信号与系统 第二章

合集下载

信号与系统第二章第一讲

信号与系统第二章第一讲
i
则相应于1的k阶重根,有k项:
( A1t k 1 A2t k 2 Ak 1t Ak )e1t ( Ai t k i )e1t
i 1
k
例2-3
信 号 与 系 统
求如下所示的微分方程的齐次解。
Hale Waihona Puke d3 d2 d r (t ) 7 2 r (t ) 16 r (t ) 12r (t ) e(t ) 3 dt dt dt
等式两端各对应幂次的系数应相等,于是有:
信 号 与 系 统
特解为: 联立解得:
3B1 1 4 B1 3B2 2 2 B 2 B 3 B 0 2 3 1

线性时不变系统
线性的常系数微分方程
按照元件的约束特性及 系统结构的约束特性
也即:
具体系统物理模型
常系数微分方程建立
(1)元件端口的电压与电流约束关系
iR (t ) R
信 号 与 系 统

vR (t )
C


vR (t ) iR (t ) R
dvC (t ) iC (t ) C dt
vR (t ) Ri R (t )

时域经典法就是直接求解系统微分方程的方法。这种方 系 法的优点是直观,物理概念清楚,缺点是求解过程冗繁,应 用上也有局限性。所以在20世纪50年代以前,人们普遍喜欢 统 采用变换域分析方法(例如拉普拉斯变换法),而较少采用时 域经典法。20世纪50年代以后,由于δ(t)函数及计算机的普 遍应用,时域卷积法得到了迅速发展,且不断成熟和完善, 已成为系统分析的重要方法之一。时域分析法是各种变换域 分析法的基础。
信 号 与 系 统
is (t )

信号与系统分析第二章 连续时间系统的时域分析

信号与系统分析第二章 连续时间系统的时域分析

第二章 连续时间系统的时域分析
2.1.1
对系统进行分析时, 首先要建立系统的数学模型。 对于电的系统, 只要利用理想的电路元件, 根据基尔霍 夫定律, 就可以列出一个或一组描述电路特征的线性 微分方程。 现举例来说明微分方程的建立方法。
第二章 连续时间系统的时域分析
例2.1 图2.1所示为RLC串联电路, 求电路中电流i(t) 与激励e(t)之间的关系。
第二章 连续时间系统的时域分析
(3)
y(t) C 1 e t C 2 e 6 t5 2c 0 1o 2 t)s 5 3 (s0i2 n t) (
D(p)y(t)=N(p)f(t)
y(t) N(p) f (t) D(P)
式(2.15)中的 N ( p ) 定义为转移算子, 用H(p)表示,
D (P)
(2.14) (2.15)
H (p ) N D ( (P p ) ) b a m n p p m n a b n m 1 1 p p n m 1 1 a b 1 1 p p a b 0 0 (2.16)
t0
解 (1) 齐次解。 由例2.4 yh (t)=C1e-t+C2e-6t
第二章 连续时间系统的时域分析
(2) 特解。 查表2.2, yp(t)=B1cos (2t)+B2sin(2t)
-14B1+2B2-6=0 2B1+14B2=0
于是,
B15201,
B2530
yp(t)5 20 c 1o2ts) (530 si2 nt)(
第二章 连续时间系统的时域分析
3. 用算子符号表示微分方程, 不仅书写简便, 而且在建 立系统的数学模型时也很方便。 把电路中的基本元件R、 L、 C的伏安关系用微分算子形式来表示, 可以得到相应 的算子模型, 如表2.1所示。

信号与系统第2章信号的复数表示

信号与系统第2章信号的复数表示
π
3
j
π
j
π
4
C1 + C 2 = (1 + 1) + j ( 3 + 1) = 2 + j ( 3 + 1)
2 C1 = 2 + j ( 2 3 ) = 2 2 e
j
= 4e
j
π
3
C1 C 2 = 1 + j 3 + j 3 3 = (1 3 ) + j ( 2 3 )
= 2 2e
j(
π
3
+
π
4
)
= 2 2e
j(
7π ) 12
2 复数中定义 j = 1 ,故 D = (a1a2 b1b2 ) + j(a1b2 + b1a2 )
换一种形式表示复数的乘法
D = C1 C2 = C1 e C2 e = C1 C2 e
j1 j2
= C1 C2 e j1 e j2
j (1 +2 )
复数的加法和乘法在复平面内的表示
复数加法
2、复平面形式
可以在复平面中表示复数
虚轴 b |C| a
复数C可表示成一个矢量
实轴
由图可以看出,矢量 的长度为复数的模,与 实轴的夹角为复数的辐 角
2.3 复数形式的运算
1、复数的数乘和共轭
数乘: k 为实数
虚轴 j
kC C
实轴
kC = ka + jkb
| kC | e j k ≥ 0 kC = | kC | e j ( +π ) k < 0
2、复数的加法和乘法
C1 、 C2 为复数, C1 = a1 + jb1 , C2 = a2 + jb2

