《直线与平面平行的判定》优秀教案
直线与平面平行的判定定理教学设计(教案)
直线与平面平行的判定定理教学设计(教案)一、教学目标1. 让学生理解直线与平面平行的概念。
2. 引导学生掌握直线与平面平行的判定定理。
3. 培养学生的空间想象能力和逻辑思维能力。
二、教学内容1. 直线与平面平行的定义。
2. 直线与平面平行的判定定理。
三、教学重点与难点1. 教学重点:直线与平面平行的判定定理及其证明。
2. 教学难点:直线与平面平行的判定定理的证明和应用。
四、教学方法1. 采用问题驱动法,引导学生探究直线与平面平行的判定定理。
2. 利用几何模型和动画,直观展示直线与平面平行的判定过程。
3. 设计典型例题,培养学生运用判定定理解决问题的能力。
五、教学过程1. 导入新课:通过生活中的实例,引导学生思考直线与平面之间的关系。
2. 讲解直线与平面平行的定义,让学生明确直线与平面平行的概念。
3. 引导学生探究直线与平面平行的判定定理,讲解定理的证明过程。
4. 利用几何模型和动画,直观展示直线与平面平行的判定过程,加深学生理解。
5. 设计典型例题,引导学生运用判定定理解决问题,巩固所学知识。
6. 课堂小结:总结本节课的主要内容和知识点。
7. 布置作业:布置一些有关直线与平面平行的判定定理的练习题,巩固所学知识。
这五个章节的内容是教案的核心部分,后续的章节可以根据这五个章节的内容进行扩展和延伸。
希望这个教案能对你有所帮助!六、教学评估1. 课堂提问:通过提问了解学生对直线与平面平行判定定理的理解程度。
2. 作业批改:检查学生作业,了解学生对直线与平面平行判定定理的掌握情况。
3. 课堂练习:设计一些有关直线与平面平行的判定定理的练习题,让学生当堂练习,及时了解学生学习效果。
七、教学策略的调整1. 根据学生掌握情况,对直线与平面平行判定定理的讲解进行调整,使之更易于学生理解。
2. 对于学习有困难的学生,提供个别辅导,帮助他们理解直线与平面平行的判定定理。
3. 对于理解较深刻的学生,提供一些拓展性的问题,激发他们的思维。
《直线与平面平行的判定》教案
《直线与平面平行的判定》教案一、教学目标1. 让学生理解直线与平面平行的概念。
2. 让学生掌握直线与平面平行的判定方法。
3. 培养学生运用直线与平面平行的知识解决实际问题的能力。
二、教学重点与难点1. 教学重点:直线与平面平行的判定方法。
2. 教学难点:如何运用直线与平面平行的判定方法解决实际问题。
三、教学方法1. 采用问题驱动法,引导学生探究直线与平面平行的判定方法。
2. 利用几何模型,直观展示直线与平面平行的判定过程。
3. 运用案例分析法,让学生通过实际问题巩固直线与平面平行的判定方法。
四、教学准备1. 教学课件:直线与平面平行的判定方法及实例。
2. 几何模型:直线与平面平行的实物模型。
3. 练习题:直线与平面平行的判定练习题。
五、教学过程1. 导入:通过生活实例,引导学生思考直线与平面平行的概念。
2. 新课讲解:a. 讲解直线与平面平行的定义。
b. 介绍直线与平面平行的判定方法。
c. 通过几何模型,演示直线与平面平行的判定过程。
3. 案例分析:分析实际问题,运用直线与平面平行的判定方法解决问题。
4. 课堂练习:让学生独立完成练习题,检验对直线与平面平行判定方法的理解。
5. 总结与拓展:总结本节课的主要内容,提出直线与平面平行在现实生活中的应用,激发学生的学习兴趣。
6. 布置作业:布置有关直线与平面平行的练习题,巩固所学知识。
六、教学评价1. 评价目标:检验学生对直线与平面平行判定方法的掌握程度。
2. 评价方法:a. 课堂练习题完成情况。
b. 学生解答实际问题的能力。
c. 学生课堂参与度和思维活跃度。
七、课后反思1. 反思内容:a. 学生对本节课直线与平面平行判定方法的理解程度。
b. 教学过程中是否存在不足,如何改进。
c. 学生课堂表现,是否达到预期教学效果。
八、教学拓展1. 拓展内容:直线与平面平行的应用实例。
2. 拓展方式:a. 分析现实生活中的直线与平面平行现象。
b. 引导学生运用直线与平面平行的知识解决实际问题。
《直线与平面平行的判定》教案
一、教学目标:1. 让学生理解直线与平面平行的概念。
2. 让学生掌握直线与平面平行的判定方法。
3. 培养学生运用几何知识解决实际问题的能力。
二、教学重点与难点:1. 教学重点:直线与平面平行的判定方法。
2. 教学难点:如何运用判定方法证明直线与平面平行。
三、教学方法:1. 采用问题驱动法,引导学生思考直线与平面平行的判定方法。
2. 利用几何模型,直观展示直线与平面平行的判定过程。
3. 运用案例分析法,让学生通过实际例子掌握判定方法。
四、教学准备:1. 准备相关几何模型、图片等教学资源。
2. 准备黑板、粉笔等教学工具。
3. 提前让学生预习相关知识点。
五、教学过程:1. 导入新课:1.1 复习直线、平面基本概念。
1.2 提问:直线与平面有什么关系?1.3 引导学生思考:如何判断直线与平面是否平行?2. 知识讲解:2.2 讲解直线与平面平行的判定方法。
2.3 通过几何模型展示直线与平面平行的判定过程。
3. 案例分析:3.1 分析实际例子,让学生运用判定方法判断直线与平面是否平行。
3.2 引导学生总结判定方法的应用规律。
4. 课堂练习:4.1 布置练习题,让学生巩固所学判定方法。
4.2 引导学生相互讨论、交流解题心得。
5. 总结与布置作业:5.1 总结本节课所学内容,强调直线与平面平行的判定方法。
5.2 布置作业,让学生进一步巩固知识点。
六、教学反思:在课后,教师应认真反思本节课的教学效果,针对学生的掌握情况,调整教学策略,以提高学生对直线与平面平行的判定方法的理解和运用能力。
七、课时安排:1课时八、教学评价:通过课堂讲解、案例分析和课后练习,评价学生对直线与平面平行的判定方法的掌握程度。
九、教学拓展:1. 直线与平面垂直的判定。
2. 直线与平面斜交的判定。
3. 平面与平面平行的判定。
十、教学资源:1. 几何模型。
2. 教学图片。
3. 练习题库。
4. 相关教学视频或课件。
六、教学活动设计:6.1 学生自主探究:让学生通过观察模型和实际操作,尝试发现直线与平面平行的判定规律。
直线与平面平行的判定定理教学设计(教案)
直线与平面平行的判定定理教学设计(教案)第一章:教学目标1.1 知识与技能让学生掌握直线与平面平行的判定定理,并能够运用该定理判断直线与平面的位置关系。
1.2 过程与方法通过观察实例,引导学生发现直线与平面平行的判定规律,培养学生运用几何推理解决问题的能力。
1.3 情感态度与价值观激发学生对几何学的兴趣,培养学生的逻辑思维能力和创新意识。
