碳纳米管的应用领域—陶瓷
纳米技术在陶瓷领域方面的应用
纳米技术在陶瓷领域方面的应用近年来,纳米技术的发展与应用不断推进,其在陶瓷领域中也得到了广泛的应用。
纳米技术可以改善陶瓷的性能,使陶瓷具有更强的力学性能、导电性能、光学性能和磁性能,因此在电子、光电和生物医学等领域中有着广泛的应用前景。
传统的陶瓷材料压制成型通常需要高温烧结,而烧结温度高、能耗大,造成环境污染,也影响了陶瓷的性能。
利用纳米技术制备陶瓷则可以克服这些问题。
制备方法主要有两种:一种是直接将纳米粉体压制成型(或喷雾成型、光刻成型),再在较低温度下(通常为数百度)烧结,即所谓的等离子烧结法;另一种是先利用溶胶-凝胶法、气溶胶-凝胶法和单分散小球体法等方法制备出纳米粉体,再制备出坯体进行烧结。
这种方法可以降低烧结温度,提高了陶瓷的制备效率。
纳米陶瓷材料的力学性能和韧性优化纳米陶瓷材料因其晶粒尺寸较小,其具有比传统陶瓷材料更高的力学性能。
利用纳米技术制备的陶瓷材料可以通过组成优化、控制晶粒尺寸及晶体相呈现、晶界工程、界面增韧等方式提高陶瓷的韧性和断裂强度。
例如,增加材料晶界密度可以使材料更韧性,降低晶界能则有助于增加材料的韧性和疲劳寿命。
由于其具有更小的晶粒尺寸和新颖的能级结构,纳米材料表现出与传统陶瓷材料不同的光学性质。
利用纳米技术,可以制备出具有强透光性和色散的陶瓷,应用于光电显示、电子显示、光学存储等领域。
例如,利用纳米颗粒制备出的金红石陶瓷可具有较高的透光率和折射率,而掺入稀土元素则可以增强其荧光性能。
利用纳米技术,可以在陶瓷材料中引入导电粒子,如碳纳米管和氧化铟纳米晶。
这些导电粒子可以提高陶瓷的导电性能,使其应用于微电子器件、高功率电子器件、电磁屏蔽材料等领域。
例如,利用碳纳米管制备出的陶瓷复合材料可具有较高的导电性和机械强度,可应用于电池电极材料、电磁屏蔽等。
纳米陶瓷材料的生物医学应用纳米技术可以改变材料表面结构,如疏水性和亲水性、电荷、粘附力等,从而制得表面对细胞有更好的覆盖性能,并可用于载药、组织工程等。
碳纳米管的性质与应用
碳纳米管的性质与应用碳纳米管是一种研究热点,同时也是一种具有广泛应用前景的纳米材料。
碳纳米管具有很多优异的性质,例如高度的机械强度、热导率、光学性质和电学性质等,这些性质使得碳纳米管在各领域中得到了广泛的关注和研究。
本文将从性质和应用两方面来探讨碳纳米管的特点。
一、碳纳米管的性质1. 机械性质碳纳米管具有非常高的机械强度,这是由于其形成时的晶格缺陷极少,且由碳原子构成的共价键是相当强的。
研究表明,碳纳米管的强度可以达到200GPa以上,因此在强度要求高的场合,例如航天航空领域、材料制造业及求医领域等等,碳纳米管都有广泛的应用。
2. 热学性质碳纳米管具有良好的热传导性质,由于它们的长度是大于直径的,因此导热主要沿着管轴方向,这种长程导热机制使得碳纳米管的热导率非常高,可以高达3000W/mK。
同时,其能够承受极高的温度,可以长期工作在1000℃以上的高温环境中,故在制造高精度、高稳定性元器件,以及制造高温传感器方面都有广泛应用。
3. 光学性质碳纳米管具有优良的光学性质,具有很高的吸收能力和强烈的荧光特性。
碳纳米管的宽带能使其吸收并辐射出不同波长的光,因此在生命科学、光电器件等领域得到广泛的应用。
4. 电学性质碳纳米管是一种非常具有潜力的电子材料,具有半导体和金属的特性。
这种双重的特性,使得碳纳米管可用于制造场效应晶体管、电化学电容器、电化学传感器等,同时,在信息技术、存储技术、生物医学等领域,碳纳米管也有着广泛的应用。
二、碳纳米管的应用1. 生物医学碳纳米管在生物医学中的应用非常广泛,主要包括药物传递、成像、生物分析及治疗等方面。
碳纳米管的生物相容性好,特异性高,可以将药物包载于碳纳米管表面,通过靶向技术将药物输送至受体细胞表面,从而达到治疗的目的。
此外,碳纳米管还能用于医学检测成像,如:磁共振成像、X射线成像、核酸检测等疾病诊断。
2. 能源材料由于碳纳米管的高热传导、高机械强度、高表面积和优质导体性质,使得碳纳米管可以用于电化学能源存储、传感及转换。
碳纳米管的性能及应用领域
碳纳米管的性能及应用领域碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有很多异常的力学、电学和化学性能。
近些年随着碳纳米管及纳米材料讨论的深入其广阔的应用前景也不断地呈现出来。
一、碳纳米管的性能1.1力学性能不同类型的碳纳米管碳纳米管具有良好的力学性能,碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸。
碳纳米管的结构虽然与高分子材料的结构相像,但其结构却比高分子材料稳定得多。
碳纳米管是目前可制备出的具有最高比强度的材料。
若将以其他工程材料为基体与碳纳米管制成复合材料,可使复合材料表现出良好的强度、弹性、抗疲乏性及各向同性,给复合材料的性能带来极大的改善。
1.2导电性能碳纳米管制成的透亮导电薄膜碳纳米管上碳原子的P电子形成大范围的离域键,由于共轭效应显著,碳纳米管具有一些特别的电学性质。
碳纳米管具有良好的导电性能,由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能。
对于一个给定的纳米管,在某个方向上表现出金属性,是良好的导体,否则表现为半导体。
对于这个的方向,碳纳米管表现出良好的导电性,电导率通常可达铜的1万倍。
1.3传热性能采纳了碳纳米管涂层的热水器内胆碳纳米管具有良好的传热性能,碳纳米管具有特别大的长径比,因而其沿着长度方向的热交换性能很高,相对的其垂直方向的热交换性能较低,通过合适的取向,碳纳米管可以合成高各向异性的热传导材料。
另外,碳纳米管有着较高的热导率,只要在复合材料中掺杂微量的碳纳米管,该复合材料的热导率将会可能得到很大的改善。
二、碳纳米管的应用2.1电子领域碳纳米电子管(CNTS)是一种具有显著电子、机械和化学特性的独特材料。
其导电本领不同于一般的导体。
性能方面的区分取决于应用,或许是优点,或许是缺点,或许是机会。
在一理想纳米碳管内,电传导以低温漂轨道传播的,假如电子管能无缝交接,低温漂是计算机芯片的优点。
诸如电连接等的混乱极大地修改了这行为。
对十较慢的模拟信号的处理速度,四周环围着平向球分子的碳纳米管充当传播者已被试验证明。
碳纳米管的具体应用
碳纳米管的具体应用碳纳米管是由碳原子组成的纳米尺寸管状结构,具有优异的物理和化学性质,因此在众多领域中具有广泛的应用前景。
本文将从电子学、材料科学、生物医学、能源领域等多个方面介绍碳纳米管的具体应用。
1. 电子学领域碳纳米管在电子学领域有着重要的应用,主要体现在以下几个方面:(1)场效应晶体管(FET):碳纳米管可以作为FET的通道材料,具有优异的电子输运性能,可实现高速、低功耗的电子器件。
(2)纳米电子学器件:碳纳米管可以用于制备纳米电子学器件,如纳米电极、纳米线和纳米电容器等,用于构建超高密度的集成电路。
(3)柔性电子学:碳纳米管具有优异的柔性性质,可以用于制备柔性电子学器件,如柔性传感器、柔性显示器等,为可穿戴设备和可弯曲电子设备提供了新的可能性。
2. 材料科学领域碳纳米管在材料科学领域有着广泛的应用,主要体现在以下几个方面:(1)复合材料增强剂:碳纳米管可以作为一种优秀的增强剂,加入到金属、陶瓷或聚合物基体中,可以显著提高材料的力学性能和导电性能。
(2)催化剂载体:碳纳米管具有大比表面积和良好的导电性质,可作为催化剂的载体,提高催化反应的效率和选择性。
(3)锂离子电池负极材料:碳纳米管具有高比表面积和良好的电子传导性能,可作为锂离子电池负极材料,具有高容量和长循环寿命等优点。
3. 生物医学领域碳纳米管在生物医学领域有着广泛的应用前景,主要体现在以下几个方面:(1)药物传递:碳纳米管可以作为药物的载体,通过调控其表面性质和内部结构,实现药物的控释和靶向传递,提高药物治疗的效果。
(2)生物传感器:碳纳米管具有高比表面积和优异的电化学性能,可以用于制备生物传感器,实现对生物分子的灵敏检测和诊断。
(3)组织工程:碳纳米管可以作为支架材料用于组织工程,促进细胞生长和组织修复,具有重要的临床应用前景。
4. 能源领域碳纳米管在能源领域有着重要的应用,主要体现在以下几个方面:(1)锂离子电池:碳纳米管可以作为锂离子电池的电极材料,具有高比表面积和优异的电导率,可提高电池的能量密度和循环寿命。
碳纳米管的应用领域 -回复
碳纳米管的应用领域-回复碳纳米管(Carbon Nanotubes,简称CNTs)作为一种具有特殊结构和性能的纳米材料,具有广泛的应用潜力。
本文将围绕碳纳米管的应用领域展开,逐步介绍其在电子技术、材料科学、药物输送、能源存储等领域的重要应用。
第一部分:碳纳米管在电子技术中的应用碳纳米管由于其优异的导电性能和纳米级尺寸大小,使得它在电子技术领域有广泛的应用前景。
首先,碳纳米管可以用作高性能晶体管的替代材料。
由于碳纳米管具有高电子迁移率、小通道长度和优异的开关能力,因此可以用来制造更小、更快、更有效的晶体管。
其次,碳纳米管还可以用于制造柔性电子设备,比如柔性显示屏和可穿戴电子产品。
由于其高韧性和优异的电子性能,碳纳米管可以实现电子器件在弯曲或拉伸时不损坏,并且可以以更小、更轻的形式集成到各种非传统载体上。
第二部分:碳纳米管在材料科学中的应用碳纳米管具有柔韧性、高强度和低密度等优异的力学性能,使得它们在材料科学领域有着广泛的应用。
首先,碳纳米管可以用作增强材料,用于制造高性能复合材料。
将碳纳米管作为添加剂掺入到基础材料中,可以显著提高材料的力学性能,如抗拉强度、硬度和耐磨性等。
其次,碳纳米管还可以用于制造导电或发光的材料。
由于其优异的导电性和发光性能,碳纳米管可以用来制造传感器、光电器件和光子晶体等。
第三部分:碳纳米管在药物输送中的应用碳纳米管具有大比表面积和可调控的孔隙结构,使其成为理想的药物输送载体。
首先,碳纳米管可以用来包裹药物分子,并在体内传递药物。
由于其独特的管状结构,碳纳米管可以通过内部或外部修饰来调控药物的释放速率和靶向性,从而实现对药物的高效率输送和控制释放。
其次,碳纳米管还可以用于肿瘤治疗。
碳纳米管可以通过改变其表面性质或修饰其上的靶向配体,实现对肿瘤细胞的特异性识别和靶向治疗。
第四部分:碳纳米管在能源存储中的应用由于其独特的电化学性质,碳纳米管在能源存储领域有着巨大的潜力。
首先,碳纳米管可以用作电池材料,如锂离子电池、超级电容器和可重复使用电池。
碳纳米管粉体用途