信号与系统王明泉版本~第二章习题解答

信号与系统王明泉版本~第二章习题解答

第2章 线性时不变连续系统的时域分析2.1 学习要求(1)会建立描述系统激励与响应关系的微分方程;(2)深刻理解系统的完全响应可分解为:零输入响应与零状态响应,自由响应与强迫响应,瞬态响应与稳态响应;(3)深刻理解系统的零输入线性与零状态线性,并根据关系求解相关的响应; (4)会根据系统微分方程和初始条件求解上述几种响应; (5)深刻理解单位冲激响应的意义,并会求解;(6)深刻理解系统起始状态与初始状态的区别,会根据系统微分方程和输入判断0时刻的跳变情况; (7)理解卷积运算在信号与系统中的物理意义和运算规律,会计算信号的卷积。

; 2.2 本章重点(1)系统(电子、机械)数学模型(微分方程)的建立; (2)用时域经典法求系统的响应; (3)系统的单位冲激响应及其求解;(4)卷积的定义、性质及运算,特别是()t δ函数形式与其它信号的卷积; (5)利用零输入线性与零状态线性,求解系统的响应。

2.3 本章的知识结构2.4 本章的内容摘要2.4.1系统微分方程的建立电阻:)(1)(t v Rt i R R =电感:dtt di L t v L L )()(= )(d )(1)(0t i v Lt i L tL L +=⎰∞-ττ 电容:dtt dv C t i C C )()(= ⎰+=tt L C C t i i Ct v 0)(d )(1)(0ττ 2.4.2 系统微分方程的求解 齐次解和特解。

齐次解为满足齐次方程t n t t h e c e c e c t y 32121)(λλλ+⋅⋅⋅++=当特征根有重根时,如1λ有k 重根,则响应于1λ的重根部分将有k 项,形如t k t k t k t k h e c te c e t c e t c t y 111112211)(λλλλ++⋅⋅⋅++=--- 当特征根有一对单复根,即bi a +=2,1λ,则微分方程的齐次解bt e c bt e c t y at at h sin cos )(21+= 当特征根有一对m 重复根,即共有m 重ib a ±=2,1λ的复根,则微分方程的齐次解bt e t c bt te c bt c t y at m m at h cos cos cos )(121-+⋅⋅⋅++= bt e t d bt te d bt e d at m m at at sin sin sin 121-+⋅⋅⋅+++ 特解的函数形式与激励函数的形式有关。

信号与系统教案第2章

信号与系统教案第2章
第2-3页
2.1 LTI连续系统的响应
一、微分方程的经典解
许多实际的系统可以用线性系统来模拟。一个线性系 统其激励与响应之间的关系可以用下列形式的微分方 程来描述:
y(n)(t) + an-1y (n-1)(t) + …+ a1y(1)(t) + a0y (t) = bmf(m)(t) + bm-1f (m-1)(t) + …+ b1f(1)(t) + b0f (t)
第2-7页
2.1 LTI连续系统的响应
齐次解的函数形式仅与系统本身的特性有关,而与激励 f(t)的函数形式无关,称为系统的固有响应或自由响应; 特解的函数形式由激励确定,称为强迫响应。 例1: 描述某系统的微分方程为
y”(t) + 5y’(t) + 6y(t) = f(t) 求(1)当f(t) = 2e-t,t≥0;y(0)=2,y’(0)= -1时的全解;
et[C cos( t) D sin( t)], 或 A cos( t )
其中Ae j C jD
第2-6页
2.1 LTI连续系统的响应
表2- 不同激励所对应的特解
激励 f (t)
tm
e t
cos( t) 或 sin( t)
特解 yp (t) Pmt m Pm-1t m1 P1t P0 所有的特征根均不等于0;
第2-13页
2.1 LTI连续系统的响应
通常,对于具体的系统,初始状态一般容易求得。这样 为求解微分方程,就需要从已知的初始状态y(j)(0-)设法 求得y(j)(0+)。下列举例说明。
例2:描述某系统的微分方程为 y”(t) + 3y’(t) + 2y(t) = 2f’(t) + 6f(t)

信号与系统-第2章

信号与系统-第2章

f (t)
K
两式相加:
cosωt =
1 2
(e
jωt
+
e
jωt )
(2-4)
0 K
t
两式相减:
sinωt =
1 2j
(e
jωt
-e
jωt )
(2-5)
(3) 复指数信号: f(t) = Ke st = Ke (σ+ jω)t
= Keσt (cosωt + j sinωt)
当 σ > 0 时为增幅振荡 ω = 0 时为实指数信号 σ < 0 时为衰减振荡
2
01
t
f(
1 2
t)
=
1 2
t
0
0<t <4 其它
f(12 t)
2 0
4t
注意: 平移、反折和展缩都是用新的时间变量去代换原来的
时间变量, 而信号幅度不变.
t +2 -2<t<0 例2-5:已知 f(t) = -2t + 2 0<t<1
f (t)
2
0
其它
-2 0 1
t
求 f(2t-1),
f(
1 2
(1) 相加和相乘
信号相加: f t f1t f2 t fn t 信号相乘: f t f1t f2 t fn t
0 t<0 例2-1:已知 f1(t) = sint t ≥ 0 , f2(t) =-sint, 求和积.
解: f1(t) + f2(t) =
-sint 0
t<0 t≥0
0
t<0
f1(t) f2(t) = -sin2t t ≥ 0 也可通过波形相加和相乘.
∞ t=0 作用: 方便信号运算.