第二章:教学重难点2.1 教学重点直线与平面平行的判定定理的表述及证明。
2.2 教学难点如何引导学生理解并证明直线与平面平行的判定定理。
第三章:教学方法与手段3.1 教学方法采用问题驱动法、实例分析法、小组讨论法等。
3.2 教学手段多媒体课件、几何模型、黑板等。
第四章:教学过程4.1 导入新课通过展示生活中的实例,如墙角、桌面等,引导学生观察直线与平面的位置关系,激发学生的学习兴趣。
4.2 探究与讲解引导学生发现直线与平面平行的判定规律,讲解直线与平面平行的判定定理及证明过程。
4.3 巩固练习设计相关练习题,让学生运用所学知识判断直线与平面的位置关系。
4.4 拓展与应用引导学生思考直线与平面平行在现实生活中的应用,如建筑设计、机械制造等。
第五章:作业布置与课后反思5.1 作业布置布置一些有关直线与平面平行的判定定理的应用题,巩固所学知识。
5.2 课后反思教师应及时反思本节课的教学效果,针对学生的掌握情况,调整教学策略,为后续教学做好准备。
第六章:教学评价6.1 评价目标评价学生对直线与平面平行判定定理的理解程度及运用能力。
6.2 评价方法采用课堂问答、练习批改、小组讨论等方式进行评价。
6.3 评价内容重点评价学生对直线与平面平行判定定理的掌握情况,以及能够运用该定理解决实际问题的能力。
第七章:教学拓展7.1 拓展内容介绍直线与平面平行判定定理在现实生活中的应用,如建筑设计、计算机图形学等。
7.2 拓展方式邀请相关领域专家进行讲座,或组织学生进行实地考察。
7.3 拓展目标培养学生对几何学的兴趣,提高学生的实践能力。
《直线与平面平行的判定》教案、导学案、课后作业
《8.5.2 直线与平面平行》教案第1课时直线与平面平行的判定【教材分析】在直线与平面的位置关系中,平行是一种非常重要的关系,本节内容既是直线与直线平行关系延续和提高,也是后续研究平面与平面平行的基础,既巩固了前面所学的内容,又为后面内容的学习做了知识上和方法上的准备,在教材中起着承前启后的作用。
【教学目标与核心素养】课程目标1.理解直线和平面平行的判定定理并能运用其解决相关问题.2.通过对判定定理的理解和应用,培养学生的空间转化能力和逻辑推理能力.数学学科素养1.逻辑推理:探究归纳直线和平面平行的判定定理,找平行关系;2.直观想象:题中几何体的点、线、面的位置关系.【教学重点和难点】重点:直线与平面平行的判定定理及其应用.难点:直线与平面平行的判定定理,找平行关系.【教学过程】一、情景导入问题1.观察开门与关门,门的两边是什么位置关系.当门绕着一边转动时,此时门转动的一边与门框所在的平面是什么位置关系?【答案】平行.问题2.请同学门将一本书平放在桌面上,翻动书的封面,观察封面边缘所在直线l 与桌面所在的平面具有怎样的位置关系?桌面内有与l 平行的直线吗?【答案】平行,有.问题3.根据以上实例总结在什么条件下一条直线和一个平面平行? 要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探. 二、预习课本,引入新课阅读课本135-137页,思考并完成以下问题 1、直线与平面平行的判定定理是什么?2、怎样用符号语言表示直线与平面平行的判定定理?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1、直线与平面平行的判定定理四、典例分析、举一反三题型一直线与平面平行的判断定理的理解 例1 下列命题中正确的个数是( )①若直线a 不在α内,则a ∥α ②若直线l 上有无数个点不在平面α内,则l ∥α ③若直线l 与平面α平行,则l 与α内的任意一条直线都平行 ④若l 与平面α平行,则l 与α内任何一条直线都没有公共点 ⑤平行于同一平面的两直线可以相交A.1B.2C.3D.4【答案】B【解析】①a⊄α,则a∥α或a与α相交,故①不正确;②当l与α相交时,满足条件,但得不出l∥α,故②不正确;③若l∥α,则l与α内的无数条直线异面,并非都平行,故③错误;若l∥α,则l与α内的任何直线都没有公共点,故④正确;若a∥α,b∥α,则a与b可以相交,也可以平行或异面,故⑤正确.解题技巧(判定定理理解的注意事项)(1)明确判定定理的关键条件.(2)充分考虑各种可能的情况.(3)特殊的情况注意举反例来说明.跟踪训练一1.设a,b是空间中不同的直线,α,β是不同的平面,则下列说法正确的是( )A.a∥b,b⊂α,则a∥αB.a⊂α,b⊂β,α∥β,则a∥bC.a⊂α,b⊂α,a∥β,b∥β,则α∥βD.α∥β,a⊂α,则a∥β【答案】D.【解析】A,B,C错;在D中,α∥β,a⊂α,则a与β无公共点,所以a∥β,故D正确.故选D.题型二直线与平面平行的判断定理的应用例2 在空间四边形ABCD中,E,F分别是AB,AD的中点,求证:EF∥平面BCD.【答案】证明见解析【解析】∵AE=EB,AF=FB,∴EF∥BD.EF⊄平面BCD,BD⊂平面BCD.∴ EF ∥平面BCD解题技巧: (判定定理应用的注意事项) (1)欲证线面平行可转化为线线平行解决.(2)判断定理中有三个条件,缺一不可,注意平行关系的寻求.常常利用平行四边形、三角形中位线、等比例线段、相似三角形.跟踪训练二1.如图,已知OA,OB,OC 交于点O,AD 12OB,E,F 分别为BC,OC 的中点.求证:DE∥平面AOC.【答案】证明见解析 【解析】 证明 在△OBC 中, 因为E,F 分别为BC,OC 的中点, 所以FE 12OB,又因为AD12OB,所以FE AD.所以四边形ADEF 是平行四边形. 所以DE ∥AF.又因为AF ⊂平面AOC,DE ⊄平面AOC. 所以DE ∥平面AOC. 五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计七、作业课本139页练习1、2、3题,143页习题8.5的4、5、6题.【教学反思】本节课,从内容上来说,学生基本掌握判定定理,但是在应用中,书写证明过程不太规范,需提高学生的逻辑思维能力.从方法上来说,通过本节课判定定理的学习,学生理解证明一条直线与一个平面平行,只要在这个平面内找出一条与此直线平行的直线就可以了,让学生初步感知空间问题可以转化为平面问题解决.《8.5.2 直线与平面平行》导学案第1课时直线与平面平行的判定【学习目标】知识目标1.理解直线和平面平行的判定定理并能运用其解决相关问题.2.通过对判定定理的理解和应用,培养学生的空间转化能力和逻辑推理能力.核心素养1.逻辑推理:探究归纳直线和平面平行的判定定理,找平行关系;2.直观想象:题中几何体的点、线、面的位置关系.【学习重点】:直线与平面平行的判定定理及其应用.【学习难点】:直线与平面平行的判定定理,找平行关系.【学习过程】一、预习导入阅读课本135-137页,填写。