碳纳米管粉体用途碳纳米管粉体是一种由碳原子组成的纳米级材料,因其独特的结构和优异的性能,被广泛应用于能源储存、催化剂载体、传感器、增强材料、医药领域、电子器件、环保领域以及其他领域。
1.能源储存碳纳米管粉体在能源储存领域具有广泛的应用前景。
由于其高比表面积和良好的电导性,碳纳米管粉体可以用于制备高性能的电池和超级电容器。
此外,碳纳米管粉体也可以用于制备燃料电池的催化剂载体,以提高燃料电池的能量密度和稳定性。
2.催化剂载体碳纳米管粉体具有优异的导电性和稳定性,可以作为催化剂的载体。
在催化剂领域,碳纳米管粉体可以用于制备高活性和稳定性的催化剂,如铂基燃料电池催化剂、贵金属催化剂等。
此外,碳纳米管粉体还可以作为载体材料,用于固定和催化转化有机化合物。
3.传感器由于碳纳米管粉体具有优异的电导性和表面特性,可以用于制备高灵敏度和快速响应的传感器。
例如,基于碳纳米管粉体的传感器可以用于检测气体和液体中的分子,以及生物和化学物质。
此外,碳纳米管粉体还可以用于制备电子鼻和电子舌等新型传感器,用于检测和分析食品、环境和水质等。
4.增强材料碳纳米管粉体由于其独特的结构和优异的性能,可以作为增强材料添加到复合材料中,以提高复合材料的力学性能和电性能等。
例如,碳纳米管粉体可以用于增强塑料、橡胶和陶瓷等材料,提高其强度、韧性和耐候性等。
5.医药领域碳纳米管粉体在医药领域具有广泛的应用,如药物输送、医疗诊断和治疗等。
例如,碳纳米管粉体可以作为药物载体,将药物输送至病灶部位,提高药物的疗效和降低副作用。
此外,碳纳米管粉体还可以用于制备生物相容性材料和医疗器械等。
6.电子器件碳纳米管粉体在电子器件领域具有广泛的应用前景,如场效应晶体管、太阳能电池和存储器件等。
由于碳纳米管粉体的导电性和稳定性,可以作为电子器件的电极和电路等组成部分。
此外,碳纳米管粉体还可以用于制备透明导电薄膜和电磁屏蔽材料等。
7.环保领域碳纳米管粉体在环保领域具有广泛的应用前景,如水处理、空气净化器和土壤修复等。
碳纳米管的制备方法和应用领域
碳纳米管的制备方法和应用领域碳纳米管(Carbon Nanotubes,简称CNTs)是一种由碳原子构成的纳米材料,具有独特的结构和特性,使其在科学研究和应用领域中具有巨大的潜力。
本文将简要介绍碳纳米管的制备方法和一些常见的应用领域。
碳纳米管的制备方法多种多样,其中较为常见的方法包括化学气相沉积法(Chemical Vapor Deposition,CVD)、电弧放电法(Arc Discharge)和激光热解法(Laser Ablation)。
CVD法是目前最常用的制备碳纳米管的方法之一,其原理是使用金属催化剂在特定温度和气氛下将碳气体进行催化裂解,从而生成碳纳米管。
而电弧放电法则是通过高压电弧放电在碳电极上产生高温和高压条件,使碳原子逸出并形成碳纳米管。
激光热解法则是利用激光加热碳源使其发生剧烈挥发,形成碳纳米管。
碳纳米管具有多种独特的物理和化学特性,使得其在许多应用领域都有广泛的应用。
在材料科学领域,碳纳米管可以作为增强剂加入到复合材料中,显著提高复合材料的机械强度和热导率。
同时,碳纳米管还可以用于制备导电膜、传感器、超级电容器等。
在能源领域,碳纳米管可以用作锂离子电池、燃料电池和超级电容器等的电极材料,具有高能量密度和良好的循环性能。
此外,由于碳纳米管具有良好的导电性和导热性,还在电子器件和导电性聚合物的领域有广泛的应用。
在生物医学领域,碳纳米管也具有潜在的应用价值。
由于其尺寸与细胞颗粒相似,并具有较好的生物相容性,在药物传输和生物成像等方面具有巨大的潜力。
例如,研究人员利用碳纳米管制备了具有良好药物控释效果的纳米药物载体,用于治疗癌症等疾病。
此外,碳纳米管还可以用于制备具有高灵敏度和高选择性的生物传感器,用于检测生物分子和细胞。
虽然碳纳米管在许多领域中具有广泛的应用潜力,但其制备方法仍然存在一些挑战和困难。
目前,制备具有高纯度和规模化的碳纳米管仍然是一个难题。
另外,碳纳米管的毒性和生物安全性问题也需要进一步研究和解决。
碳纳米管的应用领域
碳纳米管的应用领域
碳纳米管是一种由碳原子构成的管状结构材料,具有优异的物理、化学和机械性能,因此在多个领域都有广泛的应用。
以下是一些碳纳米管的主要应用领域:1. 电子学:碳纳米管具有出色的导电性和导热性,因此被广泛用于制造电子元件,如晶体管、传感器和电池等。
2. 能源:碳纳米管可以作为高效的催化剂,用于燃料电池和太阳能电池等能源转换装置中。
3. 材料科学:碳纳米管可以作为增强材料,添加到塑料、橡胶、陶瓷等材料中,以提高其强度、韧性和耐磨性。
4. 生物医学:碳纳米管可以作为药物载体和生物传感器,用于药物传递和生物分子检测等领域。
5. 环境科学:碳纳米管可以用于水处理和空气净化等领域,因为它具有优异的吸附性能,可以去除水中的有害物质和空气中的污染物。
总之,碳纳米管具有广泛的应用前景,它的出现为许多领域带来了新的机遇和挑战。
碳纳米管的应用前景及限制分析
碳纳米管的应用前景及限制分析碳纳米管 (Carbon nanotubes, CNTs) 是一种具有许多优异性能的纳米材料,它们具有高强度、高导电性、高导热性、高比表面积、储存稳定性等优异性能。
因此,碳纳米管具有广泛的应用前景,在材料科学、电子学、能源等领域得到广泛研究和应用。
本文将对碳纳米管的应用前景和限制进行分析。
一、碳纳米管在材料科学中的应用前景碳纳米管具有优异的力学性能,可以用于制备高强度、高韧性、高导电性的纤维材料、复合材料等。
由于碳纳米管的轻质、高强度和高导电性等特性,它们在制备先进材料方面具有广泛的应用前景。
例如,将碳纳米管与聚合物复合制备的纤维材料可以用于制造汽车零件、飞机结构材料等。
同时,由于碳纳米管的储存稳定性高,可以用于制备高效能的电池或超级电容器。
碳纳米管的高导电性、高比表面积和优异的催化性能还可以用于制备高效能的催化剂。
因此,碳纳米管在材料科学中具有广泛的应用前景。
二、碳纳米管在电子学中的应用前景碳纳米管具有比传统材料更小的尺寸和更高的电子运动性能,可以用于制备高速电子器件,包括晶体管、场效应晶体管、逻辑电路等。
碳纳米管电子器件不仅具有高速性能,还具有低功率、低噪声、高灵敏度等优点,可以用于制备高性能的传感器、半导体器件等。
此外,碳纳米管还具有优异的光学特性,并可用于制备光电器件,如一些比较有趣的光学器件,如碳纳米管荧光传感器、引导光纤等。
碳纳米管作为能够获得更佳性能的电子器件材料,具有广泛的应用前景。
三、碳纳米管在能源领域中的应用前景近年来,碳纳米管在能源领域中的应用受到了广泛关注。
碳纳米管具有高比表面积和优异的催化性能,可以用于制备高效率的催化剂,使燃料电池、光电转换等能源领域的设备具有更高的能量转换效率和更长的使用寿命。
此外,根据碳纳米管对液体分子的吸附运动和扩散的优异性资,可以制备复合电极,利用其对氢气、氧气等分子的吸附和催化还原反应等特性技术,快速制备锂二次电池、超级电容器等能源领域设备。
碳纳米管增韧氧化铝纳米复合陶瓷的研究现状
《 陶瓷 学 报 )o 0 第 4期 21 年
( a n pcrm) 碳材 料拉 曼光 谱 中的 1 7c 峰 R ma et s u 。 5 1m 和 14c 3 3 m 峰分别被 称为 G峰和 D峰 。G峰是表 征 石墨 晶态结 构的峰 , D峰是 由碳材 料 中不 完整的 晶体
征方 法 已经趋 于模式化 , 但还 存在—个 尚未解决的 问 题 :N s A1 。 C T 在 陶瓷 中的均 匀化分 散 问题 的表 征 。 O 现有 的文 献 只是强 调均 匀分 散 对材料 性 能影响 很显
着纳米 技术 的发展 , 用纳米 级 的短 纤维 对陶 瓷材 料进 行复合 增韧 的处理技 术逐 渐 吸 引了研 究人 员。 纳米 碳
到所希望的性能。对于研究 C T 增韧 A 。 Ns 1 纳米陶 0 瓷来说,首先就是要认识 C T /1 。 N s 。 纳米复合粉体 AO 和烧结后陶瓷的组织结构 , 然后找到不同结构与力学
管( N s 以其超高弹性模量 ( C T) 大于 1 P )4 T a[和超高 1 1
强度 ( 钢的 1~ 0 0 10倍 ) 成为 短纤 维 增韧 的首 选 。 目 1 前 , C T 增韧 0。 利用 N s 陶瓷的报道已有不 少 【 , I 但
几 乎 所 有 的 报 道 都 集 中 于 制 备 和 力 学 性 能 的 测
第 3 卷第 4期 l 21 年 l 00 2月
《 陶瓷学 报》
J OURNAL CERAM I 0F CS
Vo131 No. . . 4 De . 01 c2 0
文章 编 号 :0 0 2 7 (0 00 — 6 0 0 1 0— 28 2 1 )4 0 7 — 7
碳 纳米 管增 韧 氧化 铝 纳米 复合 陶瓷 的研 究现 状
碳纳米管材料的性质及应用探究
碳纳米管材料的性质及应用探究碳纳米管是一种由碳原子构成的纳米材料。
这种材料由于其独特的结构和特性,在科技领域得到了广泛的应用。
本文将从碳纳米管的性质和应用两个方面探究这种材料。
一、碳纳米管的性质碳纳米管具有许多独特的性质,如高的比表面积、优异的导电性、高的机械强度等。
1.高比表面积碳纳米管的比表面积相当于每克材料所具有的表面积。
由于其细小的尺寸,每个管子表面的面积非常大。
这为碳纳米管的应用提供了非常有利的条件。
2.优异的导电性碳纳米管还具有优异的导电性能。
这是由于管子内部的碳原子之间距离非常短,从而形成了高度有序的导电通道。
这些通道可以传递电子,从而让碳纳米管在电子学领域得到了广泛的应用。
3.高的机械强度碳纳米管的机械强度也很高。
由于管子内部的碳原子排列非常有序,碳纳米管具有极高的结晶度,这意味着碳纳米管具有极高的刚度和强度,可以抵抗很大的拉伸应力。
二、碳纳米管的应用碳纳米管已经在许多领域得到了广泛的应用,如电子学、机械学、材料科学、生物医学等。
下面我们将着重探讨几个比较有代表性的应用领域。
1.电子学碳纳米管因其优异的导电性能,在电子学领域得到了广泛的应用。
与传统的硅基电子元器件相比,碳纳米管电子器件已经具有更高的性能和更低的功耗。
在未来,这种新型电子元器件将会替代当前的硅基电子元器件,推动电子产品的发展。
2.机械学碳纳米管的高强度和低密度使其成为一种极具潜力的结构材料。
可以使用碳纳米管制造轻型高强度材料,这些材料适用于制造飞机、汽车和其他高性能机械设备。
3.材料科学碳纳米管还可以被用作材料科学中的纳米增强剂。
通过将碳纳米管加入到其他材料中,可以提高材料的机械强度、硬度、导热性能等。
