2017年铜仁市数学中考说明1

合集下载

2017年贵州省铜仁市中学考试数学试卷含问题详解及考点解析汇报

2017年贵州省铜仁市中学考试数学试卷含问题详解及考点解析汇报

实用文档文案大全2017年贵州省铜仁市中考数学试卷满分150分,考试时间120分钟共8页姓名得分:一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)﹣2017的绝对值是()A.2017B.﹣2017 C.D.﹣2.(4分)一组数据1,3,4,2,2的众数是()A.1B.2C.3D.43.(4分)单项式2x y3的次数是()A.1B.2C.3D.44.(4分)如图,已知直线a∥b,c∥b,∠1=60°,则∠2的度数是()A.30°B.60°C.120°D.61°5.(4分)世界文化遗产长城总长约670000米,将数670000用科学记数法可表示为()A.6.7×104 B.6.7×105 C.6.7×106 D.67×1046.(4分)如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2 B.S1<S2 C.S1=S2 D.S1=2S27.(4分)一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8B.9C.10 D.118.(4分)把不等式组的解集表示在数轴上如下图,正确的是()实用文档文案大全A.BC.D.9.(4分)如图,已知点A在反比例函数y=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.B.y=C.y=D.y=﹣10.(4分)观察下列关于自然数的式子:4×12﹣12①4×22﹣32②4×32﹣52③…根据上述规律,则第2017个式子的值是()A.8064B.8065C.8066D.8067二、填空题(本大题共8小题,每小题4分,共32分)11.(4分)5的相反数是12.(4分)一组数据2,3,2,5,4的中位数是13.(4分)方程﹣=0的解为x14.(4分)已知一元二次方程x2﹣3x+k=0有两个相等的实数根,则k= 15.(4分)已知菱形的两条对角线的长分别是5cm,6cm,则菱形的面积cm2.16.(4分)如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB=2米,BC=18米,则旗杆CD的高度是米.17.(4分)从﹣1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概实用文档文案大全率为18.(4分)如图,在Rt△ABC中,∠C=90°,点D是AB的中点,ED⊥AB 交AC于点E.设∠A=α,且tanα=,则tan2α=三、解答题(本大题共7小题,其中19题每小题5分,20、21、22每题10分,23、24每题12分,25题14分,共78分)19.(10分)(1)计算:()﹣1﹣4sin60°﹣(﹣1.732)0+(2)先化简,再求值:?,其中x=2.20.(10分)如图,已知:∠BAC=∠EAD,AB=20.4,AC=48,AE=17,AD=40.求证:△ABC∽△AED.实用文档文案大全21.(10分)某校为了了解九年级九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩的样本,按A,B,C(A等:成绩大于或等于80分;B等:成绩大于或等于60分且小于80分;C等:成绩小于60分)三个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(1)请把条形统计图补充完整;(2)扇形统计图中A等所在的扇形的圆心角等于度;(3)若九年级有1000名学生,请你用此样本估计体育测试众60分以上(包括60分)的学生人数.22.(10分)如图,已知点E,F分别是平行四边形ABCD对角线BD所在直线上的两点,连接AE,CF,请你添加一个条件,使得△ABE≌△CDF,并证明.23.(12分)某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y(千实用文档文案大全克)与销售单价x(元/千克)之间为一次函数关系,如图所示.(1)求y与x的函数表达式;(2)要使销售利润达到800元,销售单价应定为每千克多少元?24.(12分)如图,已知在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O 与AC交于点D,点E是BC.实用文档文案大全的中点,连接BD,DE.(1)若=,求sinC;(2)求证:DE是⊙O的切线.25.(14分)如图,抛物线y=x2+b x+c经过点A(﹣1,0),B(0,﹣2),并与x轴交于点C,点M.实用文档文案大全是抛物线对称轴l上任意一点(点M,B,C三点不在同一直线上).(1)求该抛物线所表示的二次函数的表达式;(2)在抛物线上找出两点P1,P2,使得△MP1P2与△MCB全等,并求出点P1,P2的坐标;(3)在对称轴上是否存在点Q,使得∠BQC为直角,若存在,作出点Q (用尺规作图,保留作图痕迹),并求出点Q的坐标.实用文档文案大全实用文档文案大全2017年贵州省铜仁市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)(2017?铜仁市)﹣2017的绝对值是()A.2017B.﹣2017 C.D.﹣【考点】15:绝对值.【分析】根据绝对值定义去掉这个绝对值的符号.【解答】解:﹣2017的绝对值是2007.故选:A.【点评】此题考查了绝对值,解题关键是掌握绝对值的规律.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(4分)(2017?铜仁市)一组数据1,3,4,2,2的众数是()A.1B.2C.3D.4【考点】W5:众数.【分析】根据众数的定义即可得到结论.【解答】解:∵在数据1,3,4,2,2中,2出现的次数最多,∴这组数据1,3,4,2,2的众数是2,故选B.【点评】本题考查了众数的定义,熟记众数的定义是解题的关键.3.(4分)(2017?铜仁市)单项式2xy3的次数是()A.1B.2C.3D.4【考点】42:单项式.【分析】根据一个单项式中所有字母的指数的和叫做单项式的次数可得答案.【解答】解:单项式2xy3的次数是1+3=4,故选:D.【点评】此题主要考查了单项式,关键是掌握单项式次数的计算方法.4.(4分)(2017?铜仁市)如图,已知直线a∥b,c∥b,∠1=60°,则∠2的度数是()实用文档文案大全A.30°B.60°C.120°D.61°【考点】JA:平行线的性质.【分析】由直线a∥b,c∥b,得出a∥c,∠1=60°,根据两直线平行,同位角相等,即可求得∠2的度数.【解答】解:∵直线a∥b,c∥b,∴a∥c,∵∠1=60°,∴∠2=∠1=60°.故选B【点评】此题考查了平行线的性质.解题的关键是注意掌握两直线平行,同位角相等定理的应用.5.(4分)(2017?铜仁市)世界文化遗产长城总长约670000米,将数670000用科学记数法可表示为()A.6.7×104B.6.7×105 C.6.7×106D.67×104【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:670000=6.7×105.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10,其中1≤|a|<10,确定a与n的值是解题的关键.﹣n6.(4分)(2017?铜仁市)如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2 B.S1<S2 C.S1=S2 D.S1=2S2【考点】Q2:平移的性质;JC:平行线之间的距离.【分析】根据平行线间的距离相等可知△ABC,△PB′C′的高相等,再由同底等高的三角形面积相等即可得到答案.【解答】解:∵△ABC沿着BC方向平移得到△A′B′C′,∴AA′∥BC′,∵点P是直线AA′上任意一点,∴△ABC,△PB′C′的高相等,∴S1=S2,故选C.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.7.(4分)(2017?铜仁市)一个多边形的每个内角都等于144°,则这个多边形的边数是()实用文档文案大全A.8 B.9 C.10 D.11【考点】L3:多边形内角与外角.【分析】先求出每一个外角的度数,再根据边数=360°÷外角的度数计算即可.【解答】解:180°﹣144°=36°,360°÷36°=10,则这个多边形的边数是10.故选:C.【点评】本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.8.(4分)(2017?铜仁市)把不等式组的解集表示在数轴上如下图,正确的是()A.BC.D.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x+3>1,得:x>﹣1,解不等式3x+4≥5x,得:x≤2,则不等式组的解集为﹣1<x≤2,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键9.(4分)(2017?铜仁市)如图,已知点A在反比例函数y=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.y=B.y=C.y=D.y=﹣【考点】G7:待定系数法求反比例函数解析式;G5:反比例函数系数k的几何意义.【分析】由S△AOC=x y=4,设反比例函数的解析式y=,则k=x y=8.【解答】解:∵S△AOC=4,∴k=2S△AOC=8;∴y=;故选:C.【点评】此题考查了待定系数法求反比例函数解析式,反比例函数系数k 的几何意义.属于基础题,难度不大.实用文档文案大全10.(4分)(2017?铜仁市)观察下列关于自然数的式子:4×12﹣12 ①4×22﹣32 ②4×32﹣52 ③…根据上述规律,则第2017个式子的值是()A.8064B.8065C.8066D.8067【考点】37:规律型:数字的变化类;1G:有理数的混合运算.【分析】由①②③三个等式可得,减数是从1开始连续奇数的平方,被减数是从1开始连续自然数的平方的4倍,由此规律得出答案即可.【解答】解:4×12﹣12 ①4×22﹣32 ②4×32﹣52 ③…4n2﹣(2n﹣1)2=4n﹣1,所以第2017个式子的值是:4×2017﹣1=8067.故选:D.【点评】此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.二、填空题(本大题共8小题,每小题4分,共32分)11.(4分)(2017?铜仁市)5的相反数是﹣5【考点】14:相反数.【分析】根据相反数的概念解答即可.【解答】解:根据相反数的定义有:5的相反数是﹣5.故答案为﹣5.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.12.(4分)(2017?铜仁市)一组数据2,3,2,5,4的中位数是3【考点】W4:中位数.【分析】根据中位数的定义解答即可.【解答】解:数据2,3,2,5,4的中位数是3;故答案为:3【点评】此题考查中位数问题,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.(4分)(2017?铜仁市)方程﹣=0的解为x=2【考点】B3:解分式方程.【分析】利用:①去分母;②求出整式方程的解;③检验;④得出结论解出方程.【解答】解:﹣=0方程两边同乘x(x﹣1),得x﹣2(x﹣1)=0实用文档文案大全x﹣2x+2=0,解得,x=2,检验:当x=2时,x(x﹣1)≠0,则x=2是分式方程的解,故答案为:2.【点评】本题考查的是分式方程的解法,解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.14.(4分)(2017?铜仁市)已知一元二次方程x2﹣3x+k=0有两个相等的实数根,则k=【考点】AA:根的判别式.【分析】根据方程的系数结合根的判别式△=0,即可得出关于k的一元一次方程,解之即可得出结论.【解答】解:∵方程x2﹣3x+k=0有两个相等的实数根,∴△=(﹣3)2﹣4k=9﹣4k=0,解得:.故答案为:【点评】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.15.(4分)(2017?铜仁市)已知菱形的两条对角线的长分别是5cm,6cm,则菱形的面积是15cm2.【考点】L8:菱形的性质.【分析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.【解答】解:根据对角线的长可以求得菱形的面积,根据S=ab=×5cm×6cm=15cm2,故答案为15.【点评】本题考查了根据对角线计算菱形的面积的方法,记住菱形的面积等于对角线乘积的一半是解题的关键.16.(4分)(2017?铜仁市)如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB=2米,BC=18米,则旗杆CD的高度是18米.【考点】SA:相似三角形的应用.【分析】根据相似三角形的判定推出△ABE∽△ACD,得出比例式,代入求出即可.【解答】解:如图:实用文档文案大全∵BE⊥AC,CD⊥AC,∴BE∥CD,∴△ABE∽△ACD,∴,∴,解得:CD=18.故答案为:18.【点评】本题考查了相似三角形的判定和性质的应用,能根据相似三角形的判定定理推出两三角形相似是解此题的关键.17.(4分)(2017?铜仁市)从﹣1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为【考点】X6:列表法与树状图法;D1:点的坐标.【分析】首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果与点P落在抛物线y=﹣x2+x+2上的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,点P落在第一象限的可能是(1,2),(2,1)两种情形,∴则该点在第一象限的概.故答案为【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.18.(4分)(2017?铜仁市)如图,在Rt△ABC中,∠C=90°,点D是AB 的中点,ED⊥AB交AC于点E.设∠A=α,且tan ,则tan2α=【考点】T7:解直角三角形;KG:线段垂直平分线的性质.【分析】根据题目中的数据和锐角三角函数可以求得tan2α的值,本题得以解决.实用文档文案大全【解答】解:连接BE,∵点D是AB的中点,ED⊥AB,∠A=α,∴ED是AB的垂直平分线,∴EB=EA,∴∠EBA=∠A=α,∴∠BEC=2α,∵tanα=,设DE=x,∴AD=3a,AE=,∴AB=6a,∴BC=,AC=∴CE=,∴tan2α=,故答案为:【点评】本题考查解直角三角形、线段垂直平分线,解答本题的关键是明确题意,找出所求问题需要的条件,利用解直角三角形的相关知识解答.三、解答题19.(10分)(2017?铜仁市)(1)计算)﹣1﹣4sin60°﹣(﹣1.732)0+(2)先化简,再求值:?,其中x=2.【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)根据零指数幂意义,立方根的意义,绝对值的意义即可求出答案.(2)根据分式的运算法则即可求出答案.【解答】解:(1)原式=2﹣4 ﹣1+2=1(2)当x=2时,原式=?==2【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.20.(10分)(2017?铜仁市)如图,已知:∠BAC=∠EAD,AB=20.4,AC=48,AE=17,AD=40.求证:△ABC∽△AED.实用文档文案大全【考点】S8:相似三角形的判定.【分析】先证得=,然后根据相似三角形的判定定理即可证得结论.【解答】证明:∵AB=20.4,AC=48,AE=17,AD=40.∴==1.2,==1.2,,∵∠BAC=∠EAD,∴△ABC∽△AED.【点评】本题重点考查了相似三角形的判定定理,本题比较简单,注要找准相似的两个三角形就可以了.21.(10分)(2017?铜仁市)某校为了了解九年级九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩的样本,按A,B,C(A等:成绩大于或等于80分;B等:成绩大于或等于60分且小于80分;C等:成绩小于60分)三个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(1)请把条形统计图补充完整;(2)扇形统计图中A等所在的扇形的圆心角等于108度;(3)若九年级有1000名学生,请你用此样本估计体育测试众60分以上(包括60分)的学生人数.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据百分比=所占人数总人数,计算即可解决问题;(2)求出A组人数即可解决问题;(3)用样本估计作图的思想解决问题即可;【解答】解:(1)抽查了部分学生的总人数为25÷50%=50(人),A组人数=50﹣25﹣10=15(人),实用文档文案大全条形图如图所示:(2)扇形统计图中A等所在的扇形的圆心角为360°×(1﹣20%﹣50%)=108°,故答案为108.(3)1000×=800(人),答:估计体育测试众60分以上(包括60分)的学生人数有800人.【点评】本题考查条形统计图、扇形统计图、样本估计总体等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(10分)(2017?铜仁市)如图,已知点E,F分别是平行四边形ABCD 对角线BD所在直线上的两点,连接AE,CF,请你添加一个条件,使得△ABE≌△CDF,并证明.【考点】L5:平行四边形的性质;KB:全等三角形的判定.【分析】根据平行四边形性质推出AB=CD,AB∥CD,得出∠EBA=∠FDC,根据SAS证两三角形全等即可.【解答】解:添加的条件是DE=BF,理由是:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠EBA=∠FDC,∵DE=BF,∴BE=DF,∵在△ABE和△CDF中,∴△ABE≌△CDF(SAS).实用文档文案大全【点评】本题考查了平行四边形的性质和全等三角形的判定的应用,通过做此题培养了学生的分析问题和解决问题的能力,也培养了学生的发散思维能力,题目比较好,是一道开放性的题目,答案不唯一23.(12分)(2017?铜仁市)某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间为一次函数关系,如图所示.(1)求y与x的函数表达式;(2)要使销售利润达到800元,销售单价应定为每千克多少元?【考点】AD:一元二次方程的应用;FH:一次函数的应用.【分析】(1)当20≤x≤80时,利用待定系数法即可得到y与x的函数表达式;(2)根据销售利润达到800元,可得方程(x﹣20)(﹣x+80)=800,解方程即可得到销售单价.【解答】解:(1)当0<x<20时,y=60;当20≤x≤80时,设y与x的函数表达式为y=k x+b,把(20,60),(80,0)代入,可得,解得,∴y=﹣x+80,∴y与x的函数表达式为y=<<;(2)若销售利润达到800元,则(x﹣20)(﹣x+80)=800,解得1x=40,2x=60,∴要使销售利润达到800元,销售单价应定为每千克40元或60元.实用文档文案大全【点评】本题主要考查了一元二次方程的应用以及一次函数的应用,列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.24.(12分)(2017?铜仁市)如图,已知在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC交于点D,点E是BC的中点,连接BD,DE.(1)若=,求sinC;(2)求证:DE是⊙O的切线.【考点】MD:切线的判定;T7:解直角三角形.【分析】(1)根据圆周角定理可得∠ADB=90°,再利用同角的余角相等证明∠C=∠ABD,进而可得答案.(2)先连接OD,根据圆周角定理求出∠ADB=90°,根据直角三角形斜边上中线性质求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根据切线的判定推出即可.【解答】(1)解:∵AB为直径,∴∠ADB=90°,∴∠ABD+∠BAD=90°,∵∠ABC=90°,∴∠C+∠BAC=90°,∴∠C=∠ABD,∵=,∴sin∠AB ,∴sinC=;(2)证明:连接OD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠BDC=90°,∵E为BC的中点,∴DE=BE=CE,∴∠EDB=∠EBD,∵OD=OB,∴∠ODB=∠OBD,∵∠ABC=90°,∴∠EDO=∠EDB+∠ODB=∠EBD+∠OBD=∠ABC=90°,∴OD⊥DE,∴DE是⊙O的切线.【点评】本题考查了切线的判定,直角三角形的性质,圆周角定理的应用和三角函数,解此题的关键实用文档文案大全是求出∠ODE=90°,注意:经过半径的外端,并且垂直于这条半径的直线是圆的切线.25.(14分)(2017?铜仁市)如图,抛物线y=x2+b x+c经过点A(﹣1,0),B(0,﹣2),并与x轴交于点C,点M是抛物线对称轴l上任意一点(点M,B,C三点不在同一直线上).(1)求该抛物线所表示的二次函数的表达式;(2)在抛物线上找出两点P1,P2,使得△MP1P2与△MCB全等,并求出点P1,P2的坐标;(3)在对称轴上是否存在点Q,使得∠BQC为直角,若存在,作出点Q (用尺规作图,保留作图痕迹),并求出点Q的坐标.【考点】HF:二次函数综合题.【分析】(1)利用待定系数法求二次函数的表达式;(2)分两种情况:①当△P1MP2≌△CMB时,取对称点可得点P1,P2的坐标;②当△BMC≌△P2P1M时,构建?P2MBC可得点P1,P2的坐标;(3)如图3,先根据直径所对的圆周角是直角,以BC为直径画圆,与对称轴的交点即为点Q,这样的点Q有两个,作辅助线,构建相似三角形,证明△BDQ1∽△Q1EC,列比例式,可得点Q的坐标.【解答】解:(1)把A(﹣1,0),B(0,﹣2)代入抛物线y=x2+b x+c中得:,解得:,∴抛物线所表示的二次函数的表达式为:y=x2﹣x﹣2;(2)如图1,P1与A重合,P2与B关于l对称,∴MB=P2M,P1M=CM,P1P2=BC,∴△P1MP2≌△CMB,∵y=x2﹣x﹣2=()2﹣,此时P1(﹣1,0),∵B(0,﹣2),对称轴:直线x=,∴P2(1,﹣2);实用文档文案大全如图2,MP2∥BC,且MP2=BC,此时,P1与C重合,∵MP2=BC,MC=MC,∠P2MC=∠BP1M,∴△BMC≌△P2P1M,∴P1(2,0),由点B向右平移个单位到M,可知:点C向右平移个单位到P2,当x=时,y=(﹣),∴P ,);(3)如图3,存在,作法:以BC为直径作圆交对称轴l于两点Q1、Q2,则∠BQ1C=∠BQ2C=90°;过Q1作DE⊥y轴于D,过C作CE⊥DE于E,设Q1(,y)(y>0),易得△BDQ1∽△Q1EC,∴,∴=,y2+2y﹣=0,解得:y1=(舍),y2=,∴Q1(,),同理可得:Q2(,);综上所述,点Q的坐标是:(,)或(,).实用文档文案大全【点评】本题考查了待定系数法求函数解析式、二次函数图象上点的坐标特征、二次函数的性质、圆周角定理以及三角形全等的性质和判定,解题的关键是:(1)利用待定系数法求出函数解析式;(2)利用二次函数的对称性解决三角形全等问题;(3)分类讨论.本题属于中档题,难度不大,解决该题型题目时,利用二次函数的对称性,再结合相似三角形、方程解决问题是关键.。

2017年贵州省黔东南州中考数学真题+详细解析

2017年贵州省黔东南州中考数学真题+详细解析

2017年贵州省黔东南州中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.|﹣2|的值是()A.﹣2 B.2 C.﹣D.【考点】15:绝对值.【分析】根据绝对值的性质作答.【解答】解:∵﹣2<0,∴|﹣2|=2.故选B.2.如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120°B.90°C.100°D.30°【考点】K8:三角形的外角性质.【分析】根据三角形的外角的性质计算即可.【解答】解:∠A=∠ACD﹣∠B=120°﹣20°=100°,故选:C.3.下列运算结果正确的是()A.3a﹣a=2 B.(a﹣b)2=a2﹣b2C.6ab2÷(﹣2ab)=﹣3b D.a(a+b)=a2+b【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=2a,不符合题意;B、原式=a2﹣2ab+b2,不符合题意;C、原式=﹣3b,符合题意;D、原式=a2+ab,不符合题意,故选C4.如图所示,所给的三视图表示的几何体是()A.圆锥B.正三棱锥C.正四棱锥D.正三棱柱【考点】U3:由三视图判断几何体.【分析】由左视图和俯视图可得此几何体为柱体,根据主视图是三角形可判断出此几何体为正三棱柱.【解答】解:∵左视图和俯视图都是长方形,∴此几何体为柱体,∵主视图是一个三角形,∴此几何体为正三棱柱.故选:D.5.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A.2 B.﹣1 C.D.4【考点】M5:圆周角定理;KQ:勾股定理;M2:垂径定理.【分析】根据垂径定理得到CE=DE,∠CEO=90°,根据圆周角定理得到∠COE=30°,根据直角三角形的性质得到CE=OC=1,最后由垂径定理得出结论.【解答】解:∵⊙O的直径AB垂直于弦CD,∴CE=DE,∠CEO=90°,∵∠A=15°,∴∠COE=30°,∵OC=2,∴CE=OC=1,∴CD=2OE=2,故选A.6.已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+的值为()A.2 B.﹣1 C.D.﹣2【考点】AB:根与系数的关系.【分析】根据根与系数的关系得到x1+x2=2,x1x2=﹣1,利用通分得到+=,然后利用整体代入的方法计算【解答】解:根据题意得x1+x2=2,x1x2=﹣1,所以+===﹣2.故选D.7.分式方程=1﹣的根为()A.﹣1或3 B.﹣1 C.3 D.1或﹣3【考点】B3:解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3=x2+x﹣3x,解得:x=﹣1或x=3,经检验x=﹣1是增根,分式方程的根为x=3,故选C8.如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于O,则∠DOC的度数为()A.60°B.67.5°C.75°D.54°【考点】LE:正方形的性质.【分析】如图,连接DF、BF.如图,连接DF、BF.首先证明∠FDB=∠FAB=30°,再证明△FAD≌△FBC,推出∠ADF=∠FCB=15°,由此即可解决问题.【解答】解:如图,连接DF、BF.∵FE⊥AB,AE=EB,∴FA=FB,∵AF=2AE,∴AF=AB=FB,∴△AFB是等边三角形,∵AF=AD=AB,∴点A是△DBF的外接圆的圆心,∴∠FDB=∠FAB=30°,∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∠ADB=∠DBC=45°,∴∠FAD=∠FBC,∴△FAD≌△FBC,∴∠ADF=∠FCB=15°,∴∠DOC=∠OBC+∠OCB=60°.故选A.9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个B.2个C.3个D.4个【考点】H4:二次函数图象与系数的关系.【分析】①利用抛物线与x轴有2个交点和判别式的意义对①进行判断;②由抛物线开口方向得到a>0,由抛物线对称轴位置确定b>0,由抛物线与y轴交点位置得到c>0,则可作判断;③利用x=﹣1时a﹣b+c<0,然后把b=2a代入可判断;④利用抛物线的对称性得到x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,则可进行判断.【解答】解:①∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以①错误;②∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴a、b同号,∴b>0,∵抛物线与y轴交点在x轴上方,∴c>0,∴abc>0,所以②正确;③∵x=﹣1时,y<0,即a﹣b+c<0,∵对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a,∴a﹣2a+c<0,即a>c,所以③正确;④∵抛物线的对称轴为直线x=﹣1,∴x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,∴4a﹣2b+c>0,所以④正确.所以本题正确的有:②③④,三个,故选C.10.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2017 B.2016 C.191 D.190【考点】4C:完全平方公式.【分析】根据图形中的规律即可求出(a+b)20的展开式中第三项的系数;【解答】解:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(a+b)20第三项系数为1+2+3+…+20=190,故选D.二、填空题(本大题共6小题,每小题4分,共24分)11.在平面直角坐标系中有一点A(﹣2,1),将点A先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为(1,﹣1).【考点】Q3:坐标与图形变化﹣平移.【分析】根据坐标平移规律即可求出答案.【解答】解:由题意可知:A的横坐标+3,纵坐标﹣2,即可求出平移后的坐标,∴平移后A的坐标为(1,﹣1)故答案为:(1,﹣1)12.如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件∠A=∠D 使得△ABC≌△DEF【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定定理填空.【解答】解:添加∠A=∠D.理由如下:∵FB=CE,∴BC=EF.又∵AC∥DF,∴∠ACB=∠DFE.∴在△ABC与△DEF中,,∴△ABC≌△DEF(AAS).故答案是:∠A=∠D.13.在实数范围内因式分解:x5﹣4x=x(x2+3)(x+)(x﹣).【考点】58:实数范围内分解因式.【分析】先提取公因式x,再把4写成22的形式,然后利用平方差公式继续分解因式.【解答】解:原式=x(x4﹣22),=x(x2+2)(x2﹣2)=x(x2+2)(x+)(x﹣),故答案是:x(x2+3)(x+)(x﹣).14.黔东南下司“蓝每谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是560kg.【考点】X8:利用频率估计概率.【分析】根据题意可以估计该果农今年的“优质蓝莓”产量.【解答】解:由题意可得,该果农今年的“优质蓝莓”产量约是:800×0.7=560kg,故答案为:560.15.如图,已知点A,B分别在反比例函数y1=﹣和y2=的图象上,若点A是线段OB的中点,则k 的值为﹣8.【考点】G6:反比例函数图象上点的坐标特征.【分析】设A(a,b),则B(2a,2b),将点A、B分别代入所在的双曲线方程进行解答.【解答】解:设A(a,b),则B(2a,2b),∵点A在反比例函数y1=﹣的图象上,∴ab=﹣2;∵B点在反比例函数y2=的图象上,∴k=2a•2b=4ab=﹣8.故答案是:﹣8.16.把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与y轴重合且点A的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2C垂直且交y轴于点B3;…按此规律继续下去,则点B2017的坐标为(0,﹣).【考点】D2:规律型:点的坐标.【分析】根据题意和图象可以发现题目中的变化规律,从而可以求得点B2017的坐标.【解答】解:由题意可得,=OB•tan60°==()2=3,OB=OA•tan60°=1×=,OBOB 2=OB1•tan60°=()3,…的坐标为(0,﹣),∵2017÷4=506…1,∴点B故答案为:(0,﹣).三、解答题(本大题共8小题,共86分)17.计算:﹣1﹣2+|﹣|+(π﹣3.14)0﹣tan60°+.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=1+()+1﹣=218.先化简,再求值:(x﹣1﹣)÷,其中x=+1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=•=x﹣1,当x=+1时,原式=.19.解不等式组,并把解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条不等式表示出来.【解答】解:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:20.某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.身高分组频数频率152≤x<15530.06155≤x<15870.14158≤x<161m0.28161≤x<16413n164≤x<16790.18167≤x<17030.06170≤x<17310.02根据以上统计图表完成下列问题:(1)统计表中m=14,n=0.26,并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在:161≤x<164范围内;(3)在身高≥167cm的4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.【考点】X6:列表法与树状图法;V7:频数(率)分布表;V8:频数(率)分布直方图;W4:中位数.【分析】(1)设总人数为x人,则有=0.06,解得x=50,再根据频率公式求出m,n.画出直方图即可;(2)根据中位数的定义即可判断;(3)画出树状图即可解决问题;【解答】解:(1)设总人数为x人,则有=0.06,解得x=50,∴m=50×0.28=14,n==0.26.故答案为14,0.26.频数分布直方图:(2)观察表格可知中位数在 161≤x <164内,故答案为 161≤x <164.(3)将甲、乙两班的学生分别记为甲1、甲2、乙1、乙2,树状图如图所示:所以P (两学生来自同一所班级)==.21.如图,已知直线PT 与⊙O 相切于点T ,直线PO 与⊙O 相交于A ,B 两点.(1)求证:PT 2=PA•PB ;(2)若PT=TB=,求图中阴影部分的面积.【考点】S9:相似三角形的判定与性质;MC :切线的性质;MO :扇形面积的计算.【分析】(1)连接OT ,只要证明△PTA ∽△PBT ,可得=,由此即可解决问题;(2)首先证明△AOT 是等边三角形,根据S 阴=S 扇形OA T ﹣S △AOT 计算即可;【解答】(1)证明:连接OT.∵PT 是⊙O 的切线,∴PT ⊥OT ,∴∠PTO=90°,∴∠PTA +∠OTA=90°,∵AB 是直径,∴∠ATB=90°,∴∠TAB +∠B=90°,∵OT=OA ,∴∠OAT=∠OTA ,∴∠PTA=∠B ,∵∠P=∠P ,∴△PTA ∽△PBT ,∴=,∴PT 2=PA•PB .(2)∵TP=TB=,∴∠P=∠B=∠PTA ,∵∠TAB=∠P +∠PTA ,∴∠TAB=2∠B ,∵∠TAB +∠B=90°,∴∠TAB=60°,∠B=30°,∴tanB==,∴AT=1,∵OA=OT ,∠TAO=60°,∴△AOT 是等边三角形,∴S 阴=S 扇形OA T ﹣S △AOT =﹣•12=﹣.22.如图,某校教学楼AB 后方有一斜坡,已知斜坡CD 的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD 进行改造,在保持坡脚C 不动的情况下,学校至少要把坡顶D 向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】假设点D 移到D′的位置时,恰好∠α=39°,过点D 作DE ⊥AC 于点E ,作D′E′⊥AC 于点E′,根据锐角三角函数的定义求出DE、CE、CE′的长,进而可得出结论.【解答】解:假设点D移到D′的位置时,恰好∠α=39°,过点D作DE⊥AC于点E,作D′E′⊥AC于点E′,∵CD=12米,∠DCE=60°,∴DE=CD•sin60°=12×=6米,CE=CD•cos60°=12×=6米.∵DE⊥AC,D′E′⊥AC,DD′∥CE′,∴四边形DEE′D′是矩形,∴DE=D′E′=6米.∵∠D′CE′=39°,∴CE′=≈≈12.8,∴EE′=CE′﹣CE=12.8﹣6=6.8(米).答:学校至少要把坡顶D向后水平移动6.8米才能保证教学楼的安全.23.某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修,现学校招用了甲、乙两个工程队.若两队合作,8天就可以完成该项工程;若由甲队先单独做3天后,剩余部分由乙队单独做需要18天才能完成.(1)求甲、乙两队工作效率分别是多少?(2)甲队每天工资3000元,乙队每天工资1400元,学校要求在12天内将学生公寓楼装修完成,若完成该工程甲队工作m天,乙队工作n天,求学校需支付的总工资w(元)与甲队工作天数m(天)的函数关系式,并求出m的取值范围及w的最小值.【考点】FH:一次函数的应用;B7:分式方程的应用.【分析】(1)设甲队单独完成需要x天,乙队单独完成需要y天.列出分式方程组即可解决问题;(2)设乙先工作x天,再与甲合作正好如期完成.则+=1,解得x=6.由此可得m的范围,因为乙队每天的费用小于甲队每天的费用,所以让乙先工作6天,再与甲合作6天正好如期完成,此时费用最小;【解答】解:(1)设甲队单独完成需要x天,乙队单独完成需要y天.由题意,解得,经检验是分式方程组的解,∴甲、乙两队工作效率分别是和.(2)设乙先工作x天,再与甲合作正好如期完成.则+=1,解得x=6.∴甲工作6天,∵甲12天完成任务,∴6≤m≤12.∵乙队每天的费用小于甲队每天的费用,∴让乙先工作6天,再与甲合作6天正好如期完成,此时费用最小,∴w的最小值为12×1400+6×3000=34800元.24.如图,⊙M的圆心M(-1,2),⊙M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=﹣x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(-4,0).(1)求抛物线的解析式;(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入可求得a的值,从而得到抛物线的解析式;(2)连接AM,过点M作MG⊥AD,垂足为G.先求得点A和点B的坐标,可求得,可得到AG、ME、OA、OB的长,然后利用锐角三角函数的定义可证明∠MAG=∠ABD,故此可证明AM⊥AB;(3))先证明∠FPE=∠FBD.则PF:PE:EF=:2:1.则△PEF的面积=PF2,设点P的坐标为(x,﹣x2﹣x+),则F(x,﹣x+4).然后可得到PF与x的函数关系式,最后利用二次函数的性质求解即可.【解答】解:(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入得:-9a=2,解得:a=﹣.∴抛物线的解析式为y=﹣x2﹣x+.(2)连接AM,过点M作MG⊥AD,垂足为G.把x=0代入y=﹣x+4得:y=4,∴A(0,4).将y=0代入得:0=﹣x+4,解得x=8,∴B(8,0).∴OA=4,OB=8.∵M(﹣1,2),A(0,4),∴MG=1,AG=2.∴tan∠MAG=tan∠ABO=.∴∠MAG=∠ABO.∵∠OAB+∠ABO=90°,∴∠MAG+∠OAB=90°,即∠MAB=90°.∴l是⊙M的切线.(3)∵∠PFE+∠FPE=90°,∠FBD+∠PFE=90°,∴∠FPE=∠FBD.∴tan∠FPE=.∴PF:PE:EF=:2:1.∴△PEF的面积=PE•EF=×PF•PF=PF2.∴当PF最小时,△PEF的面积最小.设点P的坐标为(x,﹣x2﹣x+),则F(x,﹣x+4).∴PF=(﹣x+4)﹣(﹣x2﹣x+)=﹣x+4+x2+x﹣=x2﹣x+=(x﹣)2+.∴当x=时,PF有最小值,PF的最小值为.∴P(,).∴△PEF的面积的最小值为=×()2=.。