信号与系统第2章信号描述及其分析1

信号与系统第2章信号描述及其分析1

图2.2.3 谐波逐次叠加后的图形 (a)1次 (b)1,3次 (c)1,3,5次
机电工程学院
黄石理工学院机电工程学院
Sun Chuan 68215
第2章 信号描述及其分析
(2) 从以上两例可看出,三角波信号的频谱比方波信号的频谱 衰减得快,这说明三角波的频率结构主要由低频成分组成,而 方波中所含高频成分比较多。这一特点反映到时域波形上,表 现为含高频成分多的时域波形(方波)的变化比含高频成分少的时 域波形(三角波)的变化要剧烈得多。因此,可根据时域波形变化 剧烈程度,大概判断它的频谱成分。
本节小结 本节主要介绍了信号的分类。由于不同类型的信号其处 理方法不同,所以必须善于区分不同类型的信号。
机电工程学院
黄石理工学院机电工程学院
Sun Chuan 68215
第2章 信号描述及其分析
§2 周期信号与离散频谱
信号的时域描述与时域分析 本课程所研究的信号 一般是随时间变化的物理量,抽象为以时间为自变量表达 的函数,称为信号的时域描述。求取信号幅值的特征参数 以及信号波形在不同时刻的相似性和关联性,称为信号的 时域分析。时域描述是信号最直接的描述方法,它只能反 映信号的幅值随时间变化的特征,而不能明显表示出信号 的频率构成。因此必须研究信号中蕴涵的频率结构和各频 率成分的幅值、相位关系。
本章重点及难点 本章重点为信号的分析,其中信号频
谱的求取为主要内容。难点为傅里叶变换。
机电工程学院
黄石理工学院机电工程学院
Sun Chuan 68215
第2章 信号描述及其分析
首先应清楚如下三个方面:
信号与信息 信号与信息并非同一概念。 信号分析和信号处理 信号分析和信号处理并没有明确的界 限,通常把研究信号的构成和特征称为信号分析,把信号经过 必要的变换以获得所需信息的过程称为信号处理。 对信号进行分析与处理的原因 在一般情况下,仅通过对信 号波形的直接观察,很难获取所需要的信息,需要对信号进行 必要的分析和处理。

信号与系统 第二章 第3讲

信号与系统 第二章 第3讲
第二节 起始点的跳变

电容电压的跳变 电感电流的跳变 冲激函数匹配法确定初始条件
信号与系统 第2章

一.起始条件与初始条件
一般将激励信号加入的时刻定义为t=0 ,响应r(t)为 t 0 时方程的解,对于n阶系统,起始状态( 0- 状态)指:
d r ( 0 - ) d 2 r (0 - ) d n1 r (0 - ) r (0 ) , , , , 2 dt dt d t n1


0
0
vL ( ) d 0 , 此时iL (0 ) iL (0 )
冲激电压或阶跃电流作 用于电感时:
如果vL (t )为 t
1 0 1 v L ( ) d , L 0 L 此时 i L 0 i L 0
信号与系统 第2章
iL (0 ) iL (0 )
信号与系统 第2章
例2-2-2
d i L (t ) v L (t ) L dt
i L (t )

I s u(t )
L
d[ I s v(t )] L LI s (t ) dt
1 0 i L (0 ) i L (0 ) LI s (t ) d t L 0
v L (t )

i L (0 ) I s

当系统用微分方程表示时,系统从 0 到0 状态有没 有跳变取决于微分方程右端自由项是否包含 (t ) 及其各 阶导数项。

信号与系统 第2章
1. 电容电压的跳变
t c i c (t ) 由伏安关系 vC (t ) 1 iC ( ) d C v (t ) 1 0 1 0 1 t c iC ( ) d iC ( ) d iC ( ) d C C 0 C 0 1 0 1 t vC (0 ) iC ( ) d iC ( ) d C 0 C 0

信号与系统课件(郑君里版)第二章

信号与系统课件(郑君里版)第二章

e ,t≥0;y(0)=2,y’(0)= 2 t ,t≥0;y(0)= 1, e
t
-1
y’(0)=0时的全解。
解: (1) 特征方程为
2 + 5λ+ 6 = 0
其特征根λ1= – 2,λ2= – 3。 齐次解为
yh (t ) C1e2t C2e2t
由表2-2可知,当f(t) = 2 e t
y fh (t ) C f 1e
2t
C f 2e
t
其特解为常数 3 , 于是有
y f (t ) C f 1e2t C f 2et 3
C1 1 C 2 4
根据初始值求得:
y f (t ) e2t 4et 3,t 0
四.系统响应划分
自由响应+强迫响应 (Natural+forced) 暂态响应+稳态响应 (Transient+Steady-state) 零输入响应+零状态响应 (Zero-input+Zero-state)
零输入响应
2.2 冲激响应和阶跃响应
一.冲激响应 1.定义 系统在单位冲激信号δ(t) 作用下产生的零状态响 应,称为单位冲激响应,简称冲激响应,一般用h(t)表 示。
t
ht
H
[例2.2.1] 描述某系统的微分方程为y”(t)+5y’(t)+6y(t)=f(t)求其 冲激响应h(t)。
相互关系
零输入响应是自由响应的一部分,零状态响应有自由响 应的一部分和强迫响应构成 。
y (t ) e 2t 3 y x (t ) y f (t ) (2e 2t 4e t ) (e 2t 4e t 3),t 0

