苏科版八年级数学上册数学试卷
苏科版八年级数学上册试题 第6章 一次函数综合测试卷 (含详解)
第6章《一次函数》综合测试卷一、选择题(本大题共10小题,每小题2分,共20分)1.一次函数y =(a+1)x+a+2的图象过一、二、四象限,则a 的取值是( )A .a <﹣2B .a <﹣1C .﹣2≤a ≤﹣1D .﹣2<a <﹣12.若点,在直线上,则m 与n 的大小关系是( ).A .B .C .D .无法确定3.如图,若一次函数y 1=﹣x ﹣1与y 2=ax ﹣3的图像交于点P(m ,﹣3),则关于的不等式﹣x ﹣1>ax ﹣3的解集是( )A .x <2B .x >﹣3C .x >2D .x <﹣34.一次函数中,当函数值时,自变量x 的取值范围为( )A .B .C .D .5.如图1,在等边中,点D 是边的中点,点P 为边上的一个动点,设,图1中线段的长为y ,若表示y 与x 的函数关系的图象如图2所示,则等边的周长为())A m 3,2B n ⎛⎫ ⎪⎝⎭1y x =+m n >m n <m n =36y x =-+0y <ABC V BC AB AP x =DP ABC VA .4B .C .12D .6.如图,点A ,B ,C 在一次函数y =-2x +b 的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积和是( )A .1B .3C .3(b -1)D.7.如图,直线与直线相交于点P ,若不等式的解集是,则的值等于( )A .B .C .3D .8.如图,一次函数与一次函数的图象交于P (1,3),则下列说法正确的个数是( )个(1)方程的解是(2)方程组的解是(3)不等式的解集是(4)不等式的解集是.()223b -1:3m y x =+2:m y kx b =+(3)0kx b x +-+<1x >-b k 1313-3-1y ax b =+24y kx =+3ax b +=1x =4y ax b y kx =+⎧⎨=+⎩31x y =⎧⎨=⎩4ax b kx ++>1x >44kx ax b ++>>01x <<A .1B .2C .3D .49.在地球中纬度地区,从地面到高空大约之间,气温随高度的升高而下降,每升高,气温大约下降;高于但不高于,气温几乎不再变化,某城市地处中纬度地区,该市某日的地面气温为,设该城市距离地面高度为处的气温为,则与的函数图像是( )A .B .C .D .10.如图,在平面直角坐标系中,点是直线与直线的交点,点B 是直线与y 轴的交点,点P 是x 轴上的一个动点,连接PA ,PB ,则的最小值是()11km 1km 6C ︒11km 20km 20C ︒()km 020x x ≤≤C y ︒y x ()3,A a 2y x =y x b =+y x b =+PA PB +A .6B .C .9D .二、填空题(本大题共6小题,每小题2分,共12分)11.已知正比例函,当时,.则比例系数k=__________.12.若是正比例函数,则______.13.若直线是由直线向下平移了3个单位长度得到的,则kb =______.14.直线y =kx +b (k ≠0)平行于直线且经过点,那么这条直线的解析式是______.15.如图,直线y =﹣x+7与两坐标轴分别交于A 、B 两点,点C 的坐标是(1,0),DE 分别是AB 、OA 上的动点,当△CDE 的周长最小时,点E 的坐标是 _____.16.如图,将正方形置于平面直角坐标系中,其中,,边在轴上,直线与正方形的边有两个交点、,当时,的取值范围是__.三、解答题(本大题共10题,共68分)17.(4分)判断三点A (3,1),B (0,-2),C (4,2)是否在同一条直线上.y kx =2x =-10y =()212a y a x b =++-()2021a b -=y kx b =+21y x =--12y x =()0,2ABCD (1,0)A (3,0)D -AD x :L y kx =ABCD O E 35OE <<k18.(4分)在平面直角坐标系中,一次函数的图像经过和.(1)求一次函数解析式.(2)当,求y 的取值范围.19.(6分)小明从A 地出发向B 地行走,同时晓阳从B 地出发向A 地行走,小明、晓阳离A 地的距离y (千米)与已用时间x (分钟)之间的函数关系分别如图中、所示.(1)小明与晓阳出发几分钟时相遇?(2)求晓阳到达A 地的时间.20.(6分)如图,在平面直角坐标系中,点O 为坐标原点,直线y =kx +b 经过A (-6,0),B(1,0)(0,2)23x -<≤1l 2l(0,3)两点,点C 在直线AB 上,C 的纵坐标为4.(1)求k 、b 的值及点C 坐标;(2)若点D 为直线AB 上一动点,且△OBC 与△OAD 的面积相等,试求点D 的坐标.21.(8分)如图,直线与直线相交于点.(1)求a ,b 的值;(2)求△ADC 的面积;(3)根据图象,写出关于x 的不等式的解集.22.(8分)定义:在平面直角坐标系中,对于任意一点如果满足,我们就把点称作“和谐点”.(1)在直线上的“和谐点”为________;:AD y x b =-+1:12BC y x =+()2,B a 1012x b x <-+<+xOy ()P x y ,2||y x =()P x y ,6y =(2)求一次函数的图象上的“和谐点”坐标;(3)已知点,点的坐标分别为,,如果线段上始终存在“和谐点”,直接写出的取值范围是________.23.(6分)某校开展爱心义卖活动,同学们决定将销售获得的利润捐献给福利院.初二某班的同学们准备制作A 、B 两款挂件来进行销售.已知制作3个A 款挂件、5个B 款挂件所需成本为46元,制作5个A 款挂件、10个B 款挂件所需成本为85元.已知A 、B 两款挂件的售价如下表:手工制品A 款挂件B 款挂件售价(元/个)128(1)求制作一个A 款挂件、一个B 款挂件所需的成本分别为多少元?(2)若该班级共有40名学生.计划每位同学制作2个A 款挂件或3个B 款挂件,制作的总成本不超过590元,且制作B 款挂件的数量不少于A 款挂件的2倍.设安排m 人制作A 款挂件,请说明如何安排,使得总利润最大,最大利润是多少?2y x =-+P Q (2)P m ,(,5)Q m PQ m24.(6分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图像解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式;25.(10分)如图,在平面直角坐标系中,两个全等的直角三角形的直角顶点及一条直角边重合,点在第二象限内,点、点在轴的负半轴上,,.(1)求点的坐标;(2)如图,将绕点按顺时针方向旋转到的位置,其中交直线于点,分别交直线、于点、,则除外,还有哪几对全等的三角形,请直接写出答案;(不再另外添加辅助线)(3)在(2)的基础上,将绕点按顺时针方向继续旋转,当的函数表达式.26.(10分)在平面直角坐标系中,对于点,给出如下定义:当点满足时,称点是点的等和点,已知点.(1)在中,点的等和点有__________;(2)点在直线上,若点的等和点也是点的等和点,求点的坐标;(3)已知点和线段,点C 也在 x 轴上且满足,线段上总存在线段上每个点的等和点.若的最小值为5,直接写出的值.A B C x 30CAO ∠=︒4OA =C ACB △C 30°A CB ''V A C 'OA E A B ''OA CA F G A B C AOC ''≌△△A CB ''V C COE V CE xOy 11(,)P x y 22(,)Q x y 1212x x y y +=+Q P ()3,0P ()()()1230,31,421,,Q Q Q --,P A 5y x =-+P A A (,0)B b MN 1BC =MN PC MN b答案一、选择题1.D【解析】解:∵一次函数y=(a+1)x+a+2的图象过一、二、四象限,∴a+1<0,a+2>0解得-2<a <-1.故选:D .2.B【解析】∵一次函数中,∴随的增大而增大∴故选:B .3.A【解析】解:由题意,将点代入一次函数得:,解得,不等式表示的是一次函数的图像位于一次函数的图像上方,则由函数图像得:,1y x =+10k =>y x 32<m n<(),3P m -11y x =--13m --=-2m =13x ax -->-11y x =--23y ax =-2x <故选:A .4.B【解析】解:∵一次函数y=-3x+6,∴当y=0时,x=2,y 随x 的增大而减小,∴当函数值y <0时,自变量x 的取值范围为x >2,在数轴上表示为: ,故选:B .5.C【解析】解:由图2可得y 最小值∵△ABC 为等边三角形,分析图1可知,当P 点运动到DP ⊥AB 时,DP 长为最小值,∴此时DP ∵DP ⊥AB ,∴,∵△ABC 为等边三角形,∵∠B =60°,AB=BC=AC ,∴,∴BD=2BP ,根据勾股定理可知,,∴,∴或(舍去),,∵D 为BC 的中点,∴BC =4,∴AB=BC=AC=4,∴等边△ABC 的周长为12.故选:C .90DPB ∠=︒906030PDB ∠=︒-︒=︒222BD BP DP =+22212BD BD ⎛⎫=+ ⎪⎝⎭2BD =2BD =-6.B【解析】解:由题意可得A 、C 的坐标分别为(-1,b +2)、(2,b -4),又阴影部分为三个有一直角边都是1,另一直角边的长度和为A 点纵坐标与C 点纵坐标之差的三角形,所以阴影部分的面积为:,故选B .7.B【解析】∵kx+b −(x+3)<0的解集是x>−1∴P 点横坐标是−1,则纵坐标为2则P (−1,2),由图可知直线m 2与y 轴的交点坐标是(0,-1),把P (−1,2)和(0,−1)代入∴ ∴ 故选:B .8.C【解析】解:因为一次函数与一次函数的图象交于P (1,3),所以(1)方程ax+b=3的一个解是x=1,正确;(2)方程组的解是,错误;(3)不等式ax+b>kx 十4的解集是x>1,正确;(4)不等式4>kx 十4>ax+b 的解集是0<x<1,正确.()()112432b b ⎡⎤⨯⨯+--=⎣⎦y kx b =+21k b b -+=⎧⎨=-⎩31k b =-⎧⎨=-⎩13b k =-1y ax b =+24y kx =+4y ax b y kx =+⎧⎨=+⎩31x y =⎧⎨=⎩9.B【解析】解:由题意可知,当高度x=0时,y=20℃;当x=11时,y=20-11×6=-46℃,∴y=-6x+20()当时,y=-46根据一次函数的性质可知,只有B 选项的图像符合题意.故答案为:B .10.D【解析】解:作点A 关于x 轴的对称点,连接,如图所示:则PA+PB 的最小值即为的长,将点A (3,a )代入y=2x ,得a=2×3=6,∴点A 坐标为(3,6),将点A (3,6)代入y=x+b ,得3+b=6,解得b=3,∴点B 坐标为(0,3),根据轴对称的性质,可得点A'坐标为(3,-6)∴∴PA+PB 的最小值为故选:D .二、填空题011x ≤<1120x ≤≤A 'A B 'A B 'A B '==【解析】解:把,代入得:,∴.故答案为:.12.【解析】∵是正比例函数,∴,,,∴,,∴,故答案为:.13.8【解析】解∶ 直线向下平移了3个单位长度得到,∴k=-2,b=-4,∴.故答案为:8.14.【解析】解:根据题意得,将代入得b =2,直线解析式为,故答案为:.15.10【解析】解:如图,点C 关于OA 的对称点(-1,0),点C 关于直线AB 的对称点,∵直线AB 的解析式为y=-x+7,∴直线C 的解析式为y=x-1,由,得 2x =-10y =y kx =102k =-5k =-5-1-()212a y a x b =++-10a +≠21a =20b -=1a =2b =()2021121-=-1-21y x =--24y x =--(2)(4)8kb =-⨯-=122y x =+12k =()0,212y x b =+∴122y x =+122y x =+C 'C ''C ''71y x y x =-+⎧⎨=-⎩43x y =⎧⎨=⎩∴F (4,3),∵F 是C 中点,∴可得(7,6).连接与AO 交于点E ,与AB 交于点D ,此时△DEC 周长最小,△DEC 的周长=DE+EC+CD=E +ED+D ==10.故答案为10.16.且【解析】解:如图,设BC 与y 轴交于点M ,,,,∴E 点不在AD 边上,;①如果,那么点E 在AB 边或线段BM 上,当点E 在AB 边且时,由勾股定理得,,,,C ''C ''C 'C ''C 'C ''C 'C ''k >0k <43k ≠-13OA =< 3OD =3OE >0k ∴≠0k >3OE =222918AE OE OA =-=-=AE ∴=(1E ∴当直线经过点,时,,,当点E 在线段BM 上时,,②如果,那么点E 在CD 边或线段CM 上,当点E 在CD 边且时,E 与D 重合;当时,由勾股定理得,,,,此时E 与C 重合,当直线经过点时,.当点E 在线段CM 上时,,且,符合题意;综上,当时,的取值范围是且,故答案为:且.三、解答题17.解:设过A ,B 两点的直线的表达式为y =kx +b .由题意可知,解得 ∴过A ,B 两点的直线的表达式为y =x -2.∵当x =4时,y =4—2=2.∴点C (4,2)在直线y =x -2上.∴三点A (3,1), B (0,-2),C (4,2)在同一条直线上.18.(1)解:设一次函数解析式为∵一次函数的图像经过和y kx =(1k =22216117OB AB OA =+=+= 5OB ∴=<5OE OB <=<k ∴>0k <3OE =5OE =22225916DE OE OD =-=-=4DE ∴=(3,4)E ∴-y kx =()3,4-43k =-5OE OC <=0k ∴<43k ≠-35OE <<k k >0k <43k ≠-k >0k <43k ≠-1320k b b =+⎧⎨-=+⎩12k b =⎧⎨=-⎩(0)y kx b k =+≠(1,0)(0,2)解得:∴一次函数解析式为;(2)解:由(1)得:,一次函数的图像y 随x 的增大而减小,当时,,当时,,当时,.19.(1)解:设的解析式为:.∵函数的图象过,,即,,当时,,∴小明与晓阳出发12分钟时相遇.(2)解:∵晓阳的速度为(千米/分钟),∴晓阳到达A 地的时间为分钟.20.(1)解:(1)依题意得: 解得 ∴∵点C 在直线AB 上,C 的纵坐标为402k b b +=⎧∴⎨=⎩22k b =-⎧⎨=⎩22y x =-+20k =-<∴2x =-()2226y =-⨯-+=3x =2324y =-⨯+=-∴23x -<≤46y -≤<2l 11y k x =()30,41430k ∴=1215k =1215y x ∴=1 1.6y =12x =4 1.60.212-=4200.2==603k b b -+=⎧⎨=⎩123k b ⎧=⎪⎨⎪=⎩1,32k b ==点C 坐标为(2,4)(2)∵B (0,3),C 的纵坐标为4∴∴设点D 点坐标为,又点A (-6,0)∴ 解得 当时当时∴点D 坐标为(-4,1)或(-8,-1)21.(1)解∶∵直线经过点,∴,∴点B 的坐标为,∵直线经过点,∴,∴;(2)解:∵,∴直线AD 的解析式为,令,则,令,则,∴A (0,4),D (4,0),∴OA=OD=4,直线与x 轴交于点C ,令,则,∴C (-2,0),∴OC=2,∴CD=6,13422x x +==13232OBC S ∆=⨯⨯=3OAD S ∆=(),D D x y 162D OA y ⨯⨯=1D y =±1=D y 4D x =-1D y =-8D x =-112y x =+()2,B a 12122a =⨯+=22(,)y x b =-+()2,2B 22b =-+4b =4b =4y x =-+0x =4y =0y =4x = 112y x =+0y =2x -=∴;(3)解:点B 的坐标为,点D 的坐标为,∴根据图象可得:关于x 的不等式的解集为.22.(1)解:由题意得:,解得:x =3或x =-3,在直线上的“和谐点”为:(3,6)和(-3,6);(2)由“和谐点”的定义可知或,联立,解得:,联立,解得:,所以一次函数的图象上的“和谐点”坐标为(,)和(-2,4);(3)如图为的函数图象的简图,PQ y 轴,①当m >0时,令,解得:,令,解得:,由图可知,如果线段上始终存在“和谐点”,的取值范围是;②当m <0时,令,解得:,令,解得:,由图可知,如果线段上始终存在“和谐点”,的取值范围是,综上,当或时,线段上始终存在“和谐点”.11641222ACD S CD OA =⋅=⨯⨯=V 22(,)40(,)1012x b x <-+<+24x <<26x =6y =2y x =2y x =-22y x y x =-+⎧⎨=⎩2343x y ⎧=⎪⎪⎨⎪=⎪⎩22y x y x =-+⎧⎨=-⎩24x y =-⎧⎨=⎩2y x =-+23432y x =∥22y x ==1x =25y x ==52x =PQ m 512m ≤≤22y x =-=1x =-25y x =-=52x =-PQ m 512m -≤≤-512m ≤≤512m -≤≤-PQ23.(1)由题意可设制作一个A 款挂件、一个B 款挂件所需的成本分别为x 、y 元,则,解得将①得6x+10y=92,再将①②得x=7,再将x=7回代②得y=5,解得,答:制作一个A 款挂件、一个B 款挂件所需的成本分别7元、5元;(2)由题意得设(40)人制作B 款挂件,总利润为w 元,则w=(12),∴w 随m 的增大而增大,∵制作的总成本不超过590元,且制作B 款挂件的数量不少于A 款挂件的2倍,∴,解得10∵m 为正整数,∴当m=17时,w 取得最大值,此时w=377,(40)=23,答:当安排17人制作A 款挂件,23人制作B 款挂件时,总利润最大,最大利润为377元.24.(1)根据图像信息:货车的速度(千米/时).∵轿车到达乙地的时间为货车出发后4.5小时,354651085x y x y +=⎧⎨+=⎩①②2⨯-75x y =⎧⎨=⎩m -7-2(85)3(40)360m m m ⨯+-⨯-=+7253(40)5903(40)22m m m m ⨯+⨯-≤⎧⎨-≥⨯⎩1177m ≤≤m -300605v ==货∴轿车到达乙地时,货车行驶的路程为:(千米).此时,货车距乙地的路程为:(千米).答:轿车到达乙地后,货车距乙地30千米;(2)设CD 段函数解析式为()().∵,在其图像上,∴,解得.∴CD 段函数解析式:;25.(1)解:在中,,,所以,则;(2)解:或或(3)解:如图1,过点作于点.∵∴.∵在Rt △AOC 中,,IOC=2,∠ACO=90°,∴∴点A(-2,,设直线OA 的解析是为,则,∴,∴直线OA 的解析式为,令,解得x=,∴点的坐标为. 4.560270⨯=30027030-=y kx b =+0k≠ 2.5 4.5x ≤≤(2.5,80)C (4.5,300)D 2.5804.5300k b k b +=⎧⎨+=⎩110195k b =⎧⎨=-⎩(1101952.5 4.)5y x x =-≤≤Rt AOC V 4OA =30CAO ∠=︒122CO OA ==()2,0C -A EF AGF '≌△△B GC CEO '≌△△A GC AEC'≌△△E 1E M OC ⊥M 1112COE S CO E M =⋅=△1E M =4OA =AC ===y mx =()2m =⨯-m =y ==14-1E 14⎛- ⎝设直线的函数表达式为,,解得.∴.同理,如图2所示,点的坐标为.设直线的函数表达式为,则,解得 .∴综上所得或.26.(1)Q 1(0,3),则0+3=3+0,∴Q 1(0,3)是点P 的等和点;Q 2(1,4),则1+3=4+0,∴Q 2(1,4)是点P 的等和点;Q 3(-2,-1),则-2+3≠-1+0,∴Q 3(-2,-1)不是点P 的等和点;故答案为:Q 1,Q 2;(2)设点P (3,0)的等和点为(m ,n ),∴3+m=n ,有m-n=-3,1CE 11y k x b =+11112014k b k b -+=⎧⎪⎨-+=⎪⎩11k b ⎧=⎪⎪⎨⎪=⎪⎩y x =+2E 1,4⎛ ⎝2CE 22y k x b =+22222014k b k b -+=⎧⎪⎨+=⎪⎩22k b ⎧=⎪⎪⎨⎪=⎪⎩y x =y x =+y =∵A 在直线y=-x+5上,∴设A (t ,-t+5),则A 点的等和点为(m ,n ),∴t+m=-t+5+n ,由m-n=-2t+5,∴-3=-2t+5,解得t=4,∴A (4,1);(3)∵P (3,0),∴P 点的等和点在直线l :y=x+3上,∵B (b ,0),BC=1,且C 在x 轴上,∴C (b-1,0)或(b+1,0)∴C 点的等和点在直线l 1:y=x+b-1或y=x+b+1上,设直线l 1与y 轴交于C',直线l 与y 轴交于P',则C'(0,b-1)或(0,b+1),P'(0,3),①当点C 在点B 的左边时,如图1,直线CC'与直线l 交于N ,当M 与C'重合时,MN 最小为5,∵△MNP'是等腰直角三角形,∴∴,∴如图2,同理得∴3+(1-b )∴②当点C 在点B 的右边时,如图3,同理得:∴,∴如图4,同理得:,∴,∴综上,b 的值是2−或4−或.。
苏科版八年级上册数学《期末考试试题》含答案解析
[解析]
[分析]
因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;
[详解]底角:(180°−80°)÷2=100°÷2=50°
它的底角为50度
故答案为50.
[点睛]此题考查三角形的内角和,等腰三角形的性质,解题关键在于利用内角和定理进行解答.
12.已知一次函数 与 的图像交点坐标为(−1,2),则方程组 的解为____.
[答案] .
[解析]
[分析]
直接根据一次函数和二元一次方程组的关系求解.
[详解]解:∵一次函数 与 的图象的交点的坐标为(−1,2),
∴方程组 的解是 .
[点睛]本题考查了一次函数和二元一次方程(组)的关系:要准确的将一次函数问题的条件转化为二元一次方程(组),注意自变量取值范围要符合实际意义.
A. 甲和乙B. 甲和丙C. 乙和丙D. 只有乙
[答案]B
[解析]
[分析]
根据三角形全等的判定定理SSS、SAS、AAS、ASA、HL逐个进行分析即可.
[详解]解:甲三角形有两条边及夹角与△ABC对应相等,根据SAS可以判断甲三角形与△ABC全等;
乙三角形只有一条边及对角与△ABC对应相等,不满足全等判定条件,故乙三角形与△ABC不能判定全等;
丙三角形有两个角及夹边与△ABC对应相等,根据ASA可以判定丙三角形与△ABC全等;
所以与△ABC全等的有甲和丙,
故选:B.
[点睛]本题主要考查全等三角形的判定定理,熟练掌握并充分理解三角形全等的判定定理,注意对应二字的理解很重要.
6.下列图形中,表示一次函数 与正比例函数 ( 、 为常数,且 )的图象的是()
苏科版数学八年级上册《期末考试试卷》及答案
(3)求四边形 的面积.
24.甲、乙两公司为“2019东台西溪·国际半程马拉松比赛”各制作6400个相同的纪念牌,已知甲公司的人数比乙公司人数少20%,乙公司比甲公司人均少做20个,甲、乙两公司各有多少人?
25.已知:如图, 的平分线与 的垂直平分线交于点 , ,垂足分别为 .
A. 且 B. 且 C. D.
[答案]A
[解析]
[分析]
分式方程去分母转化为整式方程,求出整式方程的解得到含有a的x的值.
[详解]
方程两边同时乘以(x-1)得:
x+a-2a=2(x-1),
解得:x=2-a,
∵方程的解不小于0,
∴2-a≥0,
解得:a≤2,
∵分式方程分母不为0,
∴2-a≠1,
解得:a≠1,
A. B.1C. D.2
[答案]B
[解析]
[分析]
根据折叠的性质得到∠F=∠B=∠A=90°,BE=EF,根据全等三角形的性质得到FH=AE,GF=AG,得到AH=BE=EF,设AE=x,则AH=BE=EF=4-x,根据勾股定理即可得到结论.
[详解]∵将△CBE沿CE翻折至△CFE,
∴∠F=∠B=∠A=90°,BE=EF,
16.如图,小明把一张三角形纸片折叠,使点 、点 都与点 重合,折痕分别为 ,此时测得 ,则 的度数为________°.
17.已知点 ,点 是直线 上的一个动点,当以 为顶点的三角形面积是3时,点 的坐标为_____________.
18.如图,已知等边 的边长是6,点 在 上,且 = 4.延长 到 ,使 ,连接 .点 分别是 的中点,连接 ,则 的长为__________.