2017年各地中考试卷2017年贵州省贵阳市中考数学试卷

2017年各地中考试卷2017年贵州省贵阳市中考数学试卷

2017年贵州省贵阳市中考数学试卷一、选择题(每小题3分,共30分)1.(3分)在1、﹣1、3、﹣2这四个数中,互为相反数的是()A.1与﹣1 B.1与﹣2 C.3与﹣2 D.﹣1与﹣22.(3分)如图,a∥b,∠1=70°,则∠2等于()A.20°B.35°C.70°D.110°3.(3分)生态文明贵阳国际论坛作为我国目前唯一以生态文明为主题的国家级国际性论坛,现已被纳入国家“一带一路”总体规划,持续四届的成功举办,已相继吸引近7000名各国政要及嘉宾出席,7000这个数用科学记数法可表示为()A.70×102 B.7×103C.0.7×104D.7×1044.(3分)如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是()A.B.C.D.5.(3分)某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池,小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是()A.B.C.D.6.(3分)若直线y=﹣x+a与直线y=x+b的交点坐标为(2,8),则a﹣b的值为()A.2 B.4 C.6 D.87.(3分)贵阳市“阳光小区”开展“节约用水,从我做起”的活动,一个月后,社区居委会从小区住户中抽取10个家庭与他们上月的用水量进行比较,统计出节水情况如下表:那么这10个家庭的节水量(m3)的平均数和中位数分别是()A.0.47和0.5 B.0.5和0.5 C.0.47和4 D.0.5和48.(3分)如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为()A.6 B.12 C.18 D.249.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,以下四个结论:①a>0;②c>0;③b2﹣4ac>0;④﹣<0,正确的是()A.①②B.②④C.①③D.③④10.(3分)如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,则S2的值为()A.12 B.18 C.24 D.48二、填空题(每小题4分,共20分)11.(4分)关于x的不等式的解集在数轴上表示如图所示,则该不等式的解集为.12.(4分)方程(x﹣3)(x﹣9)=0的根是.13.(4分)如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心距OM的长为.14.(4分)袋子中有红球、白球共10个,这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100次后,发现有30次摸到红球,请你估计这个袋中红球约有个.15.(4分)如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F 是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,则A′C的长的最小值是.三、解答题(本大题共10小题,共100分)16.(8分)下面是小颖化简整式的过程,仔细阅读后解答所提出的问题.解:x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2+2x+1+2x 第一步=2xy+4x+1 第二步(1)小颖的化简过程从第步开始出现错误;(2)对此整式进行化简.17.(10分)2017年6月2日,贵阳市生态委发布了《2016年贵阳市环境状况公报》,公报显示,2016年贵阳市生态环境质量进一步提升,小颖根据公报中的部分数据,制成了下面两幅统计图,请根据图中提供的信息,回答下列问题:(1)a=,b=;(结果保留整数)(2)求空气质量等级为“优”在扇形统计图中所占的圆心角的度数;(结果精确到1°)(3)根据了解,今年1~5月贵阳市空气质量优良天数为142天,优良率为94%,与2016年全年的优良率相比,今年前五个月贵阳市空气质量的优良率是提高还是降低了?请对改善贵阳市空气质量提一条合理化建议.18.(10分)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.19.(10分)2017年5月25日,中国国际大数据产业博览会在贵阳会展中心开幕,博览会设了编号为1~6号展厅共6个,小雨一家计划利用两天时间参观其中两个展厅:第一天从6个展厅中随机选择一个,第二天从余下的5个展厅中再随机选择一个,且每个展厅被选中的机会均等.(1)第一天,1号展厅没有被选中的概率是;(2)利用列表或画树状图的方法求两天中4号展厅被选中的概率.20.(8分)贵阳市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精确到1°).21.(10分)“2017年张学友演唱会”于6月3日在我市关山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.22.(10分)如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(3)求阴影部分的面积(结果保留π和根号).23.(10分)如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?24.(12分)(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.25.(12分)我们知道,经过原点的抛物线可以用y=ax2+bx(a≠0)表示,对于这样的抛物线:(1)当抛物线经过点(﹣2,0)和(﹣1,3)时,求抛物线的表达式;(2)当抛物线的顶点在直线y=﹣2x上时,求b的值;(3)如图,现有一组这样的抛物线,它们的顶点A1、A2、…,A n在直线y=﹣2x 上,横坐标依次为﹣1,﹣2,﹣3,…,﹣n(n为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1、B2,…,B n,以线段A n B n为边向左作正方形A n B n C n D n,如果这组抛物线中的某一条经过点D n,求此时满足条件的正方形A n B n C n D n的边长.2017年贵州省贵阳市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2017•贵阳)在1、﹣1、3、﹣2这四个数中,互为相反数的是()A.1与﹣1 B.1与﹣2 C.3与﹣2 D.﹣1与﹣2【分析】根据相反数的概念解答即可.【解答】解:1与﹣1互为相反数,故选A.【点评】本题考查了相反数的概念:只有符号不同的两个数叫做互为相反数.2.(3分)(2017•贵阳)如图,a∥b,∠1=70°,则∠2等于()A.20°B.35°C.70°D.110°【分析】先根据平行线的性质得出∠3的度数,再根据对顶角相等求解.【解答】解:∵a∥b,∠1=70°,∴∠3=∠1=70°,∴∠2=∠1=70°,故选:C.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等.3.(3分)(2017•贵阳)生态文明贵阳国际论坛作为我国目前唯一以生态文明为主题的国家级国际性论坛,现已被纳入国家“一带一路”总体规划,持续四届的成功举办,已相继吸引近7000名各国政要及嘉宾出席,7000这个数用科学记数法可表示为()A.70×102 B.7×103C.0.7×104D.7×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于7000有4位,所以可以确定n=4﹣1=3.【解答】解:7000=7×103.故选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(3分)(2017•贵阳)如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是()A.B.C.D.【分析】根据俯视图是从物体的上面看得到的视图解答即可.【解答】解:水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图左边是一个圆、右边是一个矩形,故选:D.【点评】本题考查的是几何体的三视图,俯视图是从物体的上面看得到的视图,左视图是从物体的左面看得到的视图.5.(3分)(2017•贵阳)某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池,小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是()A .B .C .D .【分析】先找出正确的纸条,再根据概率公式即可得出答案.【解答】解:∵共有6张纸条,其中正确的有①互相关心;②互相提醒;③不要相互嬉水;⑥选择有人看护的游泳池,共4张,∴抽到内容描述正确的纸条的概率是=;故选C.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.6.(3分)(2017•贵阳)若直线y=﹣x+a与直线y=x+b的交点坐标为(2,8),则a﹣b的值为()A.2 B.4 C.6 D.8【分析】把(2,8)代入y=﹣x+a和y=x+b,即可求出a、b,即可求出答案.【解答】解:∵直线y=﹣x+a与直线y=x+b的交点坐标为(2,8),∴8=﹣2+a,8=2+b,解得:a=10,b=6,∴a﹣b=4,故选B.【点评】本题考查了两直线的交点问题,能求出a、b的值是解此题的关键.7.(3分)(2017•贵阳)贵阳市“阳光小区”开展“节约用水,从我做起”的活动,一个月后,社区居委会从小区住户中抽取10个家庭与他们上月的用水量进行比较,统计出节水情况如下表:那么这10个家庭的节水量(m3)的平均数和中位数分别是()A.0.47和0.5 B.0.5和0.5 C.0.47和4 D.0.5和4【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.【解答】解:这10个数据的平均数为=0.47,中位数为=0.5,故选:A【点评】本题考查了中位数的定义:把一组数据按从小到大(或从大到小)排列,最中间那个数(或最中间两个数的平均数)叫这组数据的中位数.8.(3分)(2017•贵阳)如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为()A.6 B.12 C.18 D.24【分析】由平行四边形的性质得出DC=AB,AD=BC,由线段垂直平分线的性质得出AE=CE,得出△CDE的周长=AD+DC,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD的周长=2×6=12;故选:B.【点评】本题考查了平行四边形的性质、线段垂直平分线的性质、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.9.(3分)(2017•贵阳)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,以下四个结论:①a>0;②c>0;③b2﹣4ac>0;④﹣<0,正确的是()A.①②B.②④C.①③D.③④【分析】①由抛物线开口向上可得出a>0,结论①正确;②由抛物线与y轴的交点在y轴负半轴可得出c<0,结论②错误;③由抛物线与x轴有两个交点,可得出△=b2﹣4ac>0,结论③正确;④由抛物线的对称轴在y轴右侧,可得出﹣>0,结论④错误.综上即可得出结论.【解答】解:①∵抛物线开口向上,∴a>0,结论①正确;②∵抛物线与y轴的交点在y轴负半轴,∴c<0,结论②错误;③∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,结论③正确;④∵抛物线的对称轴在y轴右侧,∴﹣>0,结论④错误.故选C.【点评】本题考查了二次函数图象与系数的关系以及抛物线与x轴的交点,观察函数图象逐一分析四条结论的正误是解题的关键.10.(3分)(2017•贵阳)如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,则S2的值为()A.12 B.18 C.24 D.48【分析】根据已知条件得到AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,根据平行四边形的性质得到CE=AD,AE=CD=3,由已知条件得到∠BAE=90°,根据勾股定理得到BE==2,于是得到结论.【解答】解:∵S1=3,S3=9,∴AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,∵AD∥BC,∴四边形AECD是平行四边形,∴CE=AD,AE=CD=3,∵∠ABC+∠DCB=90°,∴∠AEB+∠ABC=90°,∴∠BAE=90°,∴BE==2,∵BC=2AD,∴BC=2BE=4,∴S2=(4)2=48,故选D.【点评】本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键.二、填空题(每小题4分,共20分)11.(4分)(2017•贵阳)关于x的不等式的解集在数轴上表示如图所示,则该不等式的解集为x≤2.【分析】观察数轴得到不等式的解集都在2的左侧包括2,根据数轴表示数的方法得到不等式的解集为x≤2.【解答】解:观察数轴可得该不等式的解集为x≤2.故答案为:x≤2.【点评】本题考查了在数轴表示不等式的解集,运用数形结合的思想是解答此题的关键.12.(4分)(2017•贵阳)方程(x﹣3)(x﹣9)=0的根是x1=3,x2=9.【分析】先把一元二次方程转化成一元一次方程,求出方程的解即可.【解答】解:(x﹣3)(x﹣9)=0,x﹣3=0,x﹣9=0,x1=3,x2=9,故答案为:x1=3,x2=9.【点评】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.13.(4分)(2017•贵阳)如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心距OM的长为3.【分析】根据正六边形的性质求出∠BOM,利用余弦的定义计算即可.【解答】解:连接OB,∵六边形ABCDEF是⊙O内接正六边形,∴∠BOM==30°,∴OM=OB•cos∠BOM=6×=3;故答案为:3.【点评】本题考查的是正多边形和圆的有关计算,掌握正多边形的中心角的计算公式、熟记余弦的概念是解题的关键.14.(4分)(2017•贵阳)袋子中有红球、白球共10个,这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100次后,发现有30次摸到红球,请你估计这个袋中红球约有3个.【分析】首先求出摸到红球的频率,用频率去估计概率即可求出袋中红球约有多少个.【解答】解:∵摸了100次后,发现有30次摸到红球,∴摸到红球的频率==0.3,∵袋子中有红球、白球共10个,∴这个袋中红球约有10×0.3=3个,故答案为:3.【点评】此题考查利用频率估计概率.大量反复试验下频率稳定值即概率.同时也考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.15.(4分)(2017•贵阳)如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB 的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,则A′C﹣1.【分析】连接CE,根据折叠的性质可知A′E=1,在Rt△BCE中利用勾股定理可求出CE的长度,再利用三角形的三边关系可得出点A′在CE上时,A′C取最小值,最小值为CE﹣A′E=﹣1,此题得解.【解答】解:连接CE,如图所示.根据折叠可知:A′E=AE=AB=1.在Rt△BCE中,BE=AB=1,BC=3,∠B=90°,∴CE==.∵CE=,A′E=1,∴点A′在CE上时,A′C取最小值,最小值为CE﹣A′E=﹣1.故答案为:﹣1.【点评】本题考查了翻折变换、矩形的性质、勾股定理以及三角形的三边关系,利用三角形的三边关系可得出点A′在CE上时,A′C取最小值是解题的关键.三、解答题(本大题共10小题,共100分)16.(8分)(2017•贵阳)下面是小颖化简整式的过程,仔细阅读后解答所提出的问题.解:x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2+2x+1+2x 第一步=2xy+4x+1 第二步(1)小颖的化简过程从第一步开始出现错误;(2)对此整式进行化简.【分析】(1)注意去括号的法则;(2)根据单项式乘以多项式、完全平方公式以及去括号的法则进行计算即可.【解答】解:(1)括号前面是负号,去掉括号应变号,故第一步出错,故答案为一;(2)解:x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2﹣2x﹣1+2x=2xy﹣1.【点评】本题考查了单项式乘以多项式以及完全平方公式,掌握运算法则是解题的关键.17.(10分)(2017•贵阳)2017年6月2日,贵阳市生态委发布了《2016年贵阳市环境状况公报》,公报显示,2016年贵阳市生态环境质量进一步提升,小颖根据公报中的部分数据,制成了下面两幅统计图,请根据图中提供的信息,回答下列问题:(1)a=14,b=125;(结果保留整数)(2)求空气质量等级为“优”在扇形统计图中所占的圆心角的度数;(结果精确到1°)(3)根据了解,今年1~5月贵阳市空气质量优良天数为142天,优良率为94%,与2016年全年的优良率相比,今年前五个月贵阳市空气质量的优良率是提高还是降低了?请对改善贵阳市空气质量提一条合理化建议.【分析】(1)根据题意列式计算即可;(2)根据2016年全年总天数为:125+225+14+1+1=366(天),即可得到结论;(3)首先求得2016年贵阳市空气质量优良的优良率为×100%≈95.6%,与今年前5 个月贵阳市空气质量优良率比较即可.【解答】解:(1)a=×3.83%=14,b=﹣14﹣225﹣1﹣1=125;故答案为:14,125;(2)因为2016年全年总天数为:125+225+14+1+1=366(天),则360°×=123°,所以空气质量等级为“优”在扇形统计图中所占的圆心角的度数为123°;(3)2016年贵阳市空气质量优良的优良率为×100%≈95.6%,∵94%<95.6%,∴与2016年全年的优良相比,今年前5 个月贵阳市空气质量优良率降低了,建议:低碳出行,少开空调等.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.18.(10分)(2017•贵阳)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出∠BAC=60°,AC=AB=AE,证出△AEC是等边三角形,得出AC=CE,即可得出结论.【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.【点评】本题考查了平行四边形的判定与性质、菱形的判定、三角形中位线定理、直角三角形斜边上的中线性质、等边三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形是等边三角形是解决问题的关键.19.(10分)(2017•贵阳)2017年5月25日,中国国际大数据产业博览会在贵阳会展中心开幕,博览会设了编号为1~6号展厅共6个,小雨一家计划利用两天时间参观其中两个展厅:第一天从6个展厅中随机选择一个,第二天从余下的5个展厅中再随机选择一个,且每个展厅被选中的机会均等.(1)第一天,1号展厅没有被选中的概率是;(2)利用列表或画树状图的方法求两天中4号展厅被选中的概率.【分析】(1)根据有6个展厅,编号为1~6号,第一天,抽到1号展厅的概率是,从而得出1号展厅没有被选中的概率;(2)根据题意先列出表格,得出所有可能的数和两天中4号展厅被选中的结果数,然后根据概率公式即可得出答案.【解答】解:(1)根据题意得:第一天,1号展厅没有被选中的概率是:1﹣=;故答案为:;(2)根据题意列表如下:由表格可知,总共有30种可能的结果,每种结果出现的可能性相同,其中,两天中4号展厅被选中的结果有10种,所以,P==.(4号展厅被选中)【点评】此题考查的是用列表法或树状图法求概率的知识.列表法或树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.20.(8分)(2017•贵阳)贵阳市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精确到1°).【分析】延长AD交BC所在直线于点E.解Rt△ACE,得出CE=AE•tan60°=15米,解Rt△ABE,由tan∠BAE==,得出∠BAE≈71°.【解答】解:延长AD交BC所在直线于点E.由题意,得BC=17米,AE=15米,∠CAE=60°,∠AEB=90°,在Rt△ACE中,tan∠CAE=,∴CE=AE•tan60°=15米.在Rt△ABE中,tan∠BAE==,∴∠BAE≈71°.答:第二次施救时云梯与水平线的夹角∠BAD约为71°.【点评】本题考查了解直角三角形的应用,首先构造直角三角形,再运用三角函数的定义解题,构造出直角三角形是解题的关键.21.(10分)(2017•贵阳)“2017年张学友演唱会”于6月3日在我市关山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.【分析】(1)设小张跑步的平均速度为x米/分钟,则小张骑车的平均速度为1.5x 米/分钟,根据时间=路程÷速度结合小张骑车的时间比跑步的时间少用了4分钟,即可得出关于x的分式方程,解之并检验后即可得出结论;(2)根据时间=路程÷速度求出小张跑步回家的时间,由骑车与跑步所需时间之间的关系可得出骑车的时间,再加上取票和寻找“共享单车”共用的5分钟即可求出小张赶回奥体中心所需时间,将其与23进行比较后即可得出结论.【解答】解:(1)设小张跑步的平均速度为x米/分钟,则小张骑车的平均速度为1.5x米/分钟,根据题意得:﹣=4,解得:x=210,经检验,x=210是原方程组的解.答:小张跑步的平均速度为210米/分钟.(2)小张跑步到家所需时间为2520÷210=12(分钟),小张骑车所用时间为12﹣4=8(分钟),小张从开始跑步回家到赶回奥体中心所需时间为12+8+5=25(分钟),∵25>23,∴小张不能在演唱会开始前赶到奥体中心.【点评】本题考查了分式方程的应用,解题的关键是:(1)根据时间=路程÷速度结合小张骑车的时间比跑步的时间少用了4分钟,列出关于x的分式方程;(2)根据数量关系,列式计算.22.(10分)(2017•贵阳)如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(3)求阴影部分的面积(结果保留π和根号).【分析】(1)连接OD,OC,根据已知条件得到∠AOD=∠DOC=∠COB=60°,根据圆周角定理得到∠CAB=30°,于是得到结论;(2)由(1)知,∠AOD=60°,推出△AOD是等边三角形,OA=2,得到DE=,根据扇形和三角形的面积公式即可得到结论.【解答】解:(1)连接OD,OC,∵C、D是半圆O上的三等分点,∴==,∴∠AOD=∠DOC=∠COB=60°,∴∠CAB=30°,∵DE⊥AB,∴∠AEF=90°,∴∠AFE=90°﹣30°=60°;(2)由(1)知,∠AOD=60°,∵OA=OD,AB=4,∴△AOD是等边三角形,OA=2,∵DE⊥AO,∴DE=,∴S阴影=S扇形AOD﹣S△AOD=﹣×2=π﹣.【点评】本题考查了扇形的面积,等边三角形的判定和性质,正确的作出辅助线是解题的关键.23.(10分)(2017•贵阳)如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?【分析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)构建二次函数,利用二次函数的性质即可解决问题;【解答】解:(1)∵直线y=2x+6经过点A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函数经过点A(1,8),∴8=,∴k=8,∴反比例函数的解析式为y=.(2)由题意,点M,N的坐标为M(,n),N(,n),∵0<n<6,∴<0,∴S=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,△BMN∴n=3时,△BMN的面积最大.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是灵活运用所学知识解决问题,学会构建二次函数,解决最值问题,属于中考常考题型.24.(12分)(2017•贵阳)(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为AD=AB+DC;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.【分析】(1)延长AE交DC的延长线于点F,证明△AEB≌△FEC,根据全等三角形的性质得到AB=FC,根据等腰三角形的判定得到DF=AD,证明结论;(2)延长AE交DF的延长线于点G,利用同(1)相同的方法证明;(3)延长AE交CF的延长线于点G,根据相似三角形的判定定理得到△AEB∽△GEC,根据相似三角形的性质得到AB=CG,计算即可.【解答】解:(1)如图①,延长AE交DC的延长线于点F,∵AB∥DC,∴∠BAF=∠F,∵E是BC的中点,∴CE=BE,在△AEB和△FEC中,。

2017年云南省中考数学试卷及答案解析

2017年云南省中考数学试卷及答案解析

2017年省中考数学试卷(解析版)(全卷三个大题,共23个小题;满分120分)一、填空题(本大题共6个小题,每小题3分,共18分) 1.2的相反数是______________. 【考点】相反数 【答案】-2;2.已知关于x 的方程2501,x x a x a ++==已知关于的方程的解是则的值为__________ 【考点】方程的解 【答案】-73.如图,在△ABC 中,D 、E 分别为AB ,AC 上的点,若DE ∥BC ,AD 13AB =, 则AD+DE+AE=AB+BC+AC______________.【考点】相似三角形,等比性质 【解析】等比性质a c e a c e k k b d f b d f ++====++若,则 等比性质的原理是,a bk,c dk,e fk a c ek b d f======设则 a c e bk dk fkk b d f b d f++++==++++,故本题答案为134.9______________.x x -使有意义的的取值范围为 【考点】二次根式 【答案】9x ≤5.如图,边长为4的正方形ABCD 外切于圆O ,切点分别为E 、F 、G 、H ,则图中阴影部分的面积为____________________.【考点】多边形切圆,切线长定理。

阴影部分面积【解析】方法很多,又是选择题,要求没有那么严谨,只要看出分割,就可以完成 【答案】42π+6.5(,)y A a b x=已知点在双曲线上,若a 、b 都是正整数,则图像经过 B(a,0)C(0,b)、两点的一次函数的解析式(也称关系式)为_______________.【考点】反比例函数,一次函数,待定系数法 【解析】因为5(,)y A a b x=点在双曲线上,所以ab=5 又因为a 、b 都是正整数,所以1551a ab b ==⎧⎧⎨⎨==⎩⎩或 所以分两种情况:①B (1,0),C (0,5),由此可得一次函数解析式为55y x =-+ ②B (5,0),C (0,1),由此可得一次函数解析式为155y x =-+二、选则题(本大题共8个小题,每小题只要一个正确选项,每小题4分,共32分)7.作为世界文化遗产的长城,其总长大约为6700000m ,将6700000用科学计数法表示为( ) A .56.710⨯ B. 66.710⨯ C. 70.6710⨯ D. 86710⨯ 【考点】科学计算法 【答案】选B8.下面长方体的主视图(主视图也称正视图)是( )【考点】三视图 【答案】选C9.下列计算正确的是( )A .236a a a ⨯= B.()3326a a -=- C.623a a a ÷= D.326()a a -= 【考点】整式乘除、幂的性质 【答案】选D10. 若一个多边形的角和为900°,则这个多边形是( ) A.五边形 B.六边形 C.七边形 D.八边形 【考点】多边形角和 【答案】选C11. sin60°的值为( ) A .3 B.3 C.22 D.12【考点】特殊角三角函数 【答案】选B12. 下列说确的是( )A .要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B .4为同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C .甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62,则乙的表现较甲更稳定 D.某次抽奖活动中,中奖的概率为150表示每抽奖50次就有一次中奖 【考点】统计概率小综合【解析】B 选项中位数应为102.5;C 选项根据方差甲更稳定;D 这种事情是常识大家都懂, 故选A13.正如我们小学学过的圆锥体积公式213V r h π=(π表示圆周率,r 表示圆锥的底面半径,h 表示圆锥的高)一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后第7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确。