这种方法被广泛应用于制造高性能陶瓷、复合材料等。
4.生物医学碳纳米管还具有广泛的生物医学应用。
它们可以用作药物递送载体,将药物直接输送到病灶部位,从而提高药物的疗效和减少副作用。
此外,碳纳米管还可以被用作生物传感器,检测生物分子和微生物。
陶瓷碳纳米管复合材料的制备性能及韧化机理
第14卷 第2期2006年4月材 料 科 学 与 工 艺MATER I A LS SC I ENCE &TECHNOLOGYVol 114No 12Ap r .,2006陶瓷/碳纳米管复合材料的制备、性能及韧化机理沈 军1,张法明1,2,孙剑飞1(1.哈尔滨工业大学材料科学与工程学院,黑龙江哈尔滨150001,E 2mail:junshen@hit .edu .cn;2.中国科学院上海硅酸盐研究所,上海200050)摘 要:评述和讨论了碳纳米管增强陶瓷基复合材料的制备工艺,包括碳纳米管在陶瓷基体上的分散和材料的烧结成型,添加碳纳米管后材料力学性能、导电和导热等物理性能的改善以及韧化机理,指出碳纳米管在陶瓷材料基体上的均匀分散,碳纳米管在组织中存活,碳纳米管与陶瓷基体的界面结合状态是影响碳纳米管增强陶瓷基复合材料性能提高的关键.关键词:碳纳米管;陶瓷基复合材料;韧化机理;力学性能;物理性能中图分类号:T B332文献标识码:A文章编号:1005-0299(2006)02-0165-06prepara ti on,properti es and tough i n g m echan is m s of carbonnanotubes re i n forced ceram i c ma tr i x co m positesSHEN Jun 1,Z HANG Fa 2m ing1,2,S UN J ian 2fei1(1.School of Materials Science and Engineering,Harbin I nstitute of Technol ogy,Harbin 150001,China,E 2mail:junshen@hit .edu .cn;2.Shanghai I nstitute of Cera m ics,Chinese Acade my of Science,Shanghai 200050,China )Abstract:Carbon nanotubes (CNTs )de monstrate excep ti onal p r operties and their unique tubular structures are believed t o be the ulti m ate reinf orce ment in composites .The mechanical and physical p r operties of brittle cera m ics could be i m p r oved by incor porating CNTs in the matrix .The p reparati on p r ocess for dis persi on of CNTs in the cera m ic matrix,sintering methods,mechanical p r operties,physical p r operties (such as electric conductivity and ther mal conductivity ),as well as t oughing mechanis m s in CNTs reinforced ceram ic matrix composites were revie wed and discussed .It is p r oposed that the key fact ors for i m p r oving the perf ora mce char 2acteristics of CNTs/cera m ic composites are unif or m distributi on of CNTs,the surviving of CNTs in the m icr o 2structures,and the interfacial bonding bet w een CNTs and the cera m ic matrix.Key words:carbon nanotubes;cera m ic matrix composites;t oughing mechanis m s;mechanical p r operties;physical p r operties收稿日期:2004-10-18.基金项目:国家自然科学基金资助项目(50374035).作者简介:沈 军(1965-),男,博士,教授,博士生导师;孙剑飞(1962-),男,博士,教授,博士生导师. 处于s p 2-3杂化态的碳元素可以形成多形态的结构,除金刚石和石墨外,晶态碳还可形成足球结构的C 60和一维管状的碳纳米管.碳纳米管可以看做由六边形的石墨板成360°卷曲而成的管状材料,管的内径在几纳米到几十纳米之间,长度可达微米甚至厘米尺度,长径比高达1000至10000,比表面积大,热稳定性高.在力学性能方面,碳纳米管强度、韧性高,延伸率、弹性模量大,耐磨性优良;尤其是单壁碳纳米管作为一种新型的自组装单分子材料,理论估算其杨氏模量高达5TPa,与金刚石相同,强度约为钢的100倍,而密度却只有钢的1/6,可能是目前比强度和比刚度最高的材料(见表1).碳纳米管还具有优异的导热性能和电学性能等物理特性.因此,碳纳米管被认为是最理想的纳米晶须增韧材料,是纤维类强化相的终极形式[1].陶瓷材料具有共价键和复杂离子键的键合以及复杂的晶体结构,因而呈现耐高温、耐磨损和重量轻等优异的性能,在航空航天,国防军工及工业生产等领域应用十分广泛,但陶瓷材料的脆性问题一直制约着其进一步发展和应用.通过引入增强介质,如第二相颗粒,纤维与晶须等合成陶瓷基复合材料来强韧化陶瓷材料的研究取得了一些成果,但增韧幅度不大.由于碳纳米管特殊的结构和优异的性能,合成碳纳米管增强的复合材料,已经在高分子基、金属基的材料中取得了显著的效果[2].目前,国内外对于碳纳米管增强高分子基复合材料的研究已经较系统,但碳纳米管增强陶瓷基复合材料的研究刚起步.本文对碳纳米管增强陶瓷基复合材料的制备(主要包括碳纳米管在基体上的分散和材料的烧结成型),复合材料的力学性能、物理性能的改善以及强韧化机理进行了评述,对研究中存在的问题进行了分析.表1 纤维材料的性能比较纤维直径/μm密度/(g・cm-3)拉伸强度/GPa弹性模量/GPa碳纳米管01001~0111133~212010~52400~5000碳纤维71166214~311120~170玻璃纤维72150314~41690尼龙纤维12114421870~170硼纤维100~1402150315400石英纤维9212031470碳化硅纤维10~202130218190碳化硅晶须0100231156194821 碳纳米管在陶瓷基体上的分散 碳纳米管比表面积大,表面能高,碳管之间以较强的范德华力团聚在一起,尤其是有机物催化裂解法制备的碳纳米管经常弯曲缠绕在一起.此现象的产生将会减小碳纳米管的长径比,影响碳纳米管增强复合材料的增强效果.因此,如何将碳纳米管引入并均匀分散在基体上非常关键,碳纳米管的引入方式有原位自生法和外加混入法两种.111 原位自生碳纳米管Peigney等首先在A l2O3粉末基体上通过催化反应(Catalytic Method)[3]原位生长出碳纳米管网状束,发现在粉末中碳纳米管长约几十微米呈网络状较均匀的分布在粉末颗粒周围,经热压烧结后碳纳米管量比粉末中有所减少.Ka malakaran 等报道采用喷雾热解工艺[4]在A l2O3基体上原位生长了碳纳米管,发现纳米管在基体上分布很均匀,样品为2~4c m2的薄片,而且此种工艺还可优化制备出碳纳米管原位增强的陶瓷薄膜.Rul等采用凝胶泡沫法[5]在Co-Mg A l2O4氧化物固溶体基体上原位自生了碳纳米管,发现此种工艺碳纳米管产量很高,而且70%以上为单壁碳管, 95%以上为单壁和双壁碳纳米管;他们还在尖晶石(Mg A l2O4)基体上通过CCVD[6]的方法原位生长了碳纳米管,发现原位自生的碳纳米管非常均匀的分布在基体上.112 外加混入碳纳米管11211 物理分散法物理分散法指利用物理作用力将碳纳米管分散开,包括超声波法,球磨法,研磨法,高速剪切法等.但有学者认为物理方法只能分开碳纳米管的团聚体,而且会破坏碳纳米管[7];超声波法会使纳米管变短,随着分散时间延长碳管外壁会剥落,导致管壁变薄[8],而且只能够分散单一的团聚体,不能分散大团聚体[9];球磨和研磨等物理方法只能够将碳纳米管大块的团聚体分散成为小团聚体[9].清华大学L i等[10]对碳纳米管与颗粒尺寸为1μm铁粉混合进行了不同时间的震动球磨处理,磨球为直径不一的钢球,发现球磨15m in,许多碳纳米管端头破坏,而且有许多巴基葱颗粒出现,高能球磨60m in后,大部分碳纳米管变成了无定形碳,铁粉可以看作微小的磨球,其加入促进了碳纳米管的结构转变.11212 化学分散法化学分散法是指利用表面活性剂、表面改性剂或表面功能化来改变碳纳米管的表面能,提高其润湿或粘附特性,降低其在连续溶剂中的团聚倾向.(1)酸处理:采用浓H2S O4/HNO3混合溶液酸处理可以将碳纳米管完全分散开,原因是碳纳米管在酸处理过程中会变短而且增加亲水性官能团如羟基官能团等[9];如果采用浓硝酸处理后,碳纳米管的长度变短,管身变直,管壁上有—OH,>C—O和—COOH功能性官能团吸附,碳管在溶液中分散很均匀[11].Shaffer等也发现通过对催化裂解生长的碳纳米管进行酸氧化处理(HNO3:H2S O4=1:3)会给纳米管表面增加酚基和羟基官能团,这些官能团的存在可以使碳管以较高的浓度在水中稳定分散[12].(2)添加表面活性剂:添加表面活性剂如次乙亚胺(Ethyleni m ine)或者十二烷基硫酸钠(S DS)可以将碳纳米管在水溶液中均匀分散,通过溶胶杂凝聚的工艺,由于不同成分间静电相互作用,可以得到氧化钛和氧化铝颗粒包覆的碳纳米管[13];添加聚乙烯胺和阴离子柠檬酸于水溶液中作为分散剂对碳纳米管表面进行改性处理,然后在NH3中热处理,金纳米粒子可以吸附并填充到纳米管上表面和内部[14].在酒精溶液中添加20d mb%的共聚物作为分散剂可以成功的将110wt.