 1)β1+(x 2+y 2)β2+⋯+(x n +y n )βn=(x 1β1+x 2β2+⋯+x n βn )+(y 1β1+y 2β2+⋯+y n βn ) = A (x 1α1+x 2α2+⋯+x n αn )+ A (y 1α1+y 2α2+⋯+y n αn )= A (α)+A (β)同理,∀k ∈P ,A (kα)=k A (α).§7.2 线性变换的运算为方便,引入记号:Hom (V,V ),它表示数域P 上线性空间V 的所有线性变换的集合。

线性变换

线性变换

⎛ y1 ⎞
,εn
)
⎜ ⎜
y2
⎟ ⎟
.
⎜⎝ yn ⎟⎠

σ (ξ ) = (σε1,σε 2,
⎛ x1 ⎞
,σε
n
)
⎜ ⎜
x2
⎟ ⎟
=
(ε1,ε
2
,
⎜⎝ xn ⎟⎠
⎛ x1 ⎞

n
)
A⎜⎜
x2
⎟ ⎟
⎜⎝ xn ⎟⎠
∴ (ε1,ε 2 ,
⎛ y1 ⎞
,εn
)
⎜ ⎜
y2
⎟ ⎟
=
(ε1,ε 2 ,
⎜⎝ yn ⎟⎠
例V = R2 (实数域上二维向量空间),把V中每
一向量绕坐标原点旋转 θ 角,就是一个线性变换,
用Tθ 表示,即
( ) ( ) Tθ : R2 → R2,
x y
x′ y′
( ) ( )( ) 这里,
x′ y′
=
cosθ sinθ
− sinθ cosθ
x y
易验证:∀α , β ∈ R2 , ∀k ∈ R
于是 Ak = XBk X −1.
( )( ) ( ) ∴
Ak =
1 −1 −1 2
1 1 k 1 −1 −1 0 1 −1 2
( )( )( ) ( ) =
1 −1 −1 2
1k 01
2 1
1 1
=
k +1 −k
k −k + 1
.
例. 在线性空间 P 3 中,线性变换 σ定义如下: ⎧⎪⎨⎪⎩σσσ(η((ηη312)))===(((−−05,5,−,−011,,,369))) ,

行列式的计算方法

行列式的计算方法

定理7.3.2 设{1,2,…,n}是向量空间V 的给定的一个基,作映射f: L (V) →Mn(F),使对V的任一线性变换 ,在f之下的象是关于基 {1,2,…,n}的矩阵A,即f ()=A. 那 么f是L(V)到Mn(F)的双射,并且若, L(V),f ()=A,f ()=B,则 f (+)=A+B f (k)=kA, f ()=AB.
设V是F上n维向量空间,是V的一个线性变换 ,{1 , …,n}是V的一个基. 由于 (1),…, (n)也是V中的向量,它们都可以唯一地由基 {1, …, n}线性表示,设为 (1)=a111+a212+…+an1n , (2)=a121+a222+…+an2n ……… (n)=a1n 1+a 2n2+…+annn . 令
a 11 a 12 a 1n a 21 a 22 a 2 n A= a n1 a n 2 a nn
规定 (1,2 ,…,n)=( (1), (2) ,…, (n) ) 则向量等式组(1)式可表示成 (1,2 ,…,n)=(1,2 ,…,n)A, 也可以表示成 ( (1), (2) ,…, (n) )=(1,2 ,…,n)A . 矩阵A叫做线性变换关于基{1,2 ,…,n} 的矩阵,矩阵A的第j列就是基向量j的象
第七章 线性变换
小结与复习
本章知识结构
一、线性变换的定义 定义1 设是F上向量空间V的一个变换. 若对于V中任意向量 , 及F中任意数k ,都有 (+)= () + (); (k)=k (). 则称是V的一个线性变换.
二、线性变换的性质
定理7.1.1 设V是F上的一个向量空间,是V的一 个线性变换. (i) (0)=0. 其中0是V的零向量. (ii) 设1,… ,s是V的向量,则 (1+…+s)= (1) +… + (s); (iii) , 1,… ,s是V的向量. 若 =k11+…+kss,则 ()=k1 (1) +… +ks (s). (iv) 若{1,…, s}是V的线性相关的向量组, 则{(1), …, (s) }也是V的线性相关的向量 组.