考点14 四边形-中考数学考点讲解

考点14 四边形-中考数学考点讲解

考点14 四边形一、多边形1.多边形的相关概念(1)定义:在平面内,由一些段线首尾顺次相接组成的封闭图形叫做多边形.(2)对角线:从n边形的一个顶点可以引(n–3)条对角线,并且这些对角线把多边形分成了(n–2)个三角形;n边形对角线条数为()32n n-.2.多边形的内角和、外角和(1)内角和:n边形内角和公式为(n–2)·180°;(2)外角和:任意多边形的外角和为360°. 3.正多边形(1)定义:各边相等,各角也相等的多边形.(2)正n边形的每个内角为()2180nn-⋅,每一个外角为360n︒.(3)正n边形有n条对称轴.(4)对于正n边形,当n为奇数时,是轴对称图形;当n为偶数时,既是轴对称图形,又是中心对称图形.二、平行四边形的性质1.平行四边形的定义两组对边分别平行的四边形叫做平行四边形,平行四边形用“”表示.2.平行四边形的性质(1)边:两组对边分别平行且相等.(2)角:对角相等,邻角互补.(3)对角线:互相平分.(4)对称性:中心对称但不是轴对称.3.注意:利用平行四边形的性质解题时一些常用到的结论和方法:(1)平行四边形相邻两边之和等于周长的一半.(2)平行四边形中有相等的边、角和平行关系,所以经常需结合三角形全等来解题.(3)过平行四边形对称中心的任一直线等分平行四边形的面积及周长.4.平行四边形中的几个解题模型(1)如图①,AE平分∠BAD,则可利用平行线的性质结合等角对等边得到△ABE为等腰三角形,即AB=BE.(2)平行四边形的一条对角线把其分为两个全等的三角形,如图②中△ABD≌△CDB;两条对角线把平行四边形分为两组全等的三角形,如图②中△AOD≌△COB,△AOB≌△COD;根据平行四边形的中心对称性,可得经过对称中心O的线段与对角线所组成的居于中心对称位置的三角形全等,如图②△AOE≌△COF.图②中阴影部分的面积为平行四边形面积的一半.(3)如图③,已知点E为AD上一点,根据平行线间的距离处处相等,可得S△BEC=S△ABE+S△CDE.(4)如图④,根据平行四边形的面积的求法,可得AE·BC=AF·CD.三、平行四边形的判定(1)方法一(定义法):两组对边分别平行的四边形是平行四边形.(2)方法二:两组对边分别相等的四边形是平行四边形.(3)方法三:有一组对边平行且相等的四边形是平行四边形.(4)方法四:对角线互相平分的四边形是平行四边形.(5)方法五:两组对角分别相等的四边形是平行四边形.四、特殊平行四边形的性质与判定1.矩形的性质与判定(1)矩形的性质:①四个角都是直角;②对角线相等且互相平分;③面积=长×宽=2S△ABD=4S△AOB.(如图)(2)矩形的判定:①定义法:有一个角是直角的平行四边形;②有三个角是直角;③对角线相等的平行四边形.2.菱形的性质与判定(1)菱形的性质:①四边相等;②对角线互相垂直、平分,一条对角线平分一组对角;③面积=底×高=对角线乘积的一半.(2)菱形的判定:①定义法:有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等的四边形.3.正方形的性质与判定(1)正方形的性质:①四条边都相等,四个角都是直角;②对角线相等且互相垂直平分;③面积=边长×边长=2S△ABD=4S△AOB.(2)正方形的判定:①定义法:有一个角是直角,且有一组邻边相等的平行四边形;②一组邻边相等的矩形;③一个角是直角的菱形;④对角线相等且互相垂直、平分.4.联系①两组对边分别平行;②相邻两边相等;③有一个角是直角;④有一个角是直角;⑤相邻两边相等;⑥有一个角是直角,相邻两边相等;⑦四边相等;⑧有三个角都是直角.5.中点四边形(1)任意四边形所得到的中点四边形一定是平行四边形.(2)对角线相等的四边形所得到的中点四边形是矩形.(3)对角线互相垂直的四边形所得到的中点四边形是菱形.(4)对角线互相垂直且相等的四边形所得到的中点四边形是正方形.考向一多边形多边形内角和:n边形内角和公式为(n–2)·180°;多边形外角和:任意多边形的外角和为360°;正多边形是各边相等,各角也相等的多边形.典例1 一个多边形的内角和为900°,则这个多边形是A.六边形B.七边形C.八边形D.九边形【答案】B典例2 如果一个多边形的每一个外角都是60°,那么这个多边形是A.四边形B.五边形C.六边形D.八边形【答案】C【解析】多边形外角和为360°,此多边形外角个数为:360°÷60°=6,所以此多边形是六边形.故选C.【名师点睛】计算正多边形的边数,可以用外角和除以每个外角的度数得到.1.一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是A.17 B.16 C.15 D.16或15或172.如果一个多边形的每一个内角都是108°,那么这个多边形是A.四边形B.五边形C.六边形D.七边形考向二平行四边形的性质与判定1.平行四边形的对边相等、对角相等、对角线互相平分.平行四边形的性质为我们证明线段平行或相等,角相等提供了新的理论依据.2.平行四边形的判定方法有五种,在选择判定方法时应根据具体条件而定.对于平行四边形的判定方法,应从边、角及对角线三个角度出发,而对于边又应考虑边的位置关系及数量关系两方面.典例3 在ABCD中,∠A∶∠B∶∠C∶∠D的值可能是A.3∶4∶3∶4 B.5∶2∶2∶5C.2∶3∶4∶5 D.3∶3∶4∶4【答案】A【解析】∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∴在ABCD中,∠A∶∠B∶∠C∶∠D 的值可能是:3∶4∶3∶4.故选A.【名师点睛】本题考查了平行四边形的性质.熟记平行四边形的对角相等是解决问题的关键.典例4在下列条件中,不能判定四边形为平行四边形的是A.对角线互相平分B.一组对边平行且相等C.两组对边分别平行D.一组对边平行,另一组对边相等【答案】D3.平行四边形的周长为24,相邻两边的差为2,则平行四边形的各边长为.A.4,4,8,8 B.5,5,7,7C.5.5,5.5,6.5,6.5 D.3,3,9,94.小玲的爸爸在制作平行四边形框架时,采用了一种方法:如图所示,将两根木条AC,BD的中点重叠,并用钉子固定,则四边形ABCD就是平行四边形,这种方法的依据是A.对角线互相平分的四边形是平行四边形B.两组对角分别相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.两组对边分别平行的四边形是平行四边形考向三矩形的性质与判定1.矩形除了具有平行四边形的一切性质外,还具有自己单独的性质,即:矩形的四个角都是直角;矩形的对角线相等.2.利用矩形的性质可以推出直角三角形斜边中线的性质,即在直角三角形中,斜边上的中线等于斜边的一半.3.矩形的判定:有三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形.典例5 如图,四边形ABCD的对角线AC、BD相交于点O,且AC=BD,则下列条件能判定四边形ABCD 为矩形的是A.AB=CD,AC=BD B.OA=OC,OB=ODC.AC⊥BD,AC=BD D.AB∥CD,AD=BC【答案】B【名师点睛】本题考查矩形的判定方法、熟练掌握矩形的判定方法是解决问题的关键,记住对角线相等的平行四边形是矩形,有一个角是90度的平行四边形是矩形,有三个角是90度的四边形是矩形.此类题属于中考常考题型.典例6 如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AC=6 cm,则AB的长是A.1 cm B.2 cmC.3 cm D.4 cm【答案】C【解析】∵四边形ABCD是矩形,∴OA=OC=OB=OD=3 cm,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=3 cm,故选C.【名师点睛】本题考查了矩形的性质,等边三角形的判定和性质,熟记各性质并判断出△AOB是等边三角形是解题的关键.5.能判断四边形是矩形的条件是A.两条对角线互相平分B.两条对角线相等C.两条对角线互相平分且相等D.两条对角线互相垂直6.如图,已知在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD于点E,若∠DAE∶∠BAE=3∶1,则∠EAC的度数是A.18°B.36°C.45°D.72°考向四菱形的性质与判定1.菱形除了具有平行四边形的一切性质外,具有自己单独的性质,即:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角.2.菱形的判定:四条边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形.典例7菱形具有而平行四边形不具有的性质是A.两组对边分别平行B.两组对边分别相等C.一组邻边相等D.对角线互相平分【答案】C【解析】根据菱形的性质及平行四边形的性质进行比较,可发现A,B,D两者均具有,而C只有菱形具有平行四边形不具有,故选C.【名师点睛】有一组邻边相等的平行四边形是菱形.典例8如图,四边形ABCD的对角线互相垂直,且满足AO=CO,请你添加一个适当的条件_____________,使四边形ABCD成为菱形.(只需添加一个即可)【答案】BO=DO(答案不唯一)【解析】四边形ABCD中,AC、BD互相垂直,若四边形ABCD是菱形,需添加的条件是:AC、BD互相平分(对角线互相垂直且平分的四边形是菱形).故答案为:BO=DO(答案不唯一).7.已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为A.45°,135°B.60°,120°C.90°,90°D.30°,150°8.如图,在△ABC中,AD是∠BAC的平分线,DE∥AC交AB于E,DF∥AB交AC于F,求证:四边形AEDF是菱形.考向五正方形的性质与判定1.正方形的性质=矩形的性质+菱形的性质.2.正方形的判定:以矩形和菱形的判定为基础,可以引申出更多正方形的判定方法,如对角线互相垂直平分且相等的四边形是正方形.证明四边形是正方形的一般步骤是先证出四边形是矩形或菱形,再根据相应判定方法证明四边形是正方形.典例9如图,正方形ABCD中,E是BD上一点,BE=BC,则∠BEC的度数是A.45°B.60°C.67.5°D.82.5°【答案】C【解析】利用正方形的性质,可知∠CBE=45°,再根据等腰三角形的性质即可得出答案.∵四边形ABCD是正方形,∴∠CBD=45°,∵BC=BE,∴∠BEC=∠BCE=12×(180°−45°)=67.5°.故选C.典例10下列命题正确的是A.对角线互相垂直平分且相等的四边形是正方形B.对角线相等的四边形是矩形C.一组对边相等,另一组对边平行的四边形是平行四边形D.对角线互相垂直的四边形是菱形【答案】A【名师点睛】本题主要考查了命题与定理的知识,解答本题的关键是熟练掌握平行四边形、菱形以及矩形的判定,此题难度不大.9.如图,已知正方形ABCD的边长为53,E为BC边上的一点,∠EBC=30°,则BE的长为A.5B.25C.5 D.1010.如图,要证明平行四边形ABCD为正方形,那么我们需要在四边形ABCD是平行四边形的基础上,进一步证明A.AB=AD且AC⊥BD B.AB=AD且AC=BDC.∠A=∠B且AC=BD D.AC和BD互相垂直平分考向六中点四边形1.中点四边形一定是平行四边形;2.中点四边形的面积等于原四边形面积的一半.典例11如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH 的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形【答案】D【解析】A.当E,F,G,H是四边形ABCD各边中点,且AC=BD时,存在EF=FG=GH=HE,故四边形EFGH为菱形,故A正确;B.当E,F,G,H是四边形ABCD各边中点,且AC⊥BD时,存在∠EFG=∠FGH=∠GHE=90°,故四边形EFGH为矩形,故B正确;C.如图所示,当E,F,G,H不是四边形ABCD各边中点时,若EF∥HG,EF=HG,则四边形EFGH为平行四边形,故C正确;D.如图所示,当E,F,G,H不是四边形ABCD各边中点时,若EF=FG=GH=HE,则四边形EFGH为菱形,故D错误;故选D.11.顺次连接下列四边形的四边中点所得图形一定是菱形的是A.平行四边形B.菱形C.矩形D.梯形12.如图,我们把依次连接任意四边形ABCD各边中点所得四边形EFGH叫中点四边形.若四边形ABCD 的面积记为S1,中点四边形EFGH的面积记为S2,则S1与S2的数量关系是A.S1=3S2B.2S1=3S2C.S1=2S2D.3S1=4S21.下面四个图形中,是多边形的是2.若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是A.7 B.10 C.35 D.703.n边形的边数增加一倍,它的内角和增加A.180°B.360°C.(n–2)·180°D.n180°4.七边形的外角和等于A.180ºB.360ºC.540ºD.720º5.在平行四边形ABCD中,∠A的平分线交DC于E,若∠DEA=30°,则∠B=A.100°B.120°C.135°D.150°6.如图所示,在ABCD中,E,F分别为AB,DC的中点,连接DE,EF,FB,则图中共有_____个平行四边形.7.如图,矩形ABCD中将其沿EF翻折后,D点恰落在B处,∠BFE=650,则∠AEB=____________.8.如图,正方形ABCD的面积为5,正方形BEFG面积为4,那么△GCE的面积是________.9.如图,在ABCD中,AB=6,BC=8,AC=10.(1)求证:四边形ABCD是矩形;(2)求BD的长.学科!网10.如图,E,F,G,H分别是边AB,BC,CD,DA的中点.(1)判断四边形EFGH的形状,并证明你的结论;(2)当BD,AC满足什么条件时,四边形EFGH是正方形.11.如图,在矩形ABCD中,E,F分别为边AD,BC上的点,AE=CF,对角线CA平分∠ECF.(1)求证:四边形AECF为菱形.(2)已知AB=4,BC=8,求菱形AECF的面积.1.(2017•铜仁市)一个多边形的每个内角都等于144°,则这个多边形的边数是A.8 B.9C.10 D.112.(2017•黑龙江)在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD周长是A.22 B.20C.22或20 D.183.(2017•聊城)如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是A.AB=AC B.AD=BDC.BE⊥AC D.BE平分∠ABC4.(2017•西宁)如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为A.5 B.4 C.342D.345.(2017•扬州)在平行四边形ABCD中,∠B+∠D=200°,则∠A=__________.6.(2017•青海)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1–∠2=__________.7.(2017•邵阳)如图所示的正六边形ABCDEF,连接FD,则∠FDC的大小为__________.8.(2017•抚顺)如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成了一个四边形ABCD,当线段AD=3时,线段BC的长为__________.9.(2017•襄阳)如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若∠ADB=30°,BD=6,求AD的长.10.(2017•安顺)如图,DB∥AC,且DB=12AC,E是AC的中点.(1)求证:BC=DE;(2)连接AD、BE,若要使四边形DBEA是矩形,则需给△ABC添加什么条件,为什么?3.【答案】B【解析】平行四边形的对边相等,所以两邻边的和为周长的一半.周长为24,则两邻边的和为12.又因为相邻的两边相差2,则可计算出较长的一边长为7,较短的一边长为5.故选B.变式拓展4.【答案】A【解析】对角线互相平分的四边形是平行四边形.故选A . 5.【答案】C【解析】A 、对角线互相平分的四边形是平行四边形,不一定是矩形,故错误; B 、等腰梯形的对角线也相等,故错误;C 、对角线互相平分且相等的四边形是矩形,故正确;D 、对角线互相垂直的四边形不一定是矩形,故错误, 故选C .7.【答案】B【解析】如图,由题意知AB =BC =AC ,∵AB =BC =AC ,∴△ABC 为等边三角形,即60B ∠=︒,根据平行四边形的性质,18060120.BAD ∠=-=︒︒︒故选B .8.【解析】∵DE ∥AC ,DF ∥AB , ∴四边形AEDF 为平行四边形, ∴∠FAD =∠EDA ,∵AD 是∠BAC 的平分线,∴∠EAD =∠FAD ,∴∠EAD =∠EDA , ∴AE =ED ,∴四边形AEDF 是菱形. 9.【答案】D 【解析】设,CE x =30EBC ∠=︒,2,BE x ∴=根据勾股定理,22353,BC BE CE x =-==5,x ∴=210.BE x ∴==故选D .11.【答案】C【解析】∵顺次连接任意四边形的四边中点所得图形一定是平行四边形, 当对角线相等时,所得图形一定是菱形,故选C . 12.【答案】C【解析】如图,设AC 与EH 、FG 分别交于点N 、P ,BD 与EF 、HG 分别交于点K 、Q , ∵E 是AB 的中点,F 是BC 的中点,∴EF ∥AC , 同理可证EH ∥BD ,∴△EBK ∽△ABM ,△AEN ∽△EBK ,∴EBK ABM S S △△=14,S △AEN =S △EBK ,∴EKMN ABM S S 四边形△=12,同理可得KFPM BCM S S 四边形△=12, QGPM DCM S S 四边形△=12,HQMN DAM S S 四边形△=12,∴EFGH ABCD S S 四边形四边形=12,∵四边形ABCD 的面积记为S 1,中点四边形EFGH 的面积记为S 2,则S 1与S 2的数量关系是S 1=2S 2.故选C .1.【答案】D【解析】根据多边形的定义:平面内不在一条直线上的线段首尾顺次相接组成的图形叫多边形,得:D 是考点冲关多边形.故选D.2.【答案】C【解析】∵一个正n边形的每个内角为144°,∴144n=180×(n–2),解得:n=10,这个正n边形的所有对角线的条数是:(3)10722n n-⨯==35,故选C.6.【答案】4【解析】∵在ABCD中,E,F分别为AB,DC的中点,∴DF=CF=AE=EB,AB∥CD,∴四边形AEFD,CFEB,DFBE是平行四边形,再加上ABCD本身,共有4个平行四边形.故答案为4.7.【答案】50°【解析】如图所示,由矩形ABCD可得AD∥BC,∴∠1=∠BFE=65°,由翻折得∠2=∠1=65°,∴∠AEB=180°–∠1–∠2=180°–65°–65°=50°.故答案为:50°.852【解析】∵正方形ABCD的面积为5,正方形BEFG面积为4,∴正方形ABCD5BEFG的边长为2,∴CE52,△GCE的面积=12 CE•BG=12×(5–2)×2=5–2.故答案为:5–2.9.【解析】(1)∵AB=6,BC=8,AC=10,∴AB2+BC2=AC2,∴∠ABC=90°,∵四边形ABCD是平行四边形,∴ABCD是矩形;(2)∵四边形ABCD是矩形,∴BD=AC=10.10.【解析】(1)在△ABC中,E、F分别是边AB、BC中点,所以EF∥AC,且EF=12AC,同理有GH∥AC,且GH=12AC,∴EF∥GH且EF=GH,故四边形EFGH是平行四边形.11.【解析】(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠FAC=∠ECA,在△AOF和△COE中,FAC ECAOA OCAOF COE∠∠⎧⎪⎨⎪∠∠⎩===,∴△AOF≌△COE(ASA),∴OE=OF,∴四边形AECF是平行四边形,∵AF=CF,∴四边形AECF是菱形;(2)设CF=x,则AF=x,BF=8–x,∵四边形ABCD是矩形,∴∠B=90°,∴BF2+AB2=AF2,∴(8–x)2+42=x2,解得:x=5,即EC=5,∴S菱形AECF=FC•AB=5×4=20.1.【答案】C【解析】180°–144°=36°,360°÷36°=10,则这个多边形的边数是10.故选C.2.【答案】C【解析】如图,在平行四边形ABCD中,AD∥BC,则∠DAE=∠AEB.∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,BC=BE+EC,①当BE=3,EC=4时,平行四边形ABCD的周长为:2(AB+AD)=2×(3+3+4)=20.②当BE=4,EC=3时,平行四边形ABCD的周长为:2(AB+AD)=2×(4+4+3)=22.故选C.4.【答案】D【解析】∵四边形ABCD是矩形,∴∠D=90°,∵O是矩形ABCD的对角线AC的中点,OM∥AB,∴OM是△ADC的中位线,∵OM=3,∴DC=6,∵AD=BC=10,∴AC22AD CD34∴BO=12AC34D.5.【答案】80°【解析】∵四边形ABCD为平行四边形,∴∠B=∠D,∠A+∠B=180°,∵∠B+∠D=200°,∴∠B=∠D=100°,∴∠A=180°–∠B=180°–100°=80°,故答案为:80°.6.【答案】24°直通中考【解析】正三角形的每个内角是:180°÷3=60°,正方形的每个内角是:360°÷4=90°,正五边形的每个内角是:(5–2)×180°÷5=108°,正六边形的每个内角是:(6–2)×180°÷6=120°,则∠3+∠1–∠2=(90°–60°)+(120°–108°)–(108°–90°)=24°.故答案为:24°.7.【答案】90°【解析】∵在正六边形ABCDEF中,∠E=∠EDC=120°,∵EF=DE,∴∠EDF=∠EFD=30°,∴∠FDC=90°,故答案为:90°.8.【答案】3【解析】由条件可知AB∥CD,AD∥BC,∴四边形ABCD为平行四边形,∴BC=AD=3.故答案为3.9.【解析】(1)∵AE∥BF,∴∠ADB=∠CBD,又∵BD平分∠ABF,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AB=AD,同理:AB=BC,∴AD=BC,∴四边形ABCD是平行四边形,又∵AB=AD,∴四边形ABCD是菱形;(2)∵四边形ABCD是菱形,BD=6,∴AC⊥BD,OD=OB=12BD=3,∵∠ADB=30°,∴cos∠ADB=3ODAD,∴AD=3=23.10.【解析】(1)∵E是AC中点,∴EC=12AC.∵DB=12AC,∴DB=E C.又∵DB∥AC,∴四边形DBCE是平行四边形.∴BC=DE.(2)添加AB=BC.理由:∵DB∥AE,DB=AE,∴四边形DBEA是平行四边形.∵BC=DE,AB=BC,∴AB=DE.∴ADBE是矩形.。

【真题】贵州省铜仁市中考数学试题含答案解析()

【真题】贵州省铜仁市中考数学试题含答案解析()