%多壁碳纳米管均匀的分散开[15];在水・661・材 料 科 学 与 工 艺 第14卷 中添加溴化十六烷基三甲铵(C 16T MAB )或聚丙烯酸(P AA )或C 16EO 作为分散剂都可以将碳纳米管均匀分散开,但不可能得到绝对的均匀[16].研究发现,添加阴离子表面活性剂十二烷基硫酸钠和阳离子表面活性剂柠檬酸铵都可以将碳纳米管较均匀的分散在水溶液中,阴、阳离子表面活性剂均以纳米颗粒的形式均匀的吸附在碳纳米管的表面上,如图1所示.图1 碳纳米管表面活化后的TE M 形貌11213 物理化学分散法物理化学分散法是将物理方法,如超声波法、球磨法等,与化学方法,如酸处理、添加表面活性剂等进行组合,以期达到将纳米管更加均匀分散在基体上的目的.采用添加表面活性剂与超声波振荡和球磨工艺结合,可将碳纳米管较均匀的分布在纳米WC /Co 粉末中[17].2 碳纳米管增强陶瓷基复合材料的烧结成型 碳纳米管增强陶瓷基复合材料大部分采用烧结成型,通常制备纳米陶瓷材料和陶瓷基复合材料的工艺均可以用于制备碳纳米管增强陶瓷基复合材料,但烧结气氛必须是真空或惰性气体保护,以防止碳纳米管的氧化,碳纳米管在陶瓷烧结后组织中的存活状况非常重要.(1)热压烧结:热压烧结是最常用的一种制备碳纳米管增强陶瓷基复合材料的烧结工艺,采用热压烧结工艺所制备的碳纳米管增强的复合材料有Si C,Si O 2,A l 2O 3,Fe -A l 2O 3,Fe /Co -Mg A l 2O 4,Co -Mg O 基等材料[18~22],复合材料的性能均有所提高但不大.(2)烧结-热等静压:Balazsi 等采用烧结-热等静压(Sinter -H I P )烧结工艺制备了多壁碳纳米管增强Si 3N 4基复合材料,复合材料的弯曲强度和弹性模量均有可观的提高[23].(3)放电等离子烧结:放电等离子烧结(Spark Plas ma Sintering,简称SPS )是近年来发展起来的一种新型的烧结工艺,该系统利用脉冲能、放电脉冲压力和焦耳热产生的瞬时高温场来实现烧结过程,它在粉末之间能瞬时产生放电等离子体,使被烧结体内部每个颗粒均匀的自身发热,并且使颗粒表面活化更易于烧结;同时,烧结时在样品两端施加轴向压力,可以使烧结体更加致密和烧结温度降低.可以在极快的升温速度、低的烧结温度、极短的保温时间、较高的烧结压力下制得致密的块状纳米材料.有学者认为采用热压烧结工艺制备碳纳米管增强陶瓷基的复合材料,由于所需的烧结温度较高,保温时间较长,会对复合材料中的碳纳米管造成破坏,因此会降低甚至会丧失增韧效果[24].放电等离子烧结是非常有发展前景的制备碳纳米管增强陶瓷基复合材料的工艺.(4)其他工艺:Peigney 等采用高温挤压成型制备了碳纳米管增强金属氧化物复合材料,发现由于碳纳米管的引入,复合材料的超塑性成型更易进行,碳纳米管抑制了基体晶粒长大,并具有润滑介质的作用.研究发现,将碳纳米管在陶瓷材料基体上定向排列是可能的,通过控制碳纳米管的含量来调制纳米复合材料的导电性能[22].3 碳纳米管增强陶瓷基复合材料的性能改善 将碳纳米管添加到陶瓷材料基体上,由于碳纳米管的分散程度和制备工艺的差别,导致复合材料的力学性能提高不一,有的甚至降低.除了力学性能外,碳纳米管增强陶瓷基复合材料的物理性能,如导电性能、导热性能均有较大的改善.311 力学性能1998年清华大学Ma 等首先尝试了在纳米Si C 陶瓷的基体上添加多壁碳纳米管,其断裂韧性仅提高了10%[18].Flahaut 等通过在Fe -A l 2O 3基体上原位生长碳纳米管,使复合材料的断裂强度比氧化铝稍有提高,但比Fe -A l 2O 3降低很多,其断裂韧性比纯氧化铝有所降低或相近[25].2001年Siegel 等报道在氧化铝基体上添加10vol%的多壁碳纳米管,其断裂韧性比纯氧化铝提高了24%[26].2003年Nature 发表了华人Zhan 等[24]的研究结果,他们在纳米A l 2O 3基体上添加10vol%的单壁碳纳米管,于1150℃放电等离子烧结(SPS )3m in 得到的复合材料的维氏硬度达到了・761・第2期沈 军,等:陶瓷/碳纳米管复合材料的制备、性能及韧化机理1611GPa,断裂韧性K I C达到了917MPa・m1/2,约为单纯纳米氧化铝材料的3倍,为迄今增韧效果最佳的报道.Balazsi等研究了碳纳米管与碳纤维、碳黑和石墨复合Si3N4陶瓷的增韧效果,发现Si3N4-CNTs的力学性能比其他碳材料如碳纤维、碳黑和石墨复合Si3N4提高了15%~37%[23].An等对A l2O3-CNTs复合材料的摩擦学特性进行了研究,发现添加4wt%以内的碳纳米管可以提高材料的耐磨性能[27].2004年中科院上硅所N ing等在Si O2添加5vol%的多壁碳纳米管,由于碳纳米管较均匀的分散,添加了5v ol.%的碳纳米管的Si O2弯曲强度和断裂韧性分别提高了88%与146%,而不添加分散剂的5v ol.%CNTs-Si O2复合材料的力学性能提高较少[16].我课题组采用放电等离子烧结工艺制备了纳米WC-Co-CNTs复合材料,研究发现复合材料的硬度和断裂韧性可以同时提高,硬度和断裂韧性比不添加碳纳米管的纳米WC-Co硬质合金分别提高了17%和35%[17],起到了强韧化效果. 312 物理性能单壁纳米碳管的室温纵向电导率达106S/m, Zhan等后续的研究结果表明,S WCNT/A l2O3的导电性能随着碳纳米管含量的增加而提高, 15vol%S WCNT/A l2O3的导电率达3345S/m[28]. Flahaut碳纳米管可以使其由绝缘体变为导体,电导率在012~410S/m,电导率的值与组织中碳纳米管的破坏程度有关,当管结构完全破坏时,就不再导电[29].单独一根多壁纳米碳管的室温热导率预计达3000W/mK,单独一根单壁碳纳米管室温热导率达6000W/mK,而单壁碳纳米管束的室温热导率大于200W/mK[30],碳纳米管被认为是目前世界上最好的导热材料.N ing等随后的研究发现在Si O2的基体上添加碳纳米管,材料的热扩散系数和热导率随着碳纳米管的含量的增加而增大,在650℃含10vol%碳纳米管的Si O2的热扩散系数和导热率分别提高了1613%和2016%[31].4 碳纳米管增强陶瓷基复合材料的强韧化机理 有关研究发现,在碳纳米管增强纳米陶瓷基复合材料中,碳纳米管可以在一定程度抑制纳米陶瓷晶粒长大,并促进陶瓷致密度的提高,使材料强度提高.Zhan等在单壁纳米碳管增强纳米氧化铝基复合材料中,发现碳纳米管包围在纳米氧化铝晶粒周围,有效地抑制了晶粒的长大[24].中科院金属所的钟等在碳纳米管增强纳米铝基复合材料制备过程中发现碳纳米管具有阻止纳米A l晶粒长大的作用[32].碳纳米管的引入会与基体产生界面反应,清华大学Xu等[33]发现,A l/CNTs复合材料的界面形成了A l C和A l C2脆性碳化物,消弱了界面的结合强度.浙江大学吴等[34]对含有微量碳纳米管的纳米WC-Co硬质合金做了初步研究,发现碳纳米管与WC粒子形成了W-C化学键,强化了界面结合.我课题组对纳米WC-Co-CNTs硬质合金材料的研究表明,添加适量的碳纳米管在纳米WC-Co基体上,在烧结过程中碳纳米管可以填充显微空隙,以及碳纳米管的添加引起合金中碳含量的稍微提高,致使液相量增加从而促进了烧结致密化进程;碳纳米管与WC晶界相互作用可以一定程度上抑制纳米WC的晶粒长大,所以材料的硬度和韧性同时提高[17].对于微米级纤维复合的陶瓷材料,增韧机理有桥联增韧,裂纹偏转增韧,拔出效应.Ma认为在纳米Si C-10%CNTs中断裂韧性提高是由于碳纳米管的裂纹偏转和拔出效应造成的[18].N ing报道碳纳米管增强Si O2复合材料中桥联、裂纹偏转和拔出效应都起作用[19].Zhan[24]发现:纳米A l2O3 -10vol%S WCNTs复合材料的裂纹扩展路径仍然呈沿晶断裂,没有发现桥联和拔出现象,认为碳管拔出是由于碳管与基体结合不牢固造成的,他认为其性能大幅度提高是由于单壁碳纳米管比多壁管力学性能和结构更加优异,单壁碳管呈网络状连续的环绕在纳米氧化铝晶粒周围造成了裂纹的偏转,增韧如图2所示,箭头所指为碳纳米管;放电等离子烧结的低温短时没有造成单壁碳纳米管的破坏等原因引起的.Xia等[35]在氧化铝基体上原位定向生长了多壁碳纳米管,制备出20μm和90μm厚的涂层材料,经纳米硬度计和扫描电镜分析发现,在微米级纤维增强的陶瓷基复合材料中的增韧机制,在碳纳米管增强陶瓷基复合材料中仍然都存在,而且呈现了新的机制,碳纳米管在图2 单壁碳纳米管增强纳米氧化铝基复合材料・861・材 料 科 学 与 工 艺 第14卷 剪切带附近产生倒塌而不产生裂纹,说明此材料具有多向破坏承受能力,三维有限元分析表明,碳纳米管增强的氧化铝陶瓷基复合材料基体上的残余应力达300MPa,提高了材料的工程使用性能.对放电等离子烧结制备的纳米WC-Co-CNTs 复合材料的增韧机理初步研究发现,烧结后碳纳米管仍然存活在组织中,断裂面上存在着碳纳米管桥联和拔出增韧现象[17].5 研究中存在的问题1)碳纳米管在基体上分散效果和状态直接影响复合材料的性能提高,原位自生法与外加混入法相比,能够得到纳米管在基体上更加均匀的分布,但技术设备要求高.迄今为止,如何将碳纳米管在不破坏或少破坏其完美结构的前提下非常均匀的分散到陶瓷材料基体上,仍有待深入研究.2)烧结成型是碳纳米管增强陶瓷基复合材料制备过程中的最后也是关键的一步,保证碳纳米管在组织中的存活十分重要.低温、短时、快速烧结工艺———放电等离子烧结,可以在保持碳纳米管在陶瓷组织中的完整性,较适合制备碳纳米管增强陶瓷基复合材料.但放电等离子烧结的内在烧结机制,以及碳纳米管复合的纳米材料在SPS工艺下的烧结动力学机理有待研究.3)采用碳纳米管复合陶瓷材料不仅可以改善材料的力学性能,还可以增加其功能特性,如导电性能、导热性能等,并且可以通过碳纳米管含量和排列方向的控制来对陶瓷材料的性能进行调制.碳纳米管还具有波吸收特性、场致发射性能等,制备高力学性能兼多功能化的陶瓷材料,碳纳米管是最理想的增强纤维选择.但目前碳纳米管较昂贵,如何大幅度地提高复合材料的性能,提高材料的性价比,并达到性能可预测、可控制,有待于深入研究.6 结 语 碳纳米管具有优异的力学性能,电学性能和导热性能等物理性能,极高的长径比以及独特的一维管状纳米结构,碳纳米管复合材料的研究已成为碳纳米管应用研究的重要方向和国内外的研究热点.引入碳纳米管来复合陶瓷材料有望进一步提高陶瓷材料的力学性能,同时增加其功能特性,实现结构功能一体化,并且通过对碳纳米管的排列和含量控制可以对陶瓷材料的性能进行调制.