高等代数线性变换解析

高等代数线性变换解析

(3)
A ( BC ) = ( A B )C
(4) k( AB ) = ( kA )B = A ( kB ) 例1 在R 2中,设A(x, y)=(y, x),B(x, y)=(0, x),则A, B是R2中的 线性变换,求A + B,AB,BA,3A-2B。
线性变换
§2 线性变换的运算
三、可逆的线性变换
A m n A m A n ,
(A m )n A mn ,
m, n N
若A是可逆的,则以上法则对任意整数m,n都成立。
注意: 由于线性变换的乘法不满足交换律,故( AB ) ≠ A B 。
n
n n
线性变换 定义5 设
§2 线性变换的运算
f ( x) an xn an1xn1 a1x a0 P[ x]
线性变换
§3 线性变换的矩阵
定理2 设 1 , 2 ,, n 是数域 P 上 n 维线性空间 V 的一组基,
A, B∈L(V), 且 A, B 在这组基下的矩阵分别为A和B,则在该 组基下: (1) A + B 的矩阵是 A+B;
(2) AB 的矩阵是 AB; (3) kA 的矩阵是 kA; (4) 若A 是可逆的,则矩阵 A 也可逆,且A-1的矩阵是A-1。
矩阵的相似性是由 线性变换所决定的
则 B 为线性变换 A 在基 1 ,2 ,,n 下的矩阵。 A A
1 , 2 ,, n
A可逆的充要条件是它在 一组基下的矩阵A可逆
例5 设 V是数域P上的n维线性空间,则L(V)与P n×n同构。
例6 设 A1,A2是 n 维线性空间 V 的两个线性变换,证明: A2V⊂A1V 的充要条件是存在线性变换 A 使得 A2=A1A 。

第七章 线性变换

第七章 线性变换

, ε n ,写出
,ε n
高等代数
东北大学秦皇岛分校
例 2 设线性变换A 在基 ε 1 , ε 2 , ε 3 下的矩阵是
⎛1 2 2⎞ ⎜ ⎟ A = ⎜ 2 1 2⎟, ⎜2 2 1⎟ ⎝ ⎠
求A 的特征值与特征向量. 线性变换A 的属于 λ0 的全部特征向量再添上零向量所 成的集合,是V的一个子空间,称为A 的一个特征子空间,记为
高等代数
东北大学秦皇岛分校
例 设V是数域P上一个二维线性空间,
ε 1 , ε 2是一组基线性变换A 在 ε 1 , ε 2 下的矩阵是
⎛ 2 1⎞ ⎜ ⎟. ⎝ −1 0 ⎠ 对V的另一组基 η1 ,η 2 ,有
⎛ 1 −1 ⎞ (η1 ,η 2 ) = (ε 1 , ε 2 ) ⎜ ⎟, ⎝ −1 2 ⎠ k ⎛ 2 1⎞ 求 ⎜ ⎟ . ⎝ −1 0 ⎠
高等代数
东北大学秦皇岛分校
定理 2 设 ε 1 , ε 2 ,
, ε n 使数域P上n维 ,ε n ) A
线性空间V的一组基,在这组基下,每个线性变换按
A (ε 1 , ε 2 ,
, ε n ) = (ε 1 , ε 2 ,
都对应一个 n × n 矩阵,这个对应具有以下的性质: 1) 线性变换的和对应于矩阵的和; 2) 线性变换的乘积对应于矩阵的乘积; 3) 线性变换的数量乘积对应与矩阵的数量乘积; 4) 可逆的线性变换与可逆矩阵对应,且逆变换对 应于逆矩阵.
高等代数
东北大学秦皇岛分校
利用线性变换的矩阵计算向量的像: 定理 3 设线性变换A 在基 ε 1 , ε 2 , 矩阵是A,向量 ξ 在基 ε 1 , ε 2 , 则 A ξ 在基 ε 1 , ε 2 ,
, ε n 下的 , ε n下的坐标是 ( x1 , x2 ,