贵州省铜仁市中考数学试卷一、选择题:(本大题共10个小题,每小题4分,共40分)本题每小题均有A、B、C、D4个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上1.(4.00分)9的平方根是()A.3 B.﹣3 C.3和﹣3 D.812.(4.00分)提出了未来五年“精准扶贫”的构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为()A.1.17×107B.11.7×106C.0.117×107D.1.17×1083.(4.00分)关于x的一元二次方程x2﹣4x+3=0的解为()A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=1,x2=3 D.x1=﹣1,x2=﹣3 4.(4.00分)掷一枚均匀的骰子,骰子的6个面上分别刻有1、2、3、4、5、6点,则点数为奇数的概率是()A.B.C.D.5.(4.00分)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120° D.125°6.(4.00分)已知△ABC∽△DEF,相似比为2,且△ABC的面积为16,则△DEF 的面积为()A.32 B.8 C.4 D.167.(4.00分)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.118.(4.00分)在同一平面内,设a、b、c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为()A.1cm B.3cm C.5cm或3cm D.1cm或3cm9.(4.00分)如图,已知一次函数y=ax+b和反比例函数y=的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<的解集为()A.x<﹣2或0<x<1 B.x<﹣2 C.0<x<1 D.﹣2<x<0或x>1 10.(4.00分)计算+++++……+的值为()A. B. C.D.二、填空题:(本大题共8个小题,每小题4分,共32分)11.(4.00分)分式方程=4的解是x=.12.(4.00分)因式分解:a3﹣ab2=.13.(4.00分)一元一次不等式组的解集为.14.(4.00分)如图,m∥n,∠1=110°,∠2=100°,则∠3=°.15.(4.00分)小米的爸爸为了了解她的数学成绩情况,现从中随机抽取他的三次数学考试成绩,分别是87,93,90,则三次数学成绩的方差是.16.(4.00分)定义新运算:a※b=a2+b,例如3※2=32+2=11,已知4※x=20,则x=.17.(4.00分)在直角三角形ABC中,∠ACB=90°,D、E是边AB上两点,且CE 所在直线垂直平分线段AD,CD平分∠BCE,BC=2,则AB=.18.(4.00分)已知在平面直角坐标系中有两点A(0,1),B(﹣1,0),动点P 在反比例函数y=的图象上运动,当线段PA与线段PB之差的绝对值最大时,点P的坐标为.三、简答题:(本大题共4个小题,第19题每小题10分,第20、21、22题每小题10分,共40分,要有解题的主要过程)19.(10.00分)(1)计算:﹣4cos60°﹣(π﹣3.14)0﹣()﹣1(2)先化简,再求值:(1﹣)÷,其中x=2.20.(10.00分)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥BF.21.(10.00分)张老师为了了解班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查.他将调查结果分为四类:A:很好;B:较好;C:一般;D:较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)请计算出A类男生和C类女生的人数,并将条形统计图补充完整.(2)为了共同进步,张老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率.22.(10.00分)如图,有一铁塔AB,为了测量其高度,在水平面选取C,D两点,在点C处测得A的仰角为45°,距点C的10米D处测得A的仰角为60°,且C、D、B在同一水平直线上,求铁塔AB的高度(结果精确到0.1米,≈1.732)四、(本大题满分12分)23.(12.00分)学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.五、(本大题满分12分)24.(12.00分)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.(1)求证:DF⊥AC;(2)求tan∠E的值.六、(本大题满分14分)25.(14.00分)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF 是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.贵州省铜仁市中考数学试卷参考答案与试题解析一、选择题:(本大题共10个小题,每小题4分,共40分)本题每小题均有A、B、C、D4个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上1.(4.00分)9的平方根是()A.3 B.﹣3 C.3和﹣3 D.81【分析】依据平方根的定义求解即可.【解答】解:9的平方根是±3,故选:C.2.(4.00分)提出了未来五年“精准扶贫”的构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为()A.1.17×107B.11.7×106C.0.117×107D.1.17×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:11700000=1.17×107.故选:A.3.(4.00分)关于x的一元二次方程x2﹣4x+3=0的解为()A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=1,x2=3 D.x1=﹣1,x2=﹣3【分析】利用因式分解法求出已知方程的解.【解答】解:x2﹣4x+3=0,分解因式得:(x﹣1)(x﹣3)=0,解得:x1=1,x2=3,故选:C.4.(4.00分)掷一枚均匀的骰子,骰子的6个面上分别刻有1、2、3、4、5、6点,则点数为奇数的概率是()A.B.C.D.【分析】根据题意和题目中的数据可以求得点数为奇数的概率.【解答】解:由题意可得,点数为奇数的概率是:,故选:C.5.(4.00分)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120° D.125°【分析】根据圆周角定理进行求解.一条弧所对的圆周角等于它所对的圆心角的一半.【解答】解:根据圆周角定理,得∠ACB=(360°﹣∠AOB)=×250°=125°.故选:D.6.(4.00分)已知△ABC∽△DEF,相似比为2,且△ABC的面积为16,则△DEF 的面积为()A.32 B.8 C.4 D.16【分析】由△ABC∽△DEF,相似比为2,根据相似三角形的面积的比等于相似比的平方,即可得△ABC与△DEF的面积比为4,又由△ABC的面积为16,即可求得△DEF的面积.【解答】解:∵△ABC∽△DEF,相似比为2,∴△ABC与△DEF的面积比为4,∵△ABC的面积为16,∴△DEF的面积为:16×=4.故选:C.7.(4.00分)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.11【分析】根据多边形的内角和公式及外角的特征计算.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故选:A.8.(4.00分)在同一平面内,设a、b、c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为()A.1cm B.3cm C.5cm或3cm D.1cm或3cm【分析】分类讨论:当直线c在a、b之间或直线c不在a、b之间,然后利用平行线间的距离的意义分别求解.【解答】解:当直线c在a、b之间时,∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∴a与c的距离=4﹣1=3(cm);当直线c不在a、b之间时,∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∴a与c的距离=4+1=5(cm),综上所述,a与c的距离为3cm或3cm.故选:C.9.(4.00分)如图,已知一次函数y=ax+b和反比例函数y=的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<的解集为()A.x<﹣2或0<x<1 B.x<﹣2 C.0<x<1 D.﹣2<x<0或x>1【分析】根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.【解答】解:观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,∴不等式ax+b<的解集是﹣2<x<0或x>1.故选:D.10.(4.00分)计算+++++……+的值为()A. B. C.D.【分析】直接利用分数的性质将原式变形进而得出答案.【解答】解:原式=++++…+=1﹣+﹣+﹣+…+﹣=1﹣=.故选:B.二、填空题:(本大题共8个小题,每小题4分,共32分)11.(4.00分)分式方程=4的解是x=﹣9.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x﹣1=4x+8,解得:x=﹣9,经检验x=﹣9是分式方程的解,故答案为:﹣912.(4.00分)因式分解:a3﹣ab2=a(a+b)(a﹣b).【分析】观察原式a3﹣ab2,找到公因式a,提出公因式后发现a2﹣b2是平方差公式,利用平方差公式继续分解可得.【解答】解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).13.(4.00分)一元一次不等式组的解集为x>﹣1.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.【解答】解:,由①得:x>﹣1,由②得:x>﹣2,所以不等式组的解集为:x>﹣1.故答案为x>﹣1.14.(4.00分)如图,m∥n,∠1=110°,∠2=100°,则∠3=150°.【分析】两直线平行,同旁内角互补,然后根据三角形内角和为180°即可解答.【解答】解:如图,∵m∥n,∠1=110°,∴∠4=70°,∵∠2=100°,∴∠5=80°,∴∠6=180°﹣∠4﹣∠5=30°,∴∠3=180°﹣∠6=150°,故答案为:150.15.(4.00分)小米的爸爸为了了解她的数学成绩情况,现从中随机抽取他的三次数学考试成绩,分别是87,93,90,则三次数学成绩的方差是6.【分析】根据题目中的数据可以求得相应的平均数,从而可以求得相应的方差,本题得以解决.【解答】解:,∴=6,故答案为:6.16.(4.00分)定义新运算:a※b=a2+b,例如3※2=32+2=11,已知4※x=20,则x=4.【分析】根据新运算的定义,可得出关于x的一元一次方程,解之即可得出x的值.【解答】解:∵4※x=42+x=20,∴x=4.故答案为:4.17.(4.00分)在直角三角形ABC中,∠ACB=90°,D、E是边AB上两点,且CE 所在直线垂直平分线段AD,CD平分∠BCE,BC=2,则AB=4.【分析】由CE所在直线垂直平分线段AD可得出CE平分∠ACD,进而可得出∠ACE=∠DCE,由CD平分∠BCE利用角平分线的性质可得出∠DCE=∠DCB,结合∠ACB=90°可求出∠ACE、∠A的度数,再利用余弦的定义结合特殊角的三角函数值,即可求出AB的长度.【解答】解:∵CE所在直线垂直平分线段AD,∴CE平分∠ACD,∴∠ACE=∠DCE.∵CD平分∠BCE,∴∠DCE=∠DCB.∵∠ACB=90°,∴∠ACE=∠ACB=30°,∴∠A=60°,∴AB===4.故答案为:4.18.(4.00分)已知在平面直角坐标系中有两点A(0,1),B(﹣1,0),动点P 在反比例函数y=的图象上运动,当线段PA与线段PB之差的绝对值最大时,点P的坐标为(﹣1,﹣2)或(2,1).【分析】由三角形三边关系知|PA﹣PB|≥AB知直线AB与双曲线y=的交点即为所求点P,据此先求出直线AB解析式,继而联立反比例函数解析式求得点P的坐标.【解答】解:如图,设直线AB的解析式为y=kx+b,将A(1,0)、B(0,﹣1)代入,得:,解得:,∴直线AB的解析式为y=x﹣1,直线AB与双曲线y=的交点即为所求点P,此时|PA﹣PB|=AB,即线段PA与线段PB之差的绝对值取得最大值,由可得或,∴点P的坐标为(﹣1,﹣2)或(2,1),故答案为:(﹣1,﹣2)或(2,1).三、简答题:(本大题共4个小题,第19题每小题10分,第20、21、22题每小题10分,共40分,要有解题的主要过程)19.(10.00分)(1)计算:﹣4cos60°﹣(π﹣3.14)0﹣()﹣1(2)先化简,再求值:(1﹣)÷,其中x=2.【分析】(1)先计算立方根、代入三角函数值、计算零指数幂和负整数指数幂,再分别计算乘法和加减运算可得;(2)先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:(1)原式=2﹣4×﹣1﹣2=2﹣2﹣1﹣2=﹣3;(2)原式=(﹣)÷=•=,当x=2时,原式==2.20.(10.00分)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥BF.【分析】可证明△ACE≌△BDF,得出∠A=∠B,即可得出AE∥BF;【解答】证明:∵AD=BC,∴AC=BD,在△ACE和△BDF中,,∴△ACE≌△BDF(SSS)∴∠A=∠B,∴AE∥BF;21.(10.00分)张老师为了了解班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查.他将调查结果分为四类:A:很好;B:较好;C:一般;D:较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)请计算出A类男生和C类女生的人数,并将条形统计图补充完整.(2)为了共同进步,张老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率.【分析】(1)由B类人数及其所占百分比求得总人数,再用总人数分别乘以A、C类别对应百分比求得其人数,据此结合条形图进一步得出答案;(2)画树状图列出所有等可能结果,从中找到所选两位同学恰好是一男一女同学的结果数,利用概率公式求解可得.【解答】解:(1)∵被调查的总人数为(7+5)÷60%=20人,∴A类别人数为20×15%=3人、C类别人数为20×(1﹣15%﹣60%﹣10%)=3,则A类男生人数为3﹣1=2、C类女生人数为3﹣1=2,补全图形如下:(2)画树状图得:∵共有6种等可能的结果,所选两位同学恰好是一位男同学和一位女同学的有3种情况,∴所选两位同学恰好是一男一女同学的概率为.22.(10.00分)如图,有一铁塔AB,为了测量其高度,在水平面选取C,D两点,在点C处测得A的仰角为45°,距点C的10米D处测得A的仰角为60°,且C、D、B在同一水平直线上,求铁塔AB的高度(结果精确到0.1米,≈1.732)【分析】根据AB和∠ADB、AB和∠ACB可以求得DB、CB的长度,根据CD=CB ﹣DB可以求出AB的长度,即可解题.【解答】解:在Rt△ADB中,DB==AB,Rt△ACB中,CB==AB,∵CD=CB﹣DB,∴AB=≈23.7(米)答:电视塔AB的高度约23.7米.四、(本大题满分12分)23.(12.00分)学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.【分析】(1)设甲种办公桌每张x元,乙种办公桌每张y元,根据“甲种桌子总钱数+乙种桌子总钱数+所有椅子的钱数=24000、10把甲种桌子钱数﹣5把乙种桌子钱数+多出5张桌子对应椅子的钱数=2000”列方程组求解可得;(2)设甲种办公桌购买a张,则购买乙种办公桌(40﹣a)张,购买的总费用为y,根据“总费用=甲种桌子总钱数+乙种桌子总钱数+所有椅子的总钱数”得出函数解析式,再由“甲种办公桌数量不多于乙种办公桌数量的3倍”得出自变量a的取值范围,继而利用一次函数的性质求解可得.【解答】解:(1)设甲种办公桌每张x元,乙种办公桌每张y元,根据题意,得:,解得:,答:甲种办公桌每张400元,乙种办公桌每张600元;(2)设甲种办公桌购买a张,则购买乙种办公桌(40﹣a)张,购买的总费用为y,则y=400a+600(40﹣a)+2×40×100=﹣200a+32000,∵a≤3(40﹣a),∵﹣200<0,∴y随a的增大而减小,∴当a=30时,y取得最小值,最小值为26000元.五、(本大题满分12分)24.(12.00分)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O 交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.(1)求证:DF⊥AC;(2)求tan∠E的值.【分析】(1)连接OC,CD,根据圆周角定理得∠BDC=90°,由等腰三角形三线合一的性质得:D为AB的中点,所以OD是中位线,由三角形中位线性质得:OD∥AC,根据切线的性质可得结论;(2)如图,连接BG,先证明EF∥BG,则∠CBG=∠E,求∠CBG的正切即可.【解答】(1)证明:如图,连接OC,CD,∵BC是⊙O的直径,∴∠BDC=90°,∴CD⊥AB,∵AC=BC,∴AD=BD,∵OB=OC,∴OD是△ABC的中位线∴OD∥AC,∵DF为⊙O的切线,∴DF⊥AC;(2)解:如图,连接BG,∵BC是⊙O的直径,∴∠BGC=90°,∵∠EFC=90°=∠BGC,∴EF∥BG,∴∠CBG=∠E,Rt△BDC中,∵BD=3,BC=5,∴CD=4,S△ABC=,6×4=5BG,BG=,由勾股定理得:CG==,∴tan∠CBG=tan∠E===.六、(本大题满分14分)25.(14.00分)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF 是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.【分析】(1)待定系数法求解可得;(2)先利用待定系数法求出直线BD解析式为y=x﹣2,则Q(m,﹣m2+m+2)、M(m,m﹣2),由QM∥DF且四边形DMQF是平行四边形知QM=DF,据此列出关于m的方程,解之可得;(3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得==,再证△MBQ∽△BPQ得=,即=,解之即可得此时m的值;②∠BQM=90°,此时点Q与点A重合,△BOD∽△BQM′,易得点Q 坐标.【解答】解:(1)由抛物线过点A(﹣1,0)、B(4,0)可设解析式为y=a(x+1)(x﹣4),将点C(0,2)代入,得:﹣4a=2,解得:a=﹣,则抛物线解析式为y=﹣(x+1)(x﹣4)=﹣x2+x+2;(2)由题意知点D坐标为(0,﹣2),设直线BD解析式为y=kx+b,将B(4,0)、D(0,﹣2)代入,得:,解得:,∴直线BD解析式为y=x﹣2,∵QM⊥x轴,P(m,0),∴Q(m,﹣m2+m+2)、M(m,m﹣2),则QM=﹣m2+m+2﹣(m﹣2)=﹣m2+m+4,∵F(0,)、D(0,﹣2),∴DF=,∵QM∥DF,∴当﹣m2+m+4=时,四边形DMQF是平行四边形,解得:m=﹣1(舍)或m=3,即m=3时,四边形DMQF是平行四边形;(3)如图所示:∵QM∥DF,∴∠ODB=∠QMB,分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,则===,∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴=,即=,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,∴m=3,点Q的坐标为(3,2);②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,此时m=﹣1,点Q的坐标为(﹣1,0);综上,点Q的坐标为(3,2)或(﹣1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.。

2017年贵州省黔东南州中考数学真题+详细解析

2017年贵州省黔东南州中考数学真题+详细解析

2017年贵州省黔东南州中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.|﹣2|的值是()A.﹣2 B.2 C.﹣D.【考点】15:绝对值.【分析】根据绝对值的性质作答.【解答】解:∵﹣2<0,∴|﹣2|=2.故选B.2.如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120°B.90°C.100°D.30°【考点】K8:三角形的外角性质.【分析】根据三角形的外角的性质计算即可.【解答】解:∠A=∠ACD﹣∠B=120°﹣20°=100°,故选:C.3.下列运算结果正确的是()A.3a﹣a=2 B.(a﹣b)2=a2﹣b2C.6ab2÷(﹣2ab)=﹣3b D.a(a+b)=a2+b【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=2a,不符合题意;B、原式=a2﹣2ab+b2,不符合题意;C、原式=﹣3b,符合题意;D、原式=a2+ab,不符合题意,故选C4.如图所示,所给的三视图表示的几何体是()A.圆锥B.正三棱锥C.正四棱锥D.正三棱柱【考点】U3:由三视图判断几何体.【分析】由左视图和俯视图可得此几何体为柱体,根据主视图是三角形可判断出此几何体为正三棱柱.【解答】解:∵左视图和俯视图都是长方形,∴此几何体为柱体,∵主视图是一个三角形,∴此几何体为正三棱柱.故选:D.5.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A.2 B.﹣1 C.D.4【考点】M5:圆周角定理;KQ:勾股定理;M2:垂径定理.【分析】根据垂径定理得到CE=DE,∠CEO=90°,根据圆周角定理得到∠COE=30°,根据直角三角形的性质得到CE=OC=1,最后由垂径定理得出结论.【解答】解:∵⊙O的直径AB垂直于弦CD,∴CE=DE,∠CEO=90°,∵∠A=15°,∴∠COE=30°,∵OC=2,∴CE=OC=1,∴CD=2OE=2,故选A.6.已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+的值为()A.2 B.﹣1 C.D.﹣2【考点】AB:根与系数的关系.【分析】根据根与系数的关系得到x1+x2=2,x1x2=﹣1,利用通分得到+=,然后利用整体代入的方法计算【解答】解:根据题意得x1+x2=2,x1x2=﹣1,所以+===﹣2.故选D.7.分式方程=1﹣的根为()A.﹣1或3 B.﹣1 C.3 D.1或﹣3【考点】B3:解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3=x2+x﹣3x,解得:x=﹣1或x=3,经检验x=﹣1是增根,分式方程的根为x=3,故选C8.如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于O,则∠DOC的度数为()A.60°B.67.5°C.75°D.54°【考点】LE:正方形的性质.【分析】如图,连接DF、BF.如图,连接DF、BF.首先证明∠FDB=∠FAB=30°,再证明△FAD≌△FBC,推出∠ADF=∠FCB=15°,由此即可解决问题.【解答】解:如图,连接DF、BF.∵FE⊥AB,AE=EB,∴FA=FB,∵AF=2AE,∴AF=AB=FB,∴△AFB是等边三角形,∵AF=AD=AB,∴点A是△DBF的外接圆的圆心,∴∠FDB=∠FAB=30°,∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∠ADB=∠DBC=45°,∴∠FAD=∠FBC,∴△FAD≌△FBC,∴∠ADF=∠FCB=15°,∴∠DOC=∠OBC+∠OCB=60°.故选A.9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个B.2个C.3个D.4个【考点】H4:二次函数图象与系数的关系.【分析】①利用抛物线与x轴有2个交点和判别式的意义对①进行判断;②由抛物线开口方向得到a>0,由抛物线对称轴位置确定b>0,由抛物线与y轴交点位置得到c>0,则可作判断;③利用x=﹣1时a﹣b+c<0,然后把b=2a代入可判断;④利用抛物线的对称性得到x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,则可进行判断.【解答】解:①∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以①错误;②∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴a、b同号,∴b>0,∵抛物线与y轴交点在x轴上方,∴c>0,∴abc>0,所以②正确;③∵x=﹣1时,y<0,即a﹣b+c<0,∵对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a,∴a﹣2a+c<0,即a>c,所以③正确;④∵抛物线的对称轴为直线x=﹣1,∴x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,∴4a﹣2b+c>0,所以④正确.所以本题正确的有:②③④,三个,故选C.10.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2017 B.2016 C.191 D.190【考点】4C:完全平方公式.【分析】根据图形中的规律即可求出(a+b)20的展开式中第三项的系数;【解答】解:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(a+b)20第三项系数为1+2+3+…+20=190,故选D.二、填空题(本大题共6小题,每小题4分,共24分)11.在平面直角坐标系中有一点A(﹣2,1),将点A先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为(1,﹣1).【考点】Q3:坐标与图形变化﹣平移.【分析】根据坐标平移规律即可求出答案.【解答】解:由题意可知:A的横坐标+3,纵坐标﹣2,即可求出平移后的坐标,∴平移后A的坐标为(1,﹣1)故答案为:(1,﹣1)12.如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件∠A=∠D 使得△ABC≌△DEF【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定定理填空.【解答】解:添加∠A=∠D.理由如下:∵FB=CE,∴BC=EF.又∵AC∥DF,∴∠ACB=∠DFE.∴在△ABC与△DEF中,,∴△ABC≌△DEF(AAS).故答案是:∠A=∠D.13.在实数范围内因式分解:x5﹣4x=x(x2+3)(x+)(x﹣).【考点】58:实数范围内分解因式.【分析】先提取公因式x,再把4写成22的形式,然后利用平方差公式继续分解因式.【解答】解:原式=x(x4﹣22),=x(x2+2)(x2﹣2)=x(x2+2)(x+)(x﹣),故答案是:x(x2+3)(x+)(x﹣).14.黔东南下司“蓝每谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是560kg.【考点】X8:利用频率估计概率.【分析】根据题意可以估计该果农今年的“优质蓝莓”产量.【解答】解:由题意可得,该果农今年的“优质蓝莓”产量约是:800×0.7=560kg,故答案为:560.15.如图,已知点A,B分别在反比例函数y1=﹣和y2=的图象上,若点A是线段OB的中点,则k 的值为﹣8.【考点】G6:反比例函数图象上点的坐标特征.【分析】设A(a,b),则B(2a,2b),将点A、B分别代入所在的双曲线方程进行解答.【解答】解:设A(a,b),则B(2a,2b),∵点A在反比例函数y1=﹣的图象上,∴ab=﹣2;∵B点在反比例函数y2=的图象上,∴k=2a•2b=4ab=﹣8.故答案是:﹣8.16.把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与y轴重合且点A的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2C垂直且交y轴于点B3;…按此规律继续下去,则点B2017的坐标为(0,﹣).【考点】D2:规律型:点的坐标.【分析】根据题意和图象可以发现题目中的变化规律,从而可以求得点B2017的坐标.【解答】解:由题意可得,=OB•tan60°==()2=3,OB=OA•tan60°=1×=,OBOB 2=OB1•tan60°=()3,…的坐标为(0,﹣),∵2017÷4=506…1,∴点B故答案为:(0,﹣).三、解答题(本大题共8小题,共86分)17.计算:﹣1﹣2+|﹣|+(π﹣3.14)0﹣tan60°+.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=1+()+1﹣=218.先化简,再求值:(x﹣1﹣)÷,其中x=+1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=•=x﹣1,当x=+1时,原式=.19.解不等式组,并把解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条不等式表示出来.【解答】解:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:20.某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.身高分组频数频率152≤x<15530.06155≤x<15870.14158≤x<161m0.28161≤x<16413n164≤x<16790.18167≤x<17030.06170≤x<17310.02根据以上统计图表完成下列问题:(1)统计表中m=14,n=0.26,并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在:161≤x<164范围内;(3)在身高≥167cm的4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.【考点】X6:列表法与树状图法;V7:频数(率)分布表;V8:频数(率)分布直方图;W4:中位数.【分析】(1)设总人数为x人,则有=0.06,解得x=50,再根据频率公式求出m,n.画出直方图即可;(2)根据中位数的定义即可判断;(3)画出树状图即可解决问题;【解答】解:(1)设总人数为x人,则有=0.06,解得x=50,∴m=50×0.28=14,n==0.26.故答案为14,0.26.(2)观察表格可知中位数在 161≤x <164内,故答案为 161≤x <164.(3)将甲、乙两班的学生分别记为甲1、甲2、乙1、乙2,树状图如图所示:所以P (两学生来自同一所班级)==.21.如图,已知直线PT 与⊙O 相切于点T ,直线PO 与⊙O 相交于A ,B 两点.(1)求证:PT 2=PA•PB ;(2)若PT=TB=,求图中阴影部分的面积.【考点】S9:相似三角形的判定与性质;MC :切线的性质;MO :扇形面积的计算.【分析】(1)连接OT ,只要证明△PTA ∽△PBT ,可得=,由此即可解决问题;(2)首先证明△AOT 是等边三角形,根据S 阴=S 扇形OA T ﹣S △AOT 计算即可;【解答】(1)证明:连接OT.∵PT 是⊙O 的切线,∴PT ⊥OT ,∴∠PTO=90°,∴∠PTA +∠OTA=90°,∵AB 是直径,∴∠ATB=90°,∴∠TAB +∠B=90°,∵OT=OA ,∴∠OAT=∠OTA ,∴∠PTA=∠B ,∵∠P=∠P ,∴△PTA ∽△PBT ,∴=,∴PT 2=PA•PB .(2)∵TP=TB=,∴∠P=∠B=∠PTA ,∵∠TAB=∠P +∠PTA ,∴∠TAB=2∠B ,∵∠TAB +∠B=90°,∴∠TAB=60°,∠B=30°,∴tanB==,∴AT=1,∵OA=OT ,∠TAO=60°,∴△AOT 是等边三角形,∴S 阴=S 扇形OA T ﹣S △AOT =﹣•12=﹣.22.如图,某校教学楼AB 后方有一斜坡,已知斜坡CD 的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD 进行改造,在保持坡脚C 不动的情况下,学校至少要把坡顶D 向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】假设点D 移到D′的位置时,恰好∠α=39°,过点D 作DE ⊥AC 于点E ,作D′E′⊥AC 于点E′,根据锐角三角函数的定义求出DE、CE、CE′的长,进而可得出结论.【解答】解:假设点D移到D′的位置时,恰好∠α=39°,过点D作DE⊥AC于点E,作D′E′⊥AC于点E′,∵CD=12米,∠DCE=60°,∴DE=CD•sin60°=12×=6米,CE=CD•cos60°=12×=6米.∵DE⊥AC,D′E′⊥AC,DD′∥CE′,∴四边形DEE′D′是矩形,∴DE=D′E′=6米.∵∠D′CE′=39°,∴CE′=≈≈12.8,∴EE′=CE′﹣CE=12.8﹣6=6.8(米).答:学校至少要把坡顶D向后水平移动6.8米才能保证教学楼的安全.23.某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修,现学校招用了甲、乙两个工程队.若两队合作,8天就可以完成该项工程;若由甲队先单独做3天后,剩余部分由乙队单独做需要18天才能完成.(1)求甲、乙两队工作效率分别是多少?(2)甲队每天工资3000元,乙队每天工资1400元,学校要求在12天内将学生公寓楼装修完成,若完成该工程甲队工作m天,乙队工作n天,求学校需支付的总工资w(元)与甲队工作天数m(天)的函数关系式,并求出m的取值范围及w的最小值.【考点】FH:一次函数的应用;B7:分式方程的应用.【分析】(1)设甲队单独完成需要x天,乙队单独完成需要y天.列出分式方程组即可解决问题;(2)设乙先工作x天,再与甲合作正好如期完成.则+=1,解得x=6.由此可得m的范围,因为乙队每天的费用小于甲队每天的费用,所以让乙先工作6天,再与甲合作6天正好如期完成,此时费用最小;【解答】解:(1)设甲队单独完成需要x天,乙队单独完成需要y天.由题意,解得,经检验是分式方程组的解,∴甲、乙两队工作效率分别是和.(2)设乙先工作x天,再与甲合作正好如期完成.则+=1,解得x=6.∴甲工作6天,∵甲12天完成任务,∴6≤m≤12.∵乙队每天的费用小于甲队每天的费用,∴让乙先工作6天,再与甲合作6天正好如期完成,此时费用最小,∴w的最小值为12×1400+6×3000=34800元.24.如图,⊙M的圆心M(-1,2),⊙M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=﹣x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(-4,0).(1)求抛物线的解析式;(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入可求得a的值,从而得到抛物线的解析式;(2)连接AM,过点M作MG⊥AD,垂足为G.先求得点A和点B的坐标,可求得,可得到AG、ME、OA、OB的长,然后利用锐角三角函数的定义可证明∠MAG=∠ABD,故此可证明AM⊥AB;(3))先证明∠FPE=∠FBD.则PF:PE:EF=:2:1.则△PEF的面积=PF2,设点P的坐标为(x,﹣x2﹣x+),则F(x,﹣x+4).然后可得到PF与x的函数关系式,最后利用二次函数的性质求解即可.【解答】解:(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入得:-9a=2,解得:a=﹣.∴抛物线的解析式为y=﹣x2﹣x+.(2)连接AM,过点M作MG⊥AD,垂足为G.把x=0代入y=﹣x+4得:y=4,∴A(0,4).将y=0代入得:0=﹣x+4,解得x=8,∴B(8,0).∴OA=4,OB=8.∵M(﹣1,2),A(0,4),∴MG=1,AG=2.∴tan∠MAG=tan∠ABO=.∴∠MAG=∠ABO.∵∠OAB+∠ABO=90°,∴∠MAG+∠OAB=90°,即∠MAB=90°.∴l是⊙M的切线.(3)∵∠PFE+∠FPE=90°,∠FBD+∠PFE=90°,∴∠FPE=∠FBD.∴tan∠FPE=.∴PF:PE:EF=:2:1.∴△PEF的面积=PE•EF=×PF•PF=PF2.∴当PF最小时,△PEF的面积最小.设点P的坐标为(x,﹣x2﹣x+),则F(x,﹣x+4).∴PF=(﹣x+4)﹣(﹣x2﹣x+)=﹣x+4+x2+x﹣=x2﹣x+=(x﹣)2+.∴当x=时,PF有最小值,PF的最小值为.∴P(,).∴△PEF的面积的最小值为=×()2=.。

2017年贵州省贵阳市中考数学试卷及解析(2021年整理精品文档)

2017年贵州省贵阳市中考数学试卷及解析(2021年整理精品文档)

(完整版)2017年贵州省贵阳市中考数学试卷及解析编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2017年贵州省贵阳市中考数学试卷及解析)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2017年贵州省贵阳市中考数学试卷及解析的全部内容。

2017年贵州省贵阳市中考数学试卷一、选择题(每小题3分,共30分)1.(3分)在1、﹣1、3、﹣2这四个数中,互为相反数的是( )A.1与﹣1 B.1与﹣2 C.3与﹣2 D.﹣1与﹣22.(3分)如图,a∥b,∠1=70°,则∠2等于()A.20°B.35°C.70°D.110°3.(3分)生态文明贵阳国际论坛作为我国目前唯一以生态文明为主题的国家级国际性论坛,现已被纳入国家“一带一路”总体规划,持续四届的成功举办,已相继吸引近7000名各国政要及嘉宾出席,7000这个数用科学记数法可表示为()A.70×102B.7×103C.0.7×104D.7×1044.(3分)如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是()A.B.C.D.5.(3分)某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池,小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是( )A .B .C .D .6.(3分)若直线y=﹣x+a与直线y=x+b的交点坐标为(2,8),则a﹣b的值为()A.2 B.4 C.6 D.87.(3分)贵阳市“阳光小区”开展“节约用水,从我做起”的活动,一个月后,社区居委会从小区住户中抽取10个家庭与他们上月的用水量进行比较,统计出节水情况如下表:节水量(m3)0.30.40。

2017年贵州省贵阳市中考数学试卷(含答案解析版)

2017年贵州省贵阳市中考数学试卷(含答案解析版)