信号与系统第二章ppt课件

信号与系统第二章ppt课件
解 先画出f1(t-τ)|t=0, 即f1(-τ)和f2(τ)波形如题解图2.6(a)所 示。再令t从-∞ 开始增长,随f1(t-τ)波形右移,分区间计算卷 积积分:
30
第2章 连续信号与系统的时域分析 31
最后整理得
第2章 连续信号与系统的时域分析
波形如题解图2.6(b)所示。
32
第2章 连续信号与系统的时域分析
3
(2) 因为
第2章 连续信号与系统的时域分析
所以
4
第2章 连续信号与系统的时域分析
2.2 写出下列复频率s所表示的指数信号est的表达式,并画 出其波形。
(1) 2; (2) -2; (3) -j5; (4) -1+j2。
5
第2章 连续信号与系统的时域分析
解 (1) f1(t)=e2t,波形如题解图2.2(a)所示。 (2) f2(t)=e-2t, 波形如题解图2.2(b)所示。显然, f1(t)和f2(t)都 是实指数信号。 (3) f3(t)=e-j5t=cos5t-j sin5t。f3(t)是虚指数信号,其实部、 虚部分别是等幅余弦、正弦信号。实部信号波形如题解图2.2(c) 所示。 (4) f4(t)=e(-1+j2)t=e-t·ej2t=e-t(cos2t+j sin2t)。f4(t)是复指数信 号,其实部和虚部分别是幅度按指数规律衰减的余弦和正弦信 号。实部信号波形如题解图2.2(d)所示。
(4) 由于tε(t)|t=-∞=0,有 所以
38
第2章 连续信号与系统的时域分析
2.8 已知f1(t)和f2(t)如题图2.4所示。设f(t)=f1(t)*f2(t),试求 f(-1)、f(0)和f(1)的值。
题图 2.4

信号与系统 第2章(3-5)

信号与系统 第2章(3-5)

X
n = −∞

k
x[n ]
1 k
n = −∞
∑ x[n]
2 1
k
3
单位阶跃序列可 用单位脉冲序列 的求和表示: 的求和表示:
0
k
k
u[ k ] =
n = −∞
∑ δ [n]
2.5 确定信号的时域分解
X
一、信号分解为直流分量与交流分量 二、信号分解为奇分量与偶分量之和 三、信号分解为实部分量与虚部分量 四、连续信号分解为冲激信号的线性组合 五、离散信号分解为脉冲序列的线性组合 六、信号分解为正交信号集
d
u[k ] =
u( t ) =
∫d ∫
t
−∞
δ (τ ) τ
n =−∞
∑ δ [ n] ∑ u [n]
k
k
u( t ) = d r ( t ) t r (t ) =
−∞
u[k ] = r[k + 1] − r[k ]
u(τ ) τ
d
r [ k + 1] =
n = −∞
2.4 离散时间信号的基本运算
一、序列相加与相乘
2. 序列相乘 序列相乘
x1[ k ]
0 1 k
2 1 y[k]=x1[k]× x2[k] 2 1.5
X
将若干序列同序号的数值相乘。 将若干序列同序号的数值相乘。
y[k ] = x1 [k ] × x2 [k ] × … × xn [k ]
x2 [ k ]
0
k
0
k
2.4.2 序列的相加、相乘、差分与求和
x[k] = x D C [k] + x A C [k]
k = N1

信号与系统-线性系统分析__第二章

信号与系统-线性系统分析__第二章

一.微分方程的经典解法
• n阶常系数线性微分方程
n
m
aiy(i) (t) bjf (j) (t)
i0
j0
(an 1)
y(n) (t) an-1y(n-1)(t) a0y(t)
bmf (m) (t) bm-1f (m-1)(t) b0f(t)
微分方程的全解由齐次解yh(t)和特解yp(t)组成
上例中,可令f(t)=10ejt,得解为 yp(t)=(1−j)ejt=cost+sint+j(sint−cost)
▪ 求微分方程也就是确定解的形式与全部待定系数。 ▪ 解的形式根据表2−1和表2−2确定,待定系数由初始
条件求出。
11
• 用算子方法求微分方程
微分算子:p d dt
积分算子:1 t ( )d
Pet (i) 或 et[Prtr+Pr−1tr−1+…+P0]
Pcos(t)+Qsin(t) 或 Aetcos(t+)
5
f(t)为常数1时,则特解为b0/a0。 考察函数f(t)在t0时作用,则全解的定义域[0,)。
全解由齐次解和特解组成,待定常数由初始条件y(0)、
y(1)(0)、…、y(n−1)(0)确定。
j1
j1
自由响应:由系统 本身的特性确定的 响应形式
强迫响应:由激 励信号确定的响 应形式
当输入信号含有阶跃函数或有始的周期函数时,系 统的全响应可分解为瞬态响应和稳态响应。
18
例:微分方程为 y''(t)+3y'(t)+2y(t)=2f '(t)+6f(t);
初始状态y(0−)=2,y'(0−)=1;输入函数f(t)=(t)。 求零输入响应和零状态响应。