A.(-2,3)B.(2,-3)C.(2,3)D.(-2,-3)
苏科版数学八年级上册《期末测试题》含答案
苏科版数学八年级上学期期末测试卷学校________ 班级________ 姓名________ 成绩________第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列各数中,是无理数的是()A.0 B.1.010010001C.πD.2.已知a>0,b<0,那么点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,已知△ABC的3条边和3个角,则能判断和△ABC全等的是()A.甲和乙B.乙和丙C.只有乙D.只有丙4.如图,正方形ABCD的边长为4,点C的坐标为(3,3),则点D的坐标为()A.(﹣1,3) B.(1,3) C.(3,1) D.(3,﹣1)5.下列函数中,y随x的增大而减小的有()①y=﹣2x+1;②y=6﹣x;③y;④y=(1)x.A.1个B.2个C.3个D.4个6.如图,两个三角形是全等三角形,x的值是()A.30 B.45 C.50 D.857.如图,动点P从点A出发,按顺时针方向绕半圆O匀速运动到点B,再以相同的速度沿直径BA回到点A停止,线段OP的长度d与运动时间t的函数图象大致是()A.B.C.D.8.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A.a+b B.a﹣b C.D.9.在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是()A.(﹣1,﹣2) B.(1,2) C.(1,﹣2) D.(﹣2,1)10.如图,△ABC是等边三角形,P是BC上任意一点,PD⊥AB,PE⊥AC,连接DE.记△ADE的周长为L1,四边形BDEC的周长为L2,则L1与L2的大小关系是()A.L l=L2B.L1>L2C.L2>L1D.无法确定第Ⅱ卷(非选择题共120分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在试卷规定的区域内.二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.已知点A(x,1)与点B(2,y)关于y轴对称,则(x+y)2018的值为.12.将函数y=3x的图象向上平移2个单位,所得函数图象的解析式为.13.若直角三角形的两条直角边的长分别是3和4,则斜边上的中线长为.14.如图,AB∥DC,请你添加一个条件使得△ABD≌△CDB,可添条件是.(添一个即可)15.一个等腰三角形的顶角为80°,则它的一个底角为.16.如图,五边形ABCDE中有一等边三角形ACD.若AB=DE,BC=AE,∠E=115°,则∠BAE的度数是°.17.如图,在平面直角坐标系中,点A、B的坐标分别为(1,4)、(n,4),若直线y=2x与线段AB有公共点,则n的取值范围为.18.如图,将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处.若BC=10,BE=2,则AB2﹣AC2的值为.三.解答题(共10小题,满分96分)19.求x的值:(1)(x+1)2=64(2)8x3+27=0.20.已知点P(﹣m,﹣2m+1)是第二象限的点,求m的取值范围.21.如图,在△ABC中,AB=AC,分别以AB,AC为边作两个等腰直角三角形ABD和ACE,使∠BAD=∠CAE=90°.求证:BD=CE.22.如图,在Rt△ABC中,∠ACB=90°.(1)用直尺和圆规作∠A的平分线交BC于点P(保留作图的痕迹,不写作法);(2)当∠CAB为度时,点P到A,B两点的距离相等.23.如图,已知AB=AC,AD=AE.求证:BD=CE.24.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.25.如图,把长方形纸片ABCD沿EF折叠后,使得点D落在点H的位置上,点C恰好落在边AD上的点G处,连接EG.(1)△GEF是等腰三角形吗?请说明理由;(2)若CD=4,GD=8,求HF的长度.26.客运公司规定旅客可免费携带一定质量的行李,当行李质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数,且部分对应关系如表所示.x(kg) …30 40 50 …y(元) … 4 6 8 …(1)求y关于x的函数表达式;(2)求旅客最多可免费携带行李的质量;(3)当行李费2≤y≤7(元)时,可携带行李的质量x(kg)的取值范围是.27.甲骑电动车、乙骑摩托车都从M地出发,沿一条笔直的公路匀速前往N地,甲先出发一段时间后乙再出发,甲、乙两人到达N地后均停止骑行.已知M、N两地相距km,设甲行驶的时间为x(h),甲、乙两人之间的距离为y(km),表示y与x函数关系的部分图象如图所示.请你解决以下问题:(1)求线段BC所在直线的函数表达式;(2)求点A的坐标,并说明点A的实际意义;(3)根据题目信息补全函数图象.(须标明相关数据)28.如图,一次函数y x+3的图象分别与x轴、y轴交于A、B两点.动点P从A点开始沿折线AO ﹣OB﹣BA运动,点P在AO,OB,BA上运动的速度分别为1,,2(长度单位/秒);动点E从O点开始以(长度单位/秒)的速度沿线段OB运动.设P、E两点同时出发,运动时间为t(秒), 当点P沿折线AO﹣OB﹣BA运动一周时,动点E和P同时停止运动.过点E作EF∥OA,交AB于点F.(1)求线段AB的长;(2)求证∠ABO=30°;(3)当t为何值时,点P与点E重合?(4)当t=时,PE=PF.答案与解析第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列各数中,是无理数的是()A.0 B.1.010010001C.πD.[答案]C[解析]A.0是整数,属于有理数;B.1.010010001是有限小数,即分数,属于有理数;C.π是无理数;D.是分数,属于有理数;故选:C.[点睛]此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数以及像0.1010010001…,等有这样规律的数.2.已知a>0,b<0,那么点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限[答案]D[解析]∵a>0,b<0,∴点P(a,b)在第四象限.故选:D.[点睛]本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.3.如图,已知△ABC的3条边和3个角,则能判断和△ABC全等的是()A.甲和乙B.乙和丙C.只有乙D.只有丙[答案]B[解析]如图:在△ABC和△DEF中,,∴△ABC≌△EFD(SAS);在△ABC和△MNK中,,∴△ABC≌△MNK(AAS).∴甲、乙、丙三个三角形中和△ABC全等的图形是:乙或丙.故选:B.[点睛]此题考查了全等三角形的判定,解题的关键是注意掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.4.如图,正方形ABCD的边长为4,点C的坐标为(3,3),则点D的坐标为()A.(﹣1,3) B.(1,3) C.(3,1) D.(3,﹣1)[答案]A[解析]如图,∵正方形ABCD的边长为4,点C的坐标为(3,3),∴点D的纵坐标为3,点D的横坐标为3﹣4=﹣1,∴点D的坐标为(﹣1,3).故选:A.[点睛]本题考查了正方形的性质,坐标与图形的性质,根据图形明确正方形的边长与点的坐标的关系是解题的关键.5.下列函数中,y随x的增大而减小的有()①y=﹣2x+1;②y=6﹣x;③y;④y=(1)x.A.1个B.2个C.3个D.4个[答案]D[解析]①y=﹣2x+1,k=﹣2<0;②y=6﹣x,k=﹣1<0;③y,k0;④y=(1)x,k=(1)<0.所以四函数都是y随x的增大而减小.故选:D.[点睛]本题考查了一次函数y=kx+b(k≠0)的性质:当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.6.如图,两个三角形是全等三角形,x的值是()A.30 B.45 C.50 D.85[答案]A[解析]∠A=180°﹣105°﹣45°=30°,∵两个三角形是全等三角形,∴∠D=∠A=30°,即x=30,故选:A.[点睛]本题考查的是全等三角形的性质,三角形内角和定理,掌握全等三角形的对应角相等是解题的关键.7.如图,动点P从点A出发,按顺时针方向绕半圆O匀速运动到点B,再以相同的速度沿直径BA回到点A停止,线段OP的长度d与运动时间t的函数图象大致是()A.B.C.D.[答案]B[解析]①当P点半圆O匀速运动时,OP长度始终等于半径不变,对应的函数图象是平行于横轴的一段线段,排除A答案;②当P点在OB段运动时,OP长度越来越小,当P点与O点重合时OP=0,排除C答案;③当P点在OA段运动时,OP长度越来越大,B答案符合.故选:B.[点睛]本题主要考查动点问题的函数图象,解决这类问题要考虑动点在不同的时间段所产生的函数意义,分情况讨论,动中找静是通用方法.8.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A.a+b B.a﹣b C.D.[答案]C[解析]设CD=x,则DE=a﹣x,∵HG=b,∴AH=CD=AG﹣HG=DE﹣HG=a﹣x﹣b=x,∴x,∴BC=DE=a,∴BD2=BC2+CD2=()2+()2,∴BD,故选:C.[点睛]本题考查了勾股定理,全等三角形的性质,正确的识别图形是解题的关键.9.在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是()A.(﹣1,﹣2) B.(1,2) C.(1,﹣2) D.(﹣2,1)[答案]C[解析]∵点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',∴A′(1,2),∵将点A'向下平移4个单位,得到点A″,∴点A″的坐标是:(1,﹣2).故选:C.[点睛]此题主要考查了关于y轴对称点的性质以及平移变换,正确掌握相关平移规律是解题关键.10.如图,△ABC是等边三角形,P是BC上任意一点,PD⊥AB,PE⊥AC,连接DE.记△ADE的周长为L1,四边形BDEC的周长为L2,则L1与L2的大小关系是()A.L l=L2B.L1>L2C.L2>L1D.无法确定[答案]A[解析]∵等边三角形各内角为60°,∴∠B=∠C=60°,∵∠BPD=∠CPE=30°,∴在Rt△BDP和Rt△CEP中,∴BP=2BD,CP=2CE,∴BD+CE BC,∴AD+AE=AB+AC BC BC,∴BD+CE+BC BC,L1BC+DE,L2BC+DE,即得L1=L2,故选:A.[点睛]本题考查了直角三角形中特殊角的正弦函数值,考查了等边三角形各边相等的性质,本题中求证L1BC+DE,L2BC+DE是解题的关键.第Ⅱ卷(非选择题共120分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在试卷规定的区域内.二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.已知点A(x,1)与点B(2,y)关于y轴对称,则(x+y)2018的值为.[答案]1[解析]∵点A(x,1)与点B(2,y)关于y轴对称,∴x=﹣2,y=1,故(x+y)2018=(﹣2+1)2018=1.故答案为:1.[点睛]此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.12.将函数y=3x的图象向上平移2个单位,所得函数图象的解析式为.[答案]y=3x+2[解析]由“上加下减”的原则可知,将函数y=3x的图象向上平移2个单位所得函数的解析式为y=3x+2.故答案为:y=3x+2.[点睛]本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.13.若直角三角形的两条直角边的长分别是3和4,则斜边上的中线长为.[答案]2.5[解析]∵∠ACB=90°,AC=3,BC=4,由勾股定理得:AB5,∵CD是△ABC中线,∴CD AB5=2.5,故答案为:2.5.[点睛]本题主要考查对勾股定理,直角三角形斜边上的中线等知识点的理解和掌握,能推出CD AB是解此题的关键.14.如图,AB∥DC,请你添加一个条件使得△ABD≌△CDB,可添条件是.(添一个即可)[答案]AB=CD[解析]∵AB∥DC,∴∠ABD=∠CDB,又BD=BD,①若添加AB=CD,利用SAS可证两三角形全等;②若添加AD∥BC,利用ASA可证两三角形全等.(答案不唯一)故填AB=CD等(答案不唯一)[点睛]本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.15.一个等腰三角形的顶角为80°,则它的一个底角为.[解析]∵等腰三角形的顶角为80°,∴它的一个底角为(180°﹣80°)÷2=50°.故填50°[点睛]此题主要考查了等腰三角形的性质及三角形内角和定理.通过三角形内角和,列出方程求解是正确解答本题的关键.16.如图,五边形ABCDE中有一等边三角形ACD.若AB=DE,BC=AE,∠E=115°,则∠BAE的度数是°.[答案]125[解析]∵正三角形ACD,∴AC=AD,∠ACD=∠ADC=∠CAD=60°,在△ABC与△AED中,∴△ABC≌△AED(SSS),∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE,∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°,∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°,故答案为:125[点睛]此题考查全等三角形的判定和性质,关键是根据全等三角形的判定和性质得出△ABC与△AED全等.17.如图,在平面直角坐标系中,点A、B的坐标分别为(1,4)、(n,4),若直线y=2x与线段AB有公共点,则n的取值范围为.[解析]∵直线y=2x与线段AB有公共点,∴2n≥4,∴n≥2故答案为:n≥2[点睛]本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于n的一元一次不等式是解题的关键.18.如图,将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处.若BC=10,BE=2,则AB2﹣AC2的值为.[答案]20[解析]∵将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处,∴∠ADC=∠ADE=90°,DE=CD CE,∵BC=10,BE=2∴CE=8,∴CD=DE=4,BD=6,在Rt△ABD中,AB2=AD2+BD2,在Rt△ACD中,AC2=AD2+CD2,∴AB2﹣AC2=BD2﹣CD2=20,故答案为:20[点睛]本题考查了翻折变换,勾股定理,熟练运用折叠的性质是本题的关键.三.解答题(共10小题)19.求x的值:(1)(x+1)2=64(2)8x3+27=0.[解析](1)x+1=±8(2)8x3=﹣27x3x[点睛]本题考查立方根与平方根的定义,解题的关键是熟练运用平方根与立方根的定义,本题属于基础题型.20.已知点P(﹣m,﹣2m+1)是第二象限的点,求m的取值范围.[解析]∵点P(﹣m,﹣2m+1)在第二象限,∴,解不等式①得,m>0,解不等式②得,m,所以,不等式组的解集是0<m.故m的取值范围为:0<m.[点睛]本题主要考查解一元一次不等式组,解题的关键是掌握各象限内点的坐标的符号特点及解一元一次不等式组的能力.21.如图,在△ABC中,AB=AC,分别以AB,AC为边作两个等腰直角三角形ABD和ACE,使∠BAD=∠CAE=90°.求证:BD=CE.[解答]证明:∵△ABD和△ACE是等腰直角三角形,∴AB=AD,AC=AE,∵AB=AC,∴AD=AE,在△ADB和△ACE中,∵,∴△ADB≌△ACE,∴BD=CE.[点睛]本题考查了全等三角形的判定和性质,解题的关键是找出SAS所需要的三个条件.22.如图,在Rt△ABC中,∠ACB=90°.(1)用直尺和圆规作∠A的平分线交BC于点P(保留作图的痕迹,不写作法);(2)当∠CAB为60度时,点P到A,B两点的距离相等.[解析](1)如图所示,点P即为所求.(2)当∠CAB=60°时,P A=PB,∵∠C=90°,∠CAB=60°,∴∠B=30°,∵AP平分∠CAB,∴∠P AB=30°,∴∠P AB=∠B=30°,∴P A=PB.故答案为:60.[点睛]本题主要考查作图﹣复杂作图,解题的关键是掌握角平分线的尺规作图和性质及三角形的内角和定理.23.如图,已知AB=AC,AD=AE.求证:BD=CE.[解答]证明:作AF⊥BC于F,∵AB=AC(已知),∴BF=CF(三线合一),又∵AD=AE(已知),∴DF=EF(三线合一),∴BF﹣DF=CF﹣EF,即BD=CE(等式的性质).[点睛]本题考查了等腰三角形的性质;做题中用到了等量减等量差相等得到答案.24.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.[解答]证明:∵DE⊥AB,DF⊥BC,垂足分别为点E,F,∴∠AED=∠CFD=90°,∵D为AC的中点,∴AD=DC,在Rt△ADE和Rt△CDF中,,∴Rt△ADE≌Rt△CDF,∴∠A=∠C,∴BA=BC,∵AB=AC,∴AB=BC=AC,∴△ABC是等边三角形.[点睛]本题考查全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.如图,把长方形纸片ABCD沿EF折叠后,使得点D落在点H的位置上,点C恰好落在边AD上的点G处,连接EG.(1)△GEF是等腰三角形吗?请说明理由;(2)若CD=4,GD=8,求HF的长度.[解析](1)∵长方形纸片ABCD,∴AD∥BC,∴∠GFE=∠FEC,∵∠FEC=∠GEF,∴∠GFE=∠GEF,∴△GEF是等腰三角形.(2)∵∠C=∠H=90°,HF=DF,GD=8,设HF长为x,则GF长为(8﹣x),在Rt△FGH中,x2+42=(8﹣x)2,解得x=3,∴HF的长为3.[点睛]本题主要考查的是翻折的性质、勾股定理的应用,掌握翻折的性质是解题的关键.26.客运公司规定旅客可免费携带一定质量的行李,当行李质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数,且部分对应关系如表所示.x(kg) …30 40 50 …y(元) … 4 6 8 …(1)求y关于x的函数表达式;(2)求旅客最多可免费携带行李的质量;(3)当行李费2≤y≤7(元)时,可携带行李的质量x(kg)的取值范围是.[解析](1)∵y是x的一次函数,∴设y=kx+b(k≠0)将x=30,y=4;x=40,y=6分别代入y=kx+b,得,解得:∴函数表达式为y=0.2x﹣2,(2)将y=0代入y=0.2x﹣2,得0=0.2x﹣2,∴x=10,(3)把y=2代入解析式,可得:x=20,把y=7代入解析式,可得:x=45,所以可携带行李的质量x(kg)的取值范围是20≤x≤45,故答案为:20≤x≤45.[点睛]本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知函数值求自变量.27.甲骑电动车、乙骑摩托车都从M地出发,沿一条笔直的公路匀速前往N地,甲先出发一段时间后乙再出发,甲、乙两人到达N地后均停止骑行.已知M、N两地相距km,设甲行驶的时间为x(h),甲、乙两人之间的距离为y(km),表示y与x函数关系的部分图象如图所示.请你解决以下问题:(1)求线段BC所在直线的函数表达式;(2)求点A的坐标,并说明点A的实际意义;(3)根据题目信息补全函数图象.(须标明相关数据)[解析](1)设线段BC所在直线的函数表达式为y=kx+b(k≠0),∵B(,0),C(,)在直线BC上,,得,即线段BC所在直线的函数表达式为y=20x;(2)设甲的速度为m km/h,乙的速度为n km/h,,得,∴点A的纵坐标是:3010,即点A的坐标为(,10),点A的实际意义是当甲骑电动车行驶h时,距离M地为10km;(3)由(2)可知,甲的速度为30km/h,乙的速度为50千米/小时,则乙从M地到达N地用的时间为:小时,∵,∴乙在图象中的时,停止运动,甲到达N地用的时间为:小时,补全的函数图象如右图所示.[点睛]本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.28.如图,一次函数y x+3的图象分别与x轴、y轴交于A、B两点.动点P从A点开始沿折线AO ﹣OB﹣BA运动,点P在AO,OB,BA上运动的速度分别为1,,2(长度单位/秒);动点E从O点开始以(长度单位/秒)的速度沿线段OB运动.设P、E两点同时出发,运动时间为t(秒), 当点P沿折线AO﹣OB﹣BA运动一周时,动点E和P同时停止运动.过点E作EF∥OA,交AB于点F.(1)求线段AB的长;(2)求证∠ABO=30°;(3)当t为何值时,点P与点E重合?(4)当t=或时,PE=PF.[解析](1)令y=0,得A(3,0),令x=0,求得B(0,3),∴OA=3,OB=3,∵∠AOB=90°,∴AB6,(2)证明:取AB的中点C,连接OC,∵∠AOB=90°,C为AB的中点,∴OC=BC=CA=3,∵OA=3,∴OC=CA=OA,∴△OAC是等边三角形,∴∠OAB=60°,∵∠AOB=90°,∴∠ABO=30°;(3)由题意得t(t﹣3),解得:t所以当t时,点P与点E重合;(4)取EF的中点H,过点H作PP′∥y轴,此时,P(P′)E=P(P′)F,①当点P在线段OA时,EH=OP,∵∠OBA=30°,设:EF=m,则FB=2m,BE m,即EF BE,EH EF BE•(3t)OP=OA﹣AP=3﹣t,解得:t,②当点P(点P′)在线段AB时,作P′O′⊥OB于点O′,此时点P′运动的时间为t,其中在AO、OB运动时间均为3,则在AB上运动的时间为t﹣6,则BP′=2(t﹣6),同理O′P′B′P′=t﹣6,由①得:EH(3t)=O′P′=t﹣6,同理可得:t,故答案是:或.[点睛]本题考查的是一次函数综合运用,涉及到解直角三角形、勾股定理运用等知识点,难度不大.。
苏科版八年级数学上册试题 第1章 全等三角形 单元测试卷(含详解)