直线与平面平行的判定教案
直线与平面平行的判定教案直线与平面平行的判定教案范文直线与平面平行的判定教案1一、教学目标1.借助对图片、实例的观察,抽象概括出直线与平面垂直的定义,并能正确理解直线与平面垂直的定义。
2.通过直观感知,操作确认,归纳直线与平面垂直判定的定理,并能运用判定定理证明一些空间位置关系的简单命题,进一步培养学生的空间观念。
3.让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。
二、教学重点、难点1.教学重点:操作确认并概括出直线与平面垂直的定义和判定定理。
2.教学难点:操作确认并概括出直线与平面垂直的判定定理及初步运用。
三、课前准备1.教师准备:教学课件2.学生自备:三角形纸片、铁丝(代表直线)、纸板(代表平面)、三角板四、教学过程设计1.直线与平面垂直定义的建构(1)创设情境①请同学们观察图片,说出旗杆与地面、高楼的侧棱与地面的位置有什么关系?②请把自己的数学书打开直立在桌面上,观察书脊与桌面的位置有什么关系?③请将①中旗杆与地面的位置关系画出相应的几何图形。
(2)观察归纳①思考:一条直线与平面垂直时,这条直线与平面内的直线有什么样的位置关系?②多媒体演示:旗杆与它在地面上影子的位置变化。
③归纳出直线与平面垂直的定义及相关概念。
定义:如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直,记作:l⊥α.直线l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫做垂足。
用符号语言表示为:(3)辨析(完成下列练习):①如果一条直线垂直于一个平面内的无数条直线,那么这条直线就与这个平面垂直。
②若a⊥α,bα,则a⊥b。
在创设情境中,学生练习本上画图,教师针对学生出现的问题,如不直观、不标字母等加以强调,并指出这就叫直线与平面垂直,引出课题。
在多媒体演示时,先展示动画1使学生感受到旗杆AB所在直线与过点B的直线都垂直。
再展示动画2使学生明确旗杆AB所在直线与地面内任意一条不过点B 的直线B1C1也垂直,进而引导学生归纳出直线与平面垂直的定义。
《直线与平面平行的判定》教案
一、教学目标1. 让学生理解直线与平面平行的概念。
2. 让学生掌握直线与平面平行的判定方法。
3. 培养学生运用所学知识解决实际问题的能力。
二、教学内容1. 直线与平面平行的定义2. 直线与平面平行的判定方法3. 直线与平面平行的性质三、教学重点与难点1. 教学重点:直线与平面平行的判定方法。
2. 教学难点:如何运用判定方法判断直线与平面是否平行。
四、教学方法1. 采用讲授法,讲解直线与平面平行的定义、判定方法和性质。
2. 利用多媒体展示实例,引导学生直观理解直线与平面平行的概念。
3. 运用互动教学法,让学生通过小组讨论、上台演示等方式,掌握判定方法。
五、教学过程1. 导入新课:通过生活中的实例,引导学生思考直线与平面之间的关系。
2. 讲解直线与平面平行的定义:让学生明确直线与平面平行的概念。
3. 讲解直线与平面平行的判定方法:a. 利用平面内的两条相交直线与给定直线判定。
b. 利用平面内的两条平行直线与给定直线判定。
a. 直线与平面内的任意一条直线都是平行的。
b. 直线与平面内的任意一条平行直线都在该平面内。
5. 巩固练习:布置一些有关直线与平面平行的判断题,让学生巩固所学知识。
7. 作业布置:让学生课后思考一些直线与平面平行的实际问题,提高运用所学知识解决实际问题的能力。
六、教学评价1. 通过课堂讲解、练习和课后作业,评价学生对直线与平面平行概念的理解程度。
2. 通过小组讨论和上台演示,评价学生对直线与平面平行判定方法的掌握情况。
3. 通过课后实际问题解答,评价学生运用所学知识解决实际问题的能力。
七、教学拓展1. 引导学生思考直线与平面平行的应用场景,如建筑设计、机械制造等。
2. 介绍直线与平面平行在其他学科领域的应用,如数学、物理等。
八、教学资源1. 多媒体课件:用于展示直线与平面平行的定义、判定方法和性质。
2. 实例图片:用于引导学生直观理解直线与平面平行的概念。
3. 练习题库:用于巩固学生对直线与平面平行的判定方法的掌握。
直线与平面平行的判定 优秀教案
直线与平面平行的判定优秀教案一、教学目标1. 知识与技能:使学生能够准确理解直线与平面平行的定义,掌握直线与平面平行的判定定理,并能灵活运用这些定理进行空间平行关系的判定。
2. 过程与方法:通过实例分析、动手实践、逻辑推理等方式,培养学生的空间想象能力和几何推理能力。
3. 情感态度与价值观:激发学生对空间几何的兴趣,培养学生严谨的科学态度和探索精神。
二、教学重难点重点:直线与平面平行的判定定理的理解和应用。
难点:对判定定理的深入理解和灵活运用。
三、教学准备教具:黑板、粉笔、直尺、模型(如门、书本等)四、教学过程(一)导入新课1. 复习提问:空间中直线与平面有几种位置关系?分别是什么?2. 引入课题:今天我们要来学习的是直线与平面平行的判定。
(二)新课展开1. 直线与平面的位置关系(1)通过实物模型(如门、书本等)展示直线与平面的三种位置关系:直线在平面内、直线与平面相交、直线与平面平行。
(2)引导学生理解直线与平面平行的定义:如果一条直线与一个平面没有公共点,那么这条直线与这个平面平行。
2. 直线与平面平行的判定定理(1)引导学生观察实物模型,发现直线与平面平行的判定条件:如果一条直线与一个平面内的两条相交直线都平行,那么这条直线与这个平面平行。
(2)通过实例分析,让学生理解判定定理的应用。
例如,门转动到离开门框的任何位置时,门的边缘线始终与门框所在的平面平行。
3. 判定定理的证明(1)引导学生根据判定定理的条件,利用反证法进行证明。
(2)通过证明过程,让学生理解判定定理的严谨性和正确性。
4. 判定定理的应用(1)通过例题讲解,让学生掌握利用判定定理证明直线与平面平行的方法。
(2)引导学生自主思考,尝试运用判定定理解决空间平行关系问题。
(三)课堂练习1. 判断题:判断下列说法是否正确,并说明理由。
(1)如果一条直线与一个平面内的无数条直线平行,那么这条直线与这个平面平行。
(2)如果一条直线与一个平面内的两条平行直线平行,那么这条直线与这个平面平行。
直线与平面平行的判定定理教学设计(教案)
直线与平面平行的判定定理教学设计(教案)第一章:直线与平面平行的概念引入1.1 教学目标让学生了解直线与平面平行的概念。
学生能够通过实例判断直线与平面是否平行。
1.2 教学内容直线与平面平行的定义。
