2013新版北师版数学八年级(上)上第一章勾股定理导学案

合集下载

(北师大)八年级数学上册第一章勾股定理教案

(北师大)八年级数学上册第一章勾股定理教案
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解勾股定理的基本概念。勾股定理是指直角三角形两个直角边的平方和等于斜边的平方。它是解决直角三角形相关问题的重要工具,广泛应用于建筑、工程等领域。
2.案例分析:接下来,我们来看一个具体的案例。通过计算直角三角形的边长,展示勾股定理在实际中的应用,以及它如何帮助我们解决问题。
3.勾股定理在实际问题中的应用:结合实际情境,让学生学会运用勾股定理解决相关问题,如计算直角三角形的斜边长度、判断一个三角形是否为直角三角形等。
4.勾股定理的拓展:介绍勾股定理在其他领域的应用,如勾股定理在建筑、工程等方面的应用,激发学生的兴趣。
5.练习与巩固:设计有针对性的练习题,帮助学生巩固所学知识,提高解决问题的能力。
二、核心素养目标
1.理解与运用:通过勾股定理的学习,使学生掌握直角三角形三边关系,能够运用勾股定理解决实际问题,提高数学运算与解决问题的能力。
2.逻辑推理:培养学生通过观察、猜想、归纳、证明等逻辑推理方法,探索勾股定理的规律,增强逻辑思维和推理能力。
3.数学抽象:让学生从具体的直角三角形中抽象出勾股定理,培养数学抽象素养,提升对数学概念的理解。
4.数学建模:通过勾股定理在实际问题中的应用,培养学生建立数学模型、解决问题的能力,激发数学应用意识。
5.综合素养:鼓励学生主动探索勾股定理的拓展知识,提高学生的自主学习、合作交流等综合素养。
三、教学难点与重点
1.教学重点
(1)勾股定理的概念及其证明:这是本节课的核心内容,要求学生理解并掌握直角三角形三边之间的数量关系,即勾股定理。在教学过程中,应通过生动的实例引导学生发现这一关系,并给出定理的证明。
五、教学反思
在今天的勾股定理教学中,我发现学生们对定理的概念和证明过程表现出很大的兴趣。他们通过具体的实例和实验操作,逐渐理解了直角三角形三边之间的数量关系。然而,我也注意到了一些需要改进的地方。