碳纳米管在陶瓷材料基体上的增强效果主要取决于碳纳米管在陶瓷材料基体上的分散程度,碳纳米管在组织中的存活,及碳纳米管与陶瓷基体的界面结合状态等因素.碳纳米管增强陶瓷基复合材料在纳米尺度上的成型、特性、破坏和强韧化机制的研究将大大丰富陶瓷材料的研究内容,并将为进一步拓宽陶瓷材料作为先进材料的应用范畴奠定基础.参考文献:[1]DA I H.Carbon nanotubes:opportunities and challenges[J].Surface Science,2002,500:218-241.[2]LAU K T,DAV I D H.The revoluti onary creati on of ne wadvanced materials2carbon nanotube composites[J].Composites:Part B,2002,33:263-277.[3]PE I G NEY A,LAURE NT Ch,ROUSSET A.Synthesisand characterizati on of alu m ina matrix nanocomposites containing carbon nanotubes[J].Key Engineering M a2 terials,1997,743-746:132-136.[4]K AMALAK ARAN R,LUP O F,GROBERT N.I n2situfor mati on of carbon nanotubes in an alu m ina2nanotube composite by s p ray pyr olysis[J].Carbon,2003,41:2737-2741.[5]RUL S,LAURE NT Ch,PE I G NEY A,et a l.Carbonnanotubes p repared in situ in acellular cera m ic by the gelcasting f oa m method[J].Journal of the Eur opean Ceram ic Society,2003,23:1233-1241.[6]RUL S,LEFE VRESCHL I CK F,C APR I A E,et a l.Per2colati on of single2walled carbon nanotubes in ceram ic matrix nanocomposites[J].Acta M aterialia,2004,52:1061-1067.[7]H I L D I N G J,GRULKE E A,Z HANG Z G,et a l.D is2persi on of carbon nanotubes in liquids[J].Journal ofD is per Sci Technol,2003,24(1):1-41.[8]LU K L,LAG O R M,CHE N Y K,et a l.M echanicalda mage of carbon nanotubes by ultras ound[J].Car2 bon,1996,34:814-816.[9]WANG Yao,WU Jun,W E I Fei.A treat m ent method t ogive separated multi2walled carbon nanotubes with high purity,high crystallizati on and a large as pect rati o[J].Carbon,2003,41:2939-2948.[10]L I Y B,W E IB Q,L I A NG J,et a l.Transfor mati on ofcarbon nanotubes t o nanoparticles by ball m illingp r ocess[J].Carbon,1999,37:493-497.[11]J I A Z,WANG Z,L I A NG J,et a l.Pr oducti on of shortmulti2walled carbon nanotubes[J].Carbon,1999,37:903-906[12]SHAFFER M S P,F AN X,W I N DLE A H.D is persi onand Packing of Carbon Nanotubes[J].Carbon,1998,36(11):1603-1612.[13]S UN J,G AO L.Devel opment of a dis persi on p r ocessf or carbon nanotubes in cera m ic matrix by heter ocoagu2lati on[J].Carbon,2003,41:1063-1068.・961・第2期沈 军,等:陶瓷/碳纳米管复合材料的制备、性能及韧化机理[14]J I A NG L,G AO L.Modified carbon nanotubes:an ef2fective way t o selective attach ment of gold nanoparticles[J].Carbon,2003,41:2923-2929.[15]Z HAO L,G AO L.Stability of multi2walled carbonnanotubes dis persi on with copoly mer in ethanol[J].Coll oids and Surfaces A,2003,224:127-134. [16]N I N G J,Z HANG J,P AN Y,et al.Surfactants assistedpr ocessing of carbon nanotube reinf orced Si O2matrix co m2 posites[J].Cera mics I nternati onal,2004,30:63-67. [17]Z HANG F,S HE N J,S UN J.Pr ocessing and p r operties ofcarbon nanotubes2nano2WC2Co co mposite[J].MaterialsScience&Engineering A,2004,381(1-2):87-92. [18]MA R Z,WU J,W E IB Q,et a l.Pr ocessing and p r op2erties of carbon nanotubes2nano2Si C cera m ic[J].Journal ofM aterials Science,1998,33:5243-5246.[19]N I N G J,ZHANG J,P AN Y,et a l.Fabricati on and me2chanical p r operties of Si O2matrix composites reinf orcedby carbon nanotubes[J].M aterials Science&Engi2 neering A,2003,357(1-2):392-396.[20]CHANG S,DORE MUS R H,AJAY AN P M.Pr ocess2ing and mechanical p r operties of carbon nanotube rein2 forced alu m ina composites[J].Cera m ic Engineeringand Science Pr oceedings,2000,21(3):653-658. [21]PE I G NEY A,LAURE NT Ch,F LAJAUT E,et a l.Car2bon nanotubes in novel cera m ic matrix nanocomposites[J].Cera m ics I nternati onal,2000,26:677-683. [22]PE I G NEY A,F LAHAUT E,LAURE NT Ch,et a l.A2ligned carbon nanotubes in cera m ic2matrix nanocompos2ites p repared by high2temperature extrusi on[J].Chem ical Physics Letters,2002,352:20-25. [23]BALAZSI Cs,K ONY A Z,W E BER F,et a l.Prepara2ti on and characterizati on of carbon nanotube reinf orcedsilicon nitride composites[J].Materials Science&Engineering C,2003,23:1133-1137.[24]ZHAN G D,K UNTZ J D,WAN J,et a l.Single2wallcarbon nanotubes as attractive t oughing agents in alu m i2 na2based nanocomposites[J].Nature Materials,2003,2:38-42.[25]LAURE NT Ch,PE I G NEY A,DUMORTI ER O,et a l.Carbon nanotubes2Fe2A lu m ina nanocomposites.PartII:m icr ostructure and mechanical p r operties of the hot2 Pressed composites[J].Journal of the Eur opean Ce2ra m ic Society,1998,18(14):2005-2013.[26]SI EGE L R W,CHANG S K,ASH B J.Mechanical be2havi or of poly mer and cera m ic matrix nanocomposites[J].Scri p ta M aterialia,2001,44:1472-1475. [27]AN J W,Y OU D H,L I M D S.Tribol ogical p r opertiesof hot2p ressed alu m ina2C NT composites[J].W ear,2003,255(1-6):677-681.