直线与平面平行的判定方法。
1.3 教学步骤1. 引入直线与平面平行的概念,展示实例图片,引导学生观察并描述直线与平面的关系。
2. 给出直线与平面平行的定义,解释其含义。
3. 引导学生通过实例判断直线与平面是否平行,引导学生运用定义进行判断。
1.4 教学评估通过课堂提问,检查学生对直线与平面平行概念的理解。
通过实例判断练习,检查学生能否运用定义判断直线与平面是否平行。
第二章:直线与平面平行的判定定理2.1 教学目标让学生了解直线与平面平行的判定定理。
学生能够运用判定定理判断直线与平面是否平行。
2.2 教学内容直线与平面平行的判定定理。
判定定理的证明。
2.3 教学步骤1. 引入直线与平面平行的判定定理,展示实例图片,引导学生观察并描述直线与平面的关系。
2. 给出判定定理,解释其含义。
3. 进行判定定理的证明,解释证明过程。
4. 引导学生通过实例判断直线与平面是否平行,引导学生运用判定定理进行判断。
2.4 教学评估通过课堂提问,检查学生对直线与平面平行判定定理的理解。
通过实例判断练习,检查学生能否运用判定定理判断直线与平面是否平行。
第三章:直线与平面平行的判定定理的应用3.1 教学目标让学生能够运用直线与平面平行的判定定理解决实际问题。
3.2 教学内容直线与平面平行的判定定理在实际问题中的应用。
3.3 教学步骤1. 引入实际问题,展示实例图片,引导学生观察并描述直线与平面的关系。
2. 引导学生运用判定定理解决实际问题,解释解题过程。
3. 提供练习题,让学生独立解决实际问题,并提供解答。
3.4 教学评估通过课堂提问,检查学生对直线与平面平行判定定理在实际问题中的应用的理解。
通过练习题,检查学生能否独立解决实际问题。
人教版直线与平面平行的判定教案
人教版直线与平面平行的判定教案一、教学目标1. 让学生理解直线与平面平行的概念,掌握直线与平面平行的判定方法。
2. 培养学生运用几何知识解决实际问题的能力,提高空间想象能力。
3. 通过对直线与平面平行的学习,培养学生的逻辑思维能力和团队合作精神。
二、教学内容1. 直线与平面平行的定义2. 直线与平面平行的判定定理3. 直线与平面平行的判定条件4. 直线与平面平行的判定方法及步骤5. 直线与平面平行的应用实例三、教学重点与难点1. 教学重点:直线与平面平行的判定方法及步骤。
2. 教学难点:直线与平面平行的判定条件的理解和应用。
四、教学方法1. 采用问题驱动法,引导学生探究直线与平面平行的判定方法。
2. 利用几何模型和实物模型,帮助学生直观理解直线与平面平行的概念。
3. 运用案例分析法,让学生通过解决实际问题,巩固直线与平面平行的判定方法。
4. 组织小组讨论,培养学生的团队合作精神和沟通能力。
五、教学步骤1. 导入新课:通过展示生活中常见的直线与平面平行现象,引导学生思考直线与平面平行的概念。
2. 讲解直线与平面平行的定义,让学生理解直线与平面平行的基本含义。
3. 引导学生探究直线与平面平行的判定方法,讲解判定定理和判定条件。
4. 通过几何模型和实物模型,让学生直观理解直线与平面平行的判定方法。
5. 运用判定方法,分析实际案例,让学生巩固所学知识。
6. 组织学生进行小组讨论,分享各自的学习心得和解决问题的方法。
7. 总结直线与平面平行的判定方法,强调判定条件的运用。
8. 布置课堂练习,让学生运用所学知识解决实际问题。
9. 课堂反馈:听取学生对直线与平面平行判定方法的理解和应用,及时进行点评和指导。
10. 课后作业:布置相关习题,巩固直线与平面平行的判定方法。
六、教学评估1. 课堂练习:通过布置相关的练习题,检查学生对直线与平面平行判定方法的理解和掌握程度。
2. 小组讨论:观察学生在小组讨论中的表现,了解他们的合作能力和沟通能力。
直线与平面平行的判定定理教学设计(教案)
直线与平面平行的判定定理教学设计(教案)第一章:教学目标1.1 知识与技能目标1. 理解直线与平面平行的概念。
2. 掌握直线与平面平行的判定定理。
3. 能够运用判定定理判断直线与平面的平行关系。
1.2 过程与方法目标1. 通过观察实例,培养学生的空间想象能力。
2. 通过证明过程,培养学生的逻辑思维能力。
1.3 情感态度与价值观目标1. 激发学生对几何学的兴趣。
2. 培养学生的团队合作精神。
第二章:教学内容2.1 直线与平面平行的概念1. 直线与平面的位置关系:相交、平行、包含。
2. 直线与平面平行的定义:在同一平面内,直线与平面不相交。
2.2 直线与平面平行的判定定理1. 定理的表述。
2. 定理的证明过程。
2.3 判定定理的应用1. 判断直线与平面的平行关系。
2. 判断平面与平面的平行关系。
第三章:教学重点与难点3.1 教学重点1. 直线与平面平行的概念。
2. 直线与平面平行的判定定理。
3.2 教学难点1. 直线与平面平行的判定定理的证明过程。
2. 判断直线与平面的平行关系。
第四章:教学方法与手段4.1 教学方法1. 讲授法:讲解直线与平面平行的概念和判定定理。
2. 案例分析法:分析实例,引导学生理解判定定理的应用。
3. 小组讨论法:分组讨论,培养学生的团队合作精神。
4.2 教学手段1. 投影仪:展示实例和证明过程。
2. 几何模型:帮助学生直观地理解直线与平面平行的关系。
第五章:教学过程5.1 导入新课1. 利用实例引入直线与平面平行的概念。
2. 引导学生思考如何判断直线与平面的平行关系。
5.2 知识讲解1. 讲解直线与平面平行的概念。
2. 证明直线与平面平行的判定定理。
5.3 课堂练习1. 布置判断题:判断直线与平面的平行关系。
2. 学生互相讨论,教师指导。
5.4 课堂小结1. 总结直线与平面平行的判定定理。
2. 强调判定定理的应用。
5.5 课后作业1. 完成练习题:判断直线与平面的平行关系。
《直线与平面平行的判定》教案-人教A版高中数学必修二
《直线与平面平行的判定》教案一、教学内容分析本节选自教材《基础模块》下第九章,本节内容在立体几何学习中起着承上启下的作用,具有重要的意义与地位。
本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。
本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。
二、学生学习情况分析任教的学生在年级段属中上程度,学生学习兴趣较高,学生已经学习完空间直线与直线的位置关系以及直线与直线平行,并掌握直线与直线平行的判断方法.在日常生活中积累了许多线面平行的素材,和直观判断的方法,但对这些方法是否正确合理缺乏深入理性的分析.在空间想象和逻辑论证等方面的能力有待于再进一步学习中提高.学习立体几何所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。