北师大版初中数学八年级(上)第一章勾股定理1-3勾股定理的应用教学详案

北师大版初中数学八年级(上)第一章勾股定理1-3勾股定理的应用教学详案

第一章勾股定理3 勾股定理的应用教学目标1.利用勾股定理及其逆定理解决简单的实际问题.2.通过观察图形,探索图形间的关系,发展学生的空间观念,在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性.教学重难点重点:构建直角三角形,利用勾股定理及其逆定理解决实际问题.难点:从实际问题中合理抽象出数学模型.教学过程导入新课游乐场有一个圆柱形的大型玩具,如图所示,现要从点A开始环绕圆柱侧面修建梯子,正好到达A点的正上方B点,已知圆柱形玩具的底面周长是12米,高AB为5米,那么梯子的长度是多少米?探究新知一、合作探究【探究1】确定立体物体表面上两点之间的最短距离.【例1】如图,有一个圆柱,它的高等于12 cm,底面圆的周长为18 cm,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,沿圆柱侧面爬行的最短路程是多少?(1)在你自己做的圆柱上,尝试从点A到点B沿圆柱侧面画几条路线,你觉得哪条路线最短?(2)如图,将圆柱侧面剪开展成一个长方形,点A到点B的最短路线是什么?你画对了吗?(3)蚂蚁从点A出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少?∵AB2 = 122+92,∴AB = 15(cm).答:蚂蚁从点A出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是15 cm.变式训练:如图,长方体的底面边长分别为2 cm和4 cm,高为5 cm.如果一根细线从点P开始经过四个侧面绕一圈到达点Q,那么所用细线最短需要_________cm.答案:13【探究2】应用勾股定理解决实际问题【例2】如图是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长.已知滑梯的高度CE = 3 m,CD = 1 m,试求滑道AC的长.【解】设滑道AC的长度为x m,则AB的长度为x m,AE的长度为(x-1)m.在Rt△ACE中,∠AEC = 90°,由勾股定理得AE2+CE2 = AC2,即(x-1)2+32 = x2,解得x = 5.故滑道AC的长度为5 m.变式训练:在一次消防演习中,消防员架起一架25米长的云梯,如图所示那样斜靠在一面墙上,梯子底端离墙7米.(1)这架云梯的顶端距地面有多高?(2)如果消防员接到命令,要把云梯的顶端下降4米(云梯长度不变),那么云梯的底部在水平方向应滑动多少米?解:(1)由题图可以看出云梯、墙、地面可围成一个直角三角形,即云梯为斜边,云梯底部到墙的线段为一条直角边,云梯顶端到地面的线段为另一条直角边.根据题意252-72 = 242,所以云梯顶端距地面有24米.(2)当云梯顶端下降4米后,云梯顶部到地面的距离为20米.因为252-202 = 152,且15-7 = 8(米),所以云梯底部应水平滑动8米.课堂练习1.有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分是0.5米,则问这根铁棒应有多长?2.如图,台阶A处的蚂蚁要爬到B处搬运食物,它爬的最短距离为____.m=0.33m)的正方形.在水池正中央3.有一个水池,水面是一个边长为10尺(1尺=13有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问:这个水池的深度和这根芦苇的长度各是多少?4.如图,台风过后,某小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8 m处,已知旗杆原长16 m,你能求出旗杆在离底部多少米的位置断裂的吗?参考答案1.解:如图,由题意得当铁棒在B处:AC = 1.5米,BC = 2米.∵AB2 = AC2+CB2 = 2.52,∴AB = 2.5米.∵油桶外的部分是0.5米,∴AD = 2.5+0.5 = 3(米).当铁棒垂直进入,得出油桶中的长度1.5米+桶外的0.5米= 2米.答:这根铁棒的长度范围是2米到3米.2.253.解:设水池的深度为x尺,则芦苇的长度为(x+1)尺.根据题意得x²+5² =(x+1)².解得x =12.x+1=12+1=13(尺).答:这个水池的深度和这根芦苇的长度各是12尺和13尺.4.解:设旗杆在离底部x米的位置断裂,由题意得x2+82 = (16-x)2,解得x = 6米.答:旗杆在离底部6米的位置断裂.课堂小结确定立体物体表面上两点之间的最短距离的方法:将其转化为平面上两点间的距离,利用两点之间,线段最短来求解.布置作业习题1.4第1,2,3,4题板书设计3 勾股定理的应用1.确定立体物体表面上两点之间的最短距离例1 如图,有一个圆柱,它的高等于12 cm,底面圆的周长为18 cm,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,沿圆柱侧面爬行的最短路程是多少?2.应用勾股定理解决实际问题例2 如图是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长.已知滑梯的高度CE = 3 m,CD = 1 m,试求滑道AC的长.。

北师大版-数学-八年级上册-《勾股定理》教学分析与建议

北师大版-数学-八年级上册-《勾股定理》教学分析与建议

北师大版八年级数学(上)第一章勾股定理教学分析与建议一、主要内容勾股定理在数学的发展历史上起过重要的作用,在现实世界中也有着广泛的应用。

它的发现、证明和应用都蕴涵着丰富的数学的、文化的内涵。

它是几何学中的重要的定理之一。

教材为学生设计了自主探索勾股定理内容以及验证它的素材和空间,教学中要使学生经历观察、归纳、猜想和验证的数学发现过程教材的设计过程中,希望学生能够利用方格纸探索勾股定理内容,并且能利用拼图验证勾股定理,再次就是通过测量获得勾股定理的逆定理教材提供了较为丰富的历史的或现实的例子,以展示勾股定理及其逆定理的应用,体现其文化价值。

当然限于学生的已有知识,问题解决中所涉及的数据均为完全平方数,本章更多的关注学生对勾股定理及其逆定理的理解和应用,不追求复杂计算。

二、评价建议1,关注对探索勾股定理等活动的评价。

一方面要关注学生是否积极参与,是否能与同伴进行有效合作交流;另一方面也要关注学生在活动中能否进行积极的思考,能否探索出解决问题的方法,是否能够进行积极的思考,在活动中学生所表现出的归纳,概括能力,学生是否能够有条理地表达活动过程和所获得的结论等。

2,关注考查对勾股定理及其逆定理的理解和应用。

注意评价时,不应以复杂运算为主,我们应更另关注学生对有关结论的正确使用。

三、教学目标l.经历探索勾股定理及一个三角形是直角三角形的条件的过程,发展合情推理能力,体会数形结合的思想;2.掌握勾股定理,了解利用拼图验证勾股定理的方法,并能运用勾股定理解决一些实际问题;3.掌握判断一个三角形是直角三角形的条件,并能运用它解决一些实际问题;4.通过实例了解勾股定理的历史和应用,体会勾股定理的文化价值。