第1章《 全等三角形》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)1.下列说法正确的是( )A .两个等边三角形一定全等B .腰对应相等的两个等腰三角形全等C .形状相同的两个三角形全等D .全等三角形的面积一定相等2.已知与全等,A 、B 、C 的对应点分别为D 、E 、F ,且E 点在AE 上,B 、F 、C 、D 四点共线,如图所示若,,则下列叙述何者正确?( )A .,B .,C .,D .,3.如图,在△ABC 中,AB =BC ,点D 为AC 上的点,连接BD ,点E 在△ABC 外,连接AE ,BE ,使得CD =BE ,∠ABE =∠C ,过点B 作BF ⊥AC 交AC 点F ,若∠BAE =21°,∠C =28°,则∠FBD =( )A .49°B .59°C .41°D .51°4.如图,有一块边长为4的正方形塑料模板,将一块足够大的直角三角板的直角顶点落在点,两条直角边分别与交于点F ,与延长线交于点E .则四边形的面积是( )ABC V DEF V .=40A ∠︒=35CED ∠︒=EF EC =AE FC=EF EC AE FC ≠EF EC ≠=AE FC EF EC ≠AE FC≠ABCD A CD CB AECFA .4B .6C .10D .165.如图,在的网格中,每一个小正方形的边长都是1,点,,,都在格点上,连接,相交于,那么的大小是( )A .B .C .D .6.△ABC 中,AB =AC ,∠ABC =72°,以B 为圆心,以任意长为半径画弧,分别交BA 、BC 于M 、N ,再分别以M 、N为圆心,以大于MN 为半径画弧,两弧交于点P ,射线BP 交AC 于点D ,则图中与BC 相等的线段有( )A .BD B .CD C .BD 和AD D .CD 和AD7.如图,在Rt △ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交AB 、AC 于点M 、N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,射线AP 交边BC 于点D .下列说法错误的是( )33⨯A B C D AC BD P APB ∠80︒60︒45︒30︒1212A .B .若,则点D 到AB 的距离为2C .若,则D .8.如图,长方形中,点为上一点,连接,将长方形沿着直线折叠,点恰好落在的中点上,点为的中点,点为线段上的动点,连接、,若、、,则的最小值是( )A .B .C .D .9.如图,点在线段上,于,于.,且,,点以的速度沿向终点运动,同时点以的速度从开始,在线段上往返运动(即沿运动),当点到达终点时,,同时停止运动.过,分别作的垂线,垂足为,.设运动时间为,当以,,为顶点的三角形与全等时,的值为( )A .1或3B .1或C .1或或 D .1或或510.如图,在中,,和的平分线、相交于点,交于点,交于点,若已知周长为,,,则长为( )CAD BAD ∠=∠2CD =30B ∠=CDA CAB ∠=∠2ABD ACDS S =V V ABCD E AD CE ABCD CE D AB F G CF P CE PF PG AE a =ED b =AF c =PF PG +a c b +-2b c +2a b c ++a b+C BD AB BD ⊥B ED BD ⊥D 90ACE ∠=︒5cm AC =6cm CE =P 2cm/s A C E →→E Q 3cm/s E EC E C E C →→→→⋅⋅⋅P P Q P Q BD M N s t P C M QCN △t 115115235115ABC V 60A ∠=︒ABC ∠ACB ∠BD CE O BD AC D CE AB E ABC V 207BC =:4:3AE AD =AEA. B . C . D .4二、填空题(本大题共8小题,每小题4分,共32分)11.如图,已知正方形中阴影部分的面积为3,则正方形的面积为 .12.数学课上,老师出示如下题目:“已知:.求作:.”如图是小宇用直尺和圆规的作法,其中的道理是作出△,根据全等三角形的性质,得到.△的依据是 .13.如图,已知,,,直线与,分别交于点,,且,,则的度数为 .14.如图,在△ABC 中,点D 是AC 的中点,分别以AB ,BC 为直角边向△ABC 外作等腰直角三角形ABM 和等腰直角三角形BCN ,其中∠ABM =NBC =∠90°,连接MN ,已知MN =4,则BD = .187247267AOB ∠A O B AOB '''∠=∠ΔC O D COD ''≅'A O B AOB '''∠=∠ΔC O D COD ''≅'AB AD =AC AE =BC DE =BC AD DE F G 65DGB ∠=︒120EAB ∠=︒CAD ∠15.如图,为的平分线,为上一点,且于点,,给出下列结论:①;②;③;④;⑤四边形的面积是面积的2倍,其中结论正确的个数有 .16.如图,把两块大小相同的含45°的三角板ACF 和三角板CFB 如图所示摆放,点D 在边AC 上,点E 在边BC 上,且∠CFE =13°,∠CFD =32°,则∠DEC 的度数为 .17.如图,在中,,,,有下列结论:①;②;③连接,;④过点作交于点,连接,则.其中正确的结论有 .18.如图,在Rt △ABC 中,∠C =90°,两锐角的角平分线交于点P ,点E 、F 分别在边BC 、AC 上,且都不与点C 重合,若∠EPF =45°,连接EF ,当AC =6,BC =8,AB =10时,则△CEF的BN MBC ∠P BN PD BC ⊥D 180APC ABC ∠+∠=︒MAP ACB ∠=∠PA PC =2BC AB CD -=BP AC =BAPC PBD △ABC V AD BC ⊥AD BD =BF AC =ADC BDF △≌△BE AC ⊥DE 135AED ∠=︒D DM AB ∥AC M FM BF AM MD =+周长为 .三、解答题(本大题共6小题,共58分)19.(8分)如图,,点E 在BC 上,且,.(1) 求证:;(2) 判断AC 和BD的位置关系,并说明理由.BD BC =BE AC =DE AB =ABC EDB V V ≌20.(8分)如图,在五边形中,,.(1) 请你添加一个条件,使得,并说明理由;(2) 在(1)的条件下,若,,求的度数.21.(10分)在复习课上,老师布置了一道思考题:如图所示,点M ,N 分别在等边的边上,且,,交于点Q .求证:.同学们利用有关知识完成了解答后,老师又提出了下列问题:(1) 若将题中“”与“”的位置交换,得到的是否仍是真命题?请你给出答案并说明理由.ABCDE AB DE =AC AD =ABC DEA △△≌66CAD ∠=︒110B ∠=︒BAE ∠ABC V ,BC CA BM CN =AM BN 60BQM ∠=︒BM CN =60BQM ∠=︒(2) 若将题中的点M ,N 分别移动到的延长线上,是否仍能得到?请你画出图形,给出答案并说明理由.22.(10分)如图1,点P 、Q 分别是边长为4cm 的等边三角形ABC 的边AB 、BC 上的动点,点P 从顶点A ,点Q 从顶点B 同时出发,且它们的速度都为1cm/s .(1)连接AQ 、CP 交于点M ,则在P ,Q 运动的过程中,证明≌;(2)会发生变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)P 、Q 运动几秒时,是直角三角形?,BC CA 60BQM ∠=︒ABQ ∆CAP ∆CMQ ∠PBQ ∆(4)如图2,若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动,直线AQ 、CP 交点为M ,则变化吗?若变化说明理由,若不变,则求出它的度数。
苏科版八年级数学上册期末测试题(附参考答案)
苏科版八年级数学上册期末测试题(附参考答案)满分150分考试时间120分钟一、选择题:本题共10个小题,每小题4分,共40分。
每小题只有一个选项符合题目要求。
1.如图,在△ABF和△DCE中,点E,F在BC上,BE=CF,∠B=∠C,添加下列条件仍无法证明△ABF≌△DCE的是( )A.∠AFB=∠DEC B.AB=DCC.∠A=∠D D.AF=DEAB的长为半径2.如图,在△ABC中,AC>BC,分别以点A,B为圆心,以大于12画弧,两弧交于点D,E,经过点D,E作直线分别交AB,AC于点M,N,连接BN,下列结论正确的是( )A.AN=NC B.AN=BNBC D.BN平分∠ABCC.MN=123.下列图案中,是轴对称图形的为( )4.如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x轴.若AB=6,OA=OB=5,则点A的坐标是( )A.(5,4) B.(3,4)C.(5,3) D.(4,3)5.下列说法错误的是( )A.1的平方根是1B.4的算术平方根是2C.√2是2的平方根D.-√3是√(−3)2的平方根6.甲、乙两位同学放学后走路回家,他们走过的路程s(km)与所用的时间t(min)之间的函数关系如图所示.根据图中信息,下列说法错误的是( )A.前10 min,甲比乙的速度慢B.经过20 min,甲、乙都走了1.6 kmC.甲的平均速度为0.08 km/minD.经过30 min,甲比乙走过的路程少7.在同一平面直角坐标系中,一次函数y1=ax+b(a≠0)与y2=mx+n(m≠0)的图象如图所示,则下列结论错误的是( )A.y1随x的增大而增大B.b<nC.当x<2时,y1>y2D.关于x,y的方程组{ax−y=−b,mx−y=−n的解为{x=2,y=38.△ABC的三边长a,b,c满足(a-b)2+√2a−b−3+|c-3√2|=0,则△ABC 是( )A.等腰三角形B.直角三角形C.锐角三角形D.等腰直角三角形9.如图,在平面直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P为位似中心作正方形P A1A2A3,正方形P A4A5A6,…,按此规律作下去,所作正方形的顶点均在格点上,其中正方形P A1A2A3的顶点坐标分别为P(-3,0),A1(-2,1),A2(-1,0),A3(-2,-1),则顶点A100的坐标为( )A.(31,34) B.(31,-34)C.(32,35) D.(32,0)10.如图,在等边三角形ABC中,D,E分别是BC,AC的中点,P是线段AD上的一个动点,当△PCE的周长最小时,点P的位置在( )A.A点处B.D点处C.AD的中点处D.△ABC三条高的交点处二、填空题:本题共8个小题,每小题4分,共32分。
【苏科版】数学八年级上册《期末考试卷》(含答案解析)
2020-2021学年度第一学期期末测试苏科版八年级数学试题一、选择题(本大题有8小題,每小题3分,共24分,每小题只有一个选项是正确的,请把你认为正确的选项代号涂在答题卡相应位置上)1.在平面直角坐标系中,点()23P -,关于x 轴的对称点的坐标是( ) A. ()23-, B. ()23, C. ()23--, D. ()23-,2.下列四组线段中,可以构成直角三角形的是 ( )A. 4,5,6B. 2,3,4C. 7 ,3 ,4D. 1,2 ,3 3.下列无理数中,在﹣1与2之间的是( )A. ﹣3B. ﹣2C. 2D. 54.下列运算正确的是( )A. 4=2B. |﹣3|=﹣3C. 4=±2D. 39=35.一次函数y=-5x+3的图象经过的象限是( )A. 一、二、三B. 二、三、四C. 一、二、四D. 一、三、四 6.如图,矩形ABCD 中,AB =6,BC =12,如果将该矩形沿对角线BD 折叠,那么图中阴影部分△BED 的面积是 ( )A. 18B. 22.5C. 36D. 457.如图,D 为ABC ∆边BC 上一点,AB AC =,56BAC ∠=︒,且BF DC =,EC BD =,则EDF ∠等于( )A. 62︒B. 56︒C. 34︒D. 124︒8.在一次800米的长跑比赛中,甲、乙两人所跑的路程s (米)与各自所用时间t (秒)之间的函数图像分别为线段OA 和折线OBCD ,则下列说法不正确的是( )A. 甲的速度保持不变B. 乙的平均速度比甲的平均速度大C. 在起跑后第180秒时,两人不相遇D. 在起跑后第50秒时,乙在甲的前面二、填空题(本大题有8小题,每小题3分,共24分,请把答案直接填写在答题卡上) 9.如果点P (m+1,m+3)在y 轴上,则m=_____.10.等腰三角形的一个外角是80°,则其底角是_____度.11.在311,2π,122-,0,0.454454445319______个. 12.圆周率π=3.1415926…精确到千分位的近似数是_____.13.已知实数x 、y 满足|3|20x y ++-=,则代数式()2019x y +的值为______.14.将函数y=3x+1图象沿y 轴向下平移2个单位长度,所得直线的函数表达式为_____.15.在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是________.16.如图,在平面直角坐标系中,点P(﹣1,a)在直线y=2x+2与直线y=2x+4之间,则a的取值范围是_____.三、解答题(本题有10小题,共102分.解答时应写出必要的步骤、过程或文字说明)17.计算:2201931125272-⎛⎫-+--⎪⎝⎭18.求下列各式中的x:(1)()2116x-=;(2)321x+=. 19.已知2y-与x成正比,且当2x=时,6y=-. (1)求y与x之间的函数关系式;(2)若点(),10a在这个函数图像上,求a的值. 20.如图,点C线段AB上,//AD EB,AC BE=,AD BC=.CF平分DCE∠.求证:(1)ACD BEC≅;(2)CF DE⊥ .21.某学校要对如图所示的一块地进行绿化,已知4m AD =,3m CD =,AD DC ⊥,13m AB =,12m BC =,求这块地的面积.22.如图,一次函数y ax b =+与正比例函数y kx =的图像交于点M .(1)求正比例函数和一次函数的解析式;(2)根据图像,写出关于x 的不等式kx ax b >+的解集;(3)求MOP ∆的面积.23.某学校是乒乓球体育传统项目校,为进一步推动该项目发展.学校准备到体育用品店购买甲、乙两种型号乒乓球若干个,已知3个甲种乒乓球和5个乙种乒乓球共需50元,2个甲种乒乓球和3个乙种乒乓球共需31元.(1)求1个甲种乒乓球和1个乙种乒乓球的售价各是多少元?(2)学校准备购买这两种型号乒乓球共200个,要求甲种乒乓球的数量不超过乙种乒乓球的数量的3倍,请设计出最省钱的购买方案,并说明理由.24.已知:如图,点E 在ABC ∆的边AC 上,且AEB ABC ∠=∠.(1)求证:ABE C ∠=∠;(2)若BAE ∠的平分线AF 交BE 于点F ,FD BC 交AC 于点D ,设8AB =,10AC =,求DC 的长.25.甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y (千米)与轿车所用的时间x (小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是_______千米/小时;轿车的速度是_______千米/小时;t 值为_______.(2)求轿车距其出发地的距离y (千米)与所用时间x (小时)之间的函数关系式并写出自变量x 的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.26.【模型建立】如图1,等腰直角三角形ABC 中,90ACB ∠=︒,CB CA =,直线ED 经过点C ,过A 作AD ED ⊥于点D ,过B 作BE ED ⊥于点E .求证:BEC CDA ∆∆≌;【模型应用】①已知直线1l :443y x =+与x 轴交于点A ,与y 轴交于点B ,将直线1l 绕着点A 逆时针旋转45︒至直线2l ,如图2,求直线2l 的函数表达式;②如图3,在平面直角坐标系中,点()8,6B ,作BA y ⊥轴于点A ,作BC x ⊥轴于点C ,P 是线段BC 上的一个动点,点Q 是直线26y x =-上的动点且在第一象限内.问点A 、P 、Q 能否构成以点Q 为直角顶点的等腰直角三角形,若能,请直接写出此时点Q 的坐标,若不能,请说明理由.答案与解析一、选择题(本大题有8小題,每小题3分,共24分,每小题只有一个选项是正确的,请把你认为正确的选项代号涂在答题卡相应位置上)1.在平面直角坐标系中,点()23P -,关于x 轴的对称点的坐标是( ) A. ()23-,B. ()23,C. ()23--,D. ()23-,【答案】B【解析】【分析】根据关于x 轴对称的点的坐标与原坐标横坐标相等,纵坐标互为相反数的性质解答即可.【详解】∵P (2,-3)关于x 轴对称,∴对称点与点P 横坐标相同,纵坐标互为相反数,∴对称点的坐标为(-2,-3).故答案为(-2,-3).【点睛】本题考查的是坐标与图形的变换,关于y 轴对称的点的坐标与原坐标纵坐标相等,横坐标互为相反数;关于x 轴对称的点的坐标与原坐标横坐标相等,纵坐标互为相反数;掌握轴对称的性质是解题的关键,2.下列四组线段中,可以构成直角三角形的是 ( )A. 4,5,6B. 2,3,4 ,4 D. 1 【答案】D【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A .42+52≠62,不可以构成直角三角形,故A 选项错误;B .22+32≠42,不可以构成直角三角形,故B 选项错误;C 2+2≠42,可以构成直角三角形,故C 选项错误.D .12+22,可以构成直角三角形,故D 选项正确.故选D .【点睛】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.下列无理数中,在﹣1与2之间的是()A. B. C. D.【答案】C【解析】试题分析:A1,故错误;B<﹣1,故错误;C.﹣1<2,故正确;2,故错误;故选C.【考点】估算无理数的大小.4.下列运算正确的是()A. =2B. |﹣3|=﹣3C. =±2D.【答案】A【解析】【分析】根据算术平方根和立方根的定义、绝对值的性质逐一计算可得结论.【详解】A=2,此选项计算正确;B.|﹣3|=3,此选项计算错误;C=2,此选项计算错误;D故选A.【点睛】本题考查了算术平方根,解题的关键是掌握算术平方根和立方根的定义、绝对值性质.5.一次函数y=-5x+3的图象经过的象限是()A. 一、二、三B. 二、三、四C. 一、二、四D. 一、三、四【答案】C【解析】试题分析:直线y=﹣5x+3与y轴交于点(0,3),因为k=-5,所以直线自左向右呈下降趋势,所以直线过第一、二、四象限.故选C .考点:一次函数的图象和性质.6.如图,矩形ABCD 中,AB =6,BC =12,如果将该矩形沿对角线BD 折叠,那么图中阴影部分△BED 的面积是 ( )A. 18B. 22.5C. 36D. 45【答案】B【解析】【分析】 易得BE =DE ,利用勾股定理求得DE 的长,利用三角形的面积公式可得阴影部分的面积.【详解】根据翻折的性质可知:∠EBD =∠DBC .又∵AD ∥BC ,∴∠ADB =∠DBC ,∴∠ADB =∠EBD ,∴BE =DE .设BE =DE =x ,∴AE =12﹣x .∵四边形ABCD 是矩形,∴∠A =90°,∴AE 2+AB 2=BE 2,即(12﹣x )2+62=x 2,x =7.5,∴S △EDB =12×7.5×6=22.5. 故选B .【点睛】本题考查了折叠的性质:折叠前后的两个图形全等,即对应线段相等,对应角相等.同时也考查了勾股定理,利用勾股定理得到DE 的长是解决本题的关键.7.如图,D 为ABC ∆边BC 上一点,AB AC =,56BAC ∠=︒,且BF DC =,EC BD =,则EDF ∠等于( )A. 62︒B. 56︒C. 34︒D. 124︒【答案】A【解析】【分析】由AB=AC ,利用等边对等角得到一对角相等,再由BF=CD ,BD=CE ,利用SAS 得到三角形FBD 与三角形DEC 全等,利用全等三角形对应角相等得到一对角相等,再根据三角形内角和定理以及外角的性质,可以找出∠EDF 与∠A 之间的等量关系,进而求解.【详解】解:∵AB=AC ,∴∠B=∠C ,在△BFD 和△EDC 中,,,,BF DC B C BD CE ⎧⎪∠∠⎨⎪⎩===∴△BFD ≌△EDC (SAS ),∴∠BFD=∠EDC ,∴∠FDB+∠EDC=∠FDB+∠BFD=180°-∠B=180°-1802A ︒-∠=90°+12∠A , 则∠EDF=180°-(∠FDB+∠EDC )=90°-12∠A=62°. 故选:A .【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键. 8.在一次800米的长跑比赛中,甲、乙两人所跑的路程s (米)与各自所用时间t (秒)之间的函数图像分别为线段OA 和折线OBCD ,则下列说法不正确的是( )A. 甲的速度保持不变B. 乙的平均速度比甲的平均速度大C. 在起跑后第180秒时,两人不相遇D. 在起跑后第50秒时,乙在甲的前面【答案】B【解析】【分析】 A 、由于线段OA 表示甲所跑的路程S (米)与所用时间t (秒)之间的函数图象,由此可以确定甲的速度是没有变化的;B 、甲比乙先到,由此可以确定甲的平均速度比乙的平均速度快;C 、根据图象可以知道起跑后180秒时,两人的路程确定是否相遇;D 、根据图象知道起跑后50秒时OB 在OA 的上面,由此可以确定乙是否在甲的前面.【详解】解:A 、∵线段OA 表示甲所跑的路程S (米)与所用时间t (秒)之间的函数图象,∴甲的速度是没有变化的,故不选A ;B 、∵甲比乙先到,∴乙的平均速度比甲的平均速度慢,故选B ;C 、∵起跑后180秒时,两人的路程不相等,∴他们没有相遇,故不选C ;D 、∵起跑后50秒时OB 在OA 的上面,∴乙是在甲的前面,故不选D .故选:B .【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.二、填空题(本大题有8小题,每小题3分,共24分,请把答案直接填写在答题卡上) 9.如果点P (m+1,m+3)在y 轴上,则m=_____.【答案】﹣1.【解析】∵点P (m+1,m+3)在y 轴上,∴m+1=0,∴m=-1.故答案为-1.10.等腰三角形的一个外角是80°,则其底角是_____度.【答案】40【解析】【分析】首先判断出与80°角相邻的内角是底角还是顶角,然后再结合等腰三角形的性质及三角形内角和定理进行计算.【详解】与80°角相邻的内角度数为100°;当100°角是底角时,100°+100°>180°,不符合三角形内角和定理,此种情况不成立;当100°角是顶角时,底角的度数=80°÷2=40°;故此等腰三角形的底角为40°.故答案为40.【点睛】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.11.在311,2π,122-,0,0.454454445______个. 【答案】3【解析】【分析】根据无理数的定义进行判断.【详解】解:根据无理数的定义可知,2π,0.4544544453个. 故答案为:3.【点睛】本题考查了无理数.解题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.12.圆周率π=3.1415926…精确到千分位的近似数是_____.【答案】3.142【解析】【分析】近似数π=3.1415926…精确到千分位,即是保留到千分位,由于千分位1后面的5大于4,故进1,得3.142.【详解】解:圆周率π=3.1415926…精确到千分位的近似数是3.142.故答案为3.142.【点睛】本题考查了近似数和精确度,精确到哪一位,就是对它后边的一位进行四舍五入.13.已知实数x 、y 满足|3|0x +=,则代数式()2019x y +的值为______. 【答案】-1【解析】【分析】先根据非负数的性质求出x 、y 的值,再求出()2019x y +的值即可.【详解】解:由题意可得,3+x=0,y-2=0,解得x=-3,y=2.∴()2019x y +=(-3+2)2019=(-1)2019=-1.故答案为:-1.【点睛】本题考查的是非负数的性质,熟知算术平方根具有非负性是解答此题的关键.14.将函数y=3x+1的图象沿y 轴向下平移2个单位长度,所得直线的函数表达式为_____.【答案】y=3x-1【解析】∵y=3x +1的图象沿y 轴向下平移2个单位长度,∴平移后所得图象对应的函数关系式为:y=3x+1﹣2,即y=3x ﹣1.故答案为y=3x ﹣1.15.在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是________.【答案】21x y =⎧⎨=⎩. 【解析】 分析】 利用方程组的解就是两个相应的一次函数图象的交点坐标求解. 【详解】∵一次函数y =k 1x +b 1与y =k 2x +b 2的图象的交点坐标为(2,1), ∴关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是21x y =⎧⎨=⎩. 故答案为21x y =⎧⎨=⎩.【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标. 16.如图,在平面直角坐标系中,点P (﹣1,a )在直线y =2x +2与直线y =2x +4之间,则a 的取值范围是_____.【答案】0a 2<<【解析】【分析】计算出当P 在直线y 2x 2=+上时a 的值,再计算出当P 在直线y 2x 4=+上时a 的值,即可得答案.【详解】解:当P 在直线y 2x 2=+上时,()a 212220=⨯-+=-+=,当P 在直线y 2x 4=+上时,()a 214242=⨯-+=-+=,则0a 2<<.故答案为0a 2<<【点睛】此题主要考查了一次函数与一元一次不等式,关键是掌握函数图象经过的点,必能使解析式左右相等.三、解答题(本题有10小题,共102分.解答时应写出必要的步骤、过程或文字说明)17.计算:2201931125272-⎛⎫-+-- ⎪⎝⎭【答案】-5【解析】【分析】根据实数的运算法则进行计算.【详解】解:原式=-1+4-5-3=-5.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握立方根、算术平方根等考点的运算.18.求下列各式中的x :(1)()2116x -=;(2)321x +=.【答案】(1)5x =或-3;(2)1x =-【解析】【分析】(1)根据平方根的定义求解;(2)先移项,再根据立方根的定义求解.【详解】解:(1)(x-1)2=16,x-1=±4,x=5或x=-3;(2)321x +=,x 3=-1,x=-1.【点睛】本题考查平方根与立方根,解题的关键是正确理解平方根与立方根的定义,本题属于基础题型. 19.已知2y -与x 成正比,且当2x =时,6y =-.(1)求y 与x 之间的函数关系式;(2)若点(),10a 在这个函数图像上,求a 的值.【答案】(1)42y x =-+;(2)2a =-.【解析】分析】(1)设y-2=kx ,把已知条件代入可求得k 的值,则可求得y 与x 的函数关系式;(2)把点的坐标代入函数解析式可得关于a 的方程,则可求得a 的值.【详解】(1)设()20y kx k -=≠,则622k --=,∴4k =-,∴y 与x 的函数关系式是:42y x =-+;(2)当10y =时,1042a =-+,解得2a =-.【点睛】本题主要考查待定系数法求函数解析式,掌握待定系数法的应用步骤是解题的关键.20.如图,点C 在线段AB 上,//AD EB ,AC BE =,AD BC =.CF 平分DCE ∠.求证:(1)ACD BEC ≅;(2)CF DE ⊥.【答案】(1)见解析;(2)见解析【解析】试题分析:(1)根据平行线性质求出∠A=∠B ,根据SAS 推出即可.(2)根据全等三角形性质推出CD=CE ,根据等腰三角形性质求出即可.试题解析:()1∵//AD BE ,∴A B ∠=∠,在ACD 和BEC 中AD BC A B AC BE =⎧⎪∠=∠⎨⎪=⎩∴()ACD BEC SAS ≅,()2∵ACD BEC ≅,∴CD CE =,又∵CF 平分DCE ∠,∴CF DE ⊥.21.某学校要对如图所示的一块地进行绿化,已知4m AD =,3m CD =,AD DC ⊥,13m AB =,12m BC =,求这块地的面积.【答案】24m 2.【解析】【分析】连接AC ,先利用勾股定理求出AC ,再根据勾股定理的逆定理判定△ABC 是直角三角形,根据△ABC 的面积减去△ACD 的面积就是所求的面积.【详解】解:连接AC∵AD DC ⊥∴90ADC ∠=︒在Rt ADC ∆中,根据勾股定理 2222435(m)AC AD CD =+=+=在ABC ∆中,∵22222251213AC BC AB +=+==ABC ∆是直角三角形∴()25123424m 22ABC AC A CD D B S S S ∆∆⨯⨯=-=-=四边形.【点睛】本题考查了勾股定理、勾股定理的逆定理的应用,得到△ABC 是直角三角形是解题的关键.同时考查了直角三角形的面积公式.22.如图,一次函数y ax b =+与正比例函数y kx =的图像交于点M .(1)求正比例函数和一次函数的解析式;(2)根据图像,写出关于x 的不等式kx ax b >+的解集;(3)求MOP ∆的面积.【答案】(1)22y x =-,y x =;(2)2x <;(3)1.【解析】【分析】(1)先把P (1,0),(0,-2)代入y=ax+b,可求出a,b 的值,然后把M 点坐标代入一次函数可求出m 的值;再将点M 的坐标代入y=kx 可得出k 的值.(2)观察函数图象,写出正比例函数图象在一次函数图象上方所对应的自变量的范围即可.(3)作MN 垂直x 轴,然后根据三角形面积求得即可.