2017年贵州省贵阳市中考数学试卷(含答案解析版)2017年贵州省贵阳市中考数学试卷一、选择题(每小题3分,共30分)1.在1、﹣1、3、﹣2这四个数中,互为相反数的是()A.1与﹣1 B.1与﹣2 C.3与﹣2 D.﹣1与﹣2 2.如图,a∥b,∠1=70°,则∠2等于()A.20°B.35°C.70°D.110°3.生态文明贵阳国际论坛作为我国目前唯一以生态文明为主题的国家级国际性论坛,现已被纳入国家“一带一路”总体规划,持续四届的成功举办,已相继吸引近7000名各国政要及嘉宾出席,7000这个数用科学记数法可表示为()A.70×102 B.7×103C.0.7×104D.7×104 4.如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是()A. B.C.D.5.某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池,小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是( )A .21B .31C .32D .61 6.若直线y=﹣x+a 与直线y=x+b 的交点坐标为(2,8),则a ﹣b 的值为( )A .2B .4C .6D .87.贵阳市“阳光小区”开展“节约用水,从我做起”的活动,一个月后,社区居委会从小区住户中抽取10个家庭与他们上月的用水量进行比较,统计出节水情况如下表: 节水量(m 3)0.3 0.4 0.5 0.6 0.7 家庭数(个)2 2 4 1 1 那么这10个家庭的节水量(m 3)的平均数和中位数分别是( )摸了100次后,发现有30次摸到红球,请你估计这个袋中红球约有个.15.如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,则A′C的长的最小值是.三、解答题(本大题共10小题,共100分)16.下面是小颖化简整式的过程,仔细阅读后解答所提出的问题.解:x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2+2x+1+2x 第一步=2xy+4x+1 第二步(1)小颖的化简过程从第步开始出现错误;(2)对此整式进行化简.17.2017年6月2日,贵阳市生态委发布了《2016年贵阳市环境状况公报》,公报显示,2016年贵阳市生态环境质量进一步提升,小颖根据公报中的部分数据,制成了下面两幅统计图,请根据图中提供的信息,回答下列问题:(1)a= ,b= ;(结果保留整数)(2)求空气质量等级为“优”在扇形统计图中所占的圆心角的度数;(结果精确到1°)(3)根据了解,今年1~5月贵阳市空气质量优良天数为142天,优良率为94%,与2016年全年的优良率相比,今年前五个月贵阳市空气质量的优良率是提高还是降低了?请对改善贵阳市空气质量提一条合理化建.议.18.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DF,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.19.2017年5月25日,中国国际大数据产业博览会在贵阳会展中心开幕,博览会设了编号为1~6号展厅共6个,小雨一家计划利用两天时间参观其中两个展厅:第一天从6个展厅中随机选择一个,第二天从余下的5个展厅中再随机选择一个,且每个展厅被选中的机会均等.(1)第一天,1号展厅没有被选中的概率是;(2)利用列表或画树状图的方法求两天中4号展厅被选中的概率.20.贵阳市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精确到1°).21.“2017年张学友演唱会”于6月3日在我市关山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.22.如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(3)求阴影部分的面积(结果保留π和根号).k(k>0)23.如图,直线y=2x+6与反比例函数y=x的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?24.(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为;(2)问题探究:如图②,在四边形ABCD中,AB ∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF 之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.25.我们知道,经过原点的抛物线可以用y=ax2+bx (a≠0)表示,对于这样的抛物线:(1)当抛物线经过点(﹣2,0)和(﹣1,3)时,求抛物线的表达式;(2)当抛物线的顶点在直线y=﹣2x上时,求b 的值;(3)如图,现有一组这样的抛物线,它们的顶点A1、A2、…,A n在直线y=﹣2x上,横坐标依次为﹣1,﹣2,﹣3,…,﹣n(n为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1、B2,…,B n,以线段A n B n为边向左作正方形A n B n C n D n,如果这组抛物线中的某一条经过点D n,求此时满足条件的正方形A n B n C n D n的边长.2017年贵州省贵阳市中考数学试卷一、选择题(每小题3分,共30分)1.在1、﹣1、3、﹣2这四个数中,互为相反数的是()A.1与﹣1 B.1与﹣2 C.3与﹣2 D.﹣1与﹣2 【考点】14:相反数.【分析】根据相反数的概念解答即可.【解答】解:1与﹣1互为相反数,故选A.2.如图,a∥b,∠1=70°,则∠2等于()A.20°B.35°C.70°D.110°【考点】JA:平行线的性质.【分析】先根据平行线的性质得出∠3的度数,再根据对顶角相等求解.【解答】解:∵a∥b,∠1=70°,∴∠3=∠1=70°,∴∠2=∠1=70°,故选:C.3.生态文明贵阳国际论坛作为我国目前唯一以生态文明为主题的国家级国际性论坛,现已被纳入国家“一带一路”总体规划,持续四届的成功举办,已相继吸引近7000名各国政要及嘉宾出席,7000这个数用科学记数法可表示为()A.70×102 B.7×103C.0.7×104D.7×104【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于7000有4位,所以可以确定n=4﹣1=3.【解答】解:7000=7×103.故选:B.4.如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是()A. B.C.D.【考点】U2:简单组合体的三视图.【分析】根据俯视图是从物体的上面看得到的视图解答即可.【解答】解:水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图左边是一个圆、右边是一个矩形,故选:D.5.某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池,小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是()A.B.C.D.【考点】X4:概率公式.【分析】先找出正确的纸条,再根据概率公式即可得出答案.【解答】解:∵共有6张纸条,其中正确的有①互相关心;②互相提醒;③不要相互嬉水;⑥选择有人看护的游泳池,共4张,∴抽到内容描述正确的纸条的概率是=;故选C.6.若直线y=﹣x+a与直线y=x+b的交点坐标为(2,8),则a﹣b的值为()A.2 B.4 C.6 D.8【考点】FF:两条直线相交或平行问题.【分析】把(2,8)代入y=﹣x+a和y=x+b,即可求出a、b,即可求出答案.【解答】解:∵直线y=﹣x+a与直线y=x+b的交点坐标为(2,8),∴8=﹣2+a,8=2+b,解得:a=10,b=6,∴a﹣b=4,故选B.7.贵阳市“阳光小区”开展“节约用水,从我做起”的活动,一个月后,社区居委会从小区住户中抽取10个家庭与他们上月的用水量进行比较,统计出节水情况如下表:节水量0.3 0.4 0.5 0.6 0.7 (m3)家庭数2 2 4 1 1 (个)那么这10个家庭的节水量(m3)的平均数和中位数分别是()A.0.47和0.5 B.0.5和0.5 C.0.47和4 D.0.5和4【考点】W4:中位数;W2:加权平均数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.【解答】解:这10个数据的平均数为=0.47,中位数为=0.5,故选:A8.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为()A.6 B.12 C.18 D.24【考点】L5:平行四边形的性质;KG:线段垂直平分线的性质.【分析】由平行四边形的性质得出DC=AB,AD=BC,由线段垂直平分线的性质得出AE=CE,得出△CDE 的周长=AD+DC,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD的周长=2×6=12;故选:B.9.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,以下四个结论:①a>0;②c>0;③b2﹣4ac>0;④﹣<0,正确的是()A.①②B.②④C.①③D.③④【考点】H4:二次函数图象与系数的关系.【分析】①由抛物线开口向上可得出a>0,结论①正确;②由抛物线与y轴的交点在y轴负半轴可得出c<0,结论②错误;③由抛物线与x轴有两个交点,可得出△=b2﹣4ac>0,结论③正确;④由抛物线的对称轴在y轴右侧,可得出﹣>0,结论④错误.综上即可得出结论.【解答】解:①∵抛物线开口向上,∴a>0,结论①正确;②∵抛物线与y轴的交点在y轴负半轴,∴c<0,结论②错误;③∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,结论③正确;④∵抛物线的对称轴在y轴右侧,∴﹣>0,结论④错误.故选C.10.如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,则S2的值为()A.12 B.18 C.24 D.48【考点】KQ:勾股定理.【分析】根据已知条件得到AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,根据平行四边形的性质得到CE=AD,AE=CD=3,由已知条件得到∠BAE=90°,根据勾股定理得到BE==2,于是得到结论.【解答】解:∵S1=3,S3=9,∴AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,∵AD∥BC,∴四边形AECD是平行四边形,∴CE=AD,AE=CD=3,∵∠ABC+∠DCB=90°,∴∠AEB+∠ABC=90°,∴∠BAE=90°,∴BE==2,∵BC=2AD,∴BC=2BE=4,∴S 2=(4)2=48,故选D.二、填空题(每小题4分,共20分)11.关于x的不等式的解集在数轴上表示如图所示,则该不等式的解集为x≤2 .【考点】C4:在数轴上表示不等式的解集.【分析】观察数轴得到不等式的解集都在2的左侧包括2,根据数轴表示数的方法得到不等式的解集为x≤2.【解答】解:观察数轴可得该不等式的解集为x ≤2.故答案为:x≤2.12.方程(x﹣3)(x﹣9)=0的根是x1=3,x2=9 .【考点】A8:解一元二次方程﹣因式分解法.【分析】先把一元二次方程转化成一元一次方程,求出方程的解即可.【解答】解:(x﹣3)(x﹣9)=0,x﹣3=0,x﹣9=0,x1=3,x2=9,故答案为:x1=3,x2=9.13.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心距OM的长为3.【考点】MM:正多边形和圆.【分析】根据正六边形的性质求出∠BOM,利用余弦的定义计算即可.【解答】解:连接OB,∵六边形ABCDEF是⊙O内接正六边形,∴∠BOM==30°,∴OM=OB•cos∠BOM=6×=3;故答案为:3.14.袋子中有红球、白球共10个,这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100次后,发现有30次摸到红球,请你估计这个袋中红球约有 3 个.【考点】X8:利用频率估计概率.【分析】首先求出摸到红球的频率,用频率去估计概率即可求出袋中红球约有多少个.【解答】解:∵摸了100次后,发现有30次摸到红球,∴摸到红球的频率==0.3,∵袋子中有红球、白球共10个,∴这个袋中红球约有10×0.3=3个,故答案为:3.15.如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,则A′C的长的最小值是﹣1 .【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】连接CE,根据折叠的性质可知A′E=1,在Rt△BCE中利用勾股定理可求出CE的长度,再利用三角形的三边关系可得出点A′在CE上时,A′C取最小值,最小值为CE﹣A′E=﹣1,此题得解.【解答】解:连接CE,如图所示.根据折叠可知:A′E=AE=AB=1.在Rt△BCE中,BE=AB=1,BC=3,∠B=90°,∴CE==.∵CE=,A′E=1,∴点A′在CE上时,A′C取最小值,最小值为CE﹣A′E=﹣1.故答案为:﹣1.三、解答题(本大题共10小题,共100分)16.下面是小颖化简整式的过程,仔细阅读后解答所提出的问题.解:x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2+2x+1+2x 第一步=2xy+4x+1 第二步(1)小颖的化简过程从第一步开始出现错误;(2)对此整式进行化简.【考点】4A:单项式乘多项式;4C:完全平方公式.【分析】(1)注意去括号的法则;(2)根据单项式乘以多项式、完全平方公式以及去括号的法则进行计算即可.【解答】解:(1)括号前面是负号,去掉括号应变号,故第一步出错,故答案为一;(2)解:x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2﹣2x﹣1+2x=2xy﹣1.17.2017年6月2日,贵阳市生态委发布了《2016年贵阳市环境状况公报》,公报显示,2016年贵阳市生态环境质量进一步提升,小颖根据公报中的部分数据,制成了下面两幅统计图,请根据图中提供的信息,回答下列问题:(1)a= 14 ,b= 125 ;(结果保留整数)(2)求空气质量等级为“优”在扇形统计图中所占的圆心角的度数;(结果精确到1°)(3)根据了解,今年1~5月贵阳市空气质量优良天数为142天,优良率为94%,与2016年全年的优良率相比,今年前五个月贵阳市空气质量的优良率是提高还是降低了?请对改善贵阳市空气质量提一条合理化建议.【考点】VC:条形统计图;VB:扇形统计图.【分析】(1)根据题意列式计算即可;(2)根据2016年全年总天数为:125+225+14+1+1=366(天),即可得到结论;(3)首先求得2016年贵阳市空气质量优良的优良率为×100%≈95.6%,与今年前5 个月贵阳市空气质量优良率比较即可.【解答】解:(1)a=×3.83%=14,b=﹣14﹣225﹣1﹣1=125;故答案为:14,125;(2)因为2016年全年总天数为:125+225+14+1+1=366(天),则360°×=123°,所以空气质量等级为“优”在扇形统计图中所占的圆心角的度数为123°;(3)2016年贵阳市空气质量优良的优良率为×100%≈95.6%,∵94%<95.6%,∴与2016年全年的优良相比,今年前5 个月贵阳市空气质量优良率降低了,建议:低碳出行,少开空调等.18.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DF,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.【考点】L9:菱形的判定;KX:三角形中位线定理;L7:平行四边形的判定与性质.【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF 是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出∠BAC=60°,AC=AB=AE,证出△AEC是等边三角形,得出AC=CE,即可得出结论.【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.19.2017年5月25日,中国国际大数据产业博览会在贵阳会展中心开幕,博览会设了编号为1~6号展厅共6个,小雨一家计划利用两天时间参观其中两个展厅:第一天从6个展厅中随机选择一个,第二天从余下的5个展厅中再随机选择一个,且每个展厅被选中的机会均等.(1)第一天,1号展厅没有被选中的概率是;(2)利用列表或画树状图的方法求两天中4号展厅被选中的概率.【考点】X6:列表法与树状图法.【分析】(1)根据有6个展厅,编号为1~6号,第一天,抽到1号展厅的概率是,从而得出1号展厅没有被选中的概率;(2)根据题意先列出表格,得出所有可能的数和两天中4号展厅被选中的结果数,然后根据概率公式即可得出答案.【解答】解:(1)根据题意得:第一天,1号展厅没有被选中的概率是:1﹣=;故答案为:;(2)根据题意列表如下:1 2 3 4 5 61 (1,2)(1,3)(1,4)(1,5)(1,6)2 (2,1)(2,3)(2,4)(2,5)(2,6)3 (3,1)(3,2)(3,4)(3,5)(3,6)4 (4,(4,(4,(4,(4,1)2)3)5)6)5 (5,1)(5,2)(5,3)(5,4)(5,6)6 (6,1)(6,2)(6,3)(6,4)(6,5)由表格可知,总共有30种可能的结果,每种结果出现的可能性相同,其中,两天中4号展厅被选中的结果有10种,所以,P(4号展厅被选中)==.20.贵阳市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精确到1°).【考点】T8:解直角三角形的应用.【分析】延长AD交BC所在直线于点E.解Rt△ACE,得出CE=AE•tan60°=15米,解Rt△ABE,由tan∠BAE==,得出∠BAE≈71°.【解答】解:延长AD交BC所在直线于点E.由题意,得BC=17米,AE=15米,∠CAE=60°,∠AEB=90°,在Rt△ACE中,tan∠CAE=,∴CE=AE•tan60°=15米.在Rt△ABE中,tan∠BAE==,∴∠BAE≈71°.答:第二次施救时云梯与水平线的夹角∠BAD约为71°.21.“2017年张学友演唱会”于6月3日在我市关山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.【考点】B7:分式方程的应用.【分析】(1)设小张跑步的平均速度为x米/分钟,则小张骑车的平均速度为1.5x米/分钟,根据时间=路程÷速度结合小张骑车的时间比跑步的时间少用了4分钟,即可得出关于x的分式方程,解之并检验后即可得出结论;(2)根据时间=路程÷速度求出小张跑步回家的时间,由骑车与跑步所需时间之间的关系可得出骑车的时间,再加上取票和寻找“共享单车”共用的5分钟即可求出小张赶回奥体中心所需时间,将其与23进行比较后即可得出结论.【解答】解:(1)设小张跑步的平均速度为x米/分钟,则小张骑车的平均速度为1.5x米/分钟,根据题意得:﹣=4,解得:x=210,经检验,x=210是原方程组的解.答:小张跑步的平均速度为210米/分钟.(2)小张跑步到家所需时间为2520÷210=12(分钟),小张骑车所用时间为12﹣4=8(分钟),小张从开始跑步回家到赶回奥体中心所需时间为12+8+5=25(分钟),∵25>23,∴小张不能在演唱会开始前赶到奥体中心.22.如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(3)求阴影部分的面积(结果保留π和根号).【考点】MO:扇形面积的计算;M5:圆周角定理.【分析】(1)连接OD,OC,根据已知条件得到∠AOD=∠DOC=∠COB=60°,根据圆周角定理得到∠CAB=30°,于是得到结论;(2)由(1)知,∠AOD=60°,推出△AOD是等边三角形,OA=2,得到DE=,根据扇形和三角形的面积公式即可得到结论.【解答】解:(1)连接OD,OC,∵C、D是半圆O上的三等分点,∴==,∴∠AOD=∠DOC=∠COB=60°,∴∠CAB=30°,∵DE⊥AB,∴∠AEF=90°,∴∠AFE=90°﹣30°=60°;(2)由(1)知,∠AOD=60°,∵OA=OD,AB=4,∴△AOD是等边三角形,OA=2,∵DE⊥AO,∴DE=,∴S 阴影=S扇形AOD﹣S△AOD=﹣×2=π﹣.23.如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)构建二次函数,利用二次函数的性质即可解决问题;【解答】解:(1)∵直线y=2x+6经过点A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函数经过点A(1,8),∴8=,∴k=8,∴反比例函数的解析式为y=.(2)由题意,点M,N的坐标为M(,n),N(,n),∵0<n<6,∴<0,∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,∴n=3时,△BMN的面积最大.24.(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为AD=AB+DC ;(2)问题探究:如图②,在四边形ABCD中,AB ∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF 之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.【考点】SO:相似形综合题.【分析】(1)延长AE交DC的延长线于点F,证明△AEB≌△FEC,根据全等三角形的性质得到AB=FC,根据等腰三角形的判定得到DF=AD,证明结论;(2)延长AE交DF的延长线于点G,利用同(1)相同的方法证明;(3)延长AE交CF的延长线于点G,根据相似三角形的判定定理得到△AEB∽△GEC,根据相似三角形的性质得到AB=CG,计算即可.【解答】解:(1)如图①,延长AE交DC的延长线于点F,∵AB∥DC,∴∠BAF=∠F,∵E是BC的中点,∴CE=BE,在△AEB和△FEC中,,∴△AEB≌△FEC,∴AB=FC,∵AE是∠BAD的平分线,∴∠DAF=∠BAF,∴∠DAF=∠F,∴DF=AD,∴AD=DC+CF=DC+AB,故答案为:AD=AB+DC;(2)AB=AF+CF,证明:如图②,延长AE交DF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠G,在△AEB和△GEC中,,∴△AEB≌△GEC,∴AB=GC,∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵AB∥CD,∴∠BAG=∠G,∴∠FAG=∠G,∴FA=FG,∴AB=CG=AF+CF;(3)AB=(CF+DF),证明:如图③,延长AE交CF的延长线于点G,∵AB∥CF,∴△AEB∽△GEC,∴==,即AB=CG,∵AB∥CF,∴∠A=∠G,∵∠EDF=∠BAE,∴∠FDG=∠G,∴FD=FG,∴AB=CG=(CF+DF).25.我们知道,经过原点的抛物线可以用y=ax2+bx (a≠0)表示,对于这样的抛物线:(1)当抛物线经过点(﹣2,0)和(﹣1,3)时,求抛物线的表达式;(2)当抛物线的顶点在直线y=﹣2x上时,求b 的值;(3)如图,现有一组这样的抛物线,它们的顶点A1、A2、…,A n在直线y=﹣2x上,横坐标依次为﹣1,﹣2,﹣3,…,﹣n(n为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1、B2,…,B n,以线段A n B n为边向左作正方形A n B n C n D n,如果这组抛物线中的某一条经过点D n,求此时满足条件的正方形A n B n C n D n的边长.【考点】HF:二次函数综合题.【分析】(1)把点(﹣2,0)和(﹣1,3)分别代入y=ax2+bx,得到关于a、b的二元一次方程组,解方程组即可;(2)根据二次函数的性质,得出抛物线y=ax2+bx 的顶点坐标是(﹣,﹣),把顶点坐标代入y=﹣2x,得出﹣=﹣2×(﹣),即可求出b的值;(3)由于这组抛物线的顶点A1、A2、…,A n在直线y=﹣2x上,根据(2)的结论可知,b=4或b=0.①当b=0时,不合题意舍去;②当b=﹣4时,抛物线的表达式为y=ax2﹣4x.由题意可知,第n条抛物线的顶点为A n(﹣n,2n),则D n(﹣3n,2n),因为以A n为顶点的抛物线不可能经过点D n,设第n+k(k为正整数)条抛物线经过点D n,此时第n+k 条抛物线的顶点坐标是A n+k(﹣n﹣k,2n+2k),根据﹣=﹣n﹣k,得出a==﹣,即第n+k条抛物线的表达式为y=﹣x2﹣4x,根据D n(﹣3n,2n)在第n+k条抛物线上,得到2n=﹣×(﹣3n)2﹣4×(﹣3n),解得k=n,进而求解即可.【解答】解:(1)∵抛物线y=ax2+bx经过点(﹣2,0)和(﹣1,3),∴,解得,∴抛物线的表达式为y=﹣3x2﹣6x;(2)∵抛物线y=ax2+bx的顶点坐标是(﹣,﹣),且该点在直线y=﹣2x上,∴﹣=﹣2×(﹣),∵a≠0,∴﹣b2=4b,解得b1=﹣4,b2=0;(3)这组抛物线的顶点A1、A2、…,A n在直线y=﹣2x上,由(2)可知,b=4或b=0.①当b=0时,抛物线的顶点在坐标原点,不合题意,舍去;②当b=﹣4时,抛物线的表达式为y=ax2﹣4x.由题意可知,第n条抛物线的顶点为A n(﹣n,2n),则D n(﹣3n,2n),∵以A n为顶点的抛物线不可能经过点D n,设第n+k (k为正整数)条抛物线经过点D n,此时第n+k 条抛物线的顶点坐标是A n+k(﹣n﹣k,2n+2k),∴﹣=﹣n﹣k,∴a==﹣,∴第n+k条抛物线的表达式为y=﹣x2﹣4x,∵D n(﹣3n,2n)在第n+k条抛物线上,∴2n=﹣×(﹣3n)2﹣4×(﹣3n),解得k=n,∵n,k为正整数,且n≤12,∴n1=5,n2=10.当n=5时,k=4,n+k=9;当n=10时,k=8,n+k=18>12(舍去),∴D5(﹣15,10),∴正方形的边长是10.。