四、教材特点勾股定理是反映自然界基本规律的一条重要结论,它有着悠久的历史,在数学发展中起过重要的作用,在现实世界中也有着广泛的应用。

勾股定理的发现、验证和应用蕴涵着丰富的文化价值。

勾股定理从边的角度进一步刻画了直角三角形的特征,通过对勾股定理的学习,学生将在原有的基础上对直角三角形有进一步的认识和理解。

八年级数学上册第一章勾股定理导学案新北师大版

八年级数学上册第一章勾股定理导学案新北师大版

八年级数学上册第一章勾股定理导学案(2013新北师大版)第一章勾股定理导学案第1课时探索勾股定理(1)编写人:时间:8月30日姓名:学习目标:1、经历探索勾股定理的过程,发展学生的合情推理意识,体会数形结合的思想。

2 、会初步利用勾股定理解决实际问题。

学习过程:一、课前预习:1、三角形按角的大小可分为:、、。

2、三角形的三边关系:三角形的任意两边之和;任意两边之差。

3、直角三角形的两个锐角;4、在RtΔABC中,两条直角边长分别为a、b,则这个直角三角形的面积可以表示为:。

二、自主学习:探索直角三角形三边的特殊关系:(1)画一直角三角形,使其两边满足下面的条件,测量第三边的长度,完成下表;直角三角形1直角边a直角边b斜边c三边关系满足关系直角三角形2直角边a直角边b斜边c三边关系满足关系(2)猜想:直角三角形的三边满足什么关系?(3)任画一直角三角形,量出三边长度,看得到的数据是否符合你的猜想。

猜想:三、合作探究::如果下图中小方格的边长是1,观察图形,完成下表,并与同学交流:你是怎样得到的?图形A的面积B的面积C的面积A、B、C面积的关系图1-1图1-2图1-3图1-4思考:每个图中正方形的面积与三角形的边长有何关系?归纳得出勾股定理。

勾股定理:直角三角形等于;几何语言表述:如图1.1-1,在RtΔABC中, C=90°,则:;若BC=a,AC=b,AB=c,则上面的定理可以表示为:。

四、课堂练习:1、求下图中字母所代表的正方形的面积2、求出下列各图中x的值。

如图所示,强大的台风使得一根旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处。

旗杆折断之前有多高?五、当堂检测:1.在△ABC中,∠C=90°,(1)若BC=5,AC=12,则AB= ;(2)若BC=3,AB=5,则AC= ;(3)若BC∶AC=3∶4,AB=10,则BC= ,A(4) 若AB=8.5,AC=7.5,则BC= 。

北师大版八年级数学上册第一章《勾股定理》(大单元教学设计)

北师大版八年级数学上册第一章《勾股定理》(大单元教学设计)
3.针对不同学生的学习程度,设计分层练习题,使学生在课后能够有针对性地巩固所学知识。
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,梳理勾股定理及其逆定理的知识体系。
2.学生分享自己在学习勾股定理过程中的收获和感悟,提高学生的归纳总结能力。
3.教师强调勾股定理在实际生活中的应用价值,激发学生学习数学的兴趣。
6.课堂小结,巩固提高
通过对本节课所学知识的回顾和总结,帮助学生梳理知识体系,巩固重点,突破难点。
7.作业布置,分层设计
根据学生的学习程度,分层布置作业,使学生在课后能够有针对性地巩固所学知识。
8.教学评价,多元反馈
采用课堂提问、作业批改、小组评价等多种方式,全面了解学生的学习情况,给予及时、有效的反馈,促进学生全面发展。
注意事项:
1.请同学们认真完成作业,保持字迹工整,便于教师批改和反馈。
2.遇到问题时,可先与同学讨论,如仍有疑问,可向教师请教。
3.作业完成后,及时检查,确保解答过程正确,避免因粗心大意而出现错误。
4.家长在辅导孩子完成作业时,注意引导孩子独立思考,切勿直接给出答案。
3.小组合作,共同探讨勾股定理在几何图形证明中的应用。选取一个或多个几何图形,运用勾股定理进行证明,并将证明过程和结果整理成文档,以便在课堂上分享。
4.完成课后拓展题(见附件),挑战更高难度的勾股定理相关问题。此部分作业旨在提高学生的逻辑思维能力和创新意识。
5.家长参与作业:请同学们向家长介绍勾股定理及其在实际生活中的应用,并邀请家长参与一起解决一道勾股定理相关问题,增进家校互动,提高学生学习兴趣。
9.教学反思,持续改进
教师在教学过程中,要关注学生的学习反馈,及时进行教学反思,调整教学方法,提高教学效果。

2024-2025学年北师版初中数学八年级(上)教案第一章勾股定理1.1探索勾股定理(第2课时)

2024-2025学年北师版初中数学八年级(上)教案第一章勾股定理1.1探索勾股定理(第2课时)