【详解】解:(1)∵y ax b =+经过()1,0和()0,2-∴02k b b=+⎧⎨-=⎩解得2k =,2b =- 一次函数表达式为:22y x =-∵点M 在该一次函数上,∴2222m =⨯-=,M 点坐标为()2,2又∵M 在函数y kx =上,∴2122m k ===. ∴正比例函数为y x =.(2)由图像可知,2x <时,22x x >-(3)作MN 垂直x 轴,由M 的纵坐标知2MN =, ∴故11212MOP S ∆=⨯⨯=.【点睛】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.23.某学校是乒乓球体育传统项目校,为进一步推动该项目的发展.学校准备到体育用品店购买甲、乙两种型号乒乓球若干个,已知3个甲种乒乓球和5个乙种乒乓球共需50元,2个甲种乒乓球和3个乙种乒乓球共需31元.(1)求1个甲种乒乓球和1个乙种乒乓球的售价各是多少元?(2)学校准备购买这两种型号的乒乓球共200个,要求甲种乒乓球的数量不超过乙种乒乓球的数量的3倍,请设计出最省钱的购买方案,并说明理由.【答案】(1)1个甲种乒乓球的售价是5元,乙种售价是7元;(2)当购买甲种乒乓球150只,乙种乒乓球50只时最省钱.【解析】【分析】(1)设1个甲种乒乓球的售价是x 元,1个乙种乒乓球的售价是y 元,根据题意列出二元一次方程组,解方程组即可;(2)设购买甲种乒乓球a 只,则购买乙种乒乓球()200a -只,费用为w 元,根据题意列出费用关于a 的一次函数,根据一次函数的性质解答即可.【详解】(1)设1个甲种乒乓球的售价是x 元,1个乙种乒乓球的售价是y 元,35502331x y x y +=⎧⎨+=⎩,解得,57x y =⎧⎨=⎩, 答:1个甲种乒乓球的售价是5元,乙种售价是7元;(2)设购买甲种乒乓球a 只,则购买乙种乒乓球()200a -只,费用为w 元,()5720021400w a a a =+-=-+,∵()3200a a -,∴150a ≤,∴当150a =时,w 取得最小值,此时1100w =,20050a -=,答:当购买甲种乒乓球150只,乙种乒乓球50只时最省钱.【点睛】本题考查的是列二元一次方程组、一元一次不等式解实际问题/一次函数的性质等知识,解题的关键是学会利用一次函数的性质解决最值问题.24.已知:如图,点E 在ABC ∆的边AC 上,且AEB ABC ∠=∠.(1)求证:ABE C ∠=∠;(2)若BAE ∠的平分线AF 交BE 于点F ,FD BC 交AC 于点D ,设8AB =,10AC =,求DC 的长.【答案】(1)详见解析;(2)2.【解析】【分析】(1)在三角形ABE 与三角形ABC 中,由一对公共角相等,以及已知角相等,利用内角和定理即可得证; (2)由FD 与BC 平行,得到一对同位角相等,再由第一问的结论等量代换得到一对角相等,根据AF 为角平分线得到一对角相等,再由AF=AF ,利用ASA 得到三角形ABE 与三角形ADF 全等,利用全等三角形对应边相等得到AB=AD ,由AC-AD 求出DC 的长即可.【详解】(1)证明:在ABE ∆中,180ABE BAE AEB ∠=-∠-∠︒,在ABC ∆中,180C BAC ABC ∠=︒-∠-∠,∵AEB ABC ∠=∠,BAE BAC ∠=∠,∴ABE C ∠=∠;(2)解:∵FD BC ,∴ADF C =∠∠,又ABE C ∠=∠,∴ABE ADF ∠=∠,∵AF 平分BAE ∠,∴BAF DAF ∠=∠,ABE ∆和ADF ∆中,ABE ADF AF AFBAF DAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ABE ADF ASA ∆∆≌, ∴AB AD =,∵8AB =,10AC =,∴1082DC AC AD =-=-=.【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键. 25.甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y (千米)与轿车所用的时间x (小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是_______千米/小时;轿车的速度是_______千米/小时;t 值为_______.(2)求轿车距其出发地的距离y (千米)与所用时间x (小时)之间的函数关系式并写出自变量x 的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.【答案】(1)50;80;3(2)()()()8003240348056047x x y x x x ⎧≤≤⎪=≤≤⎨⎪-+≤≤⎩(3)货车出发3小时或5小时后两车相距90千米【解析】【分析】(1)观察图象即可解决问题;(2)分别求出得A 、B 、C 的坐标,运用待定系数法解得即可;(3)根据题意列方程解答即可.【详解】解:(1)车的速度是50千米/小时;轿车的速度是:()4007280÷-=千米/小时;240803t =÷=. 故答案为50;80;3;(2)由题意可知:()3,240A ,()4,240B ,()7,0C ,设直线OA 的解析式为()110y k x k =≠,∴()8003y x x =≤≤,当34x ≤≤时,240y =,设直线BC 的解析式为()20y k x b k =+≠,把()4,240B ,()7,0C 代入得:22424070k b k b +=⎧⎨+=⎩,解得280560k b =-⎧⎨=⎩, ∴80560y =-+,∴()()()8003240348056047x x y x x x ⎧≤≤⎪=≤≤⎨⎪-+≤≤⎩;(3)设货车出发x 小时后两车相距90千米,根据题意得:()5080140090x x +-=-或()5080240090x x +-=+,解得3x =或5.答:货车出发3小时或5小时后两车相距90千米.【点睛】本题主要考查根据图象的信息来解答问题,关键在于函数的解析式的解答,这是这类题的一个难度,必须分段研究.26.【模型建立】如图1,等腰直角三角形ABC 中,90ACB ∠=︒,CB CA =,直线ED 经过点C ,过A 作AD ED ⊥于点D ,过B 作BE ED ⊥于点E .求证:BEC CDA ∆∆≌;【模型应用】①已知直线1l :443y x =+与x 轴交于点A ,与y 轴交于点B ,将直线1l 绕着点A 逆时针旋转45︒至直线2l ,如图2,求直线2l 的函数表达式;②如图3,在平面直角坐标系中,点()8,6B ,作BA y ⊥轴于点A ,作BC x ⊥轴于点C ,P 是线段BC 上的一个动点,点Q 是直线26y x =-上的动点且在第一象限内.问点A 、P 、Q 能否构成以点Q 为直角顶点的等腰直角三角形,若能,请直接写出此时点Q 的坐标,若不能,请说明理由.【答案】【模型建立】详见解析;【模型应用】①721y x =--;②Q 点坐标为(4,2)或(203,223). .【解析】【分析】模型建立:根据△ABC 为等腰直角三角形,AD ⊥ED ,BE ⊥ED ,可判定△ACD ≌△CBE ;模型应用:①过点B 作BC ⊥AB ,交l 2于C ,过C 作CD ⊥y 轴于D ,根据△CBD ≌△BAO ,得出BD=AO=2,CD=OB=3,求得C (-3,5),最后运用待定系数法求直线l 2的函数表达式;②分两种情况考虑:如图3,∠AQP=90°,AQ=PQ ,设Q 点坐标为(a ,2a-6),利用三角形全等得到a+6-(2a-6)=8,得a=4,易得Q 点坐标;如图4,同理求出Q 的坐标.【详解】模型建立:证明:∵AD CD ⊥,BE EC ⊥∴90D E ∠=∠=︒.∵CB CA =,∠ACB=90°.∴1809090ACD BCE ︒︒∠+∠=-=︒.又∵90EBC BCE ∠+∠=︒,∴ACD EBC ∠=∠.在ACD ∆与CBE ∆中,D E ACD EBC CA CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴BEC CDA ∆∆≌.模型应用:如图2,过点B 作BC AB ⊥交2l 于C ,过C 作CD y ⊥轴于D ,∵45BAC ∠=︒,∴ABC ∆为等腰直角三角形.由(1)可知:CBD BAO ∆∆≌,∴BD AO =,CD OB =. ∵144,3:l y x =+∴令0y =,得3x =-,∴()30A -,, 令0x =,得4y =,∴()0,4B .∴3BD AO ==,4CD OB ==,∴437OD =+=.∴()4,7C -.设2l 的解析式为y kx b =+∴7403k b k b =-+⎧⎨=-+⎩∴721k b =-⎧⎨=-⎩2l 的解析式:721y x =--.分以下两种情况:如图3,当∠AQP=90°时,AQ=PQ ,过点Q 作EF ⊥y 轴,分别交y 轴和直线BC 于点E 、F .在△AQE 和△QPF 中,由(1)可得,△AQE ≌△QPF (AAS ),AE=QF ,设点Q 的坐标为(a,2a-6),即6-(2a-6)=8-a ,解得a=4.此时点Q 的坐标为(4,2).如图4:当∠AQP=90°时,AQ=PQ 时,过点Q 作EF ⊥y 轴,分别交y 轴和直线BC 于点E 、F ,设点Q 的坐标为(a,2a-6),则AE=2a-12,FQ=8-a .,在△AQE和△QPF中,同理可得△AQE≌△QPF(AAS),AE=QF,即2a-12=8-a,解得a=20 3.此时点Q的坐标为(203,223).综上所述:A、P、Q可以构成以点Q为直角顶点的等腰直角三角形,点Q的坐标为(4,2)或(203,223).【点睛】本题考查一次函数综合题,主要考查了点的坐标、矩形的性质、待定系数法、等腰直角三角形的性质以及全等三角形等相关知识的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行计算,需要考虑的多种情况,解题时注意分类思想的运用.。
苏科版八年级数学上册初二数学试卷
第2题 第7题第8题初中数学试卷初二数学试卷一、选择题(每题 3分,共24分)1、下列计算正确的是A. . 20=2 10B. . 2 3 ,6C. ,4 2 ,22、图中字母 A 所代表的正方形的面积为A. 4B. 8C. 16D. 64 3、 一直角三角形的斜边长比一直角边长大2,另一直角边长为 6,则斜边长为( ) A. 4B. 8C. 10D. 12 4、在-1.414 , 短,兀3,14, 2+、/3, 3.212212221…,J9 这些数中,无理数的个数为C.3D.4 A (2, 1)向左平移 4个单位长度,再向下平移A.(4, 3) B. (-2 , -1 ) C. (4, -1 ) D. (-2,3)6、已知下列结论:①将直角三角形的三边同时扩大2倍,得到的一个钝角三角形;②在平面直角坐标 系中点A (2,3)与点B (3,2)表示不同的点;③实数与数轴上的点 ------- 对应;④有理数有无限个,无 理数有有限个.其中正确的结论是 ()A.①②B. ②③C. ③④D. ②③④7、一辆汽车行驶的路程与行驶时间的关系如图所示,下列说法正确的是( ) A.前4h 中汽车的速度越来越快B. 4h 后汽车静止不动()A.5B.2 5、在直角坐标系中,点2个单位长度后的坐标为8、如图,已知等腰^ ABC43, AB =AC / BA0120。
,ADL BC 于点D,点P 是BA 延长线上一点,点 O 是线段AD 上一点,OPOC 下面的结论:①/APO/DCO 30。
;⑦' OPO 等边三角形;③ AGAOAP;④S △ ABC =S 四边形AOCp 其中正确的个数是() A. 1 B . 2 C . 3 D . 4二、填空题(每题 2分,共20分)9、点P (a+1, a-1)在直角坐标系的 y 轴上,则点P 坐标为;10、J16的算术平方根是 ;11、若直角三角形的三边长分别为 3, 4, x,则x 的值可能有 个;12、把38490按四舍五入精确法取近似数精确到千位是 ;13、在直角坐标系中,点 A (0, 2),点P (x, 0)为x 轴上的一个动点,当 x=时,线段PA 的长 得到最小值; 14、若一个数的立方根等于这个数的算术平方根,则这个数是;15、如图,在四边形 ABCD^, / A=90°, AB=9, AD=12, BC=8 CD=17.则四边 16、在三角形 ABC 中,AD 为高,AD=12 AC=13 AB=2Q 贝U BC=;17、如图,已知1号、4号两个正方形的面积和为为7, 2号、3号两个正方形白面积和为 4,则a, b, c三个方形的面积和为; 18、一只跳蚤在第一象限及 x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到( 0,1 ),然后按图中箭头所示方向跳动【即(0,0) 一( 0,1 ) 一( 1,1 ) 一( 1,0 ) 一……】且每秒跳动一个单位,那么第 50秒 时跳蚤所在位置的坐标是 。
苏科版八年级上册数学《期末测试卷》及答案解析
二、选择题
13.下列图形中,是轴对称图形的为()
A. B. C. D.
14.在下列实数中: , ,π, , ,﹣2.010010001…其中无理数有()
[答案]B
[解析]
试题解析:由题意可得:AM平分
∵AB//CD,
平分
故选B.
17.如图,AB//DE,AC//DF,AC=DF,下列条件中,不能判定△ABC≌△DEF的是
A AB=DEB. ∠B=∠EC.EF=BCD.EF//BC
[答案]C
[解析]
[详解]试题分析:本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解题.
19.在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(3,0)是x轴上的两点,则PA+PB的最小值为()
A.3B. C. D.4
[答案]B
[解析]
试题解析:
如图所示:作A点关于直线y=x的对称点A′,连接A′B,交直线y=x于点P,
此时PA+PB最小,
由题意可得出:OA′=1,BO=3,PA′=PA,
A.1个B.2个C.3个D.4个
15.点P(m,﹣2m)是第二象限 点,则满足条件的所有实数m取值范围是()
A.m<0B.m>0C.0<m<2D.﹣2<m<0
16.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于 EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.若∠ACD=110°,则∠MAB的度数为()
八年级数学上册第一章《全等三角形》测试卷-苏科版(含答案)
八年级数学上册第一章《全等三角形》测试卷-苏科版(含答案)一.选择题1.如图,△ABC≌△CDA,∠BAC=∠DCA,则BC的对应边是()A.CD B.CA C.DA D.AB2.下列图形中与已知图形全等的是()A.B.C.D.3.如图,△ABC≌△DEF.若BC=5cm,BF=7cm,则EC=()A.1cm B.2cm C.3cm D.4cm4.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是()A.1个B.2个C.3个D.4个5.如图所示,AB=BD,BC=BE,要使△ABE≌△DBC,需添加条件()A.∠A=∠D B.∠C=∠E C.∠D=∠E D.∠ABD=∠CBE 6.如图,∠BAD=∠BCD=90°,AB=CB,可以证明△BAD≌△BCD的理由是()A.HL B.ASA C.SAS D.AAS7.已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18平方厘米,则EF边上的高是()A.6cm B.7cm C.8cm D.9cm8.如图,在3×3正方形网格中,∠1+∠2+∠3+∠4+∠5等于()A.145°B.180°C.225°D.270°9.如图所示,AD平分∠BAC,AB=AC,连接BD、CD并延长分别交AC、AB于F、E点,则此图中全等三角形的对数为()A.2对B.3对C.4对D.5对10.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE,下列说法:①△ABD和△ACD面积相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;⑤CE=AE.其中正确的是()A.①②B.③⑤C.①③④D.①④⑤二.填空题11.能够的两个图形叫做全等图形.12.如图,∠B=∠D=90°,BC=DC,∠1=40°,则∠2=度.13.如图为4×4的正方形网格,图中的线段均为格点线段(线段的端点为格点),则∠1+∠2+∠3+∠4+∠5的度数为.14.由同一张底片冲洗出来的五寸照片和七寸照片全等图形(填“是”或“不是”).15.如图,点C在线段BD上,AB⊥BD于B,ED⊥BD于D.∠ACE=90°,且AC=5cm,CE=6cm,点P以2cm/s的速度沿A→C→E向终点E运动,同时点Q以3cm/s的速度从E开始,在线段EC上往返运动(即沿E→C→E→C→…运动),当点P到达终点时,P,Q同时停止运动.过P,Q分别作BD的垂线,垂足为M,N.设运动时间为ts,当以P,C,M为顶点的三角形与△QCN全等时,t的值为.16.如图,在△ABC中,∠A=90°,DE⊥BC,垂足为E.若AD=DE且∠C=50°,则∠ABD=°.17.△ABC≌△DEF,且△ABC的周长为12,若AC=3,EF=4,AB=.18.如图,CE⊥AB于点E,BD⊥AC于点D,BD、CE交于点O,且AO平分∠BAC,则图中的全等三角形共有对.19.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是,理由是.20.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为.三.解答题21.如图,在△ABC中,AB>AC,点D在边AB上,且BD=CA,过点D作DE∥AC,并截取DE=AB,且点C,E在AB同侧,连接BE.求证:△DEB≌△ABC.22.如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,AB=DE,BF=CE,AB ∥DE,求证:△ABC≌△DEF.23.如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2.(1)求角F的度数与DH的长;(2)求证:AB∥DE.24.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.25.我们知道能完全重合的图形叫做全等图形,因此,如果两个四边形能完全重合,那么这两个四边形全等,也就是说,当两个四边形的四个内角、四条边都分别对应相等时,这两个四边形全等.请借助三角形全等的知识,解决有关四边形全等的问题.如图,已知,四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,∠B=∠B′,∠C=∠C′,现在只需补充一个条件,就可得四边形ABCD≌四边形A′B′C′D′.下列四个条件:①∠A=∠A′;②∠D=∠D′;③AD=A′D′;④CD=C′D′(1)其中,符合要求的条件是.(直接写出编号)(2)选择(1)中的一个条件,证明四边形ABCD≌四边形A′B′C′D′.参考答案一.选择题1.解:∵△ABC≌△CDA,∠BAC=∠DCA,∴∠BAC与∠DCA是对应角,∴BC与DA是对应边(对应角对的边是对应边).故选:C.2.解:A、圆里面的正方形与已知图形不能重合,错;B、与已知图形能完全重合,正确;C、中间是长方形,与已知图形不重合,错;D、中间是长方形,与已知图形不重合,错.故选:B.3.解:∵BC=5cm,BF=7cm,∴CF=BF﹣BC=2cm,∵△ABC≌△DEF,∴FE=BC=5cm,∴EC=EF﹣CF=5cm﹣2cm=3cm,故选:C.4.解:∵△ABC≌△AEF,∴AC=AF,故①正确;∠EAF=∠BAC,∴∠FAC=∠EAB≠∠FAB,故②错误;EF=BC,故③正确;∠EAB=∠FAC,故④正确;综上所述,结论正确的是①③④共3个.故选:C.5.解:∵AB=BD,BC=BE,∴要使△ABE≌△DBC,需添加的条件为∠ABE=∠DBC,又∠ABE﹣∠DBE=∠DBC﹣∠DBE,即∠ABD=∠CBE,∴可添加的条件为∠ABE=∠DBC或∠ABD=∠CBE.综合各选项,D选项符合.故选:D.6.解:∵∠BAD=∠BCD=90°,AB=CB,DB=DB,∴△BAD≌△BCD(HL).故选:A.7.解:设△DEF的面积为s,边EF上的高为h,∵△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18平方厘米∴两三角形的面积相等即s=18又S=•EF•h=18,∴h=6故选:A.8.解:在△ABC和△AEF中,,∴△ABC≌△AEF(SAS),∴∠5=∠BCA,∴∠1+∠5=∠1+∠BCA=90°,在△ABD和△AEH中,,∴△ABD≌△AEH(SAS),∴∠4=∠BDA,∴∠2+∠4=∠2+∠BDA=90°,∵∠3=45°,∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°.故选:C.9.解:图中全等三角形的对数有4对,有△ADB≌△ADC,△ABF≌△ACE,△AED≌△AFD,△EDB≌△FDC,理由是:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ADB和△ADC中∴△ADB≌△ADC(SAS),∴∠B=∠C,∠ADB=∠ADC,∵∠EDB=∠FDC,∴∠ADB﹣∠EDB=∠ADC﹣∠FDC,∴∠ADE=∠ADF,在△AED和△AFD中∴△AED≌△AFD(ASA),∴AE=AF,在△ABF和△ACE中∴△ABF≌△ACE(SAS),∵AB=AC,AE=AF,∴BE=CF,在△EDB和△FDC中∴△EDB≌△FDC(AAS),故选:C.10.解:∵AD是△ABC的中线,∴BD=CD,∴△ABD和△ACD面积相等,故①正确;∵AD为△ABC的中线,∴BD=CD,∠BAD和∠CAD不一定相等,故②错误;在△BDF和△CDE中,,∴△BDF≌△CDE(SAS),故③正确;∴∠F=∠DEC,∴BF∥CE,故④正确;∵△BDF≌△CDE,∴CE=BF,故⑤错误,正确的结论为:①③④,故选:C.二.填空题11.解:能够完全重合的两个图形叫做全等图形.故答案为完全重合.12.解:在直角△ABC与直角△ADC中,BC=DC,AC=AC ∴△ABC≌△ADC∴∠2=∠ACB在△ABC中∠ACB=180°﹣∠B﹣∠1=50°∴∠2=50°.13.解:在图中标上字母,如图所示.∵四边形ABCD为4×4的正方形,∴∠3=45°.∵四边形ANPE为1×1的正方形,∴AE=AN.∵四边形CDEF和四边形BCMN均为4×3的长方形,∴CE=CN.在△ACE和△ACN中,,∴△ACE≌△ACN(SSS),∴∠AEC=∠ANC,∴∠2+∠4+90°=180°,∴∠2与∠4互余.同理可得:∠1与∠5互余.∴∠1+∠2+∠3+∠4+∠5=(∠1+∠5)+(∠2+∠4)+∠3=90°+90°+45°=225°.故答案为:225°.14.解:由全等形的概念可知:由同一张底片冲洗出来的五寸照片和七寸照片,大小不一样,所以不是全等图形.故答案为:不是.15.解:当点P在AC上,点Q在CE上时,∵以P,C,M为顶点的三角形与△QCN全等,∴PC=CQ,∴5﹣2t=6﹣3t,∴t=1,当点P在AC上,点Q第一次从点C返回时,∵以P,C,M为顶点的三角形与△QCN 全等,∴PC=CQ,∴5﹣2t=3t﹣6,∴t=,当点P在CE上,点Q第一次从E点返回时,∵以P,C,M为顶点的三角形与△QCN 全等,∴PC=CQ,∴2t﹣5=18﹣3t,∴t=,综上所述:t的值为1或或.16.解:∵∠C=50°,∠A=90°,∴∠ABC=40°,∵DE⊥BC,∴∠A=∠BED=90°,在Rt△ABD和Rt△EBD中,,∴Rt△ABD≌Rt△EBD(HL),∴∠ABD=∠DBE,∴∠ABD=∠ABC=20°,故答案为:20.17.解:∵△ABC≌△DEF,∴BC=EF=4,由题意得,AB+BC+AC=12,∴AB=12﹣3﹣4=5,故答案为:5.18.解:①在△AEO与△ADO中∵CE⊥AB于点E,BD⊥AC于点D,AO平分∠BAC,∴∠AEO=∠ADO=90°,∠EAO=∠DAO∵AO=AO∴△AEO≌△ADO(AAS)∴AE=AD,OE=OD;②在△OBE与△OCD中∵∠OEB=∠0DC=90°,∠EOB=∠DOC,OE=OD∴△OBE≌△OCD(AAS)∴OB=OC,BE=DC,∠B=∠C;③在△ABO与△ACO中∵AE=AD∴AB=AC∵AB=AC,AO=AO,BO=CO∴△ABO≌△ACO(SSS)④在△AEC与△ADB中∵∠AEC=∠ADB=90°,AC=AB,AE=AD∴△AEC≌△ADB(HL)所以共有四对全等三角形.19.解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.最省事的方法是应带③去,理由是:ASA.故答案为:带③去,ASA.20.解:由平移的性质知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S四边形ODFC =S梯形ABEO=(AB+OE)•BE=(10+6)×6=48.故答案为48.三.解答题21.证明:∵DE∥AC,∴∠EDB=∠A.在△DEB与△ABC中,,∴△DEB≌△ABC(SAS).22.证明:∵BF=CE,∴BF+FC=CE+FC,即BC=EF.∵AB∥DE,∴∠B=∠E.在△ABC和△DEF中,∴△ABC≌△DEF(SAS).23.解:(1)∵∠A=85°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=35°,∵△ABC≌△DEF,AB=8,∴∠F=∠ACB=35°,DE=AB=8,∵EH=2,∴DH=8﹣2=6;(2)证明:∵△ABC≌△DEF,∴∠DEF=∠B,∴AB∥DE.24.解:(1)∵△EFG≌△NMH,∠F与∠M是对应角,∴EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM,∴FH=GM,∠EGM=∠NHF;(2)∵EF=NM,EF=2.1cm,∴MN=2.1cm;∵FG=MH,FH+HG=FG,FH=1.1cm,HM=3.3cm,∴HG=FG﹣FH=HM﹣FH=3.3﹣1.1=2.2cm.25.解:(1)符合要求的条件是①②④,故答案为:①②④;(2)选④,证明:连接AC、A′C′,在△ABC与△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),∴AC=A′C′,∠ACB=∠A′C′B′,∵∠BCD=∠B′C′D′,∴∠BCD﹣∠ACB=∠B′C′D′﹣∠A′C′B′,∴∠ACD=∠A′C′D′,在△ACD和△A′C′D中,,∴△ACD≌△A′C′D′(SAS),∴∠D=∠D,∠DAC=∠D′A′C′,DA=D′A′,∴∠BAC+∠DAC=∠B′A′C′+∠D′A′C′,即∠BAD=∠B′A′D′,∴四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,AD=A′D′,DC=D′C′,∠B=∠B′,∠BCD=∠B′C′D′,∠D=∠D′,∠BAD=∠B′A′D′,∴四边形ABCD≌四边形A′B′C′D′.。