[28]ZHAN G D,K UNTZ J D,G ARAY J E.Electricalp r operties of nanocera m ics reinf orced with r opes of sin2gle walled carbon nanotubes[J].App lied Physics Let2ters,2003,83(6):1228-1230.[29]F LAHAUT E,PE I G NEY A,LAURE NT Ch,et a l.Car2bon nanotube2metal2oxide nanocomposites:M icr ostruc2ture,Electrical conductivity and mechanical p r operties[J].Acta Materialia,2000,48:3803-3812. [30]B I ERUK M J,L I A G UNO M C,RADOS AV I JE V I C M.Carbon nanotube co mposites f or ther malmanage ment[J].Applied Physics Letters,2002,80(15):2767-2769. [31]N I N G J,ZHANG J,P AN Y,et a l.Fabricati on andther mal p r operties of carbon nanotube/Si O2composites[J].Journal of Materials Science Letters,2003,22:1019-1021.[32]钟 蓉,丛红涛,成会明,等.单壁纳米碳管增强纳米铝基复合材料的制备[J].材料研究学报,2002,16(4):344-348.[33]XU C L,W E IB Q,MA R Z,et a l.Fabricati on of alu2m inu m2carbon nanotubes and their electrical p r operties[J].Carbon,1999,37(5):855-858.[34]吴希俊,谭国龙.纳米碳化钨-钴-碳化钒硬质合金的制备方法及设备[P].中国专利:1240639,2000-01-19.[35]X I A Z,R I ESTER L,C URTI N W A.D irect observati onof t oughing mechanis m s in carbon nanotube ceram icmatrix composites[J].Acta Materialia,2004,52:931-944.(编辑 吕雪梅)(上接第164页)[4]王成莲,刘 莉.比色法测定抗坏血酸体系产生的・OH[J].生物化学与生物物理进展,1989,16(6): 473-475.[5]JE N J F,LE LL M F,T HOMAS C Y.Deter m inati on ofhydr oxyl radicals in an advanced oxidati on p r ocess with salicylic acid trapp ing and liquid chr omat ography[J].Journal of Chr omat ography A,1998,796:283-288. [6]金 鸣,蔡亚欣,李金荣,等.邻二氮菲-Fe2+氧化法检测H2O2/Fe2+产生的羟自由基[J].生物化学与生物物理进展,1996,23(6):543-553.[7]张乃东,郑 威.UV-V is-草酸铁络合物-H2O2体系产生羟自由基的Fe(phen)32+光度法测定[J].分析测试学报,2002,21(5):36-39.[8]L I X Z,F AN C M,S UN Y P.Enhancement of phot ocata2lytic oxidati on of hu m ic acid in Ti O2sus pensi on by in2creasing i on strength[J].Che mos phere,2002,48(4):453-460.(编辑 吕雪梅)・71・材 料 科 学 与 工 艺 第14卷 。
碳纳米管材料的用途
碳纳米管材料的用途碳纳米管(CarbonNanotubes,CNTs)是由碳原子构成的纳米级管状结构材料,具有独特的物理和化学性质,因此在许多领域中被广泛应用。
本文将从电子学、材料科学、生物医学等方面介绍碳纳米管的用途。
一、电子学碳纳米管是一种优秀的电子材料,具有优异的电导率、热导率和机械强度。
由于其微小的尺寸和高导电性,碳纳米管被用作纳米电子学器件的组件,例如场效应晶体管、单电子晶体管、透明导电电极等。
其中,单壁碳纳米管(Single-Walled Carbon Nanotubes, SWCNTs)在电子学领域中表现出了极佳的性能,可以作为晶体管的理想替代品。
此外,由于碳纳米管的尺寸比传统的晶体管小得多,因此可以制造出更小、更高密度的电子元件,这对于集成电路的发展具有重要意义。
二、材料科学碳纳米管的高机械强度和抗拉性能使其成为理想的增强剂。
将碳纳米管与聚合物、金属和陶瓷等材料复合可以获得更高的强度和硬度。
同时,碳纳米管还可以用于制备高性能复合材料,例如碳纳米管增强的聚合物、金属基复合材料、陶瓷基复合材料等。
这些复合材料在航空航天、汽车工业、建筑业等领域中有广泛的应用。
三、生物医学碳纳米管在生物医学领域中也有重要的应用。
首先,碳纳米管可以用于生物成像,例如通过将碳纳米管表面修饰成与靶标分子特异性结合的生物分子,可以实现对细胞、组织和器官的高分辨率成像。
其次,碳纳米管还可以用于药物传递。
通过将药物包裹在碳纳米管内,可以提高药物的生物利用度和靶向性,从而实现更有效的治疗。
此外,碳纳米管还可以用于组织修复和再生。
将碳纳米管与生物材料复合可以促进细胞的黏附和增殖,从而促进组织的修复和再生。
四、其他领域除了电子学、材料科学和生物医学领域,碳纳米管还可以应用于许多其他领域。
例如,碳纳米管可以用于环境污染治理。
通过将碳纳米管与其他材料复合,可以制备出具有高效吸附和催化降解能力的复合材料,从而实现对污染物的治理。
碳纳米管简介
碳纳米管简介
碳纳米管(CNTs)是一种新型的石墨材料,它是由石墨片层卷曲而成的圆柱形结构,其直径范围一般为一纳米至几百纳米。
这些管状纤维的长度变化范围也很大,一般为几微米到几千微米;因此碳纳米管的长径比(长度与直径的比值)范围为一千~十万。
这么大的长径比以及独特的结构使得碳纳米管与众多其他材料有很大差别。
碳纳米管有很多独特的性质,例如,其强度是不锈钢的16倍,热导率为铜的5倍。
由于碳纳米管自身为粉末状态,它可能是构筑新型复合材料的最合适的添加剂。
将碳纳米管加入到聚合物、陶瓷或金属基体中后,可以显著提高主体材料的物理性质(如导电性、导热性和其他物理性质),其效果远远优于炭黑、碳纤维或玻璃纤维等传统添加剂。
碳纳米管可以分为单壁、双壁和多壁碳纳米管,其主要差别在于碳纳米管结构中石墨片层的数目。
为方便参考,这里列出了一些碳纳米管的常见性能参数:
1. 电阻率:10 -4 Ω-cm
2. 电流密度:107 amps/cm2
3.热导率:3,000 W/mK
4. 抗拉强度:30 GPa
1。
碳纳米管的研究与应用前景
碳纳米管的研究与应用前景碳纳米管(Carbon Nanotubes,CNTs)是由碳原子组成的一种纳米材料,具有独特的结构和优异的性能,因此在科学研究和应用领域具有广阔的前景。
本文将探讨碳纳米管的研究进展和应用前景。
首先,碳纳米管具有优异的力学性能。
由于其高度有序的原子结构,碳纳米管具有卓越的机械强度和刚度。
研究者已经成功地制备了具有纤维状结构的碳纳米管,这些纤维可以用来制造强度超过钢材的高性能复合材料。
此外,碳纳米管还具有良好的柔韧性和弹性,因此可以用于制造高强度的纺织品、防弹材料和抗摩擦涂层等。
其次,碳纳米管具有出色的导电和导热性能。
由于碳纳米管中的电子能量带结构独特,使得导电性能非常优异。
此外,碳纳米管的热导率也非常高,远高于其他材料。
因此,碳纳米管可以用于制造高性能的导电器件,如高速晶体管、纳米传感器和电子设备等。
此外,碳纳米管还具有优异的化学稳定性和生物相容性。
由于碳原子的结构稳定,碳纳米管在高温、酸碱等极端环境下具有良好的稳定性。
因此,碳纳米管可以应用于催化剂、膜材料和能源存储等领域。
另外,由于碳纳米管的尺寸尺度与生物分子相近,因此具有良好的生物相容性。
研究人员已经成功地将碳纳米管应用于生物成像、药物载体和生物传感器等领域。
此外,碳纳米管还具有其他独特的性能和应用前景。
例如,碳纳米管具有光学特性,可以发射和吸收可见光和紫外光,因此可以被应用于光电器件、太阳能电池和显示技术等。
此外,碳纳米管还具有独特的气体分子吸附能力,可以用于气体传感器和气体分离等领域。
同时,碳纳米管还可以通过掺杂和功能化改善其性能,如掺杂硼、硅等原子可以调控碳纳米管的导电性能。
然而,碳纳米管的研究和应用仍面临一些挑战。
首先,大规模制备碳纳米管的方法仍然不够成熟和经济效益。
其次,碳纳米管的定量检测和表征仍然比较困难,需要开发更准确、高效的实验方法。
此外,碳纳米管的毒性和环境影响也需要深入研究和评估。
总之,碳纳米管作为一种新型纳米材料,具有独特的结构和优异的性能,因此在科学研究和应用领域具有广泛的前景。
碳纳米管增强陶瓷复合材料研究进展
摘 要 本 文简 要评述 了近 年来 C T N s陶瓷 复合 材 料 的 主要 制备 方 法和 特 点 以及 烧 结 工 艺 , 出 了 目前碳 纳 米管 增 强 陶瓷 复合 材 料存 在 的 问题 , 对未 来 制各 C T 指 并 N s陶
瓷 复合 材料 进行 了展 望 。
关键词 C T N s陶瓷 复合 材料 ; 备 ; 望 制 展
0 引 言
碳 纳米 管作 为无 机纤 维增 韧材 料 .由于具有 重 量 轻 , 高 的强 度 、 性 和 弹性 模 量 , 酸 碱性 等 优 极 韧 耐
异性 能 .因此 用碳 纳米 管增 强 陶瓷复 合材 料具 有一 定 的理论 和现实 意义 。 目前。 纳米管 已被 用来增 韧 碳
末 中加 入汽 油橡胶 成形剂 进行 造粒. 在 陶瓷压 片机
第4 4卷 第 2期