2017年贵州省贵阳市中考数学试卷解析版

2017年贵州省贵阳市中考数学试卷解析版

2017年贵州省贵阳市中考数学)解析版(试卷.年贵州省贵阳市中考数学试卷2017分)分,共330一、选择题(每小题1.在1、﹣1、3、﹣2这四个数中,互为相反数的是()A.1与﹣1 B.1与﹣2 C.3与﹣2 D.﹣1与﹣2:相反数.14【考点】【分析】根据相反数的概念解答即可.【解答】解:1与﹣1互为相反数,.A故选2.如图,a∥b,∠1=70°,则∠2等于().110° D C.70° A.20°B.35°:平行线的性质.JA【考点】【分析】先根据平行线的性质得出∠3的度数,再根据对顶角相等求解.【解答】解:∵a∥b,∠1=70°,∴∠3=∠1=70°,∠1=70°,2=∴∠.故选:C3.生态文明贵阳国际论坛作为我国目前唯一以生态文明为主题的国家级国际性论坛,现已被纳入国家“一带一路”总体规划,持续四届的成功举办,已相继吸引)这个数用科学记数法可表示为(名各国政要及嘉宾出席,近70007000 - 2 -442310710× D.7×10. C.0.770A.×10× B:科学记数法—表示较大的数.1I 【考点】n的形式,其中1≤|a|<10a【分析】科学记数法的表示形式为×10,n 为整数.确定n的值是易错点,由于7000有4位,所以可以确定n=4﹣1=3.3.10解:7000=7×【解答】.故选:B4.如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是(). CDAB...:简单组合体的三视图.【考点】U2【分析】根据俯视图是从物体的上面看得到的视图解答即可.【解答】解:水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图左边是一个圆、右边是一个矩形,.D 故选:5.某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池,小颖从这6张)纸条中随机抽出一张,抽到内容描述正确的纸条的概率是(. DA. B. C.:概率公式.X4【考点】【分析】先找出正确的纸条,再根据概率公式即可得出答案.【解答】解:∵共有6张纸条,其中正确的有①互相关心;②互相提醒;③不要张,4相互嬉水;⑥选择有人看护的游泳池,共 - 3 -;∴抽到内容描述正确的纸条的概率是=.故选C) b的值为(,8),则a﹣x+a6.若直线y=﹣与直线y=x+b的交点坐标为(28..6 D2 B.4 CA.:两条直线相交或平行问题.FF【考点】,即可求出答案.ba、﹣x+a和y=x+b,即可求出把(【分析】2,8)代入y=,),8与直线y=x+b的交点坐标为(2解:∵直线【解答】y=﹣x+a,,8=2+b∴8=﹣2+a,b=6a=10,解得:,﹣b=4∴a.B故选.贵阳市“阳光小区”开展“节约用水,从我做起”的活动,一个月后,社区居7统计出节水情况10个家庭与他们上月的用水量进行比较,委会从小区住户中抽取如下表:30.70.40.6)0.50.3节水量(m1422家庭数(个)13))的平均数和中位数分别是(10个家庭的节水量(m 那么这4.0.5和4 和0.5 C.0.47和D..A0.47和0.5 B0.5:加权平均数.W2:中位数;【考点】W4找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.数的平均数为中位数;为数的据平这】解:10个均数答【解,=0.47,=0.5中位数为A故选: - 4 -8.如图,在?ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则?ABCD的周长为()24.18 D.12 C.6 A.B【考点】L5:平行四边形的性质;KG:线段垂直平分线的性质.【分析】由平行四边形的性质得出DC=AB,AD=BC,由线段垂直平分线的性质得出,即可得出结果.的周长=AD+DC AE=CE,得出△CDE是平行四边形,ABCD【解答】解:∵四边形,DC=AB,AD=BC∴∵AC的垂直平分线交AD于点E,,AE=CE∴∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴?ABCD的周长=2×6=12;.B故选:2+bx+c(a≠0)的图象如图所示,以下四个结论:①a9.已知二次函数y=ax>0;2;④﹣<04ac>>0;③b0,正确的是()﹣c②A.①② B.②④ C.①③ D.③④:二次函数图象与系数的关系.【考点】H4【分析】①由抛物线开口向上可得出a>0,结论①正确;②由抛物线与y轴的交点在y轴负半轴可得出c<0,结论②错误;③由抛物线与x轴有两个交点,可得 - 5 -2轴右侧,可得出﹣>0,结论③正确;④由抛物线的对称轴在出△=by﹣4ac>0,结论④错误.综上即可得出结论.解:①∵抛物线开口向上,【解答】,结论①正确;>0∴a轴负半轴,yy轴的交点在②∵抛物线与,结论②错误;<0∴c③∵抛物线与x轴有两个交点,2,结论③正确;04ac>﹣∴△=b轴右侧,y④∵抛物线的对称轴在,结论④错误.0∴﹣>.故选C10.如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、)( SS=9,则的值为=3SDC为边向外作正方形,其面积分别为S、、S,若S,23123148D.C.18 .24 A.12 B:勾股定理.KQ【考点】AB=AEB=根据已知条件得到【分析】CD交BC于E,则∠∥,过,CD=3A作AE由已知条件得到∠BAE=90°,AE=CD=3,CE=ADDCB,根据平行四边形的性质得到,∠,于是得到结论.BE==2根据勾股定理得到,S=9=3,S解:∵【解答】31,CD=3AB=∴, - 6 -,交BC于ECD过A作AE∥,DCBAEB=∠则∠,∥BC∵AD是平行四边形,AECD∴四边形,AE=CD=3∴CE=AD,∠DCB=90°,ABC+∵∠∠ABC=90°,∴∠AEB+∴∠BAE=90°,,∴=2BE=,BC=2AD∵,∴BC=2BE=42,=48∴S=(4)2.故选D分)20二、填空题(每小题4分,共则该不等式的解集为 x≤.关于x的不等式的解集在数轴上表示如图所示,2 .11:在数轴上表示不等式的解集.【考点】C4【分析】观察数轴得到不等式的解集都在2的左侧包括2,根据数轴表示数的方法.2x≤得到不等式的解集为【解答】解:观察数轴可得该不等式的解集为x≤2..≤故答案为:x2 - 7 -x=3=0﹣9),x=9 .的根是﹣12.方程(x3)(x21【考点】A8:解一元二次方程﹣因式分解法.【分析】先把一元二次方程转化成一元一次方程,求出方程的解即可.,=0﹣9)x(x﹣3)(解:【解答】,x﹣9=0x﹣3=0,,=9x=3,x21故答案为:x=3,x=9.2113.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心3 距.OM的长为【考点】MM:正多边形和圆.【分析】根据正六边形的性质求出∠BOM,利用余弦的定义计算即可.,解:连接OB【解答】∵六边形ABCDEF是⊙O内接正六边形,∴∠BOM==30°,×=3;BOM=6∴OM=OB?cos∠.3故答案为:- 8 -个,这些球除颜色外都相同,将袋中的球搅匀,从1014.袋子中有红球、白球共次后,100中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了个. 3 发现有30次摸到红球,请你估计这个袋中红球约有:利用频率估计概率.X8【考点】【分析】首先求出摸到红球的频率,用频率去估计概率即可求出袋中红球约有多少个.【解答】解:∵摸了100次后,发现有30次摸到红球,=∴摸到红球的频率,=0.3∵袋子中有红球、白球共10个,∴这个袋中红球约有10×0.3=3个,.3故答案为:15.如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,则A′C的长的最小值.﹣1 是:矩形的性质.;LB【考点】PB:翻折变换(折叠问题)【分析】连接CE,根据折叠的性质可知A′E=1,在Rt△BCE中利用勾股定理可求出CE的长度,再利用三角形的三边关系可得出点A′在CE上时,A′C取最小值,,此题得解.﹣1最小值为CE﹣A′E=,如图所示.CE【解答】解:连接.根据折叠可知:A′E=AE=AB=1在Rt△BCE中,BE=AB=1,BC=3,∠B=90°, - 9 -.∴=CE=,A′E=1,∵CE=﹣A′E=CE上时,A′C∴点A′在﹣1.CE取最小值,最小值为.1故答案为:﹣分)小题,共100三、解答题(本大题共10.下面是小颖化简整式的过程,仔细阅读后解答所提出的问题.162+2x)﹣(x+1)解:x(x+2y22第一步﹣x=x+2x+1+2x +2xy第二步=2xy+4x+1 步开始出现错误;一(1)小颖的化简过程从第)对此整式进行化简.2(【考点】4A:单项式乘多项式;4C:完全平方公式.【分析】(1)注意去括号的法则;(2)根据单项式乘以多项式、完全平方公式以及去括号的法则进行计算即可.【解答】解:(1)括号前面是负号,去掉括号应变号,故第一步出错,故答案为一;2+2x))﹣(x+1x+2y(2)解:x(22﹣2x﹣+2xy﹣x1+2x =x.1=2xy ﹣17.2017年6月2日,贵阳市生态委发布了《2016年贵阳市环境状况公报》,公报显示,2016年贵阳市生态环境质量进一步提升,小颖根据公报中的部分数据,制成了下面两幅统计图,请根据图中提供的信息,回答下列问题: - 10 -(结果保留整数);,b= a= 125 14 (1)(2)求空气质量等级为“优”在扇形统计图中所占的圆心角的度数;(结果精确1°)到(3)根据了解,今年1~5月贵阳市空气质量优良天数为142天,优良率为94%,与2016年全年的优良率相比,今年前五个月贵阳市空气质量的优良率是提高还是降低了?请对改善贵阳市空气质量提一条合理化建议.:扇形统计图.:条形统计图;VB【考点】VC)根据题意列式计算即可;1【分析】((2)根据2016年全年总天数为:125+225+14+1+1=366(天),即可得到结论;(3)首先求得2016年贵阳市空气质量优良的优良率为95.6%×100%≈,个月贵阳市空气质量优良率比较即可.5 与今年前;﹣1=125114﹣225,a=【解答】解:(1)×3.83%=14b=﹣﹣;14,125故答案为:=123°,(2)因为2016年全年总天数为:125+225+14+1+1=366(天),则360°×123°;所以空气质量等级为“优”在扇形统计图中所占的圆心角的度数为,95.6%×)32016年贵阳市空气质量优良的优良率为100%≈(,94%∵<95.6%∴与2016年全年的优良相比,今年前5 个月贵阳市空气质量优良率降低了,建议:低碳出行,少开空调等.18.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接- 11 -.AFCE、并延长至点F,使EF=2DF,连接DE;)证明:AF=CE(1(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.【考点】L9:菱形的判定;KX:三角形中位线定理;L7:平行四边形的判定与性质.【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;AC=AB=AE,证出△AEC是等边三角2()由直角三角形的性质得出∠BAC=60°,,即可得出结论.AC=CE形,得出【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,,AC=2DEAC,∴DE∥,EF=2DE∵∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,;AF=CE∴(2)解:当∠B=30°时,四边形ACEF 是菱形;理由如下:∵∠ACB=90°,∠B=30°,,AC=∴∠BAC=60°,AB=AE是等边三角形,AEC∴△,AC=CE∴是平行四边形,ACEF又∵四边形是菱形.∴四边形ACEF19.2017年5月25日,中国国际大数据产业博览会在贵阳会展中心开幕,博览会 - 12 -个,小雨一家计划利用两天时间参观其中两个展厅:6号展厅共6设了编号为1~个展厅中再随机选择一个,第二天从余下的5第一天从6个展厅中随机选择一个,且每个展厅被选中的机会均等.(1)第一天,1号展厅没有被选中的概率是;(2)利用列表或画树状图的方法求两天中4号展厅被选中的概率.:列表法与树状图法.X6【考点】【分析】(1)根据有6个展厅,编号为1~6号,第一天,抽到1号展厅的概率是,从而得出1号展厅没有被选中的概率;(2)根据题意先列出表格,得出所有可能的数和两天中4号展厅被选中的结果数,然后根据概率公式即可得出答案.)根据题意得:(1【解答】解:第一天,1号展厅没有被选中的概率是:1﹣=;;故答案为:(2)根据题意列表如下:641532(1,2)(1,3)(11,4)(1,5)(1,6)(2,1,6))),24)(2,5(22(2,3)((3,4)(33,5)(3,6,(3,1)(32))(44,5)(4,6),)4,1(4,2)(43)((5,)6),(5,3)(54)(5(,1)5,25)56)(,,)(6(,2)6,3(646),(61由表格可知,总共有30种可能的结果,每种结果出现的可能性相同,其中,两天.=种,所以,10P=号展厅被选中的结果有中4号展厅被选中)(4- 13 -20.贵阳市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水.的度数(结果精确到1°)平线的夹角∠BAD【考点】T8:解直角三角形的应用.CE=AE?tan60°=15得出△ACE,BC所在直线于点E.解米,RtAD【分析】延长交=BAE=△Rt,得出∠BAE≈71°.ABE,由tan∠解.EBC所在直线于点【解答】解:延长AD交由题意,得BC=17米,AE=15米,∠CAE=60°,∠AEB=90°,,CAE=中,tan∠在Rt△ACE米.∴CE=AE?tan60°=15BAE=∠Rt△ABE中,tan,=在≈71°.BAE∴∠答:第二次施救时云梯与水平线的夹角∠BAD约为71°.21.“2017年张学友演唱会”于6月3日在我市关山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车” - 14 -原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的倍.1.5平均速度是跑步的平均速度的)求小张跑步的平均速度;(1(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.【考点】B7:分式方程的应用.【分析】(1)设小张跑步的平均速度为x米/分钟,则小张骑车的平均速度为1.5x米/分钟,根据时间=路程÷速度结合小张骑车的时间比跑步的时间少用了4分钟,的分式方程,解之并检验后即可得出结论;即可得出关于x(2)根据时间=路程÷速度求出小张跑步回家的时间,由骑车与跑步所需时间之间的关系可得出骑车的时间,再加上取票和寻找“共享单车”共用的5分钟即可进行比较后即可得出结论.求出小张赶回奥体中心所需时间,将其与23【解答】解:(1)设小张跑步的平均速度为x米/分钟,则小张骑车的平均速度为分钟,米/1.5x,=4根据题意得:﹣,x=210解得:经检验,x=210是原方程组的解.答:小张跑步的平均速度为210米/分钟.(2)小张跑步到家所需时间为2520÷210=12(分钟),,4=8(分钟)小张骑车所用时间为12﹣小张从开始跑步回家到赶回奥体中心所需时间为12+8+5=25(分钟),,>23∵25∴小张不能在演唱会开始前赶到奥体中心.22.如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.的度数;1()求∠AFE.和根号))求阴影部分的面积(结果保留(3π - 15 -:圆周角定理.:扇形面积的计算;M5【考点】MO∠COB=60°,根据圆∠DOC=,OC,根据已知条件得到∠AOD=OD【分析】(1)连接周角定理得到∠CAB=30°,于是得到结论;DE=,得到)知,∠AOD=60°,推出△AOD是等边三角形,OA=2,根(2)由(1据扇形和三角形的面积公式即可得到结论.,,ODOC【解答】解:(1)连接上的三等分点,O∵C、D是半圆,=∴=0°,COB=6∠DOC=∠∴∠AOD=∴∠CAB=30°,,⊥ABDE∵∴∠AEF=90°,∴∠AFE=90°﹣30°=60°;)知,∠AOD=60°,1(2)由(,∵AB=4OA=OD,,是等边三角形,OA=2∴△AOD,DE∵⊥AO,∴DE=.=π﹣=S﹣=SS∴﹣×2AOD△AOD阴影扇形- 16 -y=(k>0)的图象交于点A(1,m)23.如图,直线y=2x+6与反比例函数,与x 轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交.BM 于点N,连接AB(1)求m的值和反比例函数的表达式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?:反比例函数与一次函数的交点问题.G8【考点】【分析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)构建二次函数,利用二次函数的性质即可解决问题;,m)A(1,【解答】解:(1)∵直线y=2x+6经过点,1+6=8∴m=2×,,8)∴A(18=,8),∴A∵反比例函数经过点(1,,k=8∴y=.∴反比例函数的解析式为(N,n),(2)由题意,点M,Nn,),的坐标为M(,6<n<∵0,0∴<2|,∴S=×(3nn=)×|+||n=×(﹣+)×﹣(﹣)+BMN△的面积最大.BMNn=3∴时,△ - 17 -AE的中点,若E是BC)阅读理解:如图①,在四边形ABCD中,AB∥DC,124.(之间的等量关系.DC,AD,是∠BAD的平分线,试判断AB,FEC,易证△AEB≌△解决此问题可以用如下方法:延长AE交DC的延长线于点F转化在一个三角形中即可判断.AD,DC得到AB=FC,从而把AB,;AD=AB+DC 之间的等量关系为AB、AD、DC(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.【考点】SO:相似形综合题.【分析】(1)延长AE交DC的延长线于点F,证明△AEB≌△FEC,根据全等三角形的性质得到AB=FC,根据等腰三角形的判定得到DF=AD,证明结论;)相同的方法证明;,利用同(1的延长线于点(2)延长AE交DFG(3)延长AE交CF的延长线于点G,根据相似三角形的判定定理得到△AEB∽△GEC,,计算即可.CG根据相似三角形的性质得到AB=【解答】解:(1)如图①,延长AE交DC的延长线于点F,,∥DC∵AB∴∠BAF=∠F,∵E是BC的中点,,CE=BE∴在△AEB和△FEC中, - 18 -,,≌△FEC∴△AEB,∴AB=FC的平分线,是∠BAD∵AE,BAFDAF=∴∠∠,F∴∠DAF=∠,DF=AD∴,AD=DC+CF=DC+AB∴;AD=AB+DC故答案为:,AB=AF+CF(2),DF交的延长线于点G证明:如图②,延长AE的中点,是BC∵E,∴CE=BE,DC∥∵AB,G∴∠BAE=∠中,GEC在△AEB和△,,∴△AEB≌△GEC,∴AB=GC的平分线,AE是∠BAF∵,∠FAG∴∠BAG=,CD∵AB∥,BAG=∴∠∠G,FAG=∠G∴∠,∴FA=FG;AB=CG=AF+CF ∴,(3()AB=CF+DF) - 19 -,的延长线于点GCF证明:如图③,延长AE交,CF∵AB∥∴△AEB∽△GEC,AB=CG,=∴,即=∵AB∥CF,,∴∠A=∠G,BAE∵∠EDF=∠,FDG=∠G∴∠,FD=FG∴CG=(CF+DF∴)AB=.2+bx(a≠0)表示,对于这样的抛25.我们知道,经过原点的抛物线可以用y=ax 物线:(1)当抛物线经过点(﹣2,0)和(﹣1,3)时,求抛物线的表达式;(2)当抛物线的顶点在直线y=﹣2x上时,求b的值;(3)如图,现有一组这样的抛物线,它们的顶点A、A、…,A在直线y=﹣2x上,n21 - 20 -横坐标依次为﹣1,﹣2,﹣3,…,﹣n(n为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B、B,…,B,以线段AB为边向左作正方形ABCD,nn1nn2nnn的边长.CDD,求此时满足条件的正方形AB如果这组抛物线中的某一条经过点nnnnn:二次函数综合题.【考点】HF2+bx,得到关于a、b的)和(﹣1,3)分别代入y=ax【分析】(1)把点(﹣2,0二元一次方程组,解方程组即可;2的顶点坐标是(﹣y=ax+bx),﹣,(2)根据二次函数的性质,得出抛物线为以A为顶点的抛物线不可能经过点D,设第n+k(k为正整数)条抛物nn根据﹣=2n+2k),(﹣条抛物线的顶点坐标是An﹣k,D线经过点,此时第n+k n+kn2﹣4x条抛物线的表达式为y=x﹣﹣n﹣k,得出a==,﹣,即第n+k2﹣43n)×(﹣n+k,2n)在第条抛物线上,得到2n=×(﹣﹣3n根据D(﹣n,进而求解即可.,解得k=n3n)2+bx经过点(﹣2,0)和(﹣1(解:1)∵抛物线y=ax,3),【解答】,,解得∴2﹣6x;﹣∴抛物线的表达式为y=3x- 21 -2上,﹣2x),+bx的顶点坐标是且该点在直线(﹣,y=﹣(2)∵抛物线y=ax,)∴﹣=﹣2×(﹣2=4bb,≠0,∴﹣∵a;=0,b解得b=﹣412上,2x在直线y=﹣A3)这组抛物线的顶点A、A、…,(n12.b=4或b=0由(2)可知,①当b=0时,抛物线的顶点在坐标原点,不合题意,舍去;2﹣4x时,抛物线的表达式为y=ax.②当b=﹣4由题意可知,第n条抛物线的顶点为A(﹣n,2n),则D(﹣3n,2n),nn∵以A为顶点的抛物线不可能经过点D,设第n+k (k为正整数)条抛物线经过点nn,2n+2k)n﹣k,,此时第Dn+k条抛物线的顶点坐标是A(﹣n+kn,=n=﹣﹣k,∴﹣a=∴﹣2﹣4x﹣x∴第n+k条抛物线的表达式为y=,∵D(﹣3n,2n)在第n+k条抛物线上,n2k=n,3n4×(﹣)∴2n=﹣×(﹣3n),解得﹣,≤12k为正整数,且nn∵,.,n=10∴n=521当n=5时,k=4,n+k=9;当n=10时,k=8,n+k=18>12(舍去),,)10(﹣∴D15,5∴正方形的边长是10.- 22 -。

2017年贵州省铜仁市中考数学试卷

2017年贵州省铜仁市中考数学试卷
D,点 E 是 BC 的中点,连接 BD,DE. (1)若 = ,求 sinC; (2)求证:DE 是⊙O 的切线.
第4页(共6页)
六、解答题 25.(14 分)如图,抛物线 y=x2+bx+c 经过点 A(﹣1,0),B(0,﹣2),并与 x 轴交于点
C,点 M 是抛物线对称轴 l 上任意一点(点 M,B,C 三点不在同一直线上). (1)求该抛物线所表示的二次函数的表达式; (2)在抛物线上找出两点 P1,P2,使得△MP1P2 与△MCB 全等,并求出点 P1,P2 的坐标; (3)在对称轴上是否存在点 Q,使得∠BQC 为直角,若存在,作出点 Q(用尺规作图,保
10.(4 分)观察下列关于自然数的式子: 4×12﹣12① 4×22﹣32② 4×32﹣52③ …
根据上述规律,则第 2017 个式子的值是( )
A.8064
B.8065
C.8066
二、填空题(本大题共 8 小题,每小题 4 分,共 32 分)
11.(4 分)5 的相反数是

12.(4 分)一组数据 2,3,2,5,4 的中位数是
留作图痕迹),并求出点 Q 的坐标.
第5页(共6页)
2017 年贵州省铜仁市中考数学试卷
参考答案
一、选择题(本大题共 10 小题,每小题 4 分,共 40 分) 1.A; 2.B; 3.D; 4.B; 5.B; 6.C; 7.C; 8.B; 9.C; 10.D; 二、填空题(本大题共 8 小题,每小题 4 分,共 32 分) 11.﹣5; 12.3; 13.2; 14. ; 15.15; 16.18; 17. ; 18. ;
第6页(共6页)
四、解答题 23.(12 分)某商店以 20 元/千克的单价新进一批商品,经调查发现,在一段时间内,销售

贵州黔东南州 2017年中考真题数学(解析版)

贵州黔东南州 2017年中考真题数学(解析版)

2017年贵州省黔东南州中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.|﹣2|的值是()A.﹣2 B.2 C.﹣ D.【考点】15:绝对值.【分析】根据绝对值的性质作答.【解答】解:∵﹣2<0,∴|﹣22.故选B.2.如图,∠120°,∠20°,则∠A的度数是()A.120°B.90°C.100° D.30°【考点】K8:三角形的外角性质.【分析】根据三角形的外角的性质计算即可.【解答】解:∠∠﹣∠B=120°﹣20°=100°,故选:C.3.下列运算结果正确的是()A.3a﹣2 B.(a﹣b)22﹣b2C.62÷(﹣2)=﹣3b D.a()2【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=2a,不符合题意;B、原式2﹣22,不符合题意;C、原式=﹣3b,符合题意;D、原式2,不符合题意,故选C4.如图所示,所给的三视图表示的几何体是()A.圆锥B.正三棱锥C.正四棱锥D.正三棱柱【考点】U3:由三视图判断几何体.【分析】由左视图和俯视图可得此几何体为柱体,根据主视图是三角形可判断出此几何体为正三棱柱.【解答】解:∵左视图和俯视图都是长方形,∴此几何体为柱体,∵主视图是一个三角形,∴此几何体为正三棱柱.故选:D.5.如图,⊙O的直径垂直于弦,垂足为E,∠15°,半径为2,则弦的长为()A.2 B.﹣1 C.D.4【考点】M5:圆周角定理;:勾股定理;M2:垂径定理.【分析】根据垂径定理得到,∠90°,根据圆周角定理得到∠30°,根据直角三角形的性质得到1,最后由垂径定理得出结论.【解答】解:∵⊙O的直径垂直于弦,∴,∠90°,∵∠15°,∴∠30°,∵2,∴1,∴22,故选A.6.已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+的值为()A.2 B.﹣1 C.D.﹣2【考点】:根与系数的关系.【分析】根据根与系数的关系得到x12=2,x1x2=﹣1,利用通分得到,然后利用整体代入的方法计算【解答】解:根据题意得x12=2,x1x2=﹣1,所以﹣2.故选D.7.分式方程=1﹣的根为()A.﹣1或3 B.﹣1 C.3 D.1或﹣3【考点】B3:解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:32﹣3x,解得:﹣1或3,经检验﹣1是增根,分式方程的根为3,故选C8.如图,正方形中,E为中点,⊥,2,交于O,则∠的度数为()A.60°B.67.5°C.75°D.54°【考点】:正方形的性质.【分析】如图,连接、.如图,连接、.首先证明∠∠30°,再证明△≌△,推出∠∠15°,由此即可解决问题.【解答】解:如图,连接、.∵⊥,,∴,∵2,∴,∴△是等边三角形,∵,∴点A是△的外接圆的圆心,∴∠∠30°,∵四边形是正方形,∴,∠∠90°,∠∠45°,∴∠∠,∴△≌△,∴∠∠15°,∴∠∠∠60°.故选A.9.如图,抛物线2(a≠0)的对称轴为直线﹣1,给出下列结论:①b2=4;②>0;③a>c;④4a﹣2>0,其中正确的个数有()A.1个 B.2个 C.3个 D.4个【考点】H4:二次函数图象与系数的关系.【分析】①利用抛物线与x轴有2个交点和判别式的意义对①进行判断;②由抛物线开口方向得到a>0,由抛物线对称轴位置确定b>0,由抛物线与y 轴交点位置得到c>0,则可作判断;③利用﹣1时a﹣<0,然后把2a代入可判断;④利用抛物线的对称性得到﹣2和0时的函数值相等,即﹣2时,y>0,则可进行判断.【解答】解:①∵抛物线与x轴有2个交点,∴△2﹣4>0,所以①错误;②∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴a、b同号,∴b>0,∵抛物线与y轴交点在x轴上方,∴c>0,∴>0,所以②正确;③∵﹣1时,y<0,即a﹣<0,∵对称轴为直线﹣1,∴﹣=﹣1,∴2a,∴a﹣2<0,即a>c,所以③正确;④∵抛物线的对称轴为直线﹣1,∴﹣2和0时的函数值相等,即﹣2时,y>0,∴4a﹣2>0,所以④正确.所以本题正确的有:②③④,三个,故选C.10.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和()n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算()20的展开式中第三项的系数为()A.2017 B.2016 C.191 D.190【考点】4C:完全平方公式.【分析】根据图形中的规律即可求出()20的展开式中第三项的系数;【解答】解:找规律发现()3的第三项系数为3=1+2;()4的第三项系数为6=1+2+3;()5的第三项系数为10=1+2+3+4;不难发现()n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴()20第三项系数为1+2+3+…+20=190,故选D.二、填空题(本大题共6小题,每小题4分,共24分)11.在平面直角坐标系中有一点A(﹣2,1),将点A先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为(1,﹣1).【考点】Q3:坐标与图形变化﹣平移.【分析】根据坐标平移规律即可求出答案.【解答】解:由题意可知:A的横坐标+3,纵坐标﹣2,即可求出平移后的坐标,∴平移后A的坐标为(1,﹣1)故答案为:(1,﹣1)12.如图,点B、F、C、E在一条直线上,已知,∥,请你添加一个适当的条件∠∠D使得△≌△.【考点】:全等三角形的判定.【分析】根据全等三角形的判定定理填空.【解答】解:添加∠∠D.理由如下:∵,∴.又∵∥,∴∠∠.∴在△与△中,,∴△≌△().故答案是:∠∠D.13.在实数范围内因式分解:x5﹣4x(x2+3)()(x﹣).【考点】58:实数范围内分解因式.【分析】先提取公因式x,再把4写成22的形式,然后利用平方差公式继续分解因式.【解答】解:原式(x4﹣22),(x2+2)(x2﹣2)(x2+2)()(x﹣),故答案是:x(x2+3)()(x﹣).14.黔东南下司“蓝每谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800,由此估计该果农今年的“优质蓝莓”产量约是560.【考点】X8:利用频率估计概率.【分析】根据题意可以估计该果农今年的“优质蓝莓”产量.【解答】解:由题意可得,该果农今年的“优质蓝莓”产量约是:800×0.7=560,故答案为:560.15.如图,已知点A,B分别在反比例函数y1=﹣和y2=的图象上,若点A是线段的中点,则k的值为﹣8.【考点】G6:反比例函数图象上点的坐标特征.【分析】设A(a,b),则B(2a,2b),将点A、B分别代入所在的双曲线方程进行解答.【解答】解:设A(a,b),则B(2a,2b),∵点A在反比例函数y1=﹣的图象上,∴﹣2;∵B点在反比例函数y2=的图象上,∴2a•24﹣8.故答案是:﹣8.16.把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板的一条直角边与y轴重合且点A的坐标为(0,1),∠30°;第二块三角板的斜边1与第一块三角板的斜边垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2C垂直且交y轴于点B3;…按此规律继续下去,则点B2017的坐标为(0,﹣).【考点】D2:规律型:点的坐标.【分析】根据题意和图象可以发现题目中的变化规律,从而可以求得点B2017的坐标.【解答】解:由题意可得,•60°=1×=,•60°()2=3,1•60°=()3,21…∵2017÷4=506…1,∴点B2017的坐标为(0,﹣),故答案为:(0,﹣).三、解答题(本大题共8小题,共86分)17.计算:﹣1﹣2﹣(π﹣3.14)0﹣60°+.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=1+()+1﹣=218.先化简,再求值:(x﹣1﹣)÷,其中1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=•﹣1,当1时,原式=.19.解不等式组,并把解集在数轴上表示出来.【考点】:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条不等式表示出来.【解答】解:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<55,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:20.某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.身高分组频数频率152≤x<15530.06155≤x<15870.14158≤x<161m0.28161≤x<16413n164≤x<16790.18167≤x<17030.06170≤x<17310.02根据以上统计图表完成下列问题:(1)统计表中14,0.26,并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在:161≤x<164范围内;(3)在身高≥167的4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.【考点】X6:列表法与树状图法;V7:频数(率)分布表;V8:频数(率)分布直方图;W4:中位数.【分析】(1)设总人数为x人,则有=0.06,解得50,再根据频率公式求出m,n.画出直方图即可;(2)根据中位数的定义即可判断;(3)画出树状图即可解决问题;【解答】解:(1)设总人数为x人,则有=0.06,解得50,∴50×0.28=14,0.26.故答案为14,0.26.频数分布直方图:(2)观察表格可知中位数在161≤x<164内,故答案为161≤x<164.(3)将甲、乙两班的学生分别记为甲1、甲2、乙1、乙2树状图如图所示:.所以P(两学生来自同一所班级)21.如图,已知直线与⊙O相切于点T,直线与⊙O相交于A,B两点.(1)求证:2•;(2)若,求图中阴影部分的面积.【考点】S9:相似三角形的判定与性质;:切线的性质;:扇形面积的计算.【分析】(1)连接,只要证明△∽△,可得=,由此即可解决问题;(2)首先证明△是等边三角形,根据S阴扇形﹣S△计算即可;【解答】(1)证明:连接.∵是⊙O的切线,∴⊥,∴∠90°,∴∠∠90°,∵是直径,∴∠90°,∴∠∠90°,∵,∴∠∠,∴∠∠B,∵∠∠P,∴△∽△,∴=,∴2•.(2)∵,∴∠∠∠,∵∠∠∠,∵∠∠90°,∴∠60°,∠30°,∴,∴1,∵,∠60°,∴△是等边三角形,∴S阴扇形﹣S△﹣•12=﹣.22.如图,某校教学楼后方有一斜坡,已知斜坡的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:39°≈0.63,39°≈0.78,39°≈0.81,≈1.41,≈1.73,≈2.24)【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】假设点D移到D′的位置时,恰好∠α=39°,过点D作⊥于点E,作D′E′⊥于点E′,根据锐角三角函数的定义求出、、′的长,进而可得出结论.【解答】解:假设点D移到D′的位置时,恰好∠α=39°,过点D作⊥于点E,作D′E′⊥于点E′,∵12米,∠60°,∴•60°=12×=6米,•60°=12×=6米.∵⊥,D′E′⊥,′∥′,∴四边形′D′是矩形,∴′E′=6米.∴′=≈≈12.8,∴′′﹣12.8﹣6=6.8(米).答:学校至少要把坡顶D向后水平移动6.8米才能保证教学楼的安全.23.某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修,现学校招用了甲、乙两个工程队.若两队合作,8天就可以完成该项工程;若由甲队先单独做3天后,剩余部分由乙队单独做需要18天才能完成.(1)求甲、乙两队工作效率分别是多少?(2)甲队每天工资3000元,乙队每天工资1400元,学校要求在12天内将学生公寓楼装修完成,若完成该工程甲队工作m天,乙队工作n天,求学校需支付的总工资w(元)与甲队工作天数m(天)的函数关系式,并求出m的取值范围及w的最小值.【考点】:一次函数的应用;B7:分式方程的应用.【分析】(1)设甲队单独完成需要x天,乙队单独完成需要y天.列出分式方程组即可解决问题;(2)设乙先工作x天,再与甲合作正好如期完成.则1,解得6.由此可得m的范围,因为乙队每天的费用小于甲队每天的费用,所以让乙先工作6天,再与甲合作6天正好如期完成,此时费用最小;【解答】解:(1)设甲队单独完成需要x天,乙队单独完成需要y天.由题意,解得,经检验是分式方程组的解,∴甲、乙两队工作效率分别是和.(2)设乙先工作x天,再与甲合作正好如期完成.则1,解得6.∴甲工作6天,∵甲12天完成任务,∴6≤m≤12.∵乙队每天的费用小于甲队每天的费用,∴让乙先工作6天,再与甲合作6天正好如期完成,此时费用最小,∴w的最小值为12×1400+6×3000=34800元.24.如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:﹣4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).(1)求抛物线的解析式;(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且与直线l垂直,垂足为E,∥y轴,交直线l于点F,是否存在这样的点P,使△的面积最小?若存在,请求出此时点P的坐标及△面积的最小值;若不存在,请说明理由.【考点】:二次函数综合题.【分析】(1)设抛物线的解析式为(x﹣2)(4),将点M的坐标代入可求得a 的值,从而得到抛物线的解析式;(2)连接,过点M作⊥,垂足为G.先求得点A和点B的坐标,可求得,可得到、、、的长,然后利用锐角三角函数的定义可证明∠∠,故此可证明⊥;(3))先证明∠∠.则:::2:1.则△的面积2,设点P的坐标为(x,﹣x2﹣),则F(x,﹣4).然后可得到与x的函数关系式,最后利用二次函数的性质求解即可.【解答】解:(1)设抛物线的解析式为(x﹣2)(4),将点M的坐标代入得:﹣92,解得:﹣.∴抛物线的解析式为﹣x2﹣.(2)连接,过点M作⊥,垂足为G.把0代入﹣4得:4,∴A(0,4).将0代入得:0=﹣4,解得8,∴B(8,0).∴4,8.∵M(﹣1,2),A(0,4),∴1,2.∴∠∠.∴∠∠.∵∠∠90°,∴∠∠90°,即∠90°.∴l是⊙M的切线.(3)∵∠∠90°,∠∠90°,∴∠∠.∴∠.∴:::2:1.∴△的面积•×•2.∴当最小时,△的面积最小.设点P的坐标为(x,﹣x2﹣),则F(x,﹣4).∴(﹣4)﹣(﹣x2﹣)=﹣42﹣2﹣(x﹣)2+.∴当时,有最小值,的最小值为.∴P(,).∴△的面积的最小值为=×()2=.2017年7月2日。

2017年贵州省铜仁市中考数学试卷(含答案及考点解析)

2017年贵州省铜仁市中考数学试卷(含答案及考点解析)