三、设计思想本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。
四、教学目标通过直观感知——观察——操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。
培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。
让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。
五、教学重点与难点教学重点:直线与平面平行的判定定理.教学难点:直线与平面平行的判定定理验证和应用六、教学过程设计(一)知识准备、新课引入提问1:根据公共点的情况,空间中直线a和平面α有哪几种位置关系?并完成下表:我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为a⊄α提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。
高中数学《直线与平面平行的判定》教案
高中数学《直线与平面平行的判定》教案一、教学目标1.了解平面和直线的性质。
2.学会判断平面和直线是否平行。
3.掌握平面和直线平行的性质和应用。
4.了解平面和直线的几何应用。
二、教学重点1.直线和平面平行的概念、性质。
2.平行线的判定、条件。
3.平面和直线平行的判定、条件。
三、教学难点平行线判定的学习。
四、教学方法理论讲授、图像分析、练习、探究。
五、教学过程1.导入请学生回顾“平面”和“直线”的定义和性质。
2.提出问题请学生思考如何确定平面和直线是否平行。
3.学习平行线的判定(1)定义:“如果两条直线在同一平面内且不相交,则这两条直线互相平行。
”(2)判定方法:①同向性判定法:向同一方向延申出两条射线,如果两条射线在另一条直线上的同一侧,则两线平行;反之,不平行。
②夹角大小判定法:如果两条线段及其相邻角之和为180度,则两线段是平行的。
③斜率判定法:如果两条直线的斜率相等,则两直线平行。
4.学习平面和直线平行的判定(1)定义:“如果一条直线和一个平面没有交点,那么这条直线在这个平面上的任意一条互不重合的直线上的任意一点和这条直线的任意一点的连线就在这个平面上,这时这条直线与这个平面是平行的。
”(2)判定方法:①两直线平行,其中一条直线在所在平面内,则另一条直线与该平面平行。
②直线与平面垂线所在的平面与给定平面互相平行。
③如果一平面与一直线在空间中相交,并且在交点处的夹角是直角,则该平面与该直线平行。
5.练习请学生完成平面和直线平行的练习题。
6.课堂巩固请学生回答以下问题:(1)平行的两条直线斜率是否相同?(2)如何确定两平面是否平行?(3)如果一条直线在平面内,直线上有一点在平面外,这条直线与平面是否平行?(4)如果一个平面和一条直线互相平行,它们有什么共同点?7.作业请学生完成课堂练习题,并预习下节课内容。
六、板书设计高中数学《直线与平面平行的判定》1.平行线的判定①同向性判定法②夹角大小判定法③斜率判定法2.平面和直线平行的判定①两直线平行,在所在平面内,另一条直线与该平面平行。
《直线与平面平行的判定》优秀教案
《直线与平⾯平⾏的判定》优秀教案直线与平⾯平⾏的判定教学⽬标 1.知识⽬标⑴进⼀步熟悉掌握空间直线和平⾯的位置关系;⑵理解并掌握直线与平⾯平⾏的判定定理、图形语⾔、符号语⾔、⽂字语⾔;⑶灵活运⽤直线和平⾯的判定定理,把“线⾯平⾏”转化为“线线平⾏”。
2.能⼒训练⑴掌握由“线线平⾏”证得“线⾯平⾏”的数学证明思想;⑵进⼀步培养学⽣的观察能⼒、空间想象⼒和类⽐、转化能⼒,提⾼学⽣的逻辑推理能⼒。
3.德育渗透⑴培养学⽣的认真、仔细、严谨的学习态度;⑵建⽴“实践——理论——再实践”的科学研究⽅法。
教学重点直线与平⾯平⾏的判定定理教学难点直线与平⾯平⾏的判定定理的应⽤教学⽅法启发式、引导式、观察分析、理论联系实际教具模型、尺、多媒体设备教学过程(⼀)内容回顾师:在上节课我们介绍了直线与平⾯的位置关系,有⼏种?可将图形给以什么作为划分的标准?直线与平⾯平⾏直线与平⾯相交直线在平⾯内 //a αa α{}a A α=(⼆)新课导⼊1、如何判定直线与平⾯平⾏师:请同学回忆,我们昨天是受⽤了什么⽅法证明直线与平⾯平⾏?有直线在平⾯外能不能说明直线与平⾯平⾏?⽣:借助定义,说明直线与平⾯没有公共点。
师:判断直线与平⾯有没有公共点,需要将直线和平⾯延展开看它们有没有交点,但延展判断并不⽅便灵敏,那就需要我们挖掘⼀种新的判定⽅法。
我们来看看⽣活中的线⾯平⾏能给我们什么启发呢?若将⼀本书平放在桌⾯上,翻动书的封⾯,观察封⾯边缘所在直线l与书本所在的平⾯具有怎样的位置关系?师:你们能⽤⾃⼰的话概括出线⾯平⾏的判定定理吗?⽣:如果平⾯外⼀条直线和这个平⾯内的⼀条直线平⾏,那么这条直线和这个平⾯平⾏。
2、分析判定定理的三种语⾔师:定理的条件细分有⼏点?⽣:线在平⾯外,线在平⾯内,线线平⾏(师⽣互动共同整理出定理的图形语⾔、符号语⾔、⽂字语⾔)图形语⾔符号语⾔⽂字语⾔线线平⾏,则线⾯平⾏。
(三)例题讲解师:如果要证明线⾯平⾏,关键在哪⾥?⽣:在平⾯内找到⼀条直线,证明线线平⾏。
直线与平面平行的判定优秀教案
直线与平面平行的判定教学目标 1.知识目标⑴进一步熟悉掌握空间直线和平面的位置关系;⑵理解并掌握直线与平面平行的判定定理、图形语言、符号语言、文字语言;⑶灵活运用直线和平面的判定定理,把“线面平行”转化为“线线平行”。
.能力训练2 ⑴掌握由“线线平行”证得“线面平行”的数学证明思想;提高学生的逻辑空间想象力和类比、⑵进一步培养学生的观察能力、转化能力,推理能力。
3.德育渗透⑴培养学生的认真、仔细、严谨的学习态度;⑵建立“实践——理论——再实践”的科学研究方法。
教学重点直线与平面平行的判定定理教学难点直线与平面平行的判定定理的应用教学方法启发式、引导式、观察分析、理论联系实际教具模型、尺、多媒体设备教学过程(一)内容回顾有几种?可将图形给以什么作师:在上节课我们介绍了直线与平面的位置关系,为划分的标准?直线与平平行面交面与直内平线直在面线平相??a???//a?A?a1 / 4(二)新课导入、如何判定直线与平面平行1请同学回忆,我们昨天是受用了什么方法证明直线与平面平行?有直线在师:平面外能不能说明直线与平面平行?生:借助定义,说明直线与平面没有公共点。
判断直线与平面有没有公共点,需要将直线和平面延展开看它们有没有交师:我们来看但延展判断并不方便灵敏,那就需要我们挖掘一种新的判定方法。