8 21 0 1年 4 月
江
苏
陶
瓷
Ja g u Ce a c in s r mis
VD. 4No2 】 , . 4 A r ,0 1 p i2 1 l
碳 纳 米 管增 强 陶瓷 复 合材 料 研 究进 展
赵 金 山. 李 静
( 山东 建 筑大 学材 料科 学与 工 程 学院 , 济南 2 0 0 ) 5 1 1
上 压 制成 形。压 力 约 为 2 0MP ,然 后在 真 空烧 结 0 a 炉 中脱 胶 、 烧结 。最 终在 烧 结温 度为 1 3 0℃下 真空 4 烧结保 温 1 h得到试 样 。 N s加入后 , N s T C CT C T / i(, N 金属 陶瓷 的相对密 度 和硬度 略有降 低, 韧性 大 1 断裂 幅度 提高 。这 种方法 虽 然工艺 简单 、 本低 。 是 由 成 但
碳纳米管的应用领域—陶瓷
引言纳米材料是纳米技术的基础,而碳纳米管又可称为纳米材料之王。
碳纳米材料在纳米材料技术开发中举足轻重,它将影响到国民经济的各个领域。
碳纳米管的发现是碳团簇领域的又一重大科研成果。
在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛(Iijima)在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。
由于碳纳米管具有独特的金属或半导体导电特性、非常好的力学性能、极高的机械强度、吸附能力、场致电子发射性能和宽带电磁波吸收特性等,碳纳米管被发现之后立即受到物理、化学和材料科学界以及高新技术产业部门的极大重视。
碳纳米管被认为是一种性能优异的新型功能材料和结构材料,在信息技术、生命科学、环境科学、自动化技术、航空航天技术及能源技术等方面具有广阔的应用前景。
可以预见,碳纳米管将在诸多领域形成新的产业,产生重大的经济效益和社会效益。
原子形成的石墨烯片卷成的无缝、中空的管体。
碳纳米管因其独特的结构而具有许多独特的性能,除了在半导体器件、储氢、传感器、吸附材料、电池电极、催化剂载体等领域具有非常广阔和诱人的应用前景外,碳纳米管在制备结构、功能以及结构/功能一体化复合材料方面也将大有作为。
CNTs陶瓷复合材料的研究才刚起步, 目前仍处于尝试阶段。
虽然CNTs的增强和功能(导电和导热) 效果已有初步体现,但效果并不理想,相对于微米级增强相的优势还不明显,离理论预测的效果还有很大差距,还有许多工作要做。
1、CNTs陶瓷复合材料着重的研究工作:1.1 CNTs在基体中的均匀分散技术只有CNTs均匀地分散到基体中去,才能最大程度地发挥CNTs的增强作用以及功能特性。
可以说,均匀分散是制备高性能CNTs陶瓷复合材料的前提。
CNTs直径小且纵横比大,表面积大且易团聚,这一方面导致均匀分散的难度非常大,另一方面也导致制备高体积含量CNTs陶瓷复合材料的难度也非常大, 而足够的 CNTs体积分数对于增强效果和功能特性是很重要的。
碳纳米管技术的发展现状及应用前景分析
碳纳米管技术的发展现状及应用前景分析随着科技的不断发展,碳纳米管技术(Carbon Nanotubes Technology)作为一种新型纳米材料,其在电子、能源、材料、生物等领域都有着广阔的应用前景。
本文将就其发展现状和应用前景进行探讨。
1. 碳纳米管技术的概述碳纳米管是由碳原子组成的管状结构,比铅笔芯细100倍,长约200-300微米。
由于碳纳米管的高比表面积、高强度和导电性能,使得它在科技领域得到了广泛的关注。
同时碳纳米管凭借其与钻石平分子结构的相似性,其在材料学、电子学、化学、物理学等领域都有广泛的应用。
2. 碳纳米管技术在电子领域的应用碳纳米管技术在电子领域的应用是最为广泛和深入的一个方向,它可以替代硅上面的电路。
作为一种理想的导电材料,有着很高的导电性,具有低温系数和稳定的电流密度等优点,被认为是下一代电子材料中最重要的一个。
同时,碳纳米管技术还可以制造更高效的半导体芯片,这将极大地推动芯片技术进一步提升,以及为新一代电脑、手机设备等提供更好的性能,更低的能耗和更小的面积。
3. 碳纳米管技术在能源领域的应用碳纳米管在能源领域的应用主要是利用其高导电和高效电化学反应的特性来制造更高效和便携的储能设备。
目前碳纳米管技术在锂离子电池和超级电容器领域得到了广泛的应用。
例如,碳纳米管电极在电池中的使用,既可以改善电化学反应速度,增加电池存储能量密度,又可以将它应用在电解液和界面层。
4. 碳纳米管技术在材料领域的应用碳纳米管具有高强度、高韧性、高模量等优异性能,使它适用于复杂材料和结构的构造。
因此,碳纳米管在材料领域的应用非常广泛,它可以用于制造高强度的纤维,增强陶瓷、塑料和复合材料的韧性和强度,还可以用于制造防弹衣、航空材料等。
5. 碳纳米管技术在生物领域的应用在生物领域,碳纳米管也被广泛应用于医疗和生命科学领域。
它可以做为制药和诊断试剂使用,并且可以在生物组织中轻松地渗透和输送(携带)药物,这使得医疗领域可以更好的控制药物的药效和药代谢,达到更好的治疗效果。
新材料应用案例分析
新材料应用案例分析随着科技的不断发展和人们对物质的不断追求,新材料的研究和应用也变得越来越重要。
新材料,简单来说,是指近年来由人类所开发出的特殊材料,其性质和功能远超过传统材料。
下面,我们就来看看一些新材料的应用案例。
一、碳纳米管碳纳米管,是由碳元素经过特殊处理制成的管状结构,具有很高的强度和导电性。
因此,碳纳米管被广泛应用于电子、机械、材料等多个领域。
目前,碳纳米管已经开始应用于医疗领域,用于治疗癌症等疾病。
具体而言,碳纳米管可以将药物输送至人体肿瘤部位,从而实现精准治疗。
二、氮化硅氮化硅是一种高性能的陶瓷材料,具有很高的硬度、抗腐蚀性和高温性能。
目前,氮化硅主要应用于航空、航天、汽车等领域,用于制造高温、高压、高速等恶劣环境下的部件和器材。
此外,氮化硅还可以用于太阳能电池、LED照明、智能手机等领域。
三、石墨烯石墨烯是一种新型的碳材料,具有单层结构和独特性质。
石墨烯具有很高的导电性、导热性、强度和柔韧性,而且重量很轻。
因此,石墨烯被认为是目前最有前途的新材料之一,其应用领域涵盖能源、生物医学、电子、材料等多个领域。
例如,石墨烯可以用于太阳能电池、电容器、传感器、纳米电路板等。
四、仿生材料仿生材料是指模仿生物体内结构和功能的材料,其目的是实现机器人、智能器件、仿生机器人等领域的发展。
目前,仿生材料已经应用于医疗、航空航天、机器人等领域。
例如,仿生材料可以用于制造可以自我修复的机器人,从而提高机器人的耐用性。
五、仿生多晶材料仿生多晶材料是模仿天然材料制造的人工材料,其具有与天然材料相似的物理和力学性质。
目前,仿生多晶材料已经被广泛应用于航空、航天、机械等领域。
例如,仿生多晶材料可以用于制造高强度的钢材,从而提高机械的耐用性。
综上所述,新材料的研究和应用对于推动科技进步和人类发展具有重要意义。
未来,随着科技和材料的不断进步,新材料的应用领域将会越来越广阔。
碳纳米管增强陶瓷基复合材料的研究与展望
Ke y wor s d
c r o a o u e ,c rmi ti o o ie er coy ab n n n tb s ea cma rxc mp st ,rfa tr
摘 要
碳 纳 米管 因独特 的结 构而具 有许 多优异 的性 能 , 将其加 入到 陶瓷 材料 中可 以解 决 陶瓷 材料 脆 性 问
题, 同时能很 大地提 高陶瓷材 料 的其 它力学和 热 学性能 , 复合 材 料领 域 具 有 广 阔的应 用前 景 。但 碳 纳 米 管在 在
复合 材料 的制备 和使 用过程 中会 出现 分散性 、 面性 和结 构蚀 变性 等 问题 。综 述 了碳 纳米 管在 陶瓷 基 复合 材料 界 中存在 的 问题及 相应 的解 决方 法 , 并探讨 了其在 强 陶瓷基 复合材 料 的研 究与展 望/ 明等 罗
・ 5 1 5 ・
碳 纳 米 管 增 强 陶 瓷 基 复 合 材 料 的 研 究 与 展 望
罗 明, 亚伟 , 李 金胜利 , 桑绍柏 , 易献勋
( 汉 科 技 大 学 耐 火 材 料 与 高 温 陶 瓷 国 家 重 点 实 验 室 培 育 基 地 ,武汉 4 0 8 ) 武 3 O 1
ma e o v h rtln s r b e o e a i c m p st swh n t e r d e n o t ec mp s t s At h a et e y r s le t eb i e e sp o l m fc r m c o o i e h y a e a d d i t h o o ie . e s m i , t e t m CNTs a ea s d l x e t d t m p o e t e o h r me h n c la d t e ma r p r is o h e a c c mp st , O r l o wi ey e p c e o i r v h t e c a ia n h r lp o e t ft e c r mi o o ie S e t e a e 3 g o u u e t eu e h o o ie il . h y h v o d f t r o b s d i t e c mp st s f d Ho v r CNTs ma a e t ep o l mso ip r i n i t r n e we e , y h v h r b e f s e so ,n e — d f c r p r y a d s r c u a r n f r t n d rn h r p r to n p l a in o o o i s Th x s i g p o 一 a ep o e t n t u t r lt a so ma i u i g t e p e a a in a d a p i to fc mp st . e e it r b o c e n 1ms a d r l t d me h d fCNTs u e n c r mi ma rx c mp st s a e s mm a ie a d t e a p ia i n p o p c f e n ea e t o s o s d i e a c t i o o i r u e r d, n h p l t r s e t o z c o
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引言纳米材料是纳米技术的基础,而碳纳米管又可称为纳米材料之王。