2017年贵州省铜仁市中考数学试卷(含答案及考点解析)2017年贵州省铜仁市中考数学试卷满分150分,考试时间120分钟共8页姓名得分:一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)﹣2017的绝对值是()A.2017 B.﹣2017 C.12017D.﹣120172.(4分)一组数据1,3,4,2,2的众数是()A.1 B.2 C.3 D.43.(4分)单项式2x y3的次数是()A.1 B.2 C.3 D.44.(4分)如图,已知直线a∥b,c∥b,∠1=60°,则∠2的度数是()A.30°B.60°C.120°D.61°5.(4分)世界文化遗产长城总长约670000米,将数670000用科学记数法可表示为()A.6.7×104B.6.7×105C.6.7×106D.67×1046.(4分)如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S27.(4分)一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8 B.9 C.10 D.118.(4分)把不等式组{2x+3>13x+4≥5x的解集表示在数轴上如下图,正确的是()A.B C.D.9.(4分)如图,已知点A在反比例函数y=kx上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.y=4xB.y=2xC.y=8xD.y=﹣8x10.(4分)观察下列关于自然数的式子:4×12﹣12①4×22﹣32②4×32﹣52③…根据上述规律,则第2017个式子的值是()A.8064 B.8065 C.8066 D.8067二、填空题(本大题共8小题,每小题4分,共32分)11.(4分)5的相反数是.12.(4分)一组数据2,3,2,5,4的中位数是.13.(4分)方程1x−1﹣2x=0的解为x= .14.(4分)已知一元二次方程x2﹣3x+k=0有两个相等的实数根,则k= .15.(4分)已知菱形的两条对角线的长分别是5cm,6cm,则菱形的面积是cm2.16.(4分)如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB=2米,BC=18米,则旗杆CD的高度是米.17.(4分)从﹣1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为.18.(4分)如图,在Rt△ABC中,∠C=90°,点D是AB的中点,ED⊥AB交AC于点E.设∠A=α,且tanα=13,则tan2α=.三、解答题(本大题共7小题,其中19题每小题5分,20、21、22每题10分,23、24每题12分,25题14分,共78分)19.(10分)(1)计算:(12)﹣1﹣4sin60°﹣(√3﹣1.732)0+√12(2)先化简,再求值:2x+6x2−2x+1•x−1x+3,其中x=2.20.(10分)如图,已知:∠BAC=∠EAD,AB=20.4,AC=48,AE=17,AD=40.求证:△ABC∽△AED.21.(10分)某校为了了解九年级九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩的样本,按A,B,C(A等:成绩大于或等于80分;B等:成绩大于或等于60分且小于80分;C等:成绩小于60分)三个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(1)请把条形统计图补充完整;(2)扇形统计图中A等所在的扇形的圆心角等于度;(3)若九年级有1000名学生,请你用此样本估计体育测试众60分以上(包括60分)的学生人数.22.(10分)如图,已知点E,F分别是平行四边形ABCD对角线BD所在直线上的两点,连接AE,CF,请你添加一个条件,使得△ABE≌△CDF,并证明.23.(12分)某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间为一次函数关系,如图所示.(1)求y与x的函数表达式;(2)要使销售利润达到800元,销售单价应定为每千克多少元?24.(12分)如图,已知在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC交于点D,点E是BC 的中点,连接BD,DE.(1)若ADAB=13,求sinC;(2)求证:DE是⊙O的切线.25.(14分)如图,抛物线y=x2+b x+c经过点A(﹣1,0),B(0,﹣2),并与x轴交于点C,点M 是抛物线对称轴l上任意一点(点M,B,C三点不在同一直线上).(1)求该抛物线所表示的二次函数的表达式;(2)在抛物线上找出两点P1,P2,使得△MP1P2与△MCB全等,并求出点P1,P2的坐标;(3)在对称轴上是否存在点Q,使得∠BQC为直角,若存在,作出点Q(用尺规作图,保留作图痕迹),并求出点Q的坐标.2017年贵州省铜仁市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)(2017•铜仁市)﹣2017的绝对值是()A.2017 B.﹣2017 C.12017D.﹣12017【考点】15:绝对值.【分析】根据绝对值定义去掉这个绝对值的符号.【解答】解:﹣2017的绝对值是2007.故选:A.【点评】此题考查了绝对值,解题关键是掌握绝对值的规律.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(4分)(2017•铜仁市)一组数据1,3,4,2,2的众数是()A.1 B.2 C.3 D.4【考点】W5:众数.【分析】根据众数的定义即可得到结论.【解答】解:∵在数据1,3,4,2,2中,2出现的次数最多,∴这组数据1,3,4,2,2的众数是2,故选B.【点评】本题考查了众数的定义,熟记众数的定义是解题的关键.3.(4分)(2017•铜仁市)单项式2xy3的次数是()A.1 B.2 C.3 D.4【考点】42:单项式.【分析】根据一个单项式中所有字母的指数的和叫做单项式的次数可得答案.【解答】解:单项式2xy3的次数是1+3=4,故选:D.【点评】此题主要考查了单项式,关键是掌握单项式次数的计算方法.4.(4分)(2017•铜仁市)如图,已知直线a∥b,c∥b,∠1=60°,则∠2的度数是()A.30°B.60°C.120°D.61°【考点】JA:平行线的性质.【分析】由直线a∥b,c∥b,得出a∥c,∠1=60°,根据两直线平行,同位角相等,即可求得∠2的度数.【解答】解:∵直线a∥b,c∥b,∴a∥c,∵∠1=60°,∴∠2=∠1=60°.故选B【点评】此题考查了平行线的性质.解题的关键是注意掌握两直线平行,同位角相等定理的应用.5.(4分)(2017•铜仁市)世界文化遗产长城总长约670000米,将数670000用科学记数法可表示为()A.6.7×104 B.6.7×105 C.6.7×106 D.67×104【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:670000=6.7×105.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.6.(4分)(2017•铜仁市)如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S2【考点】Q2:平移的性质;JC:平行线之间的距离.【分析】根据平行线间的距离相等可知△ABC,△PB′C′的高相等,再由同底等高的三角形面积相等即可得到答案.【解答】解:∵△ABC沿着BC方向平移得到△A′B′C′,∴AA′∥BC′,∵点P是直线AA′上任意一点,∴△ABC,△PB′C′的高相等,∴S1=S2,故选C.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.7.(4分)(2017•铜仁市)一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8 B.9 C.10 D.11【考点】L3:多边形内角与外角.【分析】先求出每一个外角的度数,再根据边数=360°÷外角的度数计算即可.【解答】解:180°﹣144°=36°,360°÷36°=10,则这个多边形的边数是10.故选:C.【点评】本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.8.(4分)(2017•铜仁市)把不等式组{2x+3>13x+4≥5x的解集表示在数轴上如下图,正确的是()A.B C.D.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x+3>1,得:x>﹣1,解不等式3x+4≥5x,得:x≤2,则不等式组的解集为﹣1<x≤2,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键9.(4分)(2017•铜仁市)如图,已知点A在反比例函数y=kx上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.y=4xB.y=2xC.y=8xD.y=﹣8x【考点】G7:待定系数法求反比例函数解析式;G5:反比例函数系数k的几何意义.【分析】由S△AOC =12x y=4,设反比例函数的解析式y=kx,则k=x y=8.【解答】解:∵S△AOC =4,∴k=2S△AOC=8;∴y=8x;故选:C.【点评】此题考查了待定系数法求反比例函数解析式,反比例函数系数k的几何意义.属于基础题,难度不大.10.(4分)(2017•铜仁市)观察下列关于自然数的式子:4×12﹣12 ① 4×22﹣32 ② 4×32﹣52 ③…根据上述规律,则第2017个式子的值是()A.8064 B.8065 C.8066 D.8067【考点】37:规律型:数字的变化类;1G:有理数的混合运算.【分析】由①②③三个等式可得,减数是从1开始连续奇数的平方,被减数是从1开始连续自然数的平方的4倍,由此规律得出答案即可.【解答】解:4×12﹣12 ① 4×22﹣32 ② 4×32﹣52 ③…4n2﹣(2n﹣1)2=4n﹣1,所以第2017个式子的值是:4×2017﹣1=8067.故选:D.【点评】此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.二、填空题(本大题共8小题,每小题4分,共32分)11.(4分)(2017•铜仁市)5的相反数是﹣5 .【考点】14:相反数.【分析】根据相反数的概念解答即可.【解答】解:根据相反数的定义有:5的相反数是﹣5.故答案为﹣5.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.12.(4分)(2017•铜仁市)一组数据2,3,2,5,4的中位数是 3 .【考点】W4:中位数.【分析】根据中位数的定义解答即可.【解答】解:数据2,3,2,5,4的中位数是3;故答案为:3【点评】此题考查中位数问题,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.(4分)(2017•铜仁市)方程1x−1﹣2x=0的解为x = 2 .【考点】B3:解分式方程.【分析】利用:①去分母;②求出整式方程的解;③检验;④得出结论解出方程.【解答】解:1x−1﹣2x=0方程两边同乘x (x ﹣1),得x ﹣2(x ﹣1)=0x ﹣2x +2=0,解得,x =2,检验:当x =2时,x (x ﹣1)≠0,则x =2是分式方程的解,故答案为:2.【点评】本题考查的是分式方程的解法,解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.14.(4分)(2017•铜仁市)已知一元二次方程x 2﹣3x +k=0有两个相等的实数根,则k= 94.【考点】AA :根的判别式.【分析】根据方程的系数结合根的判别式△=0,即可得出关于k 的一元一次方程,解之即可得出结论.【解答】解:∵方程x 2﹣3x +k=0有两个相等的实数根,∴△=(﹣3)2﹣4k=9﹣4k=0,解得:k=94.故答案为:94.【点评】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.15.(4分)(2017•铜仁市)已知菱形的两条对角线的长分别是5cm ,6cm ,则菱形的面积是 15 cm 2.【考点】L8:菱形的性质.【分析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.【解答】解:根据对角线的长可以求得菱形的面积,根据S=12ab=12×5cm×6cm=15cm2,故答案为 15.【点评】本题考查了根据对角线计算菱形的面积的方法,记住菱形的面积等于对角线乘积的一半是解题的关键.16.(4分)(2017•铜仁市)如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB=2米,BC=18米,则旗杆CD的高度是18 米.【考点】SA:相似三角形的应用.【分析】根据相似三角形的判定推出△ABE∽△ACD,得出比例式,代入求出即可.【解答】解:如图:∵BE⊥AC,CD⊥AC,∴BE∥CD,∴△ABE∽△ACD,∴BECD=ABAC,∴1.8CD=22+18,解得:CD=18.故答案为:18.【点评】本题考查了相似三角形的判定和性质的应用,能根据相似三角形的判定定理推出两三角形相似是解此题的关键.17.(4分)(2017•铜仁市)从﹣1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为16.【考点】X6:列表法与树状图法;D1:点的坐标.【分析】首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果与点P落在抛物线y=﹣x2+x+2上的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,点P落在第一象限的可能是(1,2),(2,1)两种情形,∴则该点在第一象限的概率为212=16.故答案为16.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.18.(4分)(2017•铜仁市)如图,在Rt△ABC中,∠C=90°,点D是AB的中点,ED⊥AB交AC于点E.设∠A=α,且tanα=13,则tan2α=34.【考点】T7:解直角三角形;KG:线段垂直平分线的性质.【分析】根据题目中的数据和锐角三角函数可以求得tan2α的值,本题得以解决.【解答】解:连接BE,∵点D是AB的中点,ED⊥AB,∠A=α,∴ED是AB的垂直平分线,∴EB=EA,∴∠EBA=∠A=α,∴∠BEC=2α,∵tanα=13,设DE=x,∴AD=3a,AE=√10a,∴AB=6a,∴BC=3a√105,AC=9a√105∴CE=9a√105−√10a=4a√105,∴tan2α=BCCE=3a√105√10a−9a√105=BCCE=3a√1054a√105=34,故答案为:3 4.【点评】本题考查解直角三角形、线段垂直平分线,解答本题的关键是明确题意,找出所求问题需要的条件,利用解直角三角形的相关知识解答.三、解答题19.(10分)(2017•铜仁市)(1)计算:(12)﹣1﹣4sin60°﹣(√3﹣1.732)0+√12(2)先化简,再求值:2x+6x2−2x+1•x−1x+3,其中x=2.【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)根据零指数幂意义,立方根的意义,绝对值的意义即可求出答案.(2)根据分式的运算法则即可求出答案.【解答】解:(1)原式=2﹣4×√32﹣1+2√3=1(2)当x=2时,原式=2(x+3) (x−1)2•x−1x+3=2x−1=2【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.20.(10分)(2017•铜仁市)如图,已知:∠BAC=∠EAD,AB=20.4,AC=48,AE=17,AD=40.求证:△ABC∽△AED.【考点】S8:相似三角形的判定.【分析】先证得ABAE=ACAD,然后根据相似三角形的判定定理即可证得结论.【解答】证明:∵AB=20.4,AC=48,AE=17,AD=40.∴ABAE=20.417=1.2,ACAD=4840=1.2,∴ABAE=ACAD,∵∠BAC=∠EAD,∴△ABC∽△AED.【点评】本题重点考查了相似三角形的判定定理,本题比较简单,注要找准相似的两个三角形就可以了.21.(10分)(2017•铜仁市)某校为了了解九年级九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩的样本,按A,B,C(A等:成绩大于或等于80分;B等:成绩大于或等于60分且小于80分;C等:成绩小于60分)三个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(1)请把条形统计图补充完整;(2)扇形统计图中A等所在的扇形的圆心角等于108 度;(3)若九年级有1000名学生,请你用此样本估计体育测试众60分以上(包括60分)的学生人数.【考点】VC :条形统计图;V5:用样本估计总体;VB :扇形统计图.【分析】(1)根据百分比=所占人数总人数,计算即可解决问题;(2)求出A 组人数即可解决问题;(3)用样本估计作图的思想解决问题即可;【解答】解:(1)抽查了部分学生的总人数为25÷50%=50(人),A 组人数=50﹣25﹣10=15(人),条形图如图所示:(2)扇形统计图中A 等所在的扇形的圆心角为360°×(1﹣20%﹣50%)=108°,故答案为108.(3)1000×4050=800(人),答:估计体育测试众60分以上(包括60分)的学生人数有800人.【点评】本题考查条形统计图、扇形统计图、样本估计总体等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(10分)(2017•铜仁市)如图,已知点E ,F 分别是平行四边形ABCD 对角线BD 所在直线上的两点,连接AE ,CF ,请你添加一个条件,使得△ABE ≌△CDF ,并证明.【考点】L5:平行四边形的性质;KB :全等三角形的判定.【分析】根据平行四边形性质推出AB=CD ,AB ∥CD ,得出∠EBA=∠FDC ,根据SAS 证两三角形全等即可.【解答】解:添加的条件是DE=BF ,理由是:∵四边形ABCD 是平行四边形, ∴AB=CD ,AB ∥CD ,∴∠EBA=∠FDC ,∵DE=BF ,∴BE=DF ,∵在△ABE 和△CDF 中{AB =CD∠EBA =∠FDC BE =DF,∴△ABE ≌△CDF (SAS ).【点评】本题考查了平行四边形的性质和全等三角形的判定的应用,通过做此题培养了学生的分析问题和解决问题的能力,也培养了学生的发散思维能力,题目比较好,是一道开放性的题目,答案不唯一23.(12分)(2017•铜仁市)某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y (千克)与销售单价x (元/千克)之间为一次函数关系,如图所示.(1)求y 与x 的函数表达式;(2)要使销售利润达到800元,销售单价应定为每千克多少元?【考点】AD :一元二次方程的应用;FH :一次函数的应用.【分析】(1)当20≤x ≤80时,利用待定系数法即可得到y 与x 的函数表达式;(2)根据销售利润达到800元,可得方程(x ﹣20)(﹣x +80)=800,解方程即可得到销售单价.【解答】解:(1)当0<x <20时,y =60;当20≤x ≤80时,设y 与x 的函数表达式为y =k x +b ,把(20,60),(80,0)代入,可得{60=20k +b 0=80k +b,解得{k =−1b =80,∴y =﹣x +80,∴y 与x 的函数表达式为y={60(0<x <20)−x +80(20≤x ≤80);(2)若销售利润达到800元,则(x ﹣20)(﹣x +80)=800,解得1x =40,2x =60,∴要使销售利润达到800元,销售单价应定为每千克40元或60元.【点评】本题主要考查了一元二次方程的应用以及一次函数的应用,列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.24.(12分)(2017•铜仁市)如图,已知在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC交于点D,点E是BC的中点,连接BD,DE.(1)若ADAB=13,求sinC;(2)求证:DE是⊙O的切线.【考点】MD:切线的判定;T7:解直角三角形.【分析】(1)根据圆周角定理可得∠ADB=90°,再利用同角的余角相等证明∠C=∠ABD,进而可得答案.(2)先连接OD,根据圆周角定理求出∠ADB=90°,根据直角三角形斜边上中线性质求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根据切线的判定推出即可.【解答】(1)解:∵AB为直径,∴∠ADB=90°,∴∠ABD+∠BAD=90°,∵∠ABC=90°,∴∠C+∠BAC=90°,∴∠C=∠ABD,∵ADAB=13,∴sin∠ABD=13,∴sinC=13;(2)证明:连接OD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠BDC=90°,∵E为BC的中点,∴DE=BE=CE,∴∠EDB=∠EBD,∵OD=OB,∴∠ODB=∠OBD,∵∠ABC=90°,∴∠EDO=∠EDB+∠ODB=∠EBD+∠OBD=∠ABC=90°,∴OD⊥DE,∴DE是⊙O的切线.【点评】本题考查了切线的判定,直角三角形的性质,圆周角定理的应用和三角函数,解此题的关键是求出∠ODE=90°,注意:经过半径的外端,并且垂直于这条半径的直线是圆的切线.25.(14分)(2017•铜仁市)如图,抛物线y=x2+b x+c经过点A(﹣1,0),B(0,﹣2),并与x 轴交于点C,点M是抛物线对称轴l上任意一点(点M,B,C三点不在同一直线上).(1)求该抛物线所表示的二次函数的表达式;(2)在抛物线上找出两点P1,P2,使得△MP1P2与△MCB全等,并求出点P1,P2的坐标;(3)在对称轴上是否存在点Q,使得∠BQC为直角,若存在,作出点Q(用尺规作图,保留作图痕迹),并求出点Q的坐标.【考点】HF:二次函数综合题.【分析】(1)利用待定系数法求二次函数的表达式;(2)分两种情况:①当△P 1MP 2≌△CMB 时,取对称点可得点P 1,P 2的坐标;②当△BMC ≌△P 2P 1M 时,构建▱P 2MBC 可得点P 1,P 2的坐标;(3)如图3,先根据直径所对的圆周角是直角,以BC 为直径画圆,与对称轴的交点即为点Q ,这样的点Q 有两个,作辅助线,构建相似三角形,证明△BDQ 1∽△Q 1EC ,列比例式,可得点Q 的坐标.【解答】解:(1)把A (﹣1,0),B (0,﹣2)代入抛物线y=x 2+b x +c 中得:{1−b +c =0c =−2,解得:{b =−1c =−2,∴抛物线所表示的二次函数的表达式为:y =x 2﹣x ﹣2;(2)如图1,P 1与A 重合,P 2与B 关于l 对称,∴MB=P 2M ,P 1M=CM ,P 1P 2=BC ,∴△P 1MP 2≌△CMB ,∵y =x 2﹣x ﹣2=(x ﹣12)2﹣94,此时P 1(﹣1,0),∵B (0,﹣2),对称轴:直线x =12,∴P 2(1,﹣2);如图2,MP 2∥BC ,且MP 2=BC ,此时,P 1与C 重合,∵MP 2=BC ,MC=MC ,∠P 2MC=∠BP 1M ,∴△BMC ≌△P 2P 1M ,∴P 1(2,0),由点B 向右平移12个单位到M ,可知:点C 向右平移12个单位到P 2,当x =52时,y =(52﹣12)2﹣94=74,∴P 2(52,74);(3)如图3,存在,作法:以BC 为直径作圆交对称轴l 于两点Q 1、Q 2,则∠BQ 1C=∠BQ 2C=90°;过Q 1作DE ⊥y 轴于D ,过C 作CE ⊥DE 于E ,设Q1(12,y)(y>0),易得△BDQ1∽△Q1EC,∴BDQ1E=DQ1EC,∴2+y2−12=12y,y2+2y﹣34=0,解得:y1=−2−√72(舍),y2=−2+√72,∴Q1(12,−2+√72),同理可得:Q2(12,−2−√72);综上所述,点Q的坐标是:(12,−2+√72)或(12,−2−√72).【点评】本题考查了待定系数法求函数解析式、二次函数图象上点的坐标特征、二次函数的性质、圆周角定理以及三角形全等的性质和判定,解题的关键是:(1)利用待定系数法求出函数解析式;(2)利用二次函数的对称性解决三角形全等问题;(3)分类讨论.本题属于中档题,难度不大,解决该题型题目时,利用二次函数的对称性,再结合相似三角形、方程解决问题是关键.。

2017年贵州省各市中考数学试题汇总(6套)

2017年贵州省各市中考数学试题汇总(6套)
三、解答题 ( 本大.)
21.计算:(1) ;
(2) .
22.如图,在边长为1的正方形网格中, 的顶点均在格点上.
(1)画出 关于原点成中心对称的 ,并直接写出 各顶点的坐标.
(2)求点 旋转到点 的路径(结果保留 ).
23.端午节当天,小明带了四个粽子(除味道不同外,其它均相同),其中两个是大枣味的,另外两个是火腿味的,准备按数量平均分给小红和小刚两个好朋友.
7.如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为( )
A.6cmB.7cmC.8cmD.9cm
8.若关于x的方程x2+mx+1=0有两个不相等的实数根,则m的值可以是( )
A.0B.﹣1C.2D.﹣3
9.如图,⊙O的直径AB=4,BC切⊙O于点B,OC平行于弦AD,OC=5,则AD的长为( )
12.在函数 中,自变量x的取值范围.
13.三角形三边长分别为3,4,5,那么最长边上的中线长等于.
14.已知x+y= ,xy= ,则x2y+xy2的值为.
15.若代数式x2+kx+25是一个完全平方式,则k=.
(2)分别画出两种函数的所有图象.(不需列表)
(3)求 与 的交点个数.
2017年贵州省安顺市中考数学试卷
一、选择题(每小题3分,共30分)
1.﹣2017的绝对值是( )
A.2017B.﹣2017C.±2017D.﹣
2.我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500亿用科学记数法表示为( )

2017年贵州省铜仁市中考真题及答案

2017年贵州省铜仁市中考真题及答案

铜仁市2018年初中毕业生学业<升学)统一考试数 学 试 题卷I一、选择题:<本大题共10个小题,每小题4分,共40分)本题每小题均有A 、B 、C 、D 四个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上.ue70uBOf2K 1.-2的相反数是< ) A. B. - C. -2 D. 22.下列四个图形中,既是轴对称图形又是中心对称图形的有< )A .4个B .3个C .2个D .1个3.某中学足球队的18名队员的年龄情况如下表:则这些队员年龄的众数和中位数分别是< )A .15,15B .15,15.5C .15,16D .16,152题图4. 铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5M 栽1棵,则树苗缺21棵;如果每隔6M 栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是< )ue70uBOf2K A.B. C.D.5.如图,正方形ABOC 的边长为2,反比例函数的图象经过点A ,则k 的值是< )A .2B .-2C .4D .-46.小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作一个底面半径为9cm,母线长为30cm 的圆锥形生日礼帽,则这个圆锥形礼帽的侧面积为< )ue70uBOf2K A .270πcm2 B .540πcm2C .135πcm2D .216πcm2ue70uBOf2K 7.如图,在ΔABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N ,若BM+CN=9,则5题图 7题图线段MN的长为( >ue70uBOf2KA. 6B. 7C. 8D. 98.如图,六边形ABCDEF∽六边形GHIJKL,相似比为2:1,则下列结论正确的是< )A.∠E=2∠KB. BC=2HIC. 六边形ABCDEF的周8题图长=六边形GHIJKL的周长D. S六边形ABCDEF=2S六边形GHIJKL9.从权威部门获悉,中国海洋面积是299.7万平方公里,约为陆地面积的三分之一, 299.7万平方公里用科学计数法表示为< )平方公里<保留两位有效数字)ue70uBOf2KA .B .C .D .10.如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,……则第⑩个图形中平行四边形的个数是< )ue70uBOf2KA.54B.110C.19D.109ue70uBOf2K卷II二、填空题:<本大题共8个小题,每小题4分,共32分)11.=_________;12.当___________时,二次根式有意义;13.一个多边形每一个外角都等于,则这个多边形的边数是______;14.已知圆O1和圆O2外切,圆心距为10cm,圆O1的半径为3cm,则圆O2的半径为 ______;ue70uBOf2K15.照下图所示的操作步骤,若输入x的值为5,则输出的值为_______________;球3个,这些球除颜色不同外没有任何区别,从中任意摸出一个球,则摸到黑球的概率为_______________;ue70uBOf2K17.一元二次方程的解为____________;18.以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB的最小值是__________.ue70uBOf2K三、解答题:<本题共4个题,19题每小题5分,第20、21、22每题10分,共40分,要有解题的主要过程)ue70uBOf2K 19.<1)化简:<2)某市计划在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M 到广场的两个入口A 、B 的距离相等,且到广场管理处C 的距离等于A 和B 之间距离的一半,A 、B 、C 的位置如图所示,请在原图上利用尺规作图作出音乐喷泉M 的位置.<要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)ue70uBOf2K20.如图,E 、F 是四边形ABCD 的对角线BD 上的两点,AE ∥CF ,AE=CF ,BE=DF.求证: ΔADE ≌ΔCBF21.某市对参加2018年中考的50000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方ue70uBOf2K <1)在频数分布表中,a 的值为__________,b 的值为__________,并将频数分布直方图补充完整;ue70uBOf2K <2)甲同学说“我的视力情况是此次抽样调查所得数据的中位数”,问甲同学的视力情况应在什么范围内?<3)若视力在4.9以上<含4.9)均属正常,则视力正常的人数占被统计人数的百分比是________,并根据上述信息估计全市初中毕业生中视力正常的学生有多少人?ue70uBOf2K22.如图,定义:在直角三角形ABC中,锐角的邻边与对边的比叫做角的余切,记作ctan , 即ctan =,根据上述角的余切定义,ue70uBOf2K 解下列问题:<1)ctan30◦= ;<2)如图,已知tanA=,其中∠A 为锐角,试求ctanA的值.四、<本题满分12分)21题图频率23.如图,已知⊙O的直径AB与弦CD相交于点E,AB⊥CD,⊙O的切线BF与弦AD的延长线相交于点F. ue70uBOf2K<1)求证:CD∥ BF;<2)若⊙O的半径为5, cos∠BCD=,求线段AD的长.23题图五、<本题满分12分)24.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B 种纪念品6件,需要800元.ue70uBOf2K<1)求购进A、B两种纪念品每件各需多少元?<2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?ue70uBOf2K<3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第<2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?ue70uBOf2K六、<本题满分14分)25.如图已知:直线交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c经过A、B、C<1,0)三点.ue70uBOf2K<1)求抛物线的解读式;<2)若点D的坐标为<-1,0),在直线上有一点P,使ΔABO与ΔADP相似,求出点P的坐标;<3)在<2)的条件下,在x轴下方的抛物线上,是否存在点E,使ΔADE的面积等于四边形APCE的面积?如果存在,请求出点E的坐标;如果不存在,请说明理由.ue70uBOf2K铜仁市2018年初中毕业生学业<升学)统一考试数学参考答案及评分标准一、选择题(每小题4分>:5678910D A D B C D二、填空题<每小题4分):11.2018 12. 13.9 14.7cm15.97 16. 17. 18.三、解答题19.<1)<5分)解:原式=………………………………1分=…………………. ……………….……3分= -1 (5)分<2)<5分)作图:连结AB………………………………………………………1分作出线段AB的垂直平分线……………………………………………3分在矩形中标出点M的位置…………………………………………… 5分< 必须保留尺规作图的痕迹,痕迹不全少一处扣1分,不用直尺连结AB不给分,无圆规痕迹不给分.)20.<10分)证明:∵AE∥CF∴∠AED=∠CFB…………………… 3分∵DF=BE∴DF+EF=BE+EF 即DE=BF………6分在△ADE和△CBF中…………………9分∴△ADE≌△CBF<SAS)……… 10分21.<10分)解:<1)60;0.05;补全图形……………….. 3分<2)4.6x<4.9 ……………………….…. 6分<3)35%……………………………………7分(人>………… 10分22.<10分)解:(1> ……………………. 5分<2),∴……………. . 10分四、23.<12分)<1)证明:∵BF是圆O的切线,AB是圆O的直径∴BF⊥AB…………………………………………3分∵CD⊥AB∴CD∥BF ………………………………….…… 6分<2)解:∵AB是圆O的直径∴∠ADB=90º………………………………… 7分∵圆O的半径5∴AB=10 ……………………………………… 8分∵∠BAD=∠BCD …………………………… 10分∴cos∠BAD= cos∠BCD==∴=8∴AD=8…………………………………………12分五、24.<12分)解:<1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元, 根据题意得方程组ue70uBOf2K…………………………………………………………2分解方程组得∴购进一件A种纪念品需要100元,购进一件B种纪念品需要50元…………4分<2)设该商店购进A种纪念品x个,则购进B种纪念品有<100—x)个∴………………………………………6分解得50≤x≤53 …………………………………………………………7分∵ x 为正整数,∴共有4种进货方案………………………………………………8分<3)因为B种纪念品利润较高,故B种数量越多总利润越高,因此选择购A种50件,B种50件.…………………………………………………10分总利润=<元)∴当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元………………………………………………………………………12分六、25.<14分)解<1):由题意得,A<3,0),B<0,3)∵抛物线经过A、B、C三点,∴把A<3,0),B<0,3),C<1,0)三点分别代入得方程组……3分解得:∴抛物线的解读式为………………5分<2)由题意可得:△ABO为等腰三角形,如图所示,若△ABO∽△AP1D,则∴DP1=AD=4 ,∴P1…………………………………………………………7分若△ABO∽△ADP2 ,过点P2作P2 M⊥x轴于M,AD=4,∵△ABO为等腰三角形, ∴△ADP2是等腰三角形,由三线合一可得:DM=AM=2= P2M,即点M与点C重合∴P2<1,2)……………………10分ue70uBOf2K<3)如图设点E ,则①当P1(-1,4>时,S四边形AP1CE=S三角形ACP1+S三角形ACE= ………………………11分∴∴∵点E在x轴下方∴代入得:,即∵△=(-4>2-4×7=-12<0∴此方程无解……………………………………………………………12分②当P2<1,2)时,S四边形AP2CE=S三角形ACP2+S三角形ACE =∴∴∵点E在x轴下方∴代入得:即,∵△=(-4>2-4×5=-4<0∴此方程无解综上所述,在x轴下方的抛物线上不存在这样的点E.……………14分申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