《初二上学期期末试卷》(期末试卷)2(苏科版初二上)初中数学(1)
《初二上学期期末试卷》(期末试卷)2(苏科版初二上)doc 初中数学八年级数学试题题号一二三四五总分1-1011-20 21-25 26 27 28 29 30 31 得分第一部分〔选择题,共 30 分〕本卷须知:答卷前将密封线内的项目填写清晰一、选择题:〔本大题共10小题,每题3分,共30分.在每题给出的4个选项中,只有1项是符合题目要求的,请正确答案的序号填写在下面的括号内〕.1.以下函数中,一次函数是A.x2y B.y=5x 2 C.y=1+5x D.y=x 2+x(x-1)2.假设x<-3,那么A .-2x>6B .2x>-6C .-2x<6D .2x<63.在坐标平面内有一点P(a ,b),且a 与b 的乘积为零,那么P 的位置一定在 A.原点 B.x 轴上 C.y 轴上 D.坐标轴上4.四边形ABCD 的对角线相交于O ,且OA=OB=OC=OD ,那么那个四边形 A.仅是轴对称图形 B.仅是中心对称图形C.即是轴对称图形又是中心对称图形 D.即不是轴对称图形,又不是中心对称图形 5.8的平方根是 A.22B.-22C.±22D.不存在6.在学校对学生进行的体温测量中,学生甲连续10天的体温与36℃的上下波动数据为0.2,0.3,0.1,0.1,0,0.2,0.1,0,0.1,0.1,那么在这10天中该学生的体温波动数据中不正确的选项......是.A.平均数为0.12 B.众数为0.1 C.中位数为0.1 D.平均数为0.027.五根小木棒,其长度分不为7、15、20、24、25,现想把它们摆成两个直角三角形,以下图中题号 1 2 3 4 5 6 7 8 9 10答案2024正确的选项是8a =,那么以下结论正确的选项是A.4.5 5.0a << B.5.0 5.5a <<C.5.5 6.0a << D.6.0 6.5a <<9.如图,点阵中以相邻4个点为顶点的小正方形的面积为1, 那么△ABC 的面积为 A .3 B .3.5 C .4 D .4.510.一列火车从盐城站动身,加速行驶一段时刻后开始匀速行驶,过了一段时刻,火车到达下一个车站.乘客上、下车后,火车又加速,一段时刻后再次开始匀速行驶.下面哪幅图能够近似地刻画出火车在这段时刻内的速度变化情形.第二部分〔非选择题,共 120 分〕本卷须知:第二部分试题答案用钢笔或圆珠笔直截了当写在试卷上。
苏科版八年级上册数学期末试卷【含答案】
苏科版八年级上册数学期末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。
A. a/2B. a√2C. 2aD. a²2. 下列函数中,奇函数是()。
A. y = x²B. y = |x|C. y = x³D. y = x² + 13. 在直角坐标系中,点P(2, -3)关于x轴的对称点是()。
A. (2, 3)B. (-2, 3)C. (-2, -3)D. (2, -3)4. 若一组数据为2, 5, 7, 10, x,其平均数为6,则x的值为()。
A. 4B. 6C. 8D. 105. 下列哪个图形不是轴对称图形?()A. 矩形B. 圆C. 正五边形D. 梯形二、判断题(每题1分,共5分)6. 任何两个奇函数的乘积一定是偶函数。
()7. 在等腰三角形中,底角相等。
()8. 平方根的定义是:如果一个数x的平方等于a,那么x是a的平方根。
()9. 互余两角的和为90°。
()10. 任何一个正整数都可以表示为2的幂的乘积。
()三、填空题(每题1分,共5分)11. 若一个三角形的两边长分别为5cm和12cm,且这两边的夹角为90°,则这个三角形的周长为______cm。
12. 函数y = 2x + 3的图象是一条______。
13. 一个正方体的体积是64cm³,则它的表面积是______cm²。
14. 若一组数据为1, 3, 5, 7, 9,则这组数据的中位数是______。
15. 在直角坐标系中,点A(3, 4)到原点的距离是______。
四、简答题(每题2分,共10分)16. 简述勾股定理的内容。
17. 什么是算术平方根?如何计算一个数的算术平方根?18. 解释概率的意义。
19. 如何判断一个多边形是正多边形?20. 什么是函数的单调性?如何判断一个函数的单调性?五、应用题(每题2分,共10分)21. 一个长方体的长、宽、高分别为10cm、6cm、4cm,求它的对角线长。
苏科版八年级上册数学期末测试卷(基础+提升)
苏科版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、如图,矩形纸片ABCD,AD=BC=3,AB=CD=9,在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK,则对△MNK的叙述正确的个数是:①△MNK一定是等腰三角形;②△MNK可能是钝角三角形;③△MNK有最小面积且等于4.5;④△MNK有最大面积且等于7.5A.1个B.2个C.3个D.4个2、尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP,由作法得△OCP≌△ODP的根据是()A.SASB.ASAC.AASD.SSS3、下列有序实数对中,是函数y=2x-1中自变量x与函数值y的一对对应值的是()A.(-2.5,4)B.(-0.25,0.5)C.(1,3)D.(2.5,4)4、正方形ABCD在数轴上的位置如图所示,点D,A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是()A.点CB.点DC.点AD.点B5、如图所示,在△ABC中,D为AB上一点,E为BC上一点,且AC = CD = BD = BE,∠A = 50°,则∠CDE的度数为()A.50°B.51°C.51.5°D.52.5°6、如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B 的坐标为(0,3 ),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为()A.(,)B.(2,)C.(,)D.(,3﹣)7、如图,B、E,C,F在同一条直线上,若AB=DE,∠B=∠DEF,添加下列一个条件后,能用“SAS”证明△ABC≌△DEF,则这条件是()A.∠A=∠DB.∠ABC=∠FC.BE=CFD.AC=DF8、下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.9、如图,已知正方形的边长为4,点是正方形的边上的一点,把△ABE沿BE翻折到△FBE,若,则DF的长为()A.2B.C.D.10、一次函数y=ax+a(a为常数,a≠0)与反比例函数y=(a为常数,a≠0)在同一平面直角坐标系内的图像大致为( )A. B. C. D.11、如图,把长方形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么,有下列说法:①△EBD是等腰三角形,EB=ED;②折叠后∠ABE和∠CBD一定相等;③折叠后得到的图形是轴对称图形;④△EBA和△EDC一定是全等三角形.其中正确的是()A.①②③B.①③④C.①②④D.①②③④12、在直角坐标系中,点P(m,2—2m)的横坐标与纵坐标互为相反数,则P 点在()A.第一象限B.第二象限C.第三象限D.第四象限13、若等边△ABC的边长为2,那么△ABC的面积为()A. B.2 C.3 D.414、16的算术平方根是()A.4B.±4C.±2D.215、下列说法中,正确的是()A.﹣4的算术平方根是2B.﹣是2的一个平方根C.(﹣1)2的立方根是﹣1D. =±5二、填空题(共10题,共计30分)16、在平面直角坐标系xOy中,若点A的坐标为(﹣3,3),点B的坐标为(2,1),存在x轴一点P,使AP+BP最小,则P点坐标是________.17、在数轴上到原点的距离等于2的点所表示的数是________.18、若点P(a-1,4-2a)位于平面直角坐标系的第四象限,则a的取值范围是________.19、若直角三角形两条直角边的边长分别为15cm和12cm,那么此直角三角形斜边上的中线是________ cm.20、如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m和8m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是________ m.21、已知点P(x,y)位于第四象限,并且x≤y+4(x,y为整数),写出一个符合上述条件的点P的坐标________.22、计算:________23、如图,在边长为2的菱形ABCD中,DE⊥AB于点E,连接CE,若AE=BE,则CE的长是________.24、如图,在Rt△ABC中,∠B=90°,按如下步骤作图:①分别以点B、C为圆心,大于AB的长为半径作弧,两弧相交于点M和N;②作直线MN交AC于点D,③连接BD,若AC=8,则BD的长为________25、已知关于,的二元一次方程组的解是则直线与直线的交点坐标是________;三、解答题(共5题,共计25分)26、解方程:27、如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)28、在四边ABCD中,∠D=90°,AD= ,CD=2,BC=3,AB=5,,求:四边形ABCD的面积.29、如图.AB=AC,MB=MC.求证:直线AM是线段BC的垂直平分线.30、一如图,在△ABC中,AB=41cm,BC=18cm,BC边上的中线AD=40cm.△ABC 是等腰三角形吗?为什么?参考答案一、单选题(共15题,共计45分)1、D2、D3、D4、B5、D6、A7、C8、C9、D10、C11、B12、D13、A14、A15、B二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、。
苏科版八年级上册数学期末测试卷(必刷题)
苏科版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、已知直线经过第一、二、四象限,则k的取值范围是()A. B. C. D.2、在一定条件下,若物体运动的路程S(米)与时间t(秒)的关系式为S=5t2+2t,则当t=4秒时,该物体所经过的路程为().A.28米B.48米C.68米D.88米3、给出四个数,,,,其中最小的是()A. B. C. D.4、若点P(2m+4,m﹣3)在第四象限内,则m的取值范围是()A.m>3B.m<﹣2C.﹣2<m<3D.无解5、如图,∠1=∠2,要证明△ABC≌△ADE,还需补充的条件是()A.AB=AD,AC=AEB.AB=AD,BC=DEC.AB=DE,BC=AE D.AC=AE,BC=DE6、无理数的小数部分是()A.1B.C.D. 不能确定7、已知:如图,矩形ABCD中,AB=5,BC=12,对角线AC、BD相交于点O,点P是线段AD上任意一点,且PE⊥AC于点E,PF⊥BD于点F,则PE+PF等于()A. B. C. D.8、函数y= 中,自变量x的取值范围是()A.x>﹣3B.x≥﹣3C.x≠﹣3D.x≤﹣39、已知:如图,DE垂直平分AC,△ABD的周长是8.5cm,AC=3cm,则△ABC 的周长是()A.8.5cmB.10cmC.11.5cmD.13cm10、如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A.5B.6C.7D.2511、如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB+BC=BE,则∠B的度数是()A.45°B.60°C.50°D.55°12、下列结论中,错误的有()①Rt△ABC中,已知两边分别为3和4,则第三边的长为5;②三角形的三边分别为a、b、c ,若a2+b2=c2,则∠A=90°;③若△AB C中,∠A:∠B:∠C=1:5:6,则这个三角形是一个直角三角形;④若(x﹣y)2+M=(x+y)2成立,则M=4xy .A.0个B.1个C.2个D.3个13、如图,在矩形ABCD中BC=8,CD=6,将△ABE沿BE折叠,使点A恰好落在对角线BD上F处,则DE的长是()A.3B.C.5D.14、已知一次函数y=kx+b的图象如左图,那么正比例函数y=kx和反比例函数y=在同一坐标系中的图象大致是( )A. B. C. D.15、在Rt△ABC中,∠ACB=90°,点D是斜边AB上的中点,AC=6cm,BC=4cm,一动点P从点A出发,沿A→C→B的路线以1cm/s的速度移动.设△APD的面积为y(cm2),则y关于点P的运动时间x(s)的函数图象大致是()A. B. C. D.二、填空题(共10题,共计30分)16、过⊙O内一点P的最长弦长为10cm,最短弦长为8cm,那么OP的长为________cm.17、等腰三角形一腰上的高与另一腰的夹角为50°,则它的底角等于________。
苏科版八年级(上)期末数学试卷(含答案)
苏科版八年级(上)期末数学试卷(含答案)一、选择题1.如图,在平面直角坐标系中,△ABC 位于第二象限,点A 的坐标是(﹣2,3),先把△ABC 向右平移4个单位长度得到△A 1B 1C 1,再作与△A 1B 1C 1关于x 轴对称的△A 2B 2C 2,则点A 的对应点A 2的坐标是( )A .(-3,2)B .(2,-3)C .(1,-2)D .(-1,2) 2.如图,已知O 为ABC ∆三边垂直平分线的交点,且50A ∠=︒,则BOC ∠的度数为( )A .80︒B .100︒C .105︒D .120︒ 3.下列四个实数:223,0.1010017π,3,,其中无理数的个数是( ) A .1个 B .2个 C .3个 D .4个4.如图所示的两个三角形全等,图中的字母表示三角形的边长,则1∠的度数为( )A .82°B .78°C .68°D .62° 5.一次函数y=-5x+3的图象经过的象限是( )A .一、二、三B .二、三、四C .一、二、四D .一、三、四 6.下列二次根式中属于最简二次根式的是( )A .8B .36C .a b(a >0,b >0) D .7 7.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .8.下列条件中,不能判断△ABC 是直角三角形的是( )A .a :b :c =3:4:5B .∠A :∠B :∠C =3:4:5 C .∠A +∠B =∠CD .a :b :c =1:2:39.如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A .36B .33C .6D .310.在平面直角坐标系中,点()3,2P -关于x 轴对称的点的坐标是( )A .()3,2B .()2,3-C .()3,2-D .()3,2-- 11.下列说法正确的是( ) A .(﹣3)2的平方根是3 B .16=±4C .1的平方根是1D .4的算术平方根是2 12.如图,在平面直角坐标系中,A (0,3),B (5,3),C (5,0),点D 在线段OA 上,将△ABD 沿着直线BD 折叠,点A 的对应点为E ,当点E 在线段OC 上时,则AD 的长是( )A .1B .43C .53D .213.已知:如图,点P 在线段AB 外,且PA=PB ,求证:点P 在线段AB 的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )A .作∠APB 的平分线PC 交AB 于点CB .过点P 作PC ⊥AB 于点C 且AC=BCC .取AB 中点C ,连接PCD .过点P 作PC ⊥AB ,垂足为C14.关于等腰三角形,以下说法正确的是( )A .有一个角为40°的等腰三角形一定是锐角三角形B .等腰三角形两边上的中线一定相等C .两个等腰三角形中,若一腰以及该腰上的高对应相等,则这两个等腰三角形全等D .等腰三角形两底角的平分线的交点到三边距离相等15.如图,若BD 为等边△ABC 的一条中线,延长BC 至点E ,使CE =CD =1,连接DE ,则DE 的长为( )A .3B .3C .5D .5二、填空题16.如图,ABC ADC ∆≅∆,40BCA ∠=︒,80B ∠=︒,则BAD ∠的度数为________________.17.若函数4y kx =-的图象平行于直线2y x =-,则函数的表达式是________.18.在311,2π,122-,0,0.454454445319______个. 19.地球上七大洲的总面积约为149480000km 2(精确到10000000 km 2),用四舍五入法按要求取近似值,并用科学记数法为_________ km 2.20.点()2,3A 关于y 轴对称点的坐标是______.21.一次函数32y x =-+的图象一定不经过第______象限.22.等腰三角形的顶角为76°,则底角等于__________.23.小明体重约为62.36千克,如果精确到0.1千克,其结果为____千克.24.如图,等边三角形的顶点A (1,1)、B (3,1),规定把等边△ABC “先沿y 轴翻折,再向下平移1个单位”为一次变换,如果这样连续经过2020次变换后,等边△ABC 的顶点C 的坐标为____.25.点P (3,-4)到 x 轴的距离是_____________.三、解答题26.如图,在ABC ∆中,AB AC =,ABC ∆的高BH ,CM 交于点P .(1)求证:PB PC =.(2)若5PB =,3PH =,求AB .27.(问题背景)如图,在平面直角坐标系xOy 中,点A 的坐标是(0,1),点C 是x 轴上的一个动点.当点C 在x 轴上移动时,始终保持ACP ∆是等腰直角三角形,且90CAP ∠=︒(点A 、C 、P 按逆时针方向排列);当点C 移动到点O 时,得到等腰直角三角形AOB (此时点P 与点B 重合). (初步探究)(1)写出点B 的坐标______.(2)点C 在x 轴上移动过程中,当等腰直角三角形ACP 的顶点P 在第四象限时,连接BP . 求证:AOC ABP ∆∆≌;(深入探究)(3)当点C 在x 轴上移动时,点P 也随之运动.经过探究发现,点P 的横坐标总保持不变,请直接写出点P 的横坐标:______.(拓展延伸)(4)点C 在x 轴上移动过程中,当POB ∆为等腰三角形时,直接写出此时点C 的坐标.备用图28.已知:如图,点E 在ABC ∆的边AC 上,且AEB ABC ∠=∠.(1)求证:ABE C ∠=∠;(2)若BAE ∠的平分线AF 交BE 于点F ,FD BC 交AC 于点D ,设8AB =,10AC =,求DC 的长.29.老师在黑板上写了一个代数式的正确计算结果,随后用“黑板擦”遮住原代数式的一部分,如图:232222x x x x x +⎫-÷=⎪-+-⎭ (1)求被“黑板擦”遮住部分的代数式,并将其化简;(2)原代数式的值能等于1-吗?请说明理由.30.如图,矩形ABCD 中,6AB =,8AD =,点P 从点A 出发,以每秒一个单位的速度沿A B C →→的方向运动;同时点Q 从点B 出发,以每秒2个单位的速度沿B C D →→的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t 秒.(1)当t=______时,两点停止运动;∆是等腰三角形?(2)当t为何值时,BPQ31.已知甲,乙两名自行车骑手均从P地出发,骑车前往距P地60千米的Q地,当乙骑手出发了1.5小时,此时甲,乙两名骑手相距6千米,因甲骑手接到紧急任务,故甲到达Q地后立即又原路返回P地甲,乙两名骑手距P地的路程y(千米)与时间x(时)的函数图象如图所示.(其中折线O﹣A﹣B﹣C﹣D(实线)表示甲,折线O﹣E﹣F﹣G(虚线)表示乙)(1)甲骑手在路上停留小时,甲从Q地返回P地时的骑车速度为千米/时;(2)求乙从P地到Q地骑车过程中(即线段EF)距P地的路程y(千米)与时间x(时)的函数关系式及自变量x的取值范围;(3)在乙骑手出发后,且在甲,乙两人相遇前,求时间x(时)的值为多少时,甲,乙两骑手相距8千米.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.如图所示:点A的对应点A2的坐标是:(2,﹣3).故选B.2.B解析:B【解析】【分析】延长AO交BC于D,根据垂直平分线的性质可得到AO=BO=CO,再根据等边对等角的性质得到∠OAB=∠OBA,∠OAC=∠OCA,再由三角形的外角性质可求得∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA,从而不难求得∠BOC的度数.【详解】延长AO交BC于D.∵点O在AB的垂直平分线上.∴AO=BO.同理:AO=CO.∴∠OAB=∠OBA,∠OAC=∠OCA.∵∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA.∴∠BOD=2∠OAB,∠COD=2∠OAC.∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2(∠OAB+∠OAC)=2∠BAC.∵∠A=50°.∴∠BOC=100°.故选:B.【点睛】此题主要考查:(1)线段垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等.(2)三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.解析:B【解析】【分析】根据无理数的定义解答即可.【详解】227,0.101001是有理数; 3π,3是无理数.故选B.【点睛】本题考查了无理数的识别,无限不循环小数叫无理数,初中范围内常见的无理数有三类:①π类,如2π,3等;②开方开不尽的数,如2,35等;③虽有规律但却是无限不循环的小数,如0.1010010001…(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1)等.4.B解析:B【解析】【分析】直接利用全等三角形的性质得出∠1=∠2进而得出答案.【详解】∵如图是两个全等三角形,∴∠1=∠2=180°−40°−62°=78°.故选:B .【点睛】此题主要考查了全等三角形的性质,正确得出对应角是解题关键.5.C解析:C【解析】试题分析:直线y=﹣5x+3与y 轴交于点(0,3),因为k=-5,所以直线自左向右呈下降趋势,所以直线过第一、二、四象限.考点:一次函数的图象和性质.6.D解析:D【解析】【分析】根据最简二次根式的定义即可求出答案.【详解】解:(A)原式=,故A不符合题意;(B)原式=6,故B不符合题意;(C)ab是分式,故C不符合题意;故选:D.【点睛】本题考查最简二次根式,解题的关键是熟练运用最简二次根式的定义,本题属于基础题型.7.D解析:D【解析】试题分析:A.是轴对称图形,故本选项错误;B.是轴对称图形,故本选项错误;C.是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项正确.故选D.考点:轴对称图形.8.B解析:B【解析】【分析】A、根据比值结合勾股定理的逆定理即可判断出三角形的形状;B、根据角的比值求出各角的度数,便可判断出三角形的形状;C、根据三角形的内角和为180度,即可计算出∠C的值;D、根据比值结合勾股定理的逆定理即可判断出三角形的形状.【详解】A、因为a:b:c=3:4:5,所以设a=3x,b=4x,c=5x,则(3x)2+(4x)2=(5x)2,故为直角三角形,故A选项不符合题意;B、因为∠A:∠B:∠C=3:4:5,所以设∠A=3x,则∠B=4x,∠C=5x,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形,故B选项符合题意;C、因为∠A+∠B=∠C,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形,故C选项不符合题意;D、因为a:b:c=1:2:3,所以设a=x,b=2x,c=3x,则x2+(3x)2=(2x)2,故为直角三角形,故D选项不符合题意,故选B.【点睛】本题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.9.D解析:D【解析】分析:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,利用轴对称的性质得MP=MC,NP=ND,OP=OD=OC=3,∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.详解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=3,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+MC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=12OC=3,CH=3OH=3 2 ,∴CD=2CH=3.