6.3 线性变换

6.3 线性变换

20
四. 线性变换的矩阵 定义6.14 设 1 , 2 , , n 是线性空间V 的一组基
T 是V上的一个线性变换,若有 n 阶矩阵 A,使
(1 , 2 , , n ) A 则称矩阵A为线性变换T在基 1 , 2 , , n 下的矩阵. 注 (1) 线性变换T在基 1 , 2 , , 下的矩阵 A的第i列 n 是基 1 , 2 , , n 的像在基下的坐标;
(3)T ( k11 k2 2
m
km m ) T ( ki i )
i 1
m
ki T ( i );
(4)因为1 , 2 , 零的数 k1 , k2 ,
i 1
,km ,使得
, m 线性相关,所以存在不全为 km m kmT ( m ) T ( )
7
k11 k2 2
用T作用于上2 )
因为 k1 , k2 ,
,km 不全为零,所以
T1,T 2, ,T m 线性相关.
注 性质(4)的逆命题不一定成立. 即
T1,T 2, ,T m 线性相关, 1 , 2 ,
也可能线性无关.
与恒等变换.
例3 对给定的 n 阶实方阵A,在n维实向量空间Rn上, 定义变换TA:
X R n , TA ( X ) AX
其中X是n维列向量. 证明:TA是Rn的一个线性变换. 证 因为 X Rn , AX Rn 所以 TA是R n上的一个变换.
又因为 X 1,X 2 R n,k R,有
记作T -1. 容易证明:线性变换的和、乘积、数乘、可逆变换的 逆变换仍然是线性变换.
18
例7 在R3中,定义线性变换T1,T2为
x1 x1 x2 x1 x1 x2 1 T1 x2 x2 ,T2 x2 x2 , 2 3 x x x x 3 3 3 3

《线性变换的定义》PPT课件

《线性变换的定义》PPT课件

精选课件
13
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
第一节 线性变换的定义
主要内容
引入 定义 举例 性质
精选课件
1
一、引入
上二一、章定我义们 看 到 , 数 域 P 上 任 意 一 个 n 维 线
空 间定都义与 1P n线同性构空,间因V之的,一个有 变限换维 A线 称性 为空线间性的 结 可变以换认,为如果是对完于全V清中楚任了意.的线元性素空 ,间 是和数某域类 P事中物 从 的任方意数面 的k ,一都个有抽 象 . 我 们 认 识 客 观 事 物 , 固 然 要 清 它 们 单 个A的(和+ 总 )体= 的A(性 )质+ ,A(但 )是, 更 重 要 的 是 研 究 它 们 之 间A的( k各 种) =各k A样(的)联. 系 . 在 线 性 空 间 中 , 物之间的联系就反映为线性空间的映射. 线性空
A( - ) = - A( ) .
精选课件
10
性质 2 线性变换保持线性组合与线性关系式
不变. 换句话说,如果 是 1 , 2 , … , r 的线性
组合:
= k11 + k22 + … + krr ,
那么经过线性变换 A 之后, A ( ) 是 A ( 1 ),
A ( 2 ) , …, A ( r ) 同样的线性组合:
xycsions csoinsxy
精选课件
4
来计算的. 同样地,空间中绕轴的旋转也是一个线 性变换. 如图 7 - 1 所示.
y
y
= ( x , y )
y
O x
=(x,y)
x
x
图7-1

线性变换的定义

线性变换的定义

1设V是P上的一个线性空间,若V的变换δ满足:○1ᄇα、β∈V,有δ(α+β)=δ(α)+δ(β)○2ᄇk∈P,ᄇα∈V,有δ(kα)=kδ(α),则称δ是
V的一个线性变换
●若δ是1-1对应,则称δ是V的一个自同构
●线性空间V到自身的映射通常称为V的一个变换
2 恒等变换(单位变换)以及零变换:设V是P上的一个线性空间,定义V的变换δ1、
δ2分别是δ1(α)=0,ᄇα∈V,δ2(α)=α,ᄇα∈V,则称δ1为零变换,
记做0;δ2为V的单位变换或者恒等变换,记做E
数乘变换:设V是P上的一个线性空间,对于ᄇk∈P, 定义V的变换δ为δ(α)=k α,则δ是V的线性变换,称为由k诱导的数乘变换,记做τk
3 线性变换的性质:设δ是线性空间V的一个线性变换,则
○1δ(0)=0,δ(-α)=-δ(α)
○,2设α1,α2,﹍αn,β∈V,若β是α1,α2,﹍αn的线性组合,
则δ(β)也是δ(α1)、δ(α2)、﹍δ(αn)的对应项系
数完全相同的组合
○3即使α1,α2,﹍αn线性无关,但δ(α1),δ(α2),﹍δ(α
n)也有可能线性相关(如δ=0)。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性变换是向量空间V的一种特殊变换,它满足对任意向量α,β及实数k,有σ(α+β)=σ(α)+σ(β)和σ(kα)=kσ(α)两个条件。在二维几何空间V2中,旋转变换是线性变换的一个例子,它将每个向量旋转一定角度,同时保持线性关系。在三维空间V3中,对过原点的平面H的正投影变换也是线性变换。此外,在数域F上的线性空间中,可以通过规定特定的变换规则来,证明其满足线性变换的条件。其他例子还包括数乘变换、微商变换和积分变换等,它们都在各自的空间或变换中展示了线性变换的性质和应用。
相关文档
最新文档