信号与系统第二章

信号与系统第二章

§2.1 经典时域解法
2 连续时间信号与系统的时域分析
2.1.1 微分方程式的建立与求解
1.物理系统的模型
•许多实际系统可以用线性系统来模拟。
•若系统的参数不随时间而改变,则该系统可以用
线性常系数微分方程来描述。
2 连续时间信号与系统的时域分析
•根据实际系统的物理特性列写系统的微分方程。 •对于电路系统,主要是根据元件特性约束和网络
2 连续时间信号与系统的时域分析
2 冲激函数匹配法 配平的原理:t =0 时刻微分方程左右两端的δ(t) 及各阶导数应该平衡.
【例】
d y t 3 y t 3 t 已知y0 , 求y0 dt
ut : 表示0 到0 相对单位跳变函数
该过程可借助数学描述
所以系统响应的完全解为
需要注意的: 特解的函数形式由系统所加的激励决定,齐次解 的函数形式完全取决于特征方程的根。 由于构成系统的各元件本身所遵从的规律、系统 的结构与参数决定了微分方程的阶次与系数,因此, 齐次解只与系统本身特性有关。
2 连续时间信号与系统的时域分析
2.1.2 从 到 状态的转换
2 连续时间信号与系统的时域分析
齐次解:由特征方程→求出特征根→写出齐次解形式 注意重根情况处理方法。 特 解:根据微分方程右端函数式形式,设含待定系 数的特解函数式→代入原方程,比较系数 定出特解。
完全解:齐次解和特解相加, 齐次解中的待定系数可通过初始条件求得.
在系统分析中,响应区间定义为激励信号 加 入后系统的状态变化区间。系统响应的求解区间为
a 3 即 b 9 c 9
即 y0 y0 9
2 连续时间信号与系统的时域分析
冲激函数匹配法实现过程中应注意的问题: (1) 对于冲激函数只匹配 及其各阶导数项, 微分方程两端这些函数项都对应相等。 (2) 匹配从方程左端 的最高阶项开始,首 先使方程右端冲激函数最高阶次项得到匹配,在已 匹配好的高阶次冲激函数项系数的条件下,再匹配 低阶项。 (3) 每次匹配方程低阶冲激函数项时,如果方 程左端所有同阶次冲激函数各项系数之和不能和右 端匹配,则由左端 高阶项中补偿。

信号与系统(教案) 第二章

信号与系统(教案) 第二章

二、图解机理
用图形方式理解卷积运算过程,包括以下6个步骤: Step1:换元。画出f1(t)与f2(t)波形,将波形图中的t轴 改换成τ轴,分别得到f1(τ)和f2(τ)。 Step2:翻转。将f2(τ)波形以纵轴为中心轴翻 180°,得 到f2(-τ)波形。 4
信号与系统
2.2
卷积积分
Step3:平移。给定t值,将f2(-τ)波形沿τ轴平移|t|。
卷积积分是一种数学运算,它有许多重要的性质 (或运算规则),灵活地运用它们能简化卷积运算。 下面讨论均设卷积积分是收敛的(或存在的)。
性质1.卷积代数 满足乘法的三律: 1. 交换律: f1(t)* f2(t) =f2(t)* f1(t) 2. 分配律: f1(t)*[ f2(t)+ f3(t)] =f1(t)* f2(t)+ f1(t)* f3(t) 3. 结合律: [f1(t)* f2(t)]* f3(t)] =f1(t)*[ f2(t) * f3(t)]
1.奇异信号
单位冲激信号 (t), 单位阶跃信号 (t).
2.正弦信号
也称为虚指数信号。 f (t ) A cos( t ) A [e j (t ) e j (t ) ] 2
式 中A、和分 别 为 正 弦 信 号 的 振 幅 角 频 率 和 初 相 。 、 f ( t )是 周 期 信 号 , 其 周 期 2 T=
1 0
f 1(t)
2
t
14
信号与系统 例:f1(t), f2(t)如图,求f1(t)* f2(t) 解: f1(t) = 2ε (t) –2ε (t –1) f2(t) = ε (t+1) –ε (t –1)
2.2 卷积积分 2.2 卷积积分