故选D.点睛:本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.10.D解析:D【解析】【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:点()3,2P -关于x 轴对称的点的坐标为()3,2--.故选:D .【点睛】本题考查坐标与图形变化——轴对称.熟记①关于x 轴对称的点,横坐标相同,纵坐标互为相反数;②关于y 轴对称的点,纵坐标相同,横坐标互为相反数.是解决此题的关键.11.D解析:D【解析】【分析】根据平方根和算术平方根的定义解答即可.【详解】A 、(﹣3)2的平方根是±3,故该项错误;B 4,故该项错误;C 、1的平方根是±1,故该项错误;D 、4的算术平方根是2,故该项正确.故选D.【点睛】本题考查了平方根、算术平方根的定义,解决本题的关键是熟记平方根、算术平方根的定义.12.C解析:C【解析】【分析】先根据勾股定理求出EC 的长,进而可得出OE 的长,在Rt △DOE 中,由DE=AD 及勾股定理可求出AD 的长.【详解】解:根据各点坐标可得AB=OC=BE=5,AO=BC=3,设AD=x ,则DE=x ,DO=3-x∴=4,∴OE=1,在Rt △DOE 中,DO 2+OE 2=DE 2,解得x=53,∴AD=53,故选C.【点睛】本题考查了勾股定理的应用,找准直角三角形,设出未知数列出方程即可解答.13.B解析:B【解析】【分析】利用判断三角形全等的方法判断即可得出结论.【详解】A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,故选B.【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.14.D解析:D【解析】【分析】根据全等三角形的判定定理,等腰三角形的性质,三角形的内角和判断即可.【详解】解:A:如果40︒的角是底角,则顶角等于100︒,故三角形是钝角三角形,此选项错误;B、当两条中线为两腰上的中线时,可知两条中线相等,当两条中线一条为腰上的中线,一条为底边上的中线时,则这两条中线不一定相等,∴等腰三角形的两条中线不一定相等,此选项错误;C、如图,△ABC和△ABD中,AB=AC=AD,CD∥AB,DG是△ABD 的AB边高,CH是是△ABC 的AB边高,则DG=CH,但△ABC和△ABD不全等;故此选项错误;D、三角形的三个内角的角平分线交于一点,该点叫做三角形的内心.内心到三边的距离相等.故此选项正确;故选:D.【点睛】本题考查了全等三角形的判定,等腰三角形的性质,三角形的内角和,熟练掌握各知识点是解题的关键.15.B解析:B【解析】【分析】由等边三角形的性质及已知条件可证BD=DE,可知BC长及BD⊥AC,在Rt△BDC中,由勾股定理得BD长,易知DE长.【详解】解:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,AB=BC,∵BD为中线,∴∠DBC=12∠ABC=30°,∵CD=CE,∴∠E=∠CDE,∵∠E+∠CDE=∠ACB,∴∠E=30°=∠DBC,∴BD=DE,∵BD是AC中线,CD=1,∴AD=CD=1,∵△ABC是等边三角形,∴BC=AC=1+1=2,且BD⊥AC,在Rt△BDC中,由勾股定理得:BD==即DE=BD故选:B.【点睛】本题主要考查了等边三角形的性质,灵活利用等边三角形三线合一及三个角都是60度的性质是解题的关键.二、填空题16.【解析】【分析】根据全等三角形的性质可得∠BAC=∠CAD,再根据三角形的内角和等于180°求出∠BAC的度数,即可得出结论.【详解】∵△ABC≌△ADC,∴∠BAC=∠CAD.∵∠B解析:120【解析】【分析】根据全等三角形的性质可得∠BAC=∠CAD,再根据三角形的内角和等于180°求出∠BAC的度数,即可得出结论.【详解】∵△ABC≌△ADC,∴∠BAC=∠CAD.∵∠BCA=40°,∠B=80°,∴∠BAC=180°﹣∠BCA﹣∠B=180°﹣40°﹣80°=60°,∴∠BAD=∠BAC+∠CAD=2∠BAC=2×60°=120°.故答案为:120°.【点睛】本题考查了全等三角形的性质以及三角形内角和定理.掌握全等三角形的性质以及三角形内角和定理是解答本题的关键.17.y=-2x-4【解析】【分析】两个一次函数的图象平行,则一次项系数一定相同,则解析式即可求得.【详解】解:∵函数y=kx-4的图象平行于直线y=-2x,∴k=-2,函数的表达式为y=-2解析:y=-2x-4【解析】【分析】两个一次函数的图象平行,则一次项系数一定相同,则解析式即可求得.【详解】解:∵函数y=kx-4的图象平行于直线y=-2x,∴k=-2,函数的表达式为y=-2x-4.故答案为:y=-2x-4.【点睛】本题考查了两条直线平行的问题,一次函数平行系数的特点是解题的关键.18.3【解析】根据无理数的定义进行判断.【详解】解:根据无理数的定义可知,,0.454454445…,为无理数,共3个.故答案为:3.【点睛】本题考查了无理数.解题的关键是掌握无解析:3【解析】【分析】根据无理数的定义进行判断.【详解】解:根据无理数的定义可知,2π,0.4544544453个. 故答案为:3.【点睛】本题考查了无理数.解题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数. 19.5×108【解析】试题解析:将149480000用科学记数法表示为:1.4948×108≈1.5×108. 故答案为:1.5×108.点睛:科学记数法的表示形式为的形式,其中 为整数.解析:5×108【解析】试题解析:将149480000用科学记数法表示为:1.4948×108≈1.5×108.故答案为:1.5×108.点睛:科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<, n 为整数. 20.(−2,3)【解析】【分析】平面直角坐标系中任意一点P (x ,y ),关于y 轴的对称点的坐标是(−x ,y ),即关于y 轴的对称点,纵坐标不变,横坐标变成相反数.【详解】解:点(2,3)关于y 轴对解析:(−2,3)【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(−x,y),即关于y 轴的对称点,纵坐标不变,横坐标变成相反数.【详解】解:点(2,3)关于y轴对称的点的坐标是(−2,3),故答案为(−2,3).【点睛】本题主要考查了平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数,关于x轴对称的点,横坐标相同,纵坐标互为相反数.21.三【解析】【分析】根据一次函数的解析式中的k、b的符号,确定函数图象的位置,即可确定其不经过的象限;【详解】解:在一次函数y=-3x+2中,∵b=2>0,∴函数图象经过y轴的正半轴,解析:三【解析】【分析】根据一次函数的解析式中的k、b的符号,确定函数图象的位置,即可确定其不经过的象限;【详解】解:在一次函数y=-3x+2中,∵b=2>0,∴函数图象经过y轴的正半轴,k=-3<0,∴y随x的增大而减小,∴函数的图象经过第一、二、四象限,∴不经过第三象限.故答案为:三.【点睛】本题考查了一次函数的性质. 解题时可根据解析式中的k、b的值的正负作出草图,从而很容易判断函数经过(或不经过)那一象限.22.52°【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可. 【详解】解:∵等腰三角形的顶角为76°,∴底角为:,故答案为:52°.【点睛】本题考查了等腰三角形性解析:52°【解析】【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可.【详解】解:∵等腰三角形的顶角为76°,∴底角为:11=104=52 22⨯︒︒⨯︒︒(180-76),故答案为:52°.【点睛】本题考查了等腰三角形性质,以及三角形内角和定理,解题的关键是掌握等腰三角形等边对等角计算角度.23.4.【解析】【分析】把百分位上的数字6进行四舍五入即可.【详解】62.36千克精确到0.1千克为62.4千克.故答案为:62.4.【点睛】本题考查了近似数和有效数字:近似数与精确数的解析:4.【解析】【分析】把百分位上的数字6进行四舍五入即可.【详解】62.36千克精确到0.1千克为62.4千克.故答案为:62.4.本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.24.(2,).【解析】【分析】据轴对称判断出点C变换后在y轴的右侧,根据平移的距离求出点C变换后的纵坐标,最后写出即可.【详解】∵△ABC是等边三角形,AB=3﹣1=2,∴点C到y轴的距离为解析:(22019).【解析】【分析】据轴对称判断出点C变换后在y轴的右侧,根据平移的距离求出点C变换后的纵坐标,最后写出即可.【详解】∵△ABC是等边三角形,AB=3﹣1=2,∴点C到y轴的距离为1+2×1=2,点C到AB,2∴C(2,把等边△ABC先沿y轴翻折,得C’(-2,再向下平移1个单位得C’’( -2故经过一次变换后,横坐标变为相反数,纵坐标减1,故第2020次变换后的三角形在y轴右侧,点C的横坐标为2,+1﹣﹣2019,所以,点C的对应点C'的坐标是(22019).故答案为:(22019).【点睛】本题考查了坐标与图形变化−平移,等边三角形的性质,读懂题目信息,确定出连续2020次这样的变换得到三角形在y轴右侧是解题的关键.25.4【解析】试题解析:根据点与坐标系的关系知,点到x轴的距离为点的纵坐标的绝对值,故点P(3,﹣4)到x轴的距离是4.【解析】试题解析:根据点与坐标系的关系知,点到x 轴的距离为点的纵坐标的绝对值,故点P (3,﹣4)到x 轴的距离是4.三、解答题26.(1)证明见解析;(2)10【解析】【分析】(1)利用AAS 定理证明MBC HCB ∆∆≌,从而求得PBC PCB ∠=∠,使问题得解;(2)利用勾股定理求HC 的长度,然后在ABH ∆中,设设AB AC x ==,则()4AH x =-,利用勾股定理列方程求解.【详解】证明:(1)∵AB AC =∴A ABC CB =∠∠∵BH 、CM 为ABC ∆的高∴90BMC CHB ∠=∠=︒又∵BC CB =(公共边)∴MBC HCB ∆∆≌(AAS )∴PBC PCB ∠=∠,∴PB PC =(2)∵5PC PB ==,3PH =,∴在Rt △PCH 中,4HC =,8BH =设AB AC x ==,则()4AH x =-,ABH ∆中由勾股定理可得方程:222AB AH BH =+,即()22248x x =-+解方程得:10x =∴10AB =【点睛】本题考查全等三角形的判定及勾股定理的应用,数形结合思想解题,正确列出方程是本题的解题关键.27.(1)(1,1);(2)证明见解析;(3)1;(4)(2,0)(--.【解析】【分析】根据等腰直角三角形的性质,OA=AB ,题干中已知A 点坐标,即可求得OB 的长度,表示出B 点坐标即可.根据等腰直角三角形的性质得到90CAP OAB ︒∠=∠=,再根据等角的余角相等,得出角12∠=∠,最后利用三角形全等的判定方法进行判定即可.根据(2)的结论△ABP也为直角三角形,且AB垂直BP,且AB=OB=1,即可得出P点的横坐标.先根据题意,确定B点、A点坐标,设出P点和C点坐标,分情况进行讨论,当OP=OB 时,当OB=BP时,当OP=BP时,分别利用两点间距离公式求出点P点的坐标,然后分别算出AP的长,最后利用AP=AC计算出A点坐标即可.【详解】解:(1)∵点A的坐标为(0,1)△OAB是等腰直角三角形,且OA=AB,OA⊥BA∴B点坐标为(1,1).(2)证明:在等腰直角三角形ACP中,AC AP=,90CAP∠=︒在等腰直角三角形AOB中,AO AB=,90OAB∠=︒90CAP OAB︒∠=∠=CAP OAP OAB OAP∴∠-∠=∠-∠12∠∠∴=在AOC∆和ABP∆中2AC APAO AB=⎧⎪∠=∠⎨⎪=⎩()AOC ABP SAS∴∆∆≌(3)AOC ABP∆∆≌(已证)∴∠ABP=90°∴PB垂直AB,P点在过B点且垂直与AB的垂线上,∵点B的坐标为(1,1)∴P点的横坐标为1.(4)由题意和(1)可知()01(11)A B,,,,设P(1,y),C(x,0),当OB=OP()()221-1+12y-=解得:21y=或21y=+,则AP ==AP ==解得:x =所以C 点坐标为(0)同理当OB=OP 时,可得C 点坐标为(-2,0)当BP=OP 时,可得C 点坐标为(-1,0)故答案为:(2,0)(--【点睛】本题考查了等腰三角形的性质,三角形全的的判定方法,计算两点间距离,动点问题,解决本题的关键是熟练掌握等腰三角形的性质,能够得到相等的线段和角,动点问题要注意分类进行讨论,根据情况确定答案.28.(1)详见解析;(2)2.【解析】【分析】(1)在三角形ABE 与三角形ABC 中,由一对公共角相等,以及已知角相等,利用内角和定理即可得证;(2)由FD 与BC 平行,得到一对同位角相等,再由第一问的结论等量代换得到一对角相等,根据AF 为角平分线得到一对角相等,再由AF=AF ,利用ASA 得到三角形ABE 与三角形ADF 全等,利用全等三角形对应边相等得到AB=AD ,由AC-AD 求出DC 的长即可.【详解】(1)证明:在ABE ∆中,180ABE BAE AEB ∠=-∠-∠︒,在ABC ∆中,180C BAC ABC ∠=︒-∠-∠,∵AEB ABC ∠=∠,BAE BAC ∠=∠,∴ABE C ∠=∠;(2)解:∵FD BC ,∴ADF C =∠∠,又ABE C ∠=∠,∴ABE ADF ∠=∠,∵AF 平分BAE ∠,∴BAF DAF ∠=∠,在ABE ∆和ADF ∆中,ABE ADF AF AFBAF DAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ABE ADF ASA ∆∆≌, ∴AB AD =,∵8AB =,10AC =,∴1082DC AC AD =-=-=.【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.29.(1)232x x --;(2)原代数式的值不能等于1-;理由详见解析 【解析】【分析】 (1)设被遮住的部分为A ,进而通过分式的化简即可得解;(2)令212x x +=--,求得x 的值,进行判断即可的解. 【详解】 (1)设被遮住的部分为A ,即232()222x x A x x x +-÷=-+- ∴2232323+=222222x x x x A x x x x x x +-=⋅-=-+----; (2)令212x x +=--,解得0x =,当0x =时,02x x =+ ∵除数不能为0∴原代数式的值不能等于1-. 【点睛】本题主要考查了分式的化简及分式的意义,熟练掌握分式的相关计算是解决本题的关键.30.(1)7秒;(2)当t 为2秒或225秒时,BPQ ∆是等腰三角形. 【解析】【分析】(1)分别计算P 、Q 到达终点的时间,根据当其中一点到达终点后两点都停止运动,取时间较短的;(2)分三种情况讨论,利用等腰三角形的定义可求解.【详解】解:(1)∵四边形ABCD 为矩形,6AB =,8AD =,∴6DC AB ==,8BC AD ==,∴点P 运动到终点所需(6+8)÷1=14秒,Q 运动到终点所需(6+8)÷2=7秒,∴当t =7时,两点停止运动;(2)①当t ≤4时,P 点在线段AB 上,Q 点在线段BC 上时,若Rt BPQ ∆是等腰三角形,则BP=BQ,即6-t=2t ,解得t=2秒;②当P 点在线段AB 上,Q 点在线段CD 上时,此时4<t≤6,如下图,若BPQ∆是等腰三角形,则PQ=BQ,此时作PE⊥DC,∵四边形ABCD为矩形,∴∠C=∠ABC=90°,∴四边形BCEP为矩形,∴EC=PB=6-t,EP=BC,∵PQ=BQ,∴Rt△EPQ≌Rt△CBQ(HL),∴EQ=QC,即6282tt-=-,解得225t=,③当P点在线段BC上,Q点在线段CD上时,此时6<t≤7如下图,BP=t-6,QC=2t-8,∵当6<t≤7时,QC-BP=2t-8-(t-6)=t-2>0,∴BQ>QP>QC>BP,BPQ∆不可能是等腰三角形,综上所述,当t为2秒或225秒时,BPQ∆是等腰三角形.【点睛】本题考查矩形的性质和判定,全等三角形的性质和判定,一元一次方程的应用,等腰三角形的定义.掌握方程思想和分类讨论思想是解决此题的关键.31.(1)1小时,30千米/时;(2)y=24x﹣24(1≤x≤3.5);(3)x=17 3 27【解析】【分析】(1)根据题意结合图象解答即可;(2)求出乙的速度,再利用待定系数法解答即可;(3)根据(2)的结论列方程解答即可.【详解】(1)由图象可知,甲骑手在路上停留1小时,甲从Q地返回P地时的骑车速度为:60÷(6﹣4)=30(千米/时),故答案为:1;30.(2)甲从P地到Q地的速度为20(千米/时),所以乙的速度为:(6+1.5×20)÷1.5=24(千米/时),60÷24=2.5(小时),设乙从P地到Q地骑车过程中(即线段EF)距P地的路程y(千米)与时间x(时)的函数关系式为y=24x+b,则24+b=0,解得b=﹣24.∴乙从P地到Q地骑车过程中(即线段EF)距P地的路程y(千米)与时间x(时)的函数关系式为y=24x﹣24(1≤x≤3.5).(3)根据题意得,30(x﹣4)+(24x﹣24)=60﹣8,解得x=17327.答:乙两人相遇前,当时间x=17327时,甲,乙两骑手相距8千米.【点睛】此题考查了一次函数与一元一次方程的综合运用,熟练掌握,即可解题.。
【苏科版】数学八年级上册《期末考试试卷》(附答案)
2020-2021学年度第一学期期末测试苏科版八年级数学试题一、选择题(本大题共8小题,每小题3分,共计24分.在每小题所给的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1.下列图形既是轴对称图形又是中心对称图形的是()A. AB. BC. CD. D2. 用四舍五入法按要求对0.05049分别取近似值,其中错误的是()A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050(精确到0.001)3.下列四组线段中,不能组成直角三角形的是()A. a=3,b=4,c=5B. a=2,b=3,c=5C. a=3,b=4,c=7D. a=1,b=2,c=34.在△ABC和△DEF中,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,AC=DF;④∠A=∠D,∠B=∠E,∠C=∠F.其中,能使△ABC≌△DEF的条件共有()A. 1组B. 2组C. 3组D. 4组5.已知点P关于y轴的对称点P1的坐标是(2,3),则点P坐标是()A. (-3,-2)B. (-2,3)C. (2,-3)D. (3,-2)6. 如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=2,O为AC中点,若点D在直线BC上运动,连接OE,则在点D运动过程中,线段OE的最小值是为()A.12B.22C. 1D. 27.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A. y=-xB. y=-34x C. y=-35x D. y=-910x8.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE,其中正确结论有()个.A. 2B. 3C. 4D. 5二、填空题(本大题共10小题,每小题3分,共计30分,不需写出解答过程,请把正确答案直接写在答题卡相应的位置上)9.25的算术平方根是_______.10.若a,b为实数,且满足2a 2b=0,则b-a 的值为.11.一个角的对称轴是它的.12.点(﹣1,y1)、(2,y2)是直线y=﹣2x+1上的两点,则y1_____y2(填“>”或“=”或“<”).13.已知等腰三角形的周长为20,若其中一边长为4,则另外两边的长分别为.14.直线y=2x-1沿y轴平移3个单位长度,平移后直线与x轴的交点坐标为.15.如图,直线y=﹣43x+8与x轴,y轴分别交于点A和B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的解析式为______________.16.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是.17. 无论a取什么实数,点P(a-1,2a-3)都在直线l上,Q(m,n)是直线l上的点,则(2m-n+3)2的值等于▲.18.小明尝试着将矩形纸片ABCD(如图①,AD>CD)沿过A点的直线折叠,使得B点落在AD边上的点F处,折痕为AE(如图②);再沿过D点的直线折叠,使得C点落在DA边上的点N处,E点落在AE边上的点M 处,折痕为DG(如图③).如果第二次折叠后,M点正好在∠NDG的平分线上,那么矩形ABCD长与宽的比值为.三、解答题(本大题共10小题,19—22题每题8分,23-26每题10分,27-28每题12分,共计96分,请在答题卡指定区域内作答,解答时应写出必要的演算步骤、证明过程或文字说明)19.计算:23--+.(2)81620.如图,点D、B AF上,AD=FB,AC=EF,∠ A=∠ F.求证:∠ C= ∠ E.21.在平面直角坐标系中有点M(m,2m+3).(1)若点M在x轴上,求m的值;(2)点M 在第二、四象限的角平分线上,求m 的值.22.如图是规格为8×8的正方形网格,请在所给网格中按下列要求操作:⑴ 请在网格中建立平面直角坐标系, 使A 点坐标为(2,4),B 点坐标为(4,2);⑵ 请在(1)中建立的平面直角坐标系的第一象限内的格点上确定点C ,使点C 与线段AB 组成一个以AB 为底的等腰三角形, 且腰长是无理数, 则C 点坐标是 ,△ABC 的周长是 (结果保留根号);⑶ 以(2)中△ABC 的点C 为旋转中心、旋转180°后的△A ′B ′C , 连结AB ′和A ′B , 试说出四边形ABA ′B ′是何特殊四边形, 并说明理由.23.如图所示是一个正比例函数与一个一次函数的图象,它们交于点A (4,3),一次函数的图象与y 轴交于点B ,且OA=OB.(1)求这两个函数的解析式;(2)当x 取何值时,一次函数的值大于正比例函数的值?24.如图,已知一架竹梯AB 斜靠在墙角MON 处,竹梯AB=13m ,梯子底端离墙角的距离BO=5m .(1) 求这个梯子顶端A 与地面的距离.(2) 如果梯子顶端A 下滑4m 到点C ,那么梯子的底部B 在水平方向上滑动的距离BD=4m 吗? 为什么? 25.小丽的家和学校在一条笔直的马路旁,某天小丽沿着这条马路去上学,她先从家步行到公交站台甲,再乘车到公交站台乙下车,最后步行到学校(在整个过程中小丽步行的速度不变),图中的折线ABCDE 表示小丽和学校之间的距离y(米)与她离家的时间x(分)之间的函数关系.(1)求小丽步行的速度及学校与公交站台乙之间的距离;(2)当8≤x≤15时,求y 与x 之间的函数解析式.26.已知,如图,O 为坐标原点,四边形OABC 为矩形,A (10,0),C (0,4),点D 是OA 的中点,点P 在边BC 上以每秒1个单位长的速度由点C 向点B 运动.(1)当t 为何值时,CP =OD ?(2)当△OPD 为等腰三角形时,写出点P 的坐标(请直接写出答案,不必写过程).(3)在线段PB 上是否存在一点Q ,使得四边形ODQP 为菱形?若存在,求t 的值,并求出Q 点的坐标;若不存在,请说明理由.27.某公司有A 产品40件,B 产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润 (元) 如下表所示:A 产品的利润/元B 产品的利润/元 甲店200 170 乙店160 150(1) 设分配给甲店A产品x件,这家公司卖出这100件产品的总利润为W (元),求W关于x的函数关系式,并求出x的取值范围;(2) 若要求总利润不低于17560元;有多少种不同的分配方案? 并将各种方案设计出来;(3) 为了促销,公司决定仅对甲店A产品让利销售,每件让利a元,但让利后A产品的每件利润仍高于甲店B产品的每件利润.甲店的B产品以及乙店的A,B产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?28.如图,在平行四边形ABCD中,AB=2,AD=4,M是AD的中点,点E是线段AB上一动点(可以运动到点A和点B),连接EM并延长交线段CD的延长线于点F.(1) 如图1,①求证:AE=DF;②若EM=3,∠FEA=45°,过点M作MG⊥EF交线段BC于点G,请直接写出△GEF的的形状,并求出点F到AB边的距离;(2)改变平行四边形ABCD中∠B的度数,当∠B=90°时,可得到矩形ABCD(如图2),请判断△GEF 的形状,并说明理由;(3)在(2)动的过程中,请直接写出△EPG的面积S的范围.的条件下,取MG中点P,连接EP,点P随着点E的运动而运动,当点E在线段AB上运答案与解析一、选择题(本大题共8小题,每小题3分,共计24分.在每小题所给的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1.下列图形既是轴对称图形又是中心对称图形的是()A. AB. BC. CD. D【答案】A【解析】A选项中的图形既是轴对称图形,又是中心对称图形,所以可以选A;B选项中的图形既不是轴对称图形,又不是中心对称图形,所以不能选B;C选项中的图形既不是轴对称图形,又不是中心对称图形,所以不能选C;D选项中的图形是轴对称图形,但不是中心对称图形,所以不能选D;故选A.2. 用四舍五入法按要求对0.05049分别取近似值,其中错误的是()A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050(精确到0.001)【答案】C【解析】根据近似数与有效数字的概念对四个选项进行逐一分析即可.