点,看生活中的线面平行能给我们什么启发呢?观察l若将一本书平放在桌面上,翻动书的封面,观察封面边缘所在直线与书本所在的平面具有怎样的位置关系?l师:你们能用自己的话概括出线面平行的判定定理吗?如果平面外一条直线和这个平面内的一条直线平行,生:那么这条直线和这个平面平行。
、分析判定定理的三种语言2 师:定理的条件细分有几点?生:线在平面外,线在平面内,线线平行(师生互动共同整理出定理的图形语言、符号语言、文字语言)文字语言符号语言图形语言a??a?线线平行,???//??ab?则线面平行。
b?ba//?(三)例题讲解?师:如果要证明线面平行,关键在哪里?生:在平面内找到一条直线,证明线线平行。
《直线与平面平行的判定》教案-公开课-优质课(人教A版必修二精品)
《直线与平面平行的判定》教案教学目标1、理解并掌握直线与平面平行的判定定理;2、并会用判定定理证明直线与平面平行;3、培养学生的空间思维能力.教学重难点教学重点:直线与平面平行的判定定理的应用.教学难点:判定定理的理解.教学过程一、复习提问引课:我们已经学习过空间点、直线、平面之间的位置关系,在这些关系中,直线和平面、平面和平面的关系最为重要.今天我们要来学习的是:直线和平面平行的判定.提问:直线与平面有几种位置关系?分别是什么?答:空间中,直线和平面的位置关系有且只有三种:(1)直线在平面内;(2)直线与平面相交;(3)直线与平面平行,直线和平面相交或平行的情况统称为直线在平面外.二、研探新知:提出问题:在直线与平面的位置关系中,平行是一种非常重要的关系.它不仅应用较多,而且是学习平面与平面平行的基础.怎样判断直线与平面平行呢?答:用定义法判断,只须判定直线和平面有没有公共点.指出:这个方法好是好,但并不实用。
因为直线无限伸展,平面无限延展;此处无交点并不表示延伸后就没有交点.我们还是先来看看:1、生活中线面平行的例子(1)门扇的两边是平行的,当门扇绕着一边转动时,另一边始终与门框所在的平面没有公共点,此时门扇转动的一边与门框所在的平面给人以平行的印象.(2)观察:如图,将一本书平放桌面上,翻动书的硬皮封面,封面边缘AB所在直线与桌面所在平面具有什么样的位置关系?分析、思考:对(1),门扇的另一边在门框所在的平面内,门扇转动的边与没有转动的另一边互相平行;对(2),封面边缘AB所在直线与桌面所在平面内的一条直线平行.猜想、证明:是不是只要平面外的一条直线和平面内的一条直线平行,就能推出这条直线和平面平行呢?如右图,若a∥b,且直线a在平面α外,直线b在平面α内问:直线a与平面α平行吗?直线a与b共面吗?指出:上述结论是可以证明的,不过要用到反证法,所以我们以后再来证明.归纳出定理定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.上述定理就是直线与平面平行的判定定理,它可以用符号表示:αa,α⊄⊂b,且a∥b⇒a∥α由定理可知,要证明一条已知直线与一个平面平行,只要在这个平面内找出一条直线与已知直线平行,就可断定已知直线与这个平面平行.三、例题示范,巩固新知:例1、求证:空间四边形相邻两边中点的连线平行于经过另外两边所在的平面.已知:如图,空间四边形ABCD中,E,F分别是AB、AD的中点.求证:EF∥平面BCD.证明:连接BD,∵A E=B E,A F=F D∴EF∥BD∵EF⊄平面BCD,BD⊂平面BCD∴EF∥平面BCD.方法归纳:将直线与平面的平行关系转化为直线间的平行关系,是处理空间位置关系的一种常用方法.练一练,巩固新知:P55练习1,2题补充练习:判断对错直线a与平面α不平行,即a与平面α相交. ( )直线a∥b,直线b平面α,则直线a∥平面α. ( )直线a∥平面α,直线b平面α,则直线a∥b. ( )四、归纳小结:1、本节课所学定理的内容是什么?其作用是什么?2、同学们在运用该判定定理时应注意什么?3、在解决空间几何问题时,常将之转换为平面几何问题.五、作业:1、教材第61页习题2.2A组第3题;2、预习:如何判定两个平面平行?。
《直线与平面平行的判定》优秀教案
《直线与平面平行的判定》优秀教案教案名称:直线与平面平行的判定教学目标:1. 理解直线与平面平行的概念;2. 掌握直线与平面平行的判定方法;3. 能够应用直线与平面平行的判定方法解决相关问题。
教学重点:1. 直线与平面平行的定义;2. 直线与平面平行的判定方法。
教学难点:直线与平面平行的判定方法的应用。
教学准备:教学课件、教学实物模型、教学板书。
教学过程:Step 1:引入主题(5分钟)1. 教师出示一张图片,上面有一条直线和一个平面,并向学生提问:“你们认为直线与平面之间有什么样的关系?”2. 让学生思考一分钟,然后鼓励他们发表自己的观点。
Step 2:导入知识(10分钟)1. 教师出示一张包含直线与平面平行定义的PPT,并向学生解释直线与平面平行的概念。
2. 教师让学生通过自主学习、小组讨论等方式,总结直线与平面平行的特点,并向全班汇报。
Step 3:直线与平面平行的判定方法(20分钟)1. 教师出示包含直线与平面平行判定方法的PPT,并向学生介绍常用的判定方法,如:平行线与平面的夹角相等、直线与平面的法线垂直等。
2. 教师以示例的形式演示如何应用这些判定方法,引导学生进行思考和讨论。
Step 4:巩固与拓展(20分钟)1. 教师出示一些练习题,让学生在小组内进行讨论和解答。
2. 教师随机抽查学生的答案,并给予评价和指导。
Step 5:归纳总结(10分钟)1. 教师带领学生总结直线与平面平行的判定方法,并板书总结内容。
2. 教师与学生一起进行讨论,确认总结内容的准确性。
Step 6:课堂作业(5分钟)1. 布置课堂作业:要求学生完成一些与直线与平面平行判定相关的练习题。
2. 提醒学生将作业按时交到指定的地方。
Step 7:课堂反馈(5分钟)1. 教师与学生一起回顾本节课的重点内容,确认学生对直线与平面平行的判定方法的理解程度。
2. 学生可以就本节课的教学内容提出问题或意见。
教学反思:本节课通过引入主题、导入知识、讲解判定方法、练习与拓展、总结归纳等环节,全面提高了学生对直线与平面平行的理解和应用能力。
数学222《直线与平面平行的判定》教案
数学222《直线与平面平行的判定》教案教学目标:1.理解什么是直线与平面平行的概念。
2.学会利用给定的条件判定直线与平面是否平行。
3.掌握直线与平面平行的判定方法,能够灵活运用于解决相关问题。
教学重点:学生能够准确理解直线与平面平行的概念,并能够根据给定的条件进行判定。
教学难点:能够从不同的角度判定直线与平面平行,培养学生的综合考察能力。
教学准备:黑板、彩色粉笔、课本、教学PPT等。