2017贵州黔西南州中考数学解析

2017贵州黔西南州中考数学解析

2017年贵州省黔西南州中考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.(2017贵州黔西南州,1,4)﹣2017的相反数是()A.﹣2017 B.2017 C.﹣12017D.12017【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2017的相反数是2017,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(2017贵州黔西南州,2,4)在下列四个交通标志图中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义解答.【解答】解:“如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形”,符合这一要求的只有B.故选B.【点评】本题考查了轴对称图形的定义,要知道“如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形”.3.(2017贵州黔西南州,3,4)已知甲、乙两同学1分钟跳绳的平均数相同,若甲同学1分钟跳绳成绩的方差S甲2=0.006,乙同学1分钟跳绳成绩的方差S乙2=0.035,则()A.甲的成绩比乙的成绩更稳定B.乙的成绩比甲的成绩更稳定C.甲、乙两人的成绩一样稳定D.甲、乙两人的成绩稳定性不能比较【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【解答】解:∵甲、乙两同学1分钟跳绳的平均数相同,若甲同学1分钟跳绳成绩的方差S甲2=0.006,乙同学1分钟跳绳成绩的方差S乙2=0.035,∴S甲2<S乙2=0.035,∴甲的成绩比乙的成绩更稳定.故选A.【点评】本题考查方差、算术平均数等知识,解题的关键是理解方差的意义,记住方差越小稳定性越好.4.(2017贵州黔西南州,4,4)下列四个几何体中,主视图与左视图相同的几何体有()A.1个 B.2个 C.3个 D.4个【分析】主视图、左视图是分别从物体正面、左面看,所得到的图形.分别分析四种几何体的主视图与左视图,即可求解.【解答】解:①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形;故选:D.【点评】本题考查了简单几何体的三视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.5.(2017贵州黔西南州,5,4)下列各式正确的是()A .(a ﹣b )2=﹣(b ﹣a )2B .1x =x ﹣3C .a 2+1a+1=a +1 D .x 6÷x 2=x 3【分析】根据完全平分公式、负整数指数幂、同底数幂的除法,即可解答.【解答】解:A 、(a ﹣b )2=(b ﹣a )2,故错误; B 、正确;C 、a 2+1a+1不能再化简,故错误;D 、x 6÷x 2=x 4,故错误;故选:B .【点评】本题考查了完全平分公式、负整数指数幂、同底数幂的除法,解决本题的关键是熟记完全平分公式、负整数指数幂、同底数幂的除法的法则.6.(2017贵州黔西南州,6,4)一个不透明的袋中共有20个球,它们除颜色不同外,其余均相同,其中:8个白球,5个黄球,5个绿球,2个红球,则任意摸出一个球是红球的概率是( )A .23B .110 C .15 D .14【分析】让红球的个数除以球的总数即为摸到红球的概率. 【解答】解:∵20个球中红球有2个, ∴任意摸出一个球是红球的概率是220=110, 故选:B .【点评】本题考查的是随机事件概率的求法.如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=mn.7.(2017贵州黔西南州,7,4)四边形ABCD 中,AB=CD ,AB ∥CD ,则下列结论中错误的是( ) A .∠A=∠C B .AD ∥BCC .∠A=∠BD .对角线互相平分【分析】由AB=CD ,AB ∥CD ,推出四边形ABCD 是平行四边形,推出∠DAB=∠DCB ,AD ∥BC ,OA=OC ,OB=OD ,由此即可判断. 【解答】解:如图,∵AB=CD ,AB ∥CD ,∴四边形ABCD是平行四边形,∴∠DAB=∠DCB,AD∥BC,OA=OC,OB=OD,∴选项A、B、D正确,故选C【点评】本题考查平行四边形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.(2017贵州黔西南州,8,4)如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()A.3 B.2.5 C.2 D.1【分析】根据垂径定理以及勾股定理即可求答案.【解答】解:连接OA,设CD=x,∵OA=OC=5,∴OD=5﹣x,∵OC⊥AB,∴由垂径定理可知:AB=4,由勾股定理可知:52=42+(5﹣x)2∴x=2,∴CD=2,故选(C)【点评】本题考查垂径定理,解题的关键是熟练运用垂径定理以及勾股定理,本题属于基础题型.9.(2017贵州黔西南州,9,4)如图,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是()A.71 B.78 C.85 D.89【分析】观察图形可知,第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,进而得出答案.【解答】解:第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,所以第8个图形共有小正方形的个数为:9×9+8=89.故选D.【点评】本题考查了规律型:图形的变化类,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.10.(2017贵州黔西南州,10,4)如图,点A是反比例函数y=1x(x>0)上的一个动点,连接OA,过点O作OB⊥OA,并且使OB=2OA,连接AB,当点A在反比例函数图象上移动时,点B也在某一反比例函数y=kx图象上移动,则k的值为()A.﹣4 B.4 C.﹣2 D.2【分析】过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,可设A(x,1x),由条件证得△AOC∽△OBD,从而可表示出B点坐标,则可求得得到关于k的方程,可求得k的值.【解答】解:∵点A是反比例函数y=1x(x>0)上的一个动点,∴可设A(x,1x ),∴OC=x,AC=1 x ,∵OB⊥OA,∴∠BOD+∠AOC=∠AOC+∠OAC=90°,∴∠BOD=∠OAC,且∠BDO=∠ACO,∴△AOC∽△OBD,∵OB=2OA,∴ACOD =OCBD=AOBO=12,∴OD=2AC=2x,BD=2OC=2x,∴B(﹣2x,2x),∵点B反比例函数y=kx图象上,∴k=﹣2x•2x=﹣4,故选A .【点评】本题主要考查反比例函数图象上点的坐标特征,利用条件构造三角形相似,用A 点坐标表示出B 点坐标是解题的关键.二、填空题(每小题3分,共30分)11.(2017贵州黔西南州,11,3)计算:(﹣12)2= 14 .【分析】本题考查有理数的乘方运算,(﹣12)2表示2个(﹣12)的乘积.【解答】解:(﹣12)2=14.故答案为:14.【点评】乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数.12.(2017贵州黔西南州,12,3)人工智能AlphaGo ,因在人机大战中大胜韩国围棋手李世石和我国选手柯洁而声名显赫,它具有自我对弈的学习能力,决战前已做了两千万局的训练(等同于一个近千年的训练量)此处“两千万”用科学记数法表示为 2.0×107 (精确到百万位).【分析】近似数精确到哪一位,应当看末位数字实际在哪一位. 【解答】解:“两千万”精确到百万位,用科学记数法表示为2.0×107, 故答案为:2.0×107.【点评】本题考查的是科学记数法的应用,掌握科学记数法的计数规律,理解近似数精确到哪一位,应当看末位数字实际在哪一位是解题的关键.13.(2017贵州黔西南州,13,3)不等式组{x+2>12x−1≤8−x的解集是﹣1<x ≤3.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.【解答】解:{x+2>1①2x−1≤8−x②,解不等式①得x>﹣1,解不等式②得x≤3.故不等式组的解集为﹣1<x≤3.故答案为:﹣1<x≤3.【点评】考查了解一元一次不等式组,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.14.(2017贵州黔西南州,14,3)若一组数据3,4,x,6,8的平均数为5,则这组数据的众数是4.【分析】先根据平均数的计算方法求出x,然后根据众数的定义求解.【解答】解:根据题意得(3+4+x+6+8)=5×5,解得x=4,则这组数据为3,4,4,6,8的平均数为5,所以这组数据的众数是4.故答案为4.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了平均数的定义.15.(2017贵州黔西南州,15,3)已知关于x的方程x2+2x﹣(m﹣2)=0没有实数根,则m的取值范围是m<1.【分析】由方程没有实数根结合根的判别式,即可得出△=4m﹣4<0,解之即可得出m的取值范围.【解答】解:∵关于x的方程x2+2x﹣(m﹣2)=0没有实数根,∴△=22+4(m﹣2)=4m﹣4<0,解得:m<1.故答案为:m<1.【点评】本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.16.(2017贵州黔西南州,16,3)如图,AB∥CD,AC⊥BC,∠BAC=65°,则∠BCD=25度.【分析】要求∠BCD的度数,只需根据平行线的性质求得∠B的度数.显然根据三角形的内角和定理就可求解.【解答】解:∵在Rt△ABC中,∠BAC=65°,∴∠ABC=90°﹣∠BAC=90°﹣65°=25°.∵AB∥CD,∠BCD=∠ABC=25°.【点评】本题考查了平行线性质的应用,锻炼了学生对所学知识的应用能力.17.(2017贵州黔西南州,17,3)函数y=√x−1的自变量x的取值范围是x≥1.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,x﹣1≥0,解得x≥1.故答案为x≥1.【点评】本题考查函数自变量的取值范围,知识点为:二次根式的被开方数是非负数.18.(2017贵州黔西南州,18,3)已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是15.【分析】分腰为3和腰为6两种情况考虑,先根据三角形的三边关系确定三角形是否存在,再根据三角形的周长公式求值即可.【解答】解:当腰为3时,3+3=6,∴3、3、6不能组成三角形;当腰为6时,3+6=9>6,∴3、6、6能组成三角形,该三角形的周长为=3+6+6=15.故答案为:15.【点评】本题考查了等腰三角形的性质以及三角形三边关系,由三角形三边关系确定三角形的三条边长为解题的关键.19.(2017贵州黔西南州,19,3)如图,将边长为6cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长是94cm.【分析】设EF=FD=x,在RT△AEF中利用勾股定理即可解决问题.【解答】解:如图:∵四边形ABCD是正方形,∴AB=BC=CD=AD=6,∵AE=EB=3,EF=FD,设EF=DF=x.则AF=6﹣x,在RT△AEF中,∵AE2+AF2=EF2,∴32+(6﹣x )2=x 2,∴x=154, ∴AF=6﹣154=94cm ,故答案为94.【点评】本题考查翻折变换、正方形的性质、勾股定理等知识,解题的关键是设未知数利用勾股定理列出方程解决问题,属于中考常考题型.20.(2017贵州黔西南州,20,3)如图,图中二次函数解析式为y=ax 2+bx +c (a ≠0)则下列命题中正确的有 ①③④ (填序号) ①abc >0;②b 2<4ac ;③4a ﹣2b +c >0;④2a +b >c .【分析】①由抛物线的开口向上、对称轴在y 轴右侧、抛物线与y 轴交于y 轴负半轴,即可得出a >0、b <0、c <0,进而可得出abc >0,①正确;②由抛物线与x 轴有两个不同的交点,可得出△=b 2﹣4ac >0,b 2>4ac ,②错误;③由当x=﹣2时y >0,可得出4a ﹣2b +c >0,③正确;④由抛物线对称轴的大致范围,可得出﹣2a <b <0,结合a >0、c <0可得出2a +b >0>c ,④正确.综上即可得出结论.【解答】解:①∵抛物线开口向上,抛物线的对称轴在y 轴右侧,抛物线与y 轴交于y 轴负半轴, ∴a >0,﹣b 2a>0,c <0,∴b <0,abc >0,①正确;②∵抛物线与x 轴有两个不同交点, ∴△=b 2﹣4ac >0,b 2>4ac ,②错误; ③当x=﹣2时,y=4a ﹣2b +c >0,③正确;④∵0<﹣b 2a<1,∴﹣2a <b <0,∴2a +b >0>c ,④正确. 故答案为:①③④.【点评】本题考查了二次函数图象与系数的关系以及命题与定理,观察函数图象,逐一分析四条结论的正误是解题的关键.三、(本大题12分)21.(2017贵州黔西南州,21,12)(1)计算:√12+|3﹣√3|﹣2sin60°+(2017﹣π)0+(12)﹣2(2)解方程:2−x x−3+13−x=1.【分析】(1)先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算;(2)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.【解答】解:(1)√12+|3﹣√3|﹣2sin60°+(2017﹣π)0+(12)﹣2=2√3+3﹣√3﹣2×√32+1+1(12)2=2√3+3﹣√3﹣√3+1+4 =8;(2)2−xx−3+13−x =1 整理得2−x x−3﹣1x−3=12−x −1=11﹣x=x ﹣3 解得x=2经检验:x=2是分式方程的解.【点评】本题主要考查了实数的运算以及解分式方程,解题时注意:实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.解分式方程时,一定要检验.四、(本大题12分)22.(2017贵州黔西南州,22,12分)如图,已知AB为⊙O直径,D是BĈ的中点,DE⊥AC交AC的延长线于E,⊙O的切线交AD的延长线于F.(1)求证:直线DE与⊙O相切;(2)已知DG⊥AB且DE=4,⊙O的半径为5,求tan∠F的值.【分析】(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为⊙O 的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是⊙O的切线;(2)直接利用勾股定理得出GO的长,再利用锐角三角函数关系得出tan∠F的值.【解答】(1)证明:连接OD,BC,∵D是弧BC的中点,∴OD垂直平分BC,∵AB为⊙O的直径,∴AC⊥BC,∴OD∥AE.∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE是⊙O的切线;(2)解:∵D 是弧BC 的中点,∴DĈ=DB ̂, ∴∠EAD=∠BAD ,∵DE ⊥AC ,DG ⊥AB 且DE=4, ∴DE=DG=4, ∵DO=5, ∴GO=3, ∴AG=8,∴tan ∠ADG=84=2,∵BF 是⊙O 的切线, ∴∠ABF=90°, ∴DG ∥BF ,∴tan ∠F=tan ∠ADG=2.【点评】此题主要考查了切线的判定与性质以及勾股定理等知识,正确得出AG ,DG 的长是解题关键.五、(本大题14分)23.(2017贵州黔西南州,23,14)今年端午前夕,某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,对某小区居民进行了抽样调查,并将调查情况绘制成图1、图2两幅统计图(尚不完整),请根据统计图解答下列问题:(1)参加抽样调查的居民有多少人?(2)将两幅不完整的统计图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数.(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小韦吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.【分析】(1)根据条形统计图中的数据求出调查的居民人数即可;(2)根据总人数减去爱吃A、B、D三种粽子的人数可得爱吃C的人数,然后再根据人数计算出百分比即可;(3)求出D占的百分比,乘以8000即可得到结果;(4)画树状图得出所有等可能的情况数,找出他第二个吃到的恰好是C粽的情况数,即可求出所求的概率.【解答】解:(1)根据题意得:180+60+120+240=600(人);(2)如图所示;(3)根据题意得:40%×8000=3200(人);(4)如图,得到所有等可能的情况有12种,其中第二个吃到的恰好是C粽的情况有3种,则P(C粽)=312=14,答:他第二个吃到的恰好是C 粽的概率是14.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.六、(本大题14分)24.(2017贵州黔西南州,24,14)赛龙舟是端午节的主要习俗,某市甲乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A 驶向终点B ,在整个行程中,龙舟离开起点的距离y (米)与时间x (分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点A 与终点B 之间相距多远?(2)哪支龙舟队先出发?哪支龙舟队先到达终点? (3)分别求甲、乙两支龙舟队的y 与x 函数关系式; (4)甲龙舟队出发多长时间时两支龙舟队相距200米?【分析】(1)根据函数图象即可得出起点A 与终点B 之间的距离; (2)根据函数图象即可得出甲龙舟队先出发,乙龙舟队先到达终点;(3)设甲龙舟队的y 与x 函数关系式为y=kx ,把(25,3000)代入,可得甲龙舟队的y 与x 函数关系式;设乙龙舟队的y 与x 函数关系式为y=ax +b ,把(5,0),(20,3000)代入,可得乙龙舟队的y 与x 函数关系式;(4)分四种情况进行讨论,根据两支龙舟队相距200米分别列方程求解即可. 【解答】解:(1)由图可得,起点A 与终点B 之间相距3000米;(2)由图可得,甲龙舟队先出发,乙龙舟队先到达终点; (3)设甲龙舟队的y 与x 函数关系式为y=kx , 把(25,3000)代入,可得3000=25k , 解得k=120,∴甲龙舟队的y 与x 函数关系式为y=120x (0≤x ≤25), 设乙龙舟队的y 与x 函数关系式为y=ax +b , 把(5,0),(20,3000)代入,可得{0=5a +b3000=20a +b,解得{a =200b =−1000,∴乙龙舟队的y 与x 函数关系式为y=200x ﹣1000(5≤x ≤20); (4)令120x=200x ﹣1000,可得x=12.5, 即当x=12.5时,两龙舟队相遇,当x <5时,令120x=200,则x=53(符合题意);当5≤x <12.5时,令120x ﹣(200x ﹣1000)=200,则x=10(符合题意); 当12.5<x ≤20时,令200x ﹣1000﹣120x=200,则x=15(符合题意);当20<x ≤25时,令3000﹣120x=200,则x=703(符合题意);综上所述,甲龙舟队出发53或10或15或703分钟时,两支龙舟队相距200米【点评】本题主要考查了一次函数的应用,解决问题的关键是掌握待定系数法求函数解析式的方法,解题时注意数形结合思想以及分类思想的运用.七、(本大题12分)25.(2017贵州黔西南州,25,12)把(sinα)2记作sin 2α,根据图1和图2完成下列各题.(1)sin 2A 1+cos 2A 1= 1 ,sin 2A 2+cos 2A 2= 1 ,sin 2A 3+cos 2A 3= 1 ; (2)观察上述等式猜想:在Rt △ABC 中,∠C=90°,总有sin 2A +cos 2A= 1 ; (3)如图2,在Rt △ABC 中证明(2)题中的猜想: (4)已知在△ABC 中,∠A +∠B=90°,且sinA=1213,求cosA .【分析】(1)根据正弦函数和余弦函数的定义分别计算可得; (2)由(1)中的结论可猜想sin 2A +cos 2A=1;(3)由sinA=a c 、cosA=b c 且a 2+b 2=c 2知sin 2A +cos 2A=(a c )2+(b c )2=a2+b 2c =c 2c=1;(4)根据直角三角形中sin 2A +cos 2A=1知(1213)2+cosA 2=1,据此可得答案.【解答】解:(1)sin 2A 1+cos 2A 1=(12)2+(√32)2=14+34=1, sin 2A 2+cos 2A 2=(√2)2+(√2)2=12+12=1,sin 2A 3+cos 2A 3=(35)2+(45)2=925+1625=1, 故答案为:1、1、1;(2)观察上述等式猜想:在Rt △ABC 中,∠C=90°,总有sin 2A +cos 2A=1, 故答案为:1;(3)在图2中,∵sinA=a c ,cosA=bc,且a 2+b 2=c 2,则sin 2A +cos 2A=(a c )2+(b c )2=a2c 2+b 2c 2=a 2+b 2c 2=c 2c2=1,即sin 2A +cos 2A=1;(4)在△ABC 中,∠A +∠B=90°, ∴∠C=90°, ∵sin 2A +cos 2A=1,∴(1213)2+cosA 2=1,解得:cosA=513或cosA=﹣513(舍),∴cosA=513. 【点评】本题主要考查解直角三角形,熟练掌握正弦函数和余弦函数的定义是解题的关键.八、(本大题16分)26.(2017贵州黔西南州,26,16)如图1,抛物线y=ax 2+bx +74,经过A (1,0)、B (7,0)两点,交y 轴于D 点,以AB 为边在x 轴上方作等边△ABC . (1)求抛物线的解析式;(2)在x 轴上方的抛物线上是否存在点M ,是S △ABM =4√39S △ABC ?若存在,请求出点M 的坐标;若不存在,请说明理由;(3)如图2,E 是线段AC 上的动点,F 是线段BC 上的动点,AF 与BE 相交于点P .①若CE=BF ,试猜想AF 与BE 的数量关系及∠APB 的度数,并说明理由; ②若AF=BE ,当点E 由A 运动到C 时,请直接写出点P 经过的路径长(不需要写过程).【分析】(1)将点A (1,0),B (7,0)代入抛物线的解析式得到关于a 、b 方程组,解关于a 、b 的方程组求得a 、b 的值即可;(2)过点C 作CK ⊥x 轴,垂足为K .依据等边三角形的性质可求得CK=3√3,然后依据三角形的面积公式结合已知条件可求得S △ABM 的面积,设M (a ,14a 2﹣2a +74),然后依据三角形的面积公式可得到关于a 的方程,从而可得到点M 的坐标; (3)①首先证明△BEC ≌△AFB ,依据全等三角形的性质可知:AF=BE ,∠CBE=∠BAF ,然后通过等量代换可得到∠FAB +∠ABP=∠ABP +∠CBE=∠ABC=60°,最后依据三角形的内角和定理可求得∠APB ;②当AE ≠BF 时,由①可知点P 在以AB 为直径的圆上,过点M 作ME ⊥AB ,垂足为E .先求得⊙M 的半径,然后依据弧长公式可求得点P 运动的路径;当AE=BF 时,点P 在AB 的垂直平分线上时,过点C 作CK ⊥AB ,则点P 运动的路径=CK 的长.【解答】解:(1)将点A (1,0),B (7,0)代入抛物线的解析式得:{49a +7b +74=0a +b +74=0,解得:a=14,b=﹣2.∴抛物线的解析式为y=14x 2﹣2x +74.(2)存在点M ,使得S △ABM =4√39S △ABC .理由:如图所示:过点C 作CK ⊥x 轴,垂足为K .∵△ABC 为等边三角形, ∴AB=BC=AC=6,∠ACB=60°. ∵CK ⊥AB ,∴KA=BK=3,∠ACK=30°. ∴CK=3√3.∴S △ABC =12AB•CK=12×6×3=9√3.∴S △ABM =4√39×9√3=12.设M (a ,14a 2﹣2a +74).∴12AB•|y |=12,即12×6×(14a 2﹣2a +74)=12, 解得:a 1=9,a 2=﹣1.∴点M 的坐标为(9,4)或(﹣1,4).(3)①结论:AF=BE ,∠APB=120°.∵△ABC 为等边三角形,∴BC=AB ,∠C=∠ABF .∵在△BEC 和△AFB 中{BC =AB ∠C =∠ABF CE =BF,∴△BEC ≌△AFB .∴AF=BE ,∠CBE=∠BAF .∴∠FAB +∠ABP=∠ABP +∠CBE=∠ABC=60°.∴∠APB=180°﹣60°=120°.②当AE ≠BF 时,由①可知点P 在以M 为圆心,在以AB 为弦的圆上,过点M 作MK ⊥AB ,垂足为k .∵∠APB=120°,∴∠N=60°.∴∠AMB=120°.又∵MK ⊥AB ,垂足为K ,∴AK=BK=3,∠AMK=60°.∴AK=2√3.∴点P 运动的路径=120⋅π×2√3180=4√3π3. 当AE=BF 时,点P 在AB 的垂直平分线上时,如图所示:过点C 作CK ⊥AB ,则点P运动的路径=CK的长.∵AC=6,∠CAK=60°,∴KC=3√3.∴点P运动的路径为3√3.综上所述,点P运动的路径为3√3或4√3π3.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、等边三角形的性质、全等三角形的性质和判定、扇形的弧长公式,判断出点P运动的轨迹生成的图形的形状是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年铜仁市初中数学毕业考试中考说明(一)
班级 姓名
一、选择题(每小题4分,共40分)
1、2的相反数是( )
A 、 21
B 、2
1- C 、 2 D 、 -2 2、下列二次根式是最简二次根式的是( )
A 、a 32
B 、22x
C 、2y
D 、3
b 3、中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区总人口约为4600000000人,这个数用科学记数法表示为 ( )
A 、81046⨯
B 、 9106.4⨯
C 、9106.4-⨯
D 、10106.4⨯ 4、如图为二次函数y=ax 2
+bx+c (a ≠0)的图象,则下列说法:①a >0 ②2a+b=0 ③a+b+c >0 ④当﹣1<x <3时,y >0其中正确的个数为
A .1
B .2
C .3
D .4
第4题 第6题 5、函数4
13-+
-=x x y 的自变量x 的取值范围为( ) A 、3≤x B 、4≠x C 、43≠≥x x 且 D 、43≠≤x x 且 6、如图,在△ABC 中,点D 在BC 上,AB=AD=DC ,∠B=80°,则∠C 的度数为( )
A.30°
B.40°
C.45°
D.60°
7、有一组数据:1,3,4,5,5,则这组数据的平均数、众数、中位数分别是( )
A.3.6,5,5
B.5,5,5
C.3.6,5,4
D.3.6,4,5
8、已知一次函数y=2x-3与反比例函数y=-2/x ,那么它们在同一坐标系中的图象可能是
A B C D
9
10、如图,已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A (5,0),OB=54,点P 是对角线OB 上的一个动点,D (0,1),当CP+DP 最短时,点P 的坐标为( )
A 、)0,0(
B 、)2
1
,1( C 、)53,56( D 、)7
5,710( 二、填空题(每小题4分,共32分)
11、2017的相反数的倒数 。

12、分解因式:=+-22242b ab a 。

13、口袋里有6个红球,4个白球,则一次随机摸到1个红球的概率是 。

14、如图,直线kx y =与双曲线)0(2>=
x x
y 交于点A ),1(a ,则k= 。

第14题 第16题 第17题 15、如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a 克,再称得剩 余电线的质量为b 克,那么原来这卷电线的总长度是 。

三、解答题(共78分,第19题每小题5分,第20、21、22题每小题10分,第23、
20、四边形ABCD是菱形,CE⊥AB交AB延长线于E,CF⊥AD交AD延长线于F,
求证:CE=CF。

21、某校九年级(1)班部分同学接受一次内容为“最适合总结的考前减压方式”收集整理数据后,老师将减压方式分为五类,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题.
(1)初三(1)班接受调查的同学共有多少名;
(2)补全条形统计图,并计算扇形统计图中的“体育活动C”所对应的圆心角度数;
(3)若喜欢“交流谈心”的5名同学中有三名男生和两名女生;老师想从5名同学中任选两名同学进行交流,直接写出选取的两名同学都是女生的概率.
22、某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间内,销售量y (千克)与销售单价x(元/千克)之间的函数关系如图所示.
(1)根据图象求y与x的函数关系式;
(2)商店想在销售成本不超过3800元的情况下,使销售利润达到3000元,销售单价应定为多少?
23、某地的一座人行天桥如图所示,天桥高为6米,坡面BC 的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:3.
(1)求新坡面的坡角a ;
(2)原天桥底部正前方8米处(PB 的长)的文化墙PM
是否需要拆桥?请说明理由.
24、如图,在圆0中,直径AB 平分弦CD ,AB 与CD 相交于点E ,连接AC 、BC ,点F 是BA 延长线上的一点,且∠FCA=∠B .
(1)求证:CF 是⊙O 的切线. (2)若AC=4,tan ∠ACD=
3
3,求FC 的长.。

相关文档
最新文档