解答:解:A、0.05049精确到0.1应保留一个有效数字,故是0.1,故本选项正确;B、0.05049精确到百分位应保留一个有效数字,故是0.05,故本选项正确;C、0.05049精确到千分位应是0.050,故本选项错误;D、0.05049精确到0.001应是0.050,故本选项正确.故选C.3.下列四组线段中,不能组成直角三角形的是()A. a=3,b=4,c=5B. 2,3,5C. a=3,b=4,7D. a=1,2,c=3【答案】D【解析】A 选项中,因为22225a b c +==,所以A 中三条线段能组成直角三角形;B 选项中,因为2225a b c +==,所以B 中三条线段能组成直角三角形;C 选项中,因为22216a c b +==,所以C 中三条线段能组成直角三角形;D 选项中,因为22239a b c +=≠=,所以D 中三条线段不能组成直角三角形;故选D.4.在△ABC 和△DEF 中,给出下列四组条件:①AB=DE ,BC=EF ,AC=DF ;②AB=DE ,∠B=∠E ,BC=EF ;③∠B=∠E ,BC=EF ,AC=DF ;④∠A=∠D ,∠B=∠E ,∠C=∠F .其中,能使△ABC ≌ △DEF 的条件共有( )A. 1组B. 2组C. 3组D. 4组【答案】B【解析】试题分析:要使△ABC ≌△DEF 的条件必须满足SSS 、SAS 、ASA 、AAS ,可据此进行判断.解:第①组满足SSS ,能证明△ABC ≌△DEF .第②组满足SAS ,能证明△ABC ≌△DEF .第③组满足ASS ,不能证明△ABC ≌△DEF .第④组只是AAA ,不能证明△ABC ≌△DEF .所以有2组能证明△ABC ≌△DEF .故选B .考点:全等三角形的判定.5.已知点P 关于y 轴的对称点P 1的坐标是(2,3),则点P 坐标是( )A. (-3,-2)B. (-2,3)C. (2,-3)D. (3,-2) 【答案】B【解析】试题解析:∵P 关于y 轴的对称点P 1的坐标是(2,3),∴点P 坐标是:(−2,3).故选B.点睛:关于y 轴的对称点的坐标特征:纵坐标不变,横坐标互为相反数.6.如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=2,O为AC中点,若点D在直线BC上运动,连接OE,则在点D运动过程中,线段OE的最小值是为()A. 1 2B.22C. 1D. 2【答案】B【解析】试题解析:设Q是AB的中点,连接DQ,∵∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,∵AB=AC=2,O为AC中点,∴AQ=AO,在△AQD和△AOE中,{AQ AOQAD OAEAD AC=∠=∠=,∴△AQD≌△AOE(SAS),∴QD=OE,∵点D在直线BC上运动,∴当QD⊥BC时,QD最小,∵△ABC是等腰直角三角形,∴∠B=45°,∵QD⊥BC,∴△QBD是等腰直角三角形,∴QD=22QB,∵QB=12AB=1,∴QD=22,∴线段OE的最小值是为22.故选B.考点:1.全等三角形的判定与性质;2.等腰直角三角形.7.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A. y=-xB. y=-34x C. y=-35x D. y=-910x【答案】D【解析】试题分析:设直线l和八个正方形的最上面交点为A,过A作AB⊥OB于B,B过A作AC⊥OC于C,易知OB=3,利用三角形的面积公式和已知条件求出A的坐标即可得到该直线l的解析式.解:设直线l和八个正方形的最上面交点为A,过A作AB⊥OB于B,B过A作AC⊥OC于C,∵正方形的边长为1,∴OB=3,∵经过原点的一条直线l将这八个正方形分成面积相等的两部分,∴S△AOB=4+1=5,∴OB•AB=5,∴AB=,∴OC=,由此可知直线l经过(﹣,3),设直线方程为y=kx,则3=﹣k,k=﹣,∴直线l解析式为y=﹣x,故选D.考点:待定系数法求一次函数解析式;正方形的性质.8.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE,其中正确结论有()个.A. 2B. 3C. 4D. 5【答案】C【解析】∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,AE =AF,AB=AD,∴Rt△ABE≌Rt△ADF(HL).∴BE=DF.故结论①正确.由Rt△ABE≌Rt△ADF得,∠BAE=∠DAF,∴∠DAF+∠DAF=30°.即∠DAF=15°.故结论②正确.∵BC=CD,∴BC-BE=CD-DF,CE=CF.∵AE=AF ,∴AC 垂直平分EF .故结论③正确.设EC=x ,由勾股定理,得,CG=x 2,AG=x 2, ∴x .∴.∴x x x -=. ∴BE+DF)1x =-≠.故结论④错误. ∵2CEF x S 2∆=,2ABE x 22S 24∆==, ∴2ABE CEF x 2S S 2∆∆==.故结论⑤正确. 综上所述,正确的有4个,故选C .二、填空题(本大题共10小题,每小题3分,共计30分,不需写出解答过程,请把正确答案直接写在答题卡相应的位置上)9.25的算术平方根是 _______ .【答案】5【解析】试题分析:根据算术平方根的定义即可求出结果,算术平方根只有一个正根.∵52=25, ∴25的算术平方根是5.考点:算术平方根.10.若a ,b 为实数,且满足2a +=0,则b -a 的值为 .【答案】2【解析】∵a ,b 实数,且满足2a +=0,∴2200a b +=⎧⎨=⎩ ,解得:20a b =-⎧⎨=⎩, ∴0(2)2b a -=--=.故答案为:2.11.一个角的对称轴是它的 .【答案】角平分线所在的直线【解析】一个角的对称轴是它的“角平分线所在的直线”.故答案为角平分线所在的直线.12.点(﹣1,y1)、(2,y2)是直线y=﹣2x+1上的两点,则y1_____y2(填“>”或“=”或“<”).【答案】>.【解析】【分析】根据一次函数的增减性进行填空.【详解】解:∵直线y=﹣2x+1中的﹣2<0,∴该直线是y随x的增大而减小.∵点(﹣1,y1,),(2,y2)都在直线y=﹣2x++上,且﹣1<2,∴y1>y2.故答案是:>.【点睛】本题考查一次函数图象上点的坐标特征.13.已知等腰三角形的周长为20,若其中一边长为4,则另外两边的长分别为.【答案】8,8【解析】(1)设长为4的边是腰,则由题意可得:该等腰三角形的底边长为:20-4-4=12,∵4+4<12,∴长为:4,4,12的三条线段围不成三角形,即这种情况不成立;(2)设长为4的边是底边,则由题意可得:该等腰三角形的腰长为:(20-4)÷2=8,∵4+8>8,∴长为8,8,4的三条线段能围成三角形,∴该三角形另外两边长分别为:8,8.综上所述,该三角形的另两边长分别为:8,8.点睛:解这种已知等腰三角形的周长和一边,求另外两边长的问题需注意两点:(1)要分已知边是腰和底两种情况讨论,不要忽略了其中任何一种;(2)分情况讨论后,需对解得的结果用三角形三边间的关系进行检验,看能否围成三角形,再作结论.14.直线y=2x-1沿y轴平移3个单位长度,平移后直线与x轴的交点坐标为.【答案】(-1,0),(2,0)【解析】(1)若将直线21y x =-沿y 轴向上平移3个单位,则平移后所得直线的解析式为:22y x =+, 在22y x =+中,由0y =可得:220x +=,解得:1x =-,∴平移后的直线与x 轴的交点坐标为:(1?0)-,; (2)若将直线21y x =-沿y 轴向下平移3个单位,则平移后所得直线的解析式为:24y x =-, 在24y x =-中,由0y =可得:240x -=,解得:2x =,∴平移后的直线与x 轴的交点坐标为:(2 0),; 综上所述,平移后的直线与x 轴的交点坐标为:(1?0)-,或(2 0),. 15.如图,直线y=﹣43x+8与x 轴,y 轴分别交于点A 和B ,M 是OB 上的一点,若将△ABM 沿AM 折叠,点B 恰好落在x 轴上的点B′处,则直线AM 的解析式为______________.【答案】y=-0.5x+3【解析】此题首先分别求出A ,B 两个点的坐标,得到OA ,OB 的长度,再根据勾股定理求出AB ,再求出OB′,然后根据已知得到BM=B′M ,设BM=x ,在Rt △B′OM 中利用勾股定理求出x ,这样可以求出OM ,从而求出了M 的坐标,最后用待定系数法求直线的解析式.解:当x=0时,y=8;当y=0时,x=6,∴OA=6,OB=8,∴AB=10,根据已知得到BM=B'M ,AB'=AB=10,∴OB'=4,设BM=x ,则B'M=x ,OM=8﹣x ,在直角△B'MO 中,x 2=(8﹣x )2+42,∴x=5,∴OM=3,∴M (0,3),设直线AM 的解析式为y=kx+b ,把M (0,3),A (6,0)代入其中得:∴k=﹣,b=3, ∴y=﹣x+3.16.如图,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点,则PB+PE 的最小值是 .【答案】10【解析】【分析】由正方形性质的得出B 、D 关于AC 对称,根据两点之间线段最短可知,连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小,进而利用勾股定理求出即可. 【详解】如图,连接DE ,交AC 于P ,连接BP ,则此时PB +PE 的值最小. ∵四边形ABCD 是正方形, ∴B 、D 关于AC 对称, ∴PB =PD , ∴PB +PE =PD +PE =DE . ∵BE =2,AE =3BE , ∴AE =6,AB =8, ∴DE 2268 =10, 故PB +PE 的最小值是10. 故答案为10.17. 无论a取什么实数,点P(a-1,2a-3)都在直线l上,Q(m,n)是直线l上的点,则(2m-n+3)2的值等于▲.【答案】16.【解析】待定系数法,直线上点的坐标与方程的关系,求代数式的值.【分析】∵由于a不论为何值此点均在直线l上,∴令a=0,则P1(-1,-3);再令a=1,则P2(0,-1).设直线l的解析式为y=kx+b(k≠0),∴k b3{b1-+=-=-,解得k2{b1==-.∴直线l的解析式为:y=2x-1.∵Q(m,n)是直线l上的点,∴2m-1=n,即2m-n=1.∴(2m-n+3)2=(1+3)2=16.18.小明尝试着将矩形纸片ABCD(如图①,AD>CD)沿过A点的直线折叠,使得B点落在AD边上的点F处,折痕为AE(如图②);再沿过D点的直线折叠,使得C点落在DA边上的点N处,E点落在AE边上的点M 处,折痕为DG(如图③).如果第二次折叠后,M点正好在∠NDG的平分线上,那么矩形ABCD长与宽的比值为.2【解析】试题分析:根据第一次折叠可得ABEF为正方形,则∠EAD=45°,根据第二次折叠可得DE平分∠GDC,则△DGE≌△DCE,则DC=DG,根据题意可得△AGD为等腰直角三角形,则22CD,即矩形的长2:1.考点:折叠图形的性质三、解答题(本大题共10小题,19—22题每题8分,23-26每题10分,27-28每题12分,共计96分,请在答题卡指定区域内作答,解答时应写出必要的演算步骤、证明过程或文字说明)19.计算:23--+.(2)816【答案】4【解析】试题分析:根据开平方、开立方的法则和二次根式的性质化简计算即可.试题解析:-+=.原式=224420.如图,点D、B在AF上,AD=FB,AC=EF,∠ A=∠ F.求证:∠ C= ∠ E.【答案】证明见解析.【解析】试题分析:由AD=FB可推出AB=FD,由此可证得△ABC≌△FDE,由全等三角形的性质可得结论.证明:∵AD=FB,∴AB=FD,在△ABC和△FDE中,,∴△ABC≌△FDE,∴C=∠E.考点:全等三角形的判定与性质.21.在平面直角坐标系中有点M(m,2m+3).(1)若点M在x轴上,求m的值;(2)点M在第二、四象限的角平分线上,求m的值.【答案】(1)-1.5 ;(2)-1.【解析】试题分析:(1)由x轴上点的纵坐标为0即可列出关于m的方程,解方程即可求得m的值;(2)由第二、四象限角平分线上的点的横坐标与纵坐标互为相反数可列出关于m的方程,即方程即可求得对应的m的值.试题解析:(1)∵点M(m,2m+3)在x轴上,∴2m+3=0,解得:m=-1.5;(2)∵点M(m,2m+3)在第二、四象限的角平分线上,∴m+2m+3=0,解得:m=-1.22.如图是规格为8×8的正方形网格,请在所给网格中按下列要求操作:⑴ 请在网格中建立平面直角坐标系, 使A点坐标为(2,4),B点坐标为(4,2);⑵ 请在(1)中建立的平面直角坐标系的第一象限内的格点上确定点C, 使点C与线段AB组成一个以AB 为底的等腰三角形, 且腰长是无理数, 则C点坐标是,△ABC的周长是 (结果保留根号);⑶ 以(2)中△ABC的点C为旋转中心、旋转180°后的△A′B′C, 连结AB′和A′B, 试说出四边形ABA′B′是何特殊四边形, 并说明理由.【答案】(1)画图见解析;(2)画图见解析,C(1,1),△ABC的周长为(210);(3)画图见解析,四边形ABA′B′是矩形,理由见解析.【解析】(1)根据题意画出平面直角坐标系即可;(2)作线段AB的垂直平分线,与格点相交于点C,满足腰长为无理数,则C点即为所求点,求出AC、BC,即可得出△ABC的周长;(3)先画出图形,结合图形即可作出判断.(1)如图所示:(2)如图所示:则AC=BC= 10 ,点C坐标为(1,1),△ABC的周长为(222 +210)(3)如图所示:四边形ABA′B′是矩形.“点睛”本题考查旋转作图的知识,解答本题的关键是掌握旋转变换的特点,难度一般.23.如图所示是一个正比例函数与一个一次函数的图象,它们交于点A (4,3),一次函数的图象与y轴交于点B,且OA=OB.(1)求这两个函数的解析式;(2)当x取何值时,一次函数的值大于正比例函数的值?【答案】(1)y=0.75x ,y=2x-5 ;(2)x>4.【解析】试题分析:(1)由点A 的坐标为(4,3)可求得正比例函数的解析式和线段OA 的长度,从而可得OB 的长度,由此可得点B 的坐标,由点A 、B 的坐标即可求得一次函数的解析式;(2)由图可知,在点A 的右侧,一次函数的图象在正比例函数图象的上方结合点A 的坐标为(4,3)即可得到本题答案.试题解析:(1)设正比例函数的解析式为:y kx =;一次函数的解析式为:y mx n =+;∵点A 的坐标为(4,3),且点A 在正比例函数的图象上,∴OA=22435,43k =,解得:34k =,∴OB=OA=5,正比例函数的解析式为:34y x =; ∴点B 的坐标为:(0?5),-, 把点A 、B 的坐标代入y mx n =+得:435m n n +=⎧⎨=-⎩,解得:25m n =⎧⎨=-⎩ , ∴一次函数的解析式为:25y x =-;(2)由图可知,在点A 的右侧,一次函数的图象在正比例函数图象的上方,∴当4x >时,一次函数的值大于正比例函数的值.24.如图,已知一架竹梯AB 斜靠在墙角MON 处,竹梯AB=13m ,梯子底端离墙角的距离BO=5m .(1) 求这个梯子顶端A与地面的距离.(2) 如果梯子顶端A下滑4m到点C,那么梯子的底部B在水平方向上滑动的距离BD=4m吗? 为什么? 【答案】(1)12m;(2)BD=105-5>4m,不等于.【解析】【详解】解:(1)∵AO⊥DO, AB=13m∵AC=4m∴AO==12m∴OC=AO-AC=8m∴OC==12m∴OD=∴梯子顶端距地面12m高=∴BD=OD-OB=∴滑动不等于4 m.25.小丽的家和学校在一条笔直的马路旁,某天小丽沿着这条马路去上学,她先从家步行到公交站台甲,再乘车到公交站台乙下车,最后步行到学校(在整个过程中小丽步行的速度不变),图中的折线ABCDE表示小丽和学校之间的距离y(米)与她离家的时间x(分)之间的函数关系.(1)求小丽步行的速度及学校与公交站台乙之间的距离;(2)当8≤x≤15时,求y与x之间的函数解析式.【答案】(1)即小丽步行的速度为50米/分,学校与公交站台乙之间的距离为150米(2)当8≤x≤15时,y=-500x+7650.【解析】试题分析:(1)由函数图象,小丽步行5分钟所走的路程为3900﹣3650=250米,再根据路程、速度、时间的关系,即可得到结论;(2)利用待定系数法求函数解析式,即可得到结论.试题解析:(1)根据题意得:小丽步行的速度为:(3900﹣3650)÷5=50(米/分钟),学校与公交站台乙之间的距离为:(18﹣15)×50=150(米);(2)当8≤x≤15时,设y kx b =+,把C (8,3650),D (15,150)代入得:83650{15150k b k b +=+=,解得:500{7650k b =-=,∴5007650y x =-+.考点:一次函数的应用.26.已知,如图,O 为坐标原点,四边形OABC 为矩形,A (10,0),C (0,4),点D 是OA 的中点,点P 在边BC 上以每秒1个单位长的速度由点C 向点B 运动.(1)当t 为何值时,CP =OD ?(2)当△OPD 为等腰三角形时,写出点P 的坐标(请直接写出答案,不必写过程).(3)在线段PB 上是否存在一点Q ,使得四边形ODQP 为菱形?若存在,求t 的值,并求出Q 点的坐标;若不存在,请说明理由.【答案】(1)5;(2)(2,4),(2.5, 4),(3,4),(8, 4);(3)(8,4).【解析】试题分析:(1)由已知条件易得:OD=5,由CP=t=OD=5即可求得t 的值;(2)结合图形分:OP=DP 、OP=OD 和PD=OD 三种情况分别讨论解答即可;(3)由四边形ODQP 是菱形可知:OP=OD=5,从而可求出点P 此时的坐标,再由PQ=OD=5即可求得点Q 的坐标.试题解析:(1)∵点A 的坐标为(10,0),∴OA=10,∵点D 是OA 的中点,∴OD=5,又∵CP=t=OD=5,∴t=5;(2)点C的坐标为(0,4),CB∥x轴,点P在CB上运动,∴点P的纵坐标为4.△OPD为等腰三角形,存在以下三种情况:I、当OP=DP时,点P在线段OD的垂直平分线上,∴此时CP=t=12OD=2.5,∴此时点P的坐标为(2.5,4);II、当OP=OD=5时,在Rt△OPC中,由勾股定理可得:CP=22543-=,∴此时点P的坐标为(3,4);III、当PD=OD=5时,如图3,存在以下两种情况:过点D作DE⊥BC于点E,则DE=OC=4,CE=OD=5,在Rt△P1DE中,∵P1D=OD=5,∴P122543-=,∴CP1=CE-P1E=2,即此时点P1的坐标为(2,4);同理可得:点P2的坐标为(8,4);综上所述,当△OPD为等腰三角形时,点P的坐标为(2,4)、(2.5,4)、(3,4)和(8,4);(3)如图4,∵四边形ODQP是菱形,∴OP=OD=PQ=5,由(2)可知,当OP=5时,CP=3,∴CQ=CP+PQ=8,又∵点P在线段CB上,∴点Q的坐标为(8,4).27.某公司有A产品40件,B产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元) 如下表所示:A产品的利润/元B产品的利润/元甲店200 170乙店160 150(1) 设分配给甲店A产品x件,这家公司卖出这100件产品的总利润为W (元),求W关于x的函数关系式,并求出x的取值范围;(2) 若要求总利润不低于17560元;有多少种不同的分配方案? 并将各种方案设计出来;(3) 为了促销,公司决定仅对甲店A产品让利销售,每件让利a元,但让利后A产品的每件利润仍高于甲店B产品的每件利润.甲店的B产品以及乙店的A,B产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?【答案】(1)10≤x≤40; (2)详见解析;(3)当x=10时,利润最大.【解析】试题分析:(1)分配给甲店A 型产品x 件,则分配给甲店B 型产品(70-x)件,分配给乙店A 型产品(40-x)件,分配给乙店B 型产品(x -10)件,根据总利润等于各利润之和进行求解;根据x≥0,40-x≥0,30-(40-x)≥0可以求出取值范围;(2)、根据W≤17560得到x 的取值范围,和(1)中的取值范围得到x 的整数值;(3)根据题意列出函数关系式,然后根据增减性进行判断.试题解析:(1)、W=200x+170(70-x)+160(40-x)+150(x -10)=20x+16800∵x≥0,40-x≥0,30-(40-x)≥0 ∴10≤x≤40(2)、根据题意得:20x+16800≥17560 解得:x≥38 ∴38≤x≤40∴有三种不同的方案:①、甲店A 型38件,B 型32件,乙店A 型2件,B 型28件;②、甲店A 型39件,B 型31件,乙店A 型1件,B 型29件;③、甲店A 型40件,B 型30件,乙店A 型0件,B 型30件.(3)、 此时总利润W =20X+16800-ax=(20-a)x+16800,a<200-170=30当a≤20时,x 取最大值,即x =40(即A 型全归甲卖)当a >20时,x 取最小值,即x =10(即乙全卖A 型)考点:一次函数的应用28.如图,在平行四边形ABCD 中,AB =2,AD =4,M 是AD 的中点,点E 是线段AB 上一动点(可以运动到点A 和点B),连接EM 并延长交线段CD 的延长线于点F .(1) 如图1,①求证:AE =DF ; ②若EM=3,∠FEA=45°,过点M 作MG ⊥EF 交线段BC 于点G ,请直接写出△GEF 的的形状,并求出点F 到AB 边的距离;(2)改变平行四边形ABCD 中∠B 的度数,当∠B=90°时,可得到矩形ABCD (如图2),请判断△GEF 的形状,并说明理由;(3)在(2)的条件下,取MG 中点P ,连接EP ,点P 随着点E 的运动而运动,当点E 在线段AB 上运动的过程中,请直接写出△EPG 的面积S 的范围.【答案】(1)2; (2)等腰直角三角形,证明详见解析; (3) 1≤S≤2.【解析】试题分析:(1)①由已知条件易证△AME≌△DMF,从而可得AE=DF,ME=MF;②由ME=MF结合MG⊥EF于点M可得GE=GF,即可得到△GEF是等腰三角形;过点F作FN⊥BA的延长线于点N,结合∠FEA=45°可得△FEN是等腰直角三角形,即可由ME的长度求得FN的长度;(2)过点G作GH⊥AD于点H,结合已知条件易证△AME≌△HGM,从而可得ME=MG,由此即可得到∠MEG=45°,结合(1)中所得可知△GEF是等腰三角形,由此可得△GEF此时是等腰直角三角形;(3)由已知可得S=12S△GME,由(2)可知△GME是等腰直角三角形,其面积为12ME2,则由此可得S=14ME2,结合在Rt△AME中,ME的长度随AE的长度的增大而增大即可求出S的取值范围了.试题解析:(1)①∵在平行四边形ABCD中,AB∥CD,∴∠EAM=∠FDM,∠AEM=∠DFM,∵点M是AD的中点,∴AM=DM,∴△AME≌△DMF,∴AE=DF;②∵△AME≌△DMF,∴ME=MF,又∵MG⊥EF于点M,∴MG是EF的垂直平分线,∴GE=GF,∴△GEF是等腰三角形;过点F作FN⊥BA的延长线于点N,则∠FNE=90°,∵∠AEF=45°,EM=3,∴△EFN是等腰直角三角形,EF=6,∴FN=322,即点F到AB的距离为32;(2)和(1)同理可得△GEF 是等腰三角形,过点G 作GH ⊥AD 于点H ,又∵四边形ABCD 是矩形,GM ⊥EF 于点M ,∴∠GHA=∠GME=∠A=∠B=90°,∴四边形ABGH 是矩形,∠AME+∠GMH=90°,∠HGM+∠MGH=90°,∴GH=AB=2,∠AME=∠HGM ,又∵AM=12AD=2, ∴AM=GH ,∴△AME ≌△HGM ,∴ME=GM ,∴△MGE 是等腰直角三角形,∴∠MEG=45°,又∵GE=GF ,∴∠FGE=∠MEG=45°, ∴∠EGF=180°-45°-45°=90°,∴△GEF 是等腰直角三角形;(3)如图3,由(2)可知△GEM 是等腰直角三角形,∴S △GME =12EM 2, 又∵点P 是GM 的中点,∴S=12S △GME =1122⨯ EM 2=14EM 2, ∵在Rt △AME 中,当AE=0时,ME 最小=AM=2;当AE=AB=2时,ME 最大=2,∴S 最小=14EM 2=1,S 最大=14EM 2=2, ∴S 的取值范围为:12S ≤≤.点睛:(1)解第2小题的要点是过点G作GH⊥AD于点H构造出△GHM,这样通过证△AME≌△HGM 可得ME=MG,从而得到△MGE是等腰直角三角形即可使问题得到解决;(2)解第3小题的要点是把△PEG 的面积S转化为用EM的长来表达,而EM的长是随AE的长度的变化而变化的,由此即可结合已知条件使问题得到解决.。
苏科版八年级上册数学《期末测试卷》附答案
(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.
(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,则求出它的度数.
27.如图,在平面直角坐标系xOy中,直线 与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处,直线AB与直线DC相交于点E.
∴关于x、y的二元一次方程组 的解是 .
故答案为 .
25.某公司开发处一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为10元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ABC表示日销售量y(件)与销售时间x(天)之间的函数关系.
(1)求y与x之间的函数表达式,并写出x的取值范围;
在Rt△ABM中,AB=5,BM=3,
∴根据勾股定理得:AM=
=
=4,
又S△AMC= MN•AC= AM•MC,
∴MN=
= .
故选A.
[点睛]综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.
二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,认把答案直接写在答题纸相应的位置上.)
[答案]A
[解析]
[分析]
根据立方根、无理数的定义即可得.