教学步骤:Step 1 引入(5分钟)通过向学生提出以下问题来引入直线与平面平行的概念:1.什么是直线?2.什么是平面?3.你们认为直线与平面是什么关系?Step 2 探究(15分钟)1.上课提问:对于给定的一条直线和一个平面,怎样才能确定它们是否平行?2.设计实验:通过在空间上绘制一条直线和一个平面,观察它们之间的关系,尝试找出直线与平面平行的特征。
Step 3 提出判定条件(20分钟)1.根据探究结果,引导学生总结出直线与平面平行的判定条件:直线与平面平行的条件是直线上任意一点到平面的距离等于垂直于直线的平面的距离。
2.运用判定条件:通过给定的例子,帮助学生运用该判定条件来判断直线与平面是否平行,并解释判定过程。
3.理解平行性质:解释平行线与平面的性质,例如平行线不会相交等。
Step 4 拓展与应用(20分钟)1.对于已知的直线和平面,通过作图和计算,练习灵活运用直线与平面平行的判定方法,解决相关问题。
2.布置课后作业:题目中给出一条直线和一个平面的方程,要求判断它们是否平行,并求出每个问题的解。
Step 5 总结与反思(10分钟)1.课堂小结:总结直线与平面平行的判定方法,并复习相关概念。
2.学生反思:学生对本节课的学习有什么收获和困惑,需要解决的问题是什么。
教学延伸:1.针对不同的学生,可以采用不同难度的问题进行巩固练习。
2.鼓励学生自主思考和探索,并与同学讨论解题思路,培养合作学习的能力。
3.拓展应用:引导学生在实际生活中找出直线与平面平行的实例,并分析其应用价值。
直线与平面平行的判定定理教学设计(教案)
章节一:直线与平面平行的概念引入教学目标:使学生了解直线与平面平行的基本概念,理解直线与平面平行的直观含义。
教学内容:1. 直线与平面的基本概念复习2. 直线与平面平行的定义3. 直线与平面平行的实例解析教学方法:采用直观演示法,结合实例进行讲解。
教学活动:1. 复习直线与平面的基本概念2. 引入直线与平面平行的定义3. 通过实例解析直线与平面平行的特征章节二:直线与平面平行的判定定理教学目标:使学生理解直线与平面平行的判定定理,能够运用判定定理判断直线与平面的平行关系。
教学内容:1. 直线与平面平行的判定定理的表述2. 直线与平面平行的判定定理的证明3. 直线与平面平行的判定定理的应用教学方法:采用讲解法,结合图形进行说明。
教学活动:2. 讲解直线与平面平行的判定定理的证明3. 通过例题演示直线与平面平行的判定定理的应用章节三:直线与平面平行的判定定理的运用教学目标:使学生能够运用直线与平面平行的判定定理解决实际问题。
教学内容:1. 直线与平面平行的判定定理在实际问题中的应用2. 直线与平面平行关系的判断与证明教学方法:采用案例教学法,引导学生运用判定定理解决实际问题。
教学活动:1. 分析直线与平面平行的判定定理在实际问题中的应用2. 提供练习题,让学生运用判定定理判断直线与平面的平行关系章节四:直线与平面平行的判定定理的综合训练教学目标:使学生能够综合运用直线与平面平行的判定定理解决复杂问题。
教学内容:1. 直线与平面平行关系的复杂问题解析2. 综合运用直线与平面平行的判定定理进行判断与证明教学方法:采用问题解决法,引导学生进行综合训练。
教学活动:1. 提供直线与平面平行关系的复杂问题,让学生进行分析2. 引导学生综合运用判定定理进行判断与证明章节五:直线与平面平行的判定定理的复习与总结教学目标:使学生巩固直线与平面平行的判定定理,总结学习过程中的重点与难点。
教学内容:1. 直线与平面平行的判定定理的复习2. 学习过程中的重点与难点总结教学方法:采用问答法,引导学生进行复习与总结。
直线与平面平行的判定教学设计名师公开课获奖教案百校联赛一等奖教案
直线与平面平行的判定教学设计一、教学目标通过本节课的教学,学生应能够:1. 理解直线与平面平行的概念和特征;2. 学会使用几何方法和判定条件判断直线与平面是否平行;3. 能够应用所学知识解决与直线与平面平行相关的问题。
二、教学重点1. 直线与平面平行的概念和特征;2. 直线与平面平行的几何方法和判定条件。
三、教学难点1. 掌握直线与平面平行的判定条件;2. 运用所学方法解决直线与平面平行的问题。
四、教学步骤与内容1. 导入(5分钟)教师出示一张有直线和平面的图片,引导学生思考并提问:“你们知道如何判断一条直线与一个平面是否平行吗?”学生可以先说出自己的想法,教师鼓励他们发言,并引导思考。
2. 概念解释(10分钟)教师向学生解释直线与平面平行的定义和特征,让学生明白:直线与平面平行的定义是指直线在平面上的投影与直线重合或者平移之后与平面永远不相交。
3. 几何方法(30分钟)3.1 利用平行线的性质判断教师通过几何图形向学生演示如何利用平行线的性质判断直线与平面是否平行。
学生可以观察图形,尝试找出与直线平行的线段,并验证它与平面的关系。
3.2 利用垂直关系判断教师向学生介绍垂直关系的概念,并通过几何图形向学生演示如何利用垂直关系判断直线与平面是否平行。
学生可以观察图形,尝试找出直线与平面之间的垂直线段,并验证它们的关系。
3.3 利用角度关系判断教师向学生介绍角度关系的概念,并通过几何图形向学生演示如何利用角度关系判断直线与平面是否平行。
学生可以观察图形,尝试找出与直线平行的角,并验证它们与平面的关系。
4. 判定条件总结(10分钟)教师与学生一起总结前面学习过的几何方法,并归纳出判断直线与平面平行的判定条件,包括:4.1 直线在平面上的投影与直线重合;4.2 直线与平面之间的垂线与平面垂直;4.3 直线与平面之间的夹角与平面垂直。
5. 练习与应用(30分钟)教师布置一些练习题,让学生在课堂上独立完成,并讲解解题思路和方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与平面平行的判定
教学目标
1.知识目标
⑴进一步熟悉掌握空间直线和平面的位置关系;
⑵理解并掌握直线与平面平行的判定定理、图形语言、符号语言、文字语言;
⑶灵活运用直线和平面的判定定理,把“线面平行”转化为“线线平行”。
2.能力训练
⑴掌握由“线线平行”证得“线面平行”的数学证明思想;
⑵进一步培养学生的观察能力、空间想象力和类比、转化能力,提高学生的逻辑推理能力。
3.德育渗透
⑴培养学生的认真、仔细、严谨的学习态度;
⑵建立“实践——理论——再实践”的科学研究方法。
教学重点
直线与平面平行的判定定理
教学难点
直线与平面平行的判定定理的应用
教学方法
启发式、引导式、观察分析、理论联系实际
教具
模型、尺、多媒体设备
教学过程
(一)内容回顾
师:在上节课我们介绍了直线与平面的位置关系,有几种?可将图形给以什么作为划分的标准?