信号与系统-第二章线性时不变系统

信号与系统-第二章线性时不变系统

n
1
k
f1 (k )
f2 (0
k)
3,
k
f1 (k )
f2 (1 k)
3,
n0 n 1
k
f1 (k )
f2(2 k)
1,
0,
n2 n14 3
三. 卷积和的计算:(3)列表法
分析卷积和的过程,可以发现有如下特点:
① x(n与) 的h(所n)有各点都要遍乘一次;
② 在遍乘后,各点相加时,根据 x(k)h(n k), k
x (t) x(t)
20
x(t) x (t)
x(k)
t
0
k (k 1)
引用 (t,) 即:
(t)
1
/ 0
0t otherwise
则有:
(t
)
1 0
0t otherwise
21
第 个k 矩形可表示为: x(k) (t k)
这些矩形叠加起来就成为阶梯形信号 x,(t)
即: x (t) x(k) (t k) k 当 时0 , k d
un 4 ak
an3
1un 4
k 0
a 1
9
例4: x(n) nu(n) 0 1 h(n) u(n)
x(k) ku(k)
1
0
k ...
h(n k) u(n k)
1
k
0
n
y(n) x(n) h(n)
x(k)h(n k) ku(k)u(n k)
k
k
u(n) n k 1 n1 u(n)
例2 :
1 x(t) 0
h( )
2T
0t T otherwise

信号与系统第2章ppt课件

信号与系统第2章ppt课件

(B) u(t)Limetu(t) 0
假设u(t)的傅立叶变换为:
F ()A ()jB ()
e t u (t ) 的傅立叶变换为 :
依据傅立叶变换具有唯一性:
F e()A e()jB e()
F()li m0Fe()
所以
A()li m0Ae()精选pBpt()li m0Be()
第二章 傅立叶变换
F ()A ()jB () A()li m0Ae() B()li m0Be()
,这种频谱搬移技术在通信系统中
得到广泛的应用。调幅,调频都是
在该基础上进行的。
精选ppt
由此可见,将时间信号f(t)乘以Cs(ω0t) 或Sin(ω0t)
,等效于将f(t)的频谱一分
为二,即幅度减小一半,沿
频率轴向左和向右各平移ω0.
第二章 傅立叶变换
例2 求如下矩形调幅信号的频谱函数
f(t) G (t)c o s 0 t
例7 如图a所示系统,已知乘法器的输入为
f (t) sin(2t) s(t)co3st)(
t
系统的频率响应为:
求输出y(t).
精选ppt
第二章 傅立叶变换
f (t) sin(2t) s(t)co3st)(
t
乘法器的输出信号为: x(t)f(t)s(t)
依频域卷积定理可知:X(j)21F(j)*S(j) 这里 f(t)F(j) s(t)S(j)
精选ppt
第二章 傅立叶变换
11周期信号的傅里叶变换
周期信号的频谱------用傅里叶级数表示。 非周期信号的频谱——用傅里叶变换表示。 周期信号的频谱可以用傅里叶变换表示吗? (1)正弦、余弦信号的傅里叶变换 直流信号的博立叶变换为

信号与系统第二章 总结

信号与系统第二章 总结

第二章 总结一﹑LTI 连续系统响应(一)微分方程经典解法=解开方式:全解y (t )=通解)(特解)(t y t y p n + 1﹑通解(齐次解):令右侧为零由特征方程n a +n λ1-n a +1-n λ…+0a a 01=+λ确定通解形式,再由n 个+0初始条件确定系数。

总结:齐次解模式由系统决定,系数由n 个初始条件决定,有时与f (t )有关。

2﹑特解:函数形式与f (t )有关,根据f (t )形式选择特定形式后,代入原微分方程,球的系数。

3﹑全解:) y (t )=)()(t y t y p n + 响应。

)又称强迫响应或受迫(响应;)又称自由响应或固有(t y t y p n (二)初始条件与-00+(1)经典系统的响应应限于到正无穷范围。

+0(2)不能将{)(-n 0y }作为微分方程初始条件。

(3){)(+0y n }由{)(-n 0y }导出,{)(+0y n }又称导出初始条件。

(三)零输入响应与零状态响应y (t )=)()(t y t y zs zi + 定义求解:(1)求解zi y :微分方程→特征方程→特征根→zi y (t )模式→数由{)(-n 0y }确定。

(2))(t y zs 求解:经典法﹑卷积积分法。

二﹑卷积积分卷积积分及其图解计算(1)定义: (2)图解计算:∑=n 1i i i t y a )()(∑=m 1j j j t f b )()(()()()τττd 21⎰∞∞--=t f f t f ττ ),()(.111积分变量改为f t f →)()()()(.22222τττ-−−→−-−−→−→t f f f t f 平移翻转τττd )(.)(.321-⎰∞∞-t f f 乘积的积分:总结:翻卷(翻转+平移)→乘积→积分三﹑卷积的性质:(一)卷积的代数性质:(1) 交换性:(2) 分配性:(3) 结合律: (二)延时特性:卷积的延迟量等于相卷积的两函数卷积之和(三)函数与冲激函数卷积)()()(t f t t f =*δ卷积奇偶性:同偶异奇(四)卷积的导数与积分:1﹑卷积导数:[)()(t f t f 21*]´=)()(t f t f 21*´=)()(,t f t f 21* 推广:)()()()()()(t f t f t f t f n 2n 121-*=* 2、卷积积分)()()()()()(t f dx x f dx x f t f dx x f x f 2t 1t 212t 1*=*=*⎰⎰⎰∞-∞-∞- 若y (t )=)()(t f t f 21*,则)()()()()()(t f t f t y j -i 2j 1i *= (五)相关函数dt t f t f dt t f t )()()(f R 212-112•+=-•=⎰⎰∞∞-∞∞τττ)()( dt t f t f dt t f t )()()(-f R 212-121τττ+•=•=⎰⎰∞∞-∞∞)()( )-(R 2112ττR =)( )()(ττ-R R 1221=自相关函数:若)()()(t f t f t f 21==,则R (τ)称为自相关函数。