碳纳米材料在纳米材料技术开发中举足轻重,它将影响到国民经济的各个领域。
碳纳米管的发现是碳团簇领域的又一重大科研成果。
在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛(Iijima)在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。
由于碳纳米管具有独特的金属或半导体导电特性、非常好的力学性能、极高的机械强度、吸附能力、场致电子发射性能和宽带电磁波吸收特性等,碳纳米管被发现之后立即受到物理、化学和材料科学界以及高新技术产业部门的极大重视。
碳纳米管被认为是一种性能优异的新型功能材料和结构材料,在信息技术、生命科学、环境科学、自动化技术、航空航天技术及能源技术等方面具有广阔的 应用前景。
可以预见,碳纳米管将在诸多领域形成新的产业,产生重大的经济效益和社会效益。
原子形成的石墨烯片卷成的无缝、中空的管体。
碳纳米管因其独特的结构而具有许多独特的性能,除了在半导体器件、储氢、传感器、吸附材料、电池电极、催化剂载体等领域具有非常广阔和诱人的应用前景外,碳纳米管在制备结构、功能以及结构/功能一体化复合材料方面也将大有作为。
CNTs陶瓷复合材料的研究才刚起步, 目前仍处于尝试阶段。
虽然CNTs的增强和功能(导电和导热) 效果已有初步体现,但效果并不理想,相对于微米级增强相的优势还不明显,离理论预测的效果还有很大差距,还有许多工作要做。
1、CNTs陶瓷复合材料着重的研究工作:1.1 CNTs在基体中的均匀分散技术只有CNTs均匀地分散到基体中去,才能最大程度地发挥CNTs的增强作用以及功能特性。
可以说,均匀分散是制备高性能CNTs陶瓷复合材料的前提。
CNTs直径小且纵横比大,表面积大且易团聚,这一方面导致均匀分散的难度非常大,另一方面也导致制备高体积含量CNTs陶瓷复合材料的难度也非常大, 而足够的 CNTs体积分数对于增强效果和功能特性是很重要的。
球磨混合、超声混合、使用表面活性剂、原位合成是目前报道的提高分散均匀性的方法。
其中,原位合成可以制备出分散均匀且体积含量高的CNTs陶瓷复合材料,值得深入研究;1.2 CNTs陶瓷复合材料的致密化技术。
足够的致密度是获得高力学性能CNTs陶瓷复合材料的前提,目前报道的致密化技术大都是高温高压烧结技术,它不仅会破坏CNTs的结构,减少CNTs的数量,而且当CNTs体积含量较高,分散均匀性较差时,高温高压烧结技术很难获得高致密度,从而严重削弱CNTs的增强效果和功能特性。
虽然已有利用SPS技术制备出高致密度CNTs陶瓷复合材料的报道,但开发低温无压致密化技术的需求依然迫切;1.3 CNTs基体界面结构设计与控制。
CNTs是一种纳米尺度的增强相,具有独特的表面特性和非常大的比表面积,这就决定了CNTs与基体的接触面积很大,界面结构也与众不同。
因此,界面结构对CNTs陶瓷复合材料性能有着非常大的影响,当CNTs体积含量较高时,这种影响程度就更大了。
从这个意义上说,从原子尺度上研究CNTs与基体之间的界面结构及其对复合材料性能的影响,以及通过CNTs表面处理等手段进行界面结构设计与控制将是今后工作的重点; 1.4 CNTs陶瓷复合材料微观结构研究。
从目前研究情况看,往往只单纯考虑CNTs含量与复合材料性能的关系,而没有从CNTs和基体相互协同的角度考虑问题,忽略了基体结构以及CNTs结构对性能的影响,从而引起一些错误结论。
今后应注意研究CNTs 结构在制备过程中的变化以及由于CNTs引入而引起的基体结构的变化;1.5 增强增韧机理研究。
将CNTs用作陶瓷材料的增强相,其主要目的是提高陶瓷材料的韧性。
同时,利用CNTs 超高的强度和模量也能提高陶瓷材料的强度和模量。
由于CNTs的结构和特性与其它增强相存在明显差异,因此,CNTs的增强增韧机理以及CNTs陶瓷复合材料力学性能的准确表征就成为研究重点;1.6 其它性能的研究和开发除了超高的力学性能外,CNTs还具有许多独特的功能特性,可以制备出多功能以及结构/功能一体化的CNTs陶瓷复合材料。
为充分发挥CNTs 的作用,扩大其应用范围,应该在CNTs陶瓷复合材料的电学性能、热物理性能、介电性能、磨擦磨损性能等方面加强研究,并阐明内在机理。
2、碳纳米管/陶瓷基复合材料的制备碳纳米管/陶瓷基复合材料的制备过程中存在很多困难。
目前问题主要集中在以下三方面:首先,也是最重要的问题是如何将碳纳米管均匀分散在基体中;其次,如何使碳纳米管在高温烧结时结构不受破坏;第三,碳纳米管目前产量小、成本大,不能满足研究需要。
CNTs在复合材料中能否起到预期的效果,关键在于是否能在基体中均匀分散并与基体之间形成强界面结合。
在制备复合材料前对 CNTs进行表面改性是解决该问题的有效方法。
目前常用的表面改性方法有两种,一种是在CNTs溶液中添加表面活性剂(分散剂)。
表面活性剂通常包括僧水基和亲水基两部分,当将其加入到含有CNTs的溶液中后,嘈水基与碳纳米管表面吸附,亲水基悬浮在外面,从而提高了碳纳米管在水中的溶解性能。
目前常用的表面活性剂有PAA、C16TMAB、C16EO、PEI、SDS、乙醇、正硅酸乙酷乙醇等。
实验证明表面活性剂的加入可以改善碳纳米管在基体中的分散,并提高其电学和力学性能。
然而,采用这种方法不可避免的会引入杂质。
另外一种表面改性的方法是对CNTs进行表面氧化处理。
这种方法可以在不引入杂质的前提下在管壁产生各种官能团,从而改善碳纳米管的分散性。
碳纳米管的表面氧化处理通常采用浓硝酸或者浓硝酸与浓硫酸组成的混酸中加热并配合超声分散进行。
碳纳米管通过表面改性得到稳定悬浮液后,制备复合粉体通常采用胶体法、溶胶--凝胶法或杂凝聚法。
采用胶体法制备了多壁碳纳米管,化铝复合材料。
首先分别使用阴、阳离子分散剂分散多壁碳纳米管与氧化铝,制备出相应的稳定悬浮液。
然后将氧化铝悬浮液逐滴加入到碳纳米管悬浮液中,利用静电吸附剂得到沉淀。
得到的沉淀洗涤、干燥后即可得到混合均匀的复合粉体。
复合材料的烧结通常采用传统的热压烧结和气氛保护烧结,但一些研究中发现采用这些方法烧结时碳纳米管的结构会遭到破坏。
最新研究中倾向于采用等离子体烧结,这种方法热效率较高,可以在低温下、短时间内完成烧结,因此碳管的结构保存完好。
高温烧结时碳纳米管的存在利于抑制基体晶粒的生长。
但加入量较少时,最终产物中很难分辨出碳管。
这一方面是因为高温会使一部分碳管分解,另一方面可能是由于碳管表面吸附基体颗粒导致外象上的消失。
此时可配合高分辨电镜与拉曼光谱分析碳纳米管的存在与否。
3、碳纳米管/陶瓷基复合材料的性能对于纤维/陶瓷基复合材料来说,通常是靠纤维基体间的结合及纤维在基体中的拨出和桥连来增韧的。
当裂纹沿纤维扩展时,由纤维施加到基体裂纹上的闭合力可以抑制其进一步生长;此外,纤维拨出时需克服界面结合力,这同样可以提高陶瓷材料的断裂韧性。
将CNTs加入陶瓷材料的目的同样是为了提高基体的韧性,因此希望CNTs与基体之间可以形成良好的界面结合,但目前还没有这方面的研究。
研究了碳纳米管陶瓷复合材料的增韧机制。
首先用显微硬度计引入可控裂纹,然后在扫描电镜下观察裂纹在基体中的扩展。
结果可以看到碳纳米管/基体界面发生的裂纹偏转、由碳管引起的裂纹桥连和断口表面的碳纳米管拨出。
这些现象说明碳纳米管/陶瓷基复合材料中存在相应的增韧机制。
另外,他们还发现了基体中存在一种新的类似于多孔金属中存在的孔坍塌变形增韧机制。
在实验中发现对于纯多孔氧化铝采用压头施加压力制造裂纹时,只有当载荷超过一定值时才会产生裂纹。
当载荷较小时,没有裂纹产生,但压痕周围出现黑色圆环,进一步分析表明这是孔坍塌构成的短带引起的。
但是,对于这种增韧模式的具体方式,还需进一步的研究。
研究CNTs/A1203时发现碳纳米管添加量在2%~4%之间变化时,复合材料的硬度逐步增加而摩系数逐渐降低。
但是,碳纳米管会影响最终材料中基体的晶粒尺寸,而硬度会随材料的晶粒大小发生变化。
这种结果说明实验时在基体中制备并引入碳管对于力学性能的影响比将碳管作为初始原料直接加入更大。
因此,仅研究碳纳米管加入量对性能的影响是不够的,还必须考虑碳管加入方式的影响。
研究发现表面氧化处理后的碳纳米管比未处理的碳管更利于提高复合材料的导电性能;碳纳米管加入量的质量分数为10%时,导电系数提高五倍。
研究了碳管增强陶瓷基复合材料的导热性能。
以传统导热模型为基础,提出了一种适用于碳纳米管复合材料的简单公式。
用这个公式推算出由于碳纳米管导热系数非常高且长径比大,即使加入量很小,复合材料的导热系数也会大幅度提高,这与实验结果相符。
目前碳纳米管/陶瓷基复合材料的研究结果与预期结果仍有很大差距,复合材料力学性能的进一步提高有赖于碳纳米管加入量的提高或者使用较长的纳米管。
但由于碳纳米管难于分散且很难获得致密的坯体,这两种方法都将面临新的困难。
如何解决碳纳米管的分散仍是未来研究的重点之一,同时对复合材料中的韧化机理需要进行更为深入的研究。
在复合材料的研究中,界面问题极为关键。
界面是基体和第二相颗粒的结合处,也是基体和第二相颗粒传递载荷的媒介。
界面对于材料的力学性能有非常重要的影响,特别是对于陶瓷材料来说,界面的解离和滑移更为重要。
碳纳米管具有独特的化学键,与基体之间的界面应该不同于碳纤维与基体之间的界面。
4、碳纳米管增韧陶瓷的研究现状碳纳米管具有优异的力学性能, 通过在透射电镜下观察碳纳米管的热振动行为得到碳纳米管的杨氏模量, 结果表明碳纳米管的杨氏模量可达1.0 Tpa 以上, 比一般的碳纤维高一个数量级,大约为钢的100 倍,而密度却只有钢的1/6。
在SEM内安置了“纳米应力计”用以测量多壁碳纳米管(multiwalled nanotubes, MWNTs) 的拉伸强度, 结果为11~63GPa。
目前, 对碳纳米管复合材料的研究, 大部分学者将注意力集中于碳纳米管增强聚合物材料上, 涉及到陶瓷基体的文献较少, 因为将碳纳米管均匀分散在陶瓷基质中并获得界面的牢固结合力比在聚合物中更具难度。
从早期的研究结果看, 碳管增强陶瓷的效果并不理想。
在增韧陶瓷的研究方面, 用原位方法制备出了CNTs-Fe-Al2O3、CNTs-Fe /Co-Mg Al2O3和CNTs-Co-Mg 纳米复合粉体, 然后通过真空热压烧结得到致密的块体复合材料。
碳纳米管的加入, 不仅没有使复合材料整体力学性能得到改善, 反而使其抗弯强度和断裂韧度都有所下降。
在陶瓷基体上,研究较多的是将CNTs加入Al或Si的氧化物中。