直线与平面相交
直线在平面内
直线与平面平行
a a A
a
//
1 / 4
2 / 4
(二)新课导入
1、如何判定直线与平面平行
师:请同学回忆,我们昨天是受用了什么方法证明直线与平面平行?有直线在平面外能不能说明直线与平面平行?
生:借助定义,说明直线与平面没有公共点。
师:判断直线与平面有没有公共点,需要将直线和平面延展开看它们有没有交点,但延展判断并不方便灵敏,那就需要我们挖掘一种新的判定方法。
我们来看
看生活中的线面平行能给我们什么启发呢?若将一本书平放在桌面上,翻动书的封面,观察封面边缘所在直线
l
与书本所在的平面具有怎样的位置关系?
师:你们能用自己的话概括出线面平行的判定定理吗?生:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
2、分析判定定理的三种语言师:定理的条件细分有几点?
生:线在平面外,线在平面内,线线平行
(师生互动共同整理出定理的图形语言、符号语言、文字语言)
图形语言
符号语言
文字语言线线平行,则线面平行。
(三)例题讲解
师:如果要证明线面平行,关键在哪里?
生:在平面内找到一条直线,证明线线平行。
例1 已知:如图空间四边形ABCD 中,E 、F 分别是AB 、AD 的中点。
求证:
EF ∥平面BCD 。
证明:连结BD AE =EB EF ∥BD AF =FD
EF
平面BCD
EF ∥平面BCD
BD 平面BCD
着重强调:①要证EF ∥平面BCD ,关键是在平面BCD 中找到和EF 平行的直线;
②注意证明的书写,先说明图形中增加的辅助点和线,证明步骤严谨。
例2 如图,正方体ABCD -A 1B 1C 1D 1中,E 为DD 1的中点,证明BD 1∥平面AEC 。
观察
l
b
a
//
//a b
a b a B
A D
C E
F
3 / 4
A B
C
D
A 1
D 1
C 1
B 1
A1B1
C1F
E
A
B C
D D1
o
P
C
B
F
A
D
E
P
M 证明:连结BD 交AC 于O,连结EO 在∧BDD 1中,
∵E,O 分别为DD 1与BD 的中点∴OE//BD 1 又∵OE
平面AEC
BD
1∥平面AEC BD 1平面AEC
着重强调:如果题目条件中出现中点,则辅助点经常取某条线中点构成三角形形成中位线,得到线线平行。
(四)巩固练习练习1直线a 与平面平行的充要条件是()
A.直线a 与平面内的一条直线平行B.直线a 与平面内两条直线不相交
C.直线a 与平面内的任一条直线都不相交D.直线a 与平面内的无数条直线平行
目的:考察直线和平面的位置关系,引导学生发挥想象力,借助教室或书本实物想象,举反例练习2
在长方体ABCD- A 1 B 1 C 1 D 1各面中,
(1)与直线AB 平行的平面有:(2)与直线AA1平行的平面有:
目的:学生们能够叙述清楚证明线面平行必须满足的三个条件——面内、面外、线线平行。
练习3 如图,在四棱锥P-ABCD 中,ABCD 是平行四边形,M ,N 分别是AB,PC 的中点.求证:MN//平面PAD .
目的:①锻炼学生找平面内的线与已知线平行的技巧;
②锻炼学生口述线面平行的思路和过程;③锻炼学生书写证明过程的逻辑性和严谨性。
练习4 如图,在正方体中ABCD- A
1B 1C 1D 1,E ,F 分别是棱BC ,C 1D 1的中点,求证:EF//平面BB 1D 1D .
目的:①一般取中点作辅助线;
②辅助点、辅助线的方法可以多种。
(五)归纳小结
1、线面平行的判定定理,以及图形语言、符号语言、文字语言;
2、证明线面平行的思想方法——证明线线平行。
(六)作业布置
完成:①必修二课本P34 A 组1,2,4
②思考题
思考题
如图,已知点P 是平行四边形ABCD 所在
平面外的一点,E ,F 分别是PA ,
C 1
C
B
A
B 1
D A 1
D 1
E
O
A
P D
M
N
B
C
Q
4 / 4
BD 上的点且PE:EA=BF:FD ,求证:EF//平面PBC .(七)板书规划
(八)课后反思①立体几何比较抽像,所以要尽可能找生活中的实例进行分析;
②多媒体可以展
示一些比较难想像的过程,但是注意培养学生立体几何的动手作图能力;
③放慢
速度,教师讲少但讲精,学生多讲且练透。
增加互动,给学生适当的演练时间;④注重教师语言的精炼、准确和语调的抑扬顿挫;⑤教学形式可丰富化、多样化;⑥平时应注重教学知识、技能的积累,并常于思考。
§9.3直线与平面平行的判定与性质定理(二) 直线与平面平行的判定
1.图形语言
练习3证明练习4证明
2.符号语言
3.
文字语言。