信号与系统复习资料 第2章 z变换与离散时间傅里叶变换(DTFT

信号与系统复习资料 第2章  z变换与离散时间傅里叶变换(DTFT

Z变换与DTFT
以下假设
n1<n2
•如果n2 ≤0 ,则收敛域不包括∞点
• 如果n1≥0 ,则收敛域不包括0点
• 如果n1<0<n2,收敛域不包括0 、∞点
1) n2 0( n1 0), 0 z
2) n1 0( n2 0), 0 z
3) n1 0, n2 0, 0 z
Rx
当Rx Rx 时,Roc :
-10-
0
当Rx Rx 时,Roc : Rx z Rx
Z变换与DTFT
例1
[n]1, 0 z
ZT
[n]z
n

n
[0]z 1
0
收敛域应是整个z 的闭平面
-11-
Z变换与DTFT
Z变换与DTFT
第二章 z变换和DTFT
-1-
Z变换与DTFT
本章主要内容:
1. z变换:定义及收敛域,z变换的反变换
z变换的基本性质和定理 2. ZT 与连续信号LT、FT的关系
(信号)
3. 离散时间信号的DTFT(序列的傅立叶变换)
4. z变换与DTFT的关系 5. DTFT的一些性质 6. 周期性序列的DTFT 7. DTFT变换的对称性质
例2:求x(n)=RN(n)的z变换及其收敛域
解:X(z)= x(n ) z = RN (n ) z
n n n
N Z=1处零 z 1 极对消 z N 1 ( z 1)
1 z = z 1 z 1 n 0
N 1 n
n N
q n1 q n2 1 n q 1 q n n1

信号与系统第二章(陈后金)2PPT课件

信号与系统第二章(陈后金)2PPT课件
2 1 0 1 2
x [k]
3
22
1
k
2 1 0 1 2 3
x [ k ] 3 [ k 1 ] [ k ] 2 [ k 1 ] 2 [ k 2 ]
2021/4/8
28
二、基本离散时间序列
5.单位阶跃序列
定义:
u[k] 1
2 1 0 1 2
✓ [k]与u[k]的关系:
[k]u[k]u[k1]
2021/4/8
1 k 0 u[k]0 k 0
k
k
u[k] [n] n 29
二、基本离散时间序列
6.矩形序列
1 0kN1
RN[k]0 otherwise
N 1
R N[k]u[k]u[kN ][km ] m 0 RN[k] 1
k
21 0 1 2
N1
2021/4/8
30
二、基本离散时间序列
7.斜坡序列
即0N = m2p , m = 正整数时,信号是周期信号。
如果0 /2p m/N , N、m是不可约的整数, 则信号的周期为N。
2021/4/8
23
[例]判断下列离散序列是否为周期信号.
1) x1[k] = cos(kp/6)
0 /2p 1/12, 由于1/12是不可约的有理数,
故离散序列的周期N=12。
-1 0 1 2 3
k
➢ 序列的列表表示
表示k=0的位置
x[k]=[0, 2, 0, 1, 3, 1, 0]
2021/4/8
18
二、基本离散时间序列
1.实指数序列
r >1
x[k]Akr, kZ
0< r <1
r <1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f1、f2的因果性对积分限的影响
• 卷积积分中积分限的确定是非常关键的。 • 系统的因果性或激励信号作用时间的局限性,卷积 积分限会有所变化。 •若t<0, f1(t)=0,
3
பைடு நூலகம்f1 t f 2 t f1 f 2 t d
0

•若t<0, f2(t)=0,
f ( t ) k ( t ) f k ( t )
•u(t)的卷积特性
f t ut f t d f d f d
t t t
Signals and Systems, Anhui University
0
t
t
d
t
t
e e d e e
t
t

t

t 0
0
ut
1 e
ut
Signals and Systems, Anhui University
例2 已知e( t ) e

t 2
u(t ) u(t 2),求i(t )的零状态响应。
1
§2.6卷积
•卷积
•利用卷积积分求系统的零状态响应
•卷积图解说明 •卷积积分的几点认识
Signals and Systems, Anhui University
一、卷积积分(Convolution)的定义
积分
2
f (t )


f1 f 2 t d
称为f1(t)与f2(t) 的卷积积分,记为 f (t ) f1 t f 2 t 令系统激励 e(t) = f1(t), 冲激响应h(t) = f2(t), 则
i、 j为整数; 取+,i 阶导; 取-, i 重积分
g ( n m ) (t ) f ( n ) (t ) h( m ) (t ) f ( m ) (t ) h( n ) (t )
微分n次, 积分m次
g(t ) f ( n ) (t ) h( n ) (t )
二、卷积的微分与积分
1.微分性质
f ( t ) h( t )
23
d df 2 (t ) df1 (t ) f1 (t ) f 2 (t ) f1 (t ) f 2 (t ) dt dt dt
证明:
d d f1 (t ) f 2 (t ) dt dt