[详解] 是无理数,
,是无限循环小数,属于有理数,
是有限小数,属于有理数,
,小数点后的 是无限循环的,是无限循环小数,属于有理数,
苏科版数学八年级上册《期末测试卷》含答案
苏科版数学八年级上学期期末测试卷学校________ 班级________ 姓名________ 成绩________第Ⅰ卷(选择题共30分一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列运算正确的是()A. 2 B.|﹣3|=﹣3 C.±2 D. 32.传统佳节“春节”临近,剪纸民俗魅力四射,对称现象无处不在.观察下面的四幅剪纸,其中不是轴对称图形的是()A.B.C.D.3.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC4.点A(3,5)关于x轴的对称点的坐标为()A.(3,﹣5) B.(﹣3,﹣5) C.(﹣3,5) D.(﹣5,3)5.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y的最大值是()A.0 B.3 C.﹣3 D.﹣76.下列各组数中,是勾股数的为()A.1,1,2 B.1.5,2,2.5 C.7,24,25 D.6,12,137.如图,已知一次函数y=kx+b的图象经过点A(5,0)与B(0,﹣4),那么关于x的不等式kx+b<0的解集是()A.x<5 B.x>5 C.x<﹣4 D.x>﹣48.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm9.如图是由8个全等的小矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接P A、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个B.3个C.4个D.5个10.已知一次函数y=(m﹣1)x的图象上两点A(x1,y1),B(x2,y2),当x1>x2时,有y1<y2,那么m的取值范围是() A.m>0 B.m<0 C.m>1 D.m<1第Ⅱ卷(非选择题共120)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在试卷规定的区域内.二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.若一个数的立方根是﹣3,则这个数是.12.如图,已知:AB=AC,D是BC边的中点,则∠1+∠C=度.13.若12.6389823,则.(精确到0.01).14.小刚画了一张对称的脸谱,他对妹妹说:“如果我用(1,4)表示一只眼,用(2,2)表示嘴,那么另一只眼的位置可以表示成.15.将函数y=5x的图象沿y轴向下平移3个单位长度,所得直线的函数表达式为.16.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为.17.如图,点O为线段AB上的任意一点(不与A,B重合),分别以AO,BO为一腰在AB的同侧作等腰△AOC和△BOD,OA=OC,OB=OD,∠AOC与∠BOD都是锐角,且∠AOC=∠BOD,AD与BC相交于点P,∠COD=110°,则∠APB=°.18.如图,直线y=x+6与x轴、y轴分别交于点A和点B,x轴上有一点C(﹣4,0),点P为直线一动点,当PC+PO 值最小时点P的坐标为.三.解答题(共10小题,满分96分)19.(1)已知:2(x﹣3)2=50,求x;(2)计算:20.在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3)点B坐标为(2,1);(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;(3)判断△ABC的形状.并说明理由.21.已知y﹣1与x+2成正比例,且x=﹣1时,y=3.(1)求y与x之间的关系式;(2)它的图象经过点(m﹣1,m+1),求m的值.22.如图,在△ABC中,AB=AC,DE是边AB的垂直平分线,交AB于E、交AC于D,连接BD.(1)若∠A=40°,求∠DBC的度数;(2)若△BCD的周长为16cm,△ABC的周长为26cm,求BC的长.23.如图,已知△ABC中,AB=AC,BD=CE,(1)求证:△ABE≌△ACD.(2)如果∠BAC=75°,∠BAD=30°,求∠DAE的度数.24.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△ACQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.25.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h以内(含2h)的部分,每0.5h计费1元(不足0.5h按0.5h计算);骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算).根据此收费标准,解决下列问题:(1)连续骑行5h,应付费多少元?(2)若连续骑行xh(x>2且x为整数) 需付费y元,则y与x的函数表达式为;(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.26.一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y(升)关于加满油后已行驶的路程x(千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.27.基本图形:在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE.探索:(1)连接EC,如图①,试探索线段BC,CD,CE之间满足的等量关系,并证明结论;(2)连接DE,如图②,试探索线段DE,BD,CD之间满足的等量关系,并证明结论;联想:(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=3,CD=1,则AD的长为.28.阅读下面材料:小明遇到这样一个问题:如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD之间的数量关系.小明发现,利用轴对称做一个变化,在BC上截取CA′=CA,连接DA′,得到一对全等的三角形,从而将问题解决(如图2).请回答:(1)在图2中,小明得到的全等三角形是△≌△;BC和AC、AD之间的数量关系是.(2)参考小明思考问题的方法,解决问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9.求AB的长.(3)如图4,在平面直角坐标系中,直线y=﹣x+4交x轴于点A,交y轴于点B,C是OA的中点,D为AB上一点,且∠DCA=∠BCO,连接OD,CD,求.答案与解析第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列运算正确的是()A. 2 B.|﹣3|=﹣3 C.±2 D. 3[答案]A[解析]A、2,此选项计算正确;B、|﹣3|=3,此选项计算错误;C、2,此选项计算错误;D、不能进一步计算,此选项错误;故选:A.[点睛]本题主要考查算术平方根,解题的关键是掌握算术平方根和立方根的定义、绝对值性质.2.传统佳节“春节”临近,剪纸民俗魅力四射,对称现象无处不在.观察下面的四幅剪纸,其中不是轴对称图形的是()A.B.C.D.[答案]C[解析]A、是轴对称图形,不符合题意;B、是轴对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,符合题意;D、是轴对称图形,不符合题意.故选:C.[点睛]此题主要考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.3.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC[答案]C[解析]A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;故选:C.[点睛]本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定方法有SAS,ASA,AAS,SSS.4.点A(3,5)关于x轴的对称点的坐标为()A.(3,﹣5) B.(﹣3,﹣5) C.(﹣3,5) D.(﹣5,3)[答案]A[解析]点A(3,5)关于x轴的对称点的坐标为:(3,﹣5).故选:A.[点睛]此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的符号是解题关键.5.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y的最大值是()A.0 B.3 C.﹣3 D.﹣7[答案]B[解析]∵一次函数y=﹣2x+3中k=﹣2<0,∴y的值随x的值增大而减小,∴在0≤x≤5范围内,x=0时,函数值最大﹣2×0+3=3.故选:B.[点睛]一次函数y=kx+b的图象的性质:①当k>0,y的值随x的值增大而增大;②当k<0,y的值随x的值增大而减小.6.下列各组数中,是勾股数的为()A.1,1,2 B.1.5,2,2.5 C.7,24,25 D.6,12,13[答案]C[解析]A、∵12+12≠22,∴不是勾股数,此选项错误;B、1.5和2.5不是整数,此选项错误;C、∵72+242=252,∴是勾股数,此选项正确;D、∵62+122≠132,∴不是勾股数,此选项错误.故选:C.[点睛]此题考查了勾股数,说明:①三个数必须是正整数,例如:2.5、6、6.5满足a2+b2=c2,但是它们不是正整数,所以它们不是够勾股数.②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.③记住常用的勾股数再做题可以提高速度.如:3,4,5;6,8,10;5,12,13;…7.如图,已知一次函数y=kx+b的图象经过点A(5,0)与B(0,﹣4),那么关于x的不等式kx+b<0的解集是()A.x<5 B.x>5 C.x<﹣4 D.x>﹣4[答案]A[解析]由题意可得:一次函数y=kx+b中,y<0时,图象在x轴下方,x<5,则关于x的不等式kx+b<0的解集是x<5,故选:A.[点睛]此题主要考查了一次函数与一元一次不等式,关键是掌握数形结合思想.认真体会一次函数与一元一次不等式之间的内在联系.8.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm[答案]C[解析]连接AM、AN、过A作AD⊥BC于D,∵在△ABC中,AB=AC,∠A=120°,BC=6cm,∴∠B=∠C=30°,BD=CD=3cm,∴AB2cm=AC,∵AB的垂直平分线EM,∴BE AB cm同理CF cm,∴BM2cm,同理CN=2cm,∴MN=BC﹣BM﹣CN=2cm,故选:C.[点睛]本题考查了线段垂直平分线性质,等腰三角形的性质,含30度角的直角三角形性质,解直角三角形等知识点的应用,主要考查学生综合运用性质进行推理和计算的能力.9.如图是由8个全等的小矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接P A、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个B.3个C.4个D.5个[答案]B[解析]如图所示,使△ABP为等腰直角三角形的点P的个数是3,故选:B.[点睛]本题考查了等腰直角三角形的判定,正确的找出符合条件的点P是解题的关键.10.已知一次函数y=(m﹣1)x的图象上两点A(x1,y1),B(x2,y2),当x1>x2时,有y1<y2,那么m的取值范围是() A.m>0 B.m<0 C.m>1 D.m<1[答案]D[解析]∵一次函数y=(m﹣1)x的图象上两点A(x1,y1),B(x2,y2),且x1>x2时,有y1<y2∴m﹣1<0∴m<1故选:D.[点睛]本题考查了一次函数图象上点的坐标特征,利用一次函数增减性解决问题是本题的关键.第Ⅱ卷(非选择题共120分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在试卷规定的区域内.二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.若一个数的立方根是﹣3,则这个数是.[答案]﹣27.[解析]∵(﹣3)3=﹣27,∴﹣27的立方根是﹣3.∴这个数是﹣27.故答案为:﹣27.[点睛]本题主要考查的是立方根的定义,掌握立方根的定义是解题的关键.12.如图,已知:AB=AC,D是BC边的中点,则∠1+∠C=度.[答案]90[解析]∵AB=AC,∴∠B=∠C,∵D是BC边的中点,∴AD⊥BC,∴∠1+∠B=90°,∴∠1+∠C=90°.故答案为:90.[点睛]本题考查了等腰三角形的性质;等腰三角形底边上的中线、高线以及顶角的平分线三线合一的熟练应用是正确解答本题的关键.13.若12.6389823,则.(精确到0.01).[答案]12.64.[解析]∵12.6389823,∴12.64.故答案为:12.64.[点睛]考查了立方根,近似数,关键是熟练掌握四舍五入法求近似数.14.小刚画了一张对称的脸谱,他对妹妹说:“如果我用(1,4)表示一只眼,用(2,2)表示嘴,那么另一只眼的位置可以表示成.[答案](3,4).[解析]∵用(1,4)表示一只眼,用(2,2)表示嘴,∴另一只眼的位置可以表示成:(3,4).故答案为:(3,4).[点睛]此题主要考查了坐标确定位置,利用点的对称性得出对应点坐标是解题关键.15.将函数y=5x的图象沿y轴向下平移3个单位长度,所得直线的函数表达式为[答案]y=5x﹣3.[解析]将函数y=5x的图象沿y轴向下平移3个单位长度,所得直线的函数表达式为:y=5x﹣3,故答案为:y=5x﹣3.[点睛]本题考查了一次函数图象与几何变换,利用函数图象的平移规律是解题关键.16.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为[答案]40°或100°[解析]△ABC,AB=AC.有两种情况:(1)顶角∠A=40°,(2)当底角是40°时,∵AB=AC,∴∠B=∠C=40°,∵∠A+∠B+∠C=180°,∴∠A=180°﹣40°﹣40°=100°,∴这个等腰三角形的顶角为40°和100°.故答案为:40°或100°.[点睛]本题考查了等腰三角形的性质和三角形的内角和定理的理解和掌握,能对有的问题正确地进行分类讨论.17.如图,点O为线段AB上的任意一点(不与A,B重合),分别以AO,BO为一腰在AB的同侧作等腰△AOC和△BOD,OA=OC,OB=OD,∠AOC与∠BOD都是锐角,且∠AOC=∠BOD,AD与BC相交于点P,∠COD=110°,则∠APB=145°.[答案]145.[解析]如图,∵∠AOC=∠BOD,∴∠AOC+∠COD=∠BOD+∠COD,∴∠AOD=∠COB,在△AOD和△COB中,,∴△AOD≌△COB.∵∠COD=110°,∠AOC=∠BOD,∴∠AOC=∠BOD=(180°﹣110°)÷2=35°,∵△AOD≌△COB,∴∠OAD=∠OCB,∴∠CMP=∠AMO,∴∠CPM=∠AOC=35°,∴∠APB=180°﹣∠CPM=180°﹣35°=145°.故答案为:145.[点睛]本题考查了全等三角形的性质与判定,解决本题的关键是证明△AOD≌△COB.18.如图,直线y=x+6与x轴、y轴分别交于点A和点B,x轴上有一点C(﹣4,0),点P为直线一动点,当PC+PO 值最小时点P的坐标为[答案](,)[解析]如图,作点C关于直线y=x+6的对称点C′,连接AC′,OC′交直线y=x+6于点P,则点P即为所求,∵直线y=x+6与x轴、y轴分别交于点A和点B,∴A(﹣6,0),B(0,6),∴∠BAO=45°.∵CC′⊥AB,∴∠ACC′=45°.∵点C,C′关于直线AB对称,∴AB是线段CC′的垂直平分线,∴△ACC′是等腰直角三角形,∴AC=AC′=2,∴C′(﹣6,2).设直线OC′的解析式为y=kx(k≠0),则2=﹣6k,解得k,∴直线OC′的解析式为y x,∴,解得,∴P(,).故答案为:(,).[点睛]本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三.解答题(共10小题)19.(1)已知:2(x﹣3)2=50,求x;(2)计算:[分析](1)直接利用平方根的定义计算得出答案;(2)直接利用立方根以及绝对值的性质分别化简得出答案.[解析](1)(x﹣3)2=25,则x﹣3=±5,解得:x=8或x=﹣2;(2)原式=2﹣3﹣(1)=﹣1 1.[点睛]此题主要考查了实数运算,正确化简各数是解题关键.20.在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3)点B坐标为(2,1);(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;(3)判断△ABC的形状.并说明理由.[分析](1)根据点A及点C的坐标,易得y轴在C的右边一个单位,x轴在C的下方3个单位,建立直角坐标系即可;(2)根据对称轴垂直平分对应点连线,可得各点的对称点,顺次连接即可;(3)根据勾股定理的逆定理判断即可;[解析](1)如图所示:(2)如图所示:△A'B'C'即为所求:C'的坐标为(﹣5,5);(3)∵AB2=1+4=5,AC2=4+16=20,BC2=9+16=25,∴AB2+AC2=BC2,∴△ABC是直角三角形.[点睛]本题考查了轴对称作图的知识及直角坐标系的建立,解答本题的关键是掌握轴对称的性质,准确作图.21.已知y﹣1与x+2成正比例,且x=﹣1时,y=3.(1)求y与x之间的关系式;(2)它的图象经过点(m﹣1,m+1),求m的值.[答案](1)根据y﹣1与x+2成正比例,设y﹣1=k(x+2),把x与y的值代入求出k的值,即可确定出关系式;(2)把点(m﹣1,m+1)代入一次函数解析式求出m的值即可.[解析](1)根据题意:设y﹣1=k(x+2),把x=﹣1,y=3代入得:3﹣1=k(﹣1+2),解得:k=2.则y与x函数关系式为y=2(x+2)+1=2x+5;(2)把点(m﹣1,m+1)代入y=2x+5得:m+1=2(m﹣1)+5解得m=﹣2.[点睛]此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.22.如图,在△ABC中,AB=AC,DE是边AB的垂直平分线,交AB于E、交AC于D,连接BD.(1)若∠A=40°,求∠DBC的度数;(2)若△BCD的周长为16cm,△ABC的周长为26cm,求BC的长.[分析](1)首先计算出∠ABC的度数,再根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AD =BD,进而可得∠ABD=∠A=40°,然后可得答案;(2)根据线段垂直平分线的性质可得AD=DB,AE=BE,然后再计算出AC+BC的长,再利用△ABC的周长为26cm可得AB长,进而可得答案.[解析](1)∵AB=AC,∴∠ABC=∠C,∠A=40°,∴∠ABC70°,∵DE是边AB的垂直平分线,∴DA=DB,∴∠DBA=∠A=40°,∴∠DBC=∠ABC﹣∠DBA=70°﹣40°=30°;(2)∵△BCD的周长为16cm,∴BC+CD+BD=16,∴BC+CD+AD=16,∴BC+CA=16,∵△ABC的周长为26cm,∴AB=26﹣BC﹣CA=26﹣16=10,∴AC=AB=10,∴BC=26﹣AB﹣AC=26﹣10﹣10=6cm.[点睛]此题主要考查了线段垂直平分线的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.23.如图,已知△ABC中,AB=AC,BD=CE,(1)求证:△ABE≌△ACD.(2)如果∠BAC=75°,∠BAD=30°,求∠DAE的度数.[分析](1)由等腰三角形的性质可得∠B=∠C,由BD=CE可得BE=CD,根据“SAS”可证△ABE≌△ACD;(2)根据全等三角形的性质可得∠BAE=∠CAD,可得∠BAD=∠CAE=30°,即可求∠DAE的度数.[解答]证明:(1)∵AB=AC∴∠B=∠C∵BD=CE∴BE=CD,且AB=AC,∠B=∠C,∴△ABE≌△ACD(SAS)(2)由(1)得,△ABE≌△ACD∴∠BAE=∠CAD∴∠BAD=∠CAE=30°∴∠DAE=150[点睛]本题考查了全等三角形的判定和性质,等腰三角形的性质,熟练运用全等三角形的判定是本题的关键.24.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△ACQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.[分析](1)根据等边三角形的性质可得AB=AC,再根据SAS证明△ABP≌△ACQ;(2)根据全等三角形的性质得到AP=AQ,再证∠P AQ=60°,从而得出△APQ是等边三角形.[解答]证明:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠P AQ=∠CAQ+∠CAP=60°,∴△APQ是等边三角形.[点睛]本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证△ABP≌△ACQ是解题的关键.25.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h以内(含2h)的部分,每0.5h计费1元(不足0.5h按0.5h计算);骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算).根据此收费标准,解决下列问题:(1)连续骑行5h,应付费多少元?(2)若连续骑行xh(x>2且x为整数) 需付费y元,则y与x的函数表达式为y=4x﹣4;(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.[分析](1)连续骑行5h,要分两个阶段计费:前两个小时,按每个小时2元计算,后3个小时按每个小时计算,可得结论;(2)根据超过2h的计费方式可得:y与x的函数表达式;(3)根据题意可知:里程超过2个小时,根据(2)的表达式可得结果.[解析](1)当x=5时,y=2×2+4×(5﹣2)=16,∴应付16元;(2)y=4(x﹣2)+2×2=4x﹣4;故答案为:y=4x﹣4;(3)当y=24,24=4x﹣4,x=7,∴连续骑行时长的范围是:6<x≤7.[点睛]本题是一次函数的应用,考查了分段函数的知识,属于基础题,解答本题的关键是仔细审题,得出各段的收费标准.26.一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y(升)关于加满油后已行驶的路程x(千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.[分析](1)由图象可知:汽车行驶400千米,剩余油量30升,行驶时的耗油量为0.1升/千米,则汽车行驶400千米,耗油400×0.1=40(升),故加满油时油箱的油量是40+30=70升.(2)设y=kx+b(k≠0),把(0,70),(400,300)坐标代入可得:k=﹣0.1,b=70,求出解析式,当y=5 时,可得x=650.[解析](1)由图象可知:汽车行驶400千米,剩余油量30升,∵行驶时的耗油量为0.1升/千米,则汽车行驶400千米,耗油400×0.1=40(升)∴加满油时油箱的油量是40+30=70升.(2)设y=kx+b(k≠0),把(0,70),(400,30)坐标代入可得:k=﹣0.1,b=70∴y=﹣0.1x+70,当y=5 时,x=650即已行驶的路程的为650千米.[点睛]该题是根据题意和函数图象来解决问题,考查学生的审题识图能力和待定系数法求解析式以及根根解析式求值.27.基本图形:在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE.探索:(1)连接EC,如图①,试探索线段BC,CD,CE之间满足的等量关系,并证明结论;(2)连接DE,如图②,试探索线段DE,BD,CD之间满足的等量关系,并证明结论;联想:(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=3,CD=1,则AD的长为2.[分析](1)结论:BC=DC+EC.证明△BAD≌△CAE(SAS)即可解决问题.(2)结论:BD2+CD2=DE2.由△BAD≌△CAE,推出BD=CE,∠ACE=∠B,可得∠DCE=90°,利用勾股定理即可解决问题.(3)法一:构造如图所示图形,△ADE是等腰直角三角形,易得△ABE≌△ACD,BE=CD,∠BEA=∠ADC=45°,再得△BED是直角三角形,得,所以AD=2.法二:作AE⊥AD,使AE=AD,连接CE,DE.由△BAD≌△CAE(SAS),推出BD=CE=3,由∠ADC=45°,∠EDA=45°,可得∠EDC=90°,再利用勾股定理即可解决问题.[解析](1)结论:BC=DC+EC.理由:如图①中,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,∴BC=BD+CD=EC+CD,即:BC=DC+EC;(2)结论:BD2+CD2=DE2.理由:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2.(3)法一:构造如图所示图形,△ADE是等腰直角三角形,易得△ABE≌△ACD,BE=CD,∠BEA=∠ADC=45°,再得△BED是直角三角形,得,所以AD=2.法二:作AE⊥AD,使AE=AD,连接CE,DE.∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=3,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE,∵∠DAE=90°,∴AD2+AE2=DE2∴AD=2.故答案为2.[点睛]本题属于几何变换综合题,考查了等腰直角三角形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.28.阅读下面材料:小明遇到这样一个问题:如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD之间的数量关系.小明发现,利用轴对称做一个变化,在BC上截取CA′=CA,连接DA′,得到一对全等的三角形,从而将问题解决(如图2).请回答:(1)在图2中,小明得到的全等三角形是△ADC≌△A′DC;BC和AC、AD之间的数量关系是BC=AC+AD.(2)参考小明思考问题的方法,解决问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9.求AB的长.(3)如图4,在平面直角坐标系中,直线y=﹣x+4交x轴于点A,交y轴于点B,C是OA的中点,D为AB上一点,且∠DCA=∠BCO,连接OD,CD,求.[分析](1)由CD平分∠ACB知∠ACD=∠A′CD,结合CA=CA′,CD=CD即可判定△ADC≌△A′DC;由全等性质知AC=A′C,AD=A′D,再证A′B=AD可得答案;(2)在AB上截取AE=AD,连接CE,先证△ADC≌△AEC得AE=AD=9,CE=CD=10=BC,作CF⊥AB,设EF=BF=x,利用勾股定理求得x=6,根据AB=AE+EF+FB可得答案;(3)在BC上取D′,使得CD=CD′,先证△ACD≌△OCD′得AD=OD′,∠CAD=∠COD′,再证△OBD′≌△AOD得BD′=OD,根据BC=BD′+CD′=OD+CD代入求解可得.[解析](1)在图2中,∵CD平分∠ACB,∴∠ACD=∠A′CD,∵CA=CA′,CD=CD,∴△ADC≌△A′DC(SAS),即小明得到的全等三角形是△ADC≌△A′DC,∴AC=A′C,AD=A′D,∠A=∠CA′D=60°,∵∠ACB=90°,∠A=60°,∴∠B=30°,∴∠A′DB=∠B=30°,∴A′D=A′B,∴A′B=AD,∵BC=A′C+A′B,∴BC=AC+AD,故答案为:ADC,A′DC,BC=AC+AD.(2)在AB上截取AE=AD,连接CE,如图3所示:∵AC平分∠BAD,∴∠DAC=∠EAC.在△AEC和△ADC中,∵∴AE=AD=9,CE=CD=10=BC,过点C作CF⊥AB于点F,∴EF=BF,设EF=BF=x.在Rt△CFB中,∠CFB=90°,由勾股定理得CF2=CB2﹣BF2=102﹣x2,在Rt△CF A中,∠CF A=90°,由勾股定理得CF2=AC2﹣AF2=172﹣(9+x)2.∴102﹣x2=172﹣(9+x)2.解得:x=6,∴AB=AE+EF+FB=9+6+6=21,∴AB的长为21.(3)在BC上取D′,使得CD=CD′,∵C是OA中点,∴CO=CA,∵∠ACD=∠OCD′,∴△ACD≌△OCD′(SAS),∴AD=OD′,∠CAD=∠COD′,∵y=﹣x+4与x轴的交点A(4,0),与y轴的交点B(0,4),∴OA=OB=4,∠OAB=∠OBA=45°=∠COD′,∴∠BOD′=∠OAD=45°,在△OBD′和△AOD中,∵,∴BD′=OD,则BC=BD′+CD′=OD+CD,∴1.[点睛]本题是一次函数的综合问题,解题的关键是掌握全等三角形的判定与性质,勾股定理的运用及一次函数图象上点的坐标特征等知识点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
盐城景山中学八年级
数学试卷
一、选择题(每题3分,共8题,共24分)
1.下列表情中,是轴对称图形的是()
A.B.C.D.
2.2的算术平方根是()
A.2 B.±2 C.D.±
3.在实数﹣、、、中,无理数的个数是()
A.1 B.2 C.3 D.4
4.如图,AB、CD相交于点E.若△AEC≌△BED,则下列结论中不正确的是()
A.AC=BD B.AC∥BD C.E为CD中点D.∠A=∠D
5.下列各组数是勾股数的是()
A.32,42,52 B.1.5,2,2.5 C.6,8,10 D.,,6.到三角形三边的距离都相等的点是三角形的()
A.三条角平分线的交点B.三条边的中线的交点
C.三条高的交点D.三条边的垂直平分线的交点
7.已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为()
A.40 B.80 C.40或360 D.80或360
8.如图,在△ABC中,AC=BC,∠ACB=90°,点D、E在AB上,将△ACD、△BCE分别沿CD、CE翻折,点A、B分别落在点A′、B′的位置,再将△A′CD、△B′CE分别沿A′C、B′C翻折,点D与点E恰好重合于点O,则∠A ′OB′的度数是()
A .90°
B .120°
C .135°
D .150°
二、填空题(每题3分,共10题,共30分)
9.9的平方根是 ,计算:= . 10.已知等腰三角形的一个底角为70°,则它的顶角为 度.
11.已知三角形ABC 中∠C=90°,AC=3,BC=4,则斜边AB 上的高为 .
12.若的值在两个整数a 与a+1之间,则a= .
13.在镜子中看到时钟显示的时间是,实际时间是 .
14.已知|x ﹣12|+|z ﹣13|与y 2﹣10y+25互为相反数,则以x 、y 、z 为三边
的三角形是 三角形.
15.如图,已知∠BAC=∠DAC ,请添加一个条件: ,使△ABC ≌△ADC (写出一个即可).
16.如图所示,折叠长方形的一边AD ,使点D 落在边BC 的点F 处,已知AB=8cm ,BC=10cm ,则EC 的长为 cm .
17.如图,在△ABC 中,∠B 与∠C 的平分线交于点O ,过点O 作DE ∥BC ,分别交AB 、AC 于点D 、E .若AB=9,AC=7,则△ADE 的周长是______.
18.如图,四边形ABCD 中,∠BAD=120°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N ,使△AMN 周长最小,此时∠MAN 的度数为______°.
第15 题 第16 题 第17 题 第18 题
三、解答题(共66分)
19.(4()22316338-
+-
20.(每题4分)求下列各式中x的值:
①(x﹣2)2=25;②﹣8(1﹣x)3=27.
21.(6分)已知:x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.
22.(6分)如图,△ABC的顶点均在格点上,利用网格线在图中找一点O,使得OA=OB=OC.
23.(6分)已知:如图,∠B=∠D,∠1=∠2,AB=AD.求证:AC=AE.
24.(7分)已知:如图,AD=4,CD=3,∠ADC=90°,AB=13,∠ACB=90°,求图形中阴影部分的面积.
25.(8分)如图,点O是等边△ABC内一点.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.已知∠AOB=110°.
(1)求证:△COD是等边三角形;
(2)当α=150°时,试判断△AOD的形状,并说明理由;
26.(9分)两组邻边分别相等的四边形我们称它为筝形.如图,在筝形ABCD 中,AB=AD,BC=DC,AC,BD相交于点O.
(1)求证:①△ABC≌△ADC;②OB=OD,AC⊥BD;
(2)如果AC=6,BD=4,求筝形ABCD的面积.
27.(12分)如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t 秒.
(1)出发2秒后,求△ABP的周长.
(2)问t为何值时,△BCP为等腰三角形?
(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?
盐城景山中学2016年秋学期八年级
数学试卷答案
一.选择题(每题3分,共8题,共24分)
1.B
2.C
3.B
4.D
5.C
6.A
7.C
8. B 二.填空题(每题3分,共10题,共30分)
9. 3± -2 10. 40 11.
512 12. 2 13. 16:25:08
14.直角 15. AB=AD 或D B ∠=∠等 16. 3 17. 16 18. 60°
三.解答题(共66分)
19.(4分) 2
20.(每题4分)(1)==21,7x x -3 ; (2)2
5=x . 21.(6分) x=6 y=8 x 2+y 2=100 x 2+y 2的算术平方根是10. 22.(6分)如图,直线MN 是线段BC 的垂直平分线,直线EF 是线段AC 的垂直平分线,
直线MN 与直线EF 的交点为O ,点O 就是所求的点.
23.(6分)证明:∵∠1=∠2,
∴∠1+∠CAD=∠2+∠CAD,
∴∠EAD=∠BAC,
在△ADE和△ACB中,
,
∴△ADE≌△ACB(AAS),
∴AC=AE.
24.(7分)解:在Rt△ACD中,AC==5;
在Rt△ACD中,BC==12;
=×5×12=30,
∴S
△ABC
=×4×3=6,
S
△ACD
∴阴影部分面积为30﹣6=24.
25.(8分)(1)证明:∵CO=CD,∠OCD=60°,
∴△COD是等边三角形;
(2)解:当α=150°,即∠BOC=150°时,△AOD是直角三角形.∵△BOC≌△ADC,
∴∠ADC=∠BOC=150°,
又∵△COD是等边三角形,
∴∠ODC=60°,
∴∠ADO=90°,
即△AOD是直角三角形;
26.(9分)(1)证明:①在△ABC和△ADC中,
AB=AD,BC=DC,AC=AC,
∴△ABC≌△ADC.
②∵△ABC≌△ADC,
∴∠BAO=∠DAO.
∵AB=AD,OA=OA,
∴△ABO≌△ADO.
∴OB=OD,AC⊥BD.
(2)解:筝形ABCD的面积=△ABC的面积+△ACD的面积
=×AC×BO+×AC×DO,
=×AC×(BO+DO),
=×AC×BD,
=×6×4,
=12.
27.(12分)解:(1)∵∠C=90°,AB=10cm,BC=6cm,∴有勾股定理得AC=8cm,
动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm
∴出发2秒后,则CP=2cm,那么AP=6cm.
∵∠C=90°,
∴有勾股定理得PB=2cm
∴△ABP的周长为:AP+PB+AB=6+10+2=(16+2)cm;
(2)若P在边AC上时,BC=CP=6cm,
此时用的时间为6s,△BCP为等腰三角形;
若P在AB边上时,有两种情况:
①若使BP=CB=6cm,此时AP=4cm,P运动的路程为12cm,
所以用的时间为12s,故t=12s时△BCP为等腰三角形;
②若CP=BC=6cm,过C作斜边AB的高,根据面积法求得高为4.8cm,
根据勾股定理求得BP=7.2cm,
所以P运动的路程为18﹣7.2=10.8cm,
∴t的时间为10.8s,△BCP为等腰三角形;
③若BP=CP时,则∠PCB=∠PBC,
∵∠ACP+∠BCP=90°,∠PBC+∠CAP=90°,∴∠ACP=∠CAP,∴PA=PC ∴PA=PB=5cm
∴P的路程为13cm,所以时间为13s时,△BCP为等腰三角形.
∴t=6s或13s或12s或 10.8s 时△BCP为等腰三角形;
(3)当P点在AC上,Q在AB上,则AP=8﹣t,AQ=16﹣2t,
∵直线PQ把△ABC的周长分成相等的两部分,
∴8﹣t+16﹣2t=12,
∴t=4;
当P点在AB上,Q在AC上,则AP=t﹣8,AQ=2t﹣16,
∵直线PQ把△ABC的周长分成相等的两部分,
∴t﹣8+2t﹣16=12,
∴t=12,
∴当t为4或12秒时,直线PQ把△ABC的周长分成相等的两部分.
初中数学试卷
金戈铁骑制作。