m=n, 微分次数 =积分次数
对于卷积很方便。 Signals and Systems, Anhui University
三、与(t)、u(t)的卷积
•(t)的卷积特性
25
f t t f t
t t t
推论
f ( t ) ( t t 0 ) f ( t t 0) f ( t t 1) ( t t 2 ) f ( t t 1 t 2 ) f ( t ) ( t ) f ' ( t )
• 卷积结果与交换两函数的次序无关。因为倒置f1() 与倒置f2() 积分面积与t无关。
• 一般选简单函数为移动函数。如矩形脉冲或(t)。
交换律说明: 系统的h(t) 与e(t)互换, 系统的响应不变。
e( t ) h( t ) h(t) e( t ) y( t ) y( t )
Signals and Systems, Anhui University
2.卷积的积分性质
24
f ( ) f ( ) d f (t )
t 1 2 1
t

f 2 ( )d f2 (t )
t

f1 ( )d
推论 设 st f1 t f 2 t 则 s i (t ) f1 j (t ) f 2(i j ) (t ) 微分性质积分性质联合实用
0 t>0

1 e()h(t-) 0 t>0

e()h(t-) 相乘 •两波形重叠部分相乘, e()h(t-)d 积分
r( t )
0
积分区间:(-,t )
Signals and Systems, Anhui University t
[前例]
用图解法确定 卷积的积分限。
8
e t
分配律
f1 (t ) f 2 (t ) f3 (t ) f1 (t ) f 2 (t ) f1 (t ) f3 (t )
h ( t)
h1(t) e(t)*h1(t)
21
e(t)
h2(t)

r (t ) e(t ) h1 (t ) e(t ) h2 (t )
1
e

t 2
u(t ) u(t 2)
t
h t 1 O
e u(t )
t
t
O
2
[解 ]
h(-)
1
e( )

1
t 0, e(t ) h(t ) 0
h(t-)
e( )
0t 2
t
1
2

e (t ) h(t ) e e
0
t

2 t
d 2(e e t )



例1 已知f t , h t ,求g t f t h t 。
f (t )
1 1 1
1
26
h( t )
O 1
f 1 O f(
2
t
O
1
h (t )
t
(t )
g(t ) f ( 1) (t ) h(1) (t )
1 ( 1) t
f1 t f 2 t f1 f 2 t d
t
•若t<0, f1(t)=f2(t)=0,
f1 t f 2 t f1 f 2 t d
t 0
Signals and Systems, Anhui University
[例 ]
[ 解]
电路如右图,用卷积法求i(t). +
4
i(t) u(t) 1H 1
e(t)
列写KVL方程
d i t L Ri t et dt
-
冲激响应
ht e ut
t
t i(t)
i t e t h t u e

t 2
e( ) h(t-)
t 2
2t
Signals and Systems, Anhui University
0
e (t ) h(t ) e e
2

2 t
d 2(e 1)e t
9
From “SignalSignals Processing and Linear Systems” ,thi and Systems, Anhui University
(1) 1
1)
2
t
O g( t )
( )
h ( t ) 1 t 1 t O 1
1 1 2
t 3 2t t3
3
t
0t 1 1 t 2 2t 3

O
1
2
1Systems, Anhui University Signals and
27
df1 ( t ) dt时, 注意 当f1 ( t ) dt
t
f1 (t ) f 2 (t ) f1(t ) f 2( 1) (t )
sgn ( t ) 2
例: sgn t t 用微积分性质
sgn( t )

O
*
( 1) ( t )
19
§2.7 卷积的性质
•代数性质 •微分积分性质 •与冲激函数或阶跃函数的卷积
Signals and Systems, Anhui University
一、卷积代数
•交换律
20
f1 (t ) f 2 (t ) f 2 (t ) f1 (t )
• 通过积分变量置换,交换律很容易得到证明。

rzs (t )

e( )h(t )d e(t ) h(t )
• 卷积是系统分析中的重要方法,通过冲激响应h(t) 建立了响应r(t)与激励e(t)之间的关系。 • 卷积是数学方法,还应用于其他学科 。 Signals and Systems, Anhui University
系统级联,框图表示 e(t) h1(t) e(t)*h1(t) h2(t) e(t) *h1(t) * h2(t) r ( t)
22
r (t ) e(t ) [h1 (t ) h2 (t )]
ht h1 (t ) h2 (t )
• 级联系统的冲激响应等于各子系统冲激响应的卷积。 • 级联系统的响应与各子系统的位置无关。 Signals and Systems, Anhui University
e(t)*h2(t)
e(t ) h1 (t ) h2 (t )
h(t)=h1(t)+h2(t)
结论:子系统并联时,总系统的单位冲激响应等于 各子系统单位冲激响应之和。
Signals and Systems, Anhui University
结合律
f1 (t ) f 2 (t ) f3 (t ) f1 (t ) f 2 (t ) f3 (t )

d sgn(t ) dt
dt sgn(t )
相关文档
最新文档