第一章勾股定理1探索勾股定理第2课时勾股定理的证明及应用教学目标教学反思1.经历运用拼图的方法说明勾股定理是正确的过程,在教学活动中发展学生的探究意识和合作交流的习惯.2.通过对勾股定理的探索,在探索实践中理解并掌握勾股定理并且会运用勾股定理.教学重难点重点:会验证勾股定理,并能应用勾股定理解决一些实际问题.难点:经历勾股定理的验证过程,体会数形结合的思想和从特殊到一般的思想.教学过程导入新课教师提出问题:1.勾股定理的内容是什么?(指名学生回答)2.上节课我们仅仅是通过测量和数格子,对具体的直角三角形进行探索发现了勾股定理,对一般的直角三角形勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?教师:事实上,现在已经有数百种勾股定理的验证方法,这节课我们就来验证一下勾股定理.设计意图:回顾上节课探索过程,强调仍需对一般的直角三角形进行验证,培养学生严谨的科学态度,介绍世界上一些验证方法,激发学生的学习兴趣.探究新知一、预习新知让学生自主预习课本第5页.提出问题:如下图,分别以直角三角形的三条边为边向外作正方形,你能利用这幅图说明勾股定理的正确性吗?验证,并让学生发表自己的见解,再小组讨论勾股定理是否正确.设计意图:通过让学生自己动手作图、验证不仅能锻炼学生的动手能力,还能加深对勾股定理的理解.二、合作探究验证勾股定理为了计算上图中大正方形的面积,小明对这个大正方形进行了适当割补后得到了下面两个图.问题1:你可以利用两种方法来表示图1中的大正方形的面积吗? 学生先独立思考,再小组交流得到答案(a +b )2和2ab +c 2. 问题2:你可以得到怎样的等式?从而能得到什么? 学生:(a +b )2 = 2ab +c 2,化简后得到a 2+b 2 = c 2. 从而利用图1验证了勾股定理,此方法称为毕达哥拉斯法.教师:我们利用拼图的方法,将形的问题与数的问题结合起来,利用整式运算的有关知识,从理论上验证了勾股定理,你还能利用图2验证勾股定理吗?问题3:图2中小正方形的边长是多少?问题4:你可以利用两种方法来表示图2中的大正方形的面积吗? 问题5:你可以得到怎样的等式?从而能得到什么? 提出几个问题让学生根据问题独立探究,再小组交流,最后请一位同学上台讲解利用图2验证勾股定理.图2中小正方形边长是b -a ,(b -a)2和c 2-2ab 都可以表示图2中小正方形的面积,根据同一图形面积相等得到(b -a)2= c 2-2ab ,化简后得到a 2+b 2 = c 2.从而利用图2也验证了勾股定理,图2我们又称为赵爽弦图. 设计意图:教师层层设问引导学生来完成勾股定理的验证,通过两个图形让学生体会数形结合的思想并体会成功的快乐,学生先拼图从形上感知,再利用面积验证,比较容易掌握本节课的重点内容.前面已经讨论了直角三角形的三边长满足的关系,那么锐角三角形和钝角三角形是否也满足这一关系呢?观察下图,利用数格子的方法判断图中三角形的三边长是否满足a 2+b 2 2如果一个三角形不是直角三角形,那么它的三边长a ,b ,c 不满足a 2+b 2 = c 2,通过这个结论,学生将对直角三角形的三边关系有进一步认识.巩固练习证明:∵ S 梯形ABCD = S △ABE +S △BCE +S △EDA ,教学反思又∵ S 梯形ABCD =12(a +b )2,S △BCE = S △EDA = 12ab ,S △ABE = 12c 2,∴ 12(a +b )2 = 2×12ab +12c 2,∴ a 2+b 2= c 2,即勾股定理得证. 典型例题 【例1】作8个全等的直角三角形,设它们的两条直角边长分别为a ,b ,斜边长为c ,再作三个边长分别为a ,b ,c 的正方形,将它们如下图所示拼成两个正方形.222.a +b ,因此它们的面积相等.我们再用不同的方法来表示这两个正方形的面积,即可证明勾股定理.【证明】由图易知,这两个正方形的边长都是a +b , ∴ 它们的面积相等.左边大正方形面积可表示为a 2+b 2+12ab ×4, 右边大正方形面积可表示为c 2+12ab ×4. ∵ a 2+b 2+12ab ×4 = c 2+12ab ×4,∴ a 2+b 2 = c 2.【总结】根据拼图,通过对拼接图形的面积的不同表示方法,建立相等关系,从而验证勾股定理.典型例题【例2】如图是某沿江地区交通平面图,为了加快经济发展,该地区拟修建一条连接M ,O ,Q 三城市的沿江高速公路,已知沿江高速公路的建设成本为5 000万元/km ,该沿江高速公路的造价预计是多少?【问题探索】总造价计算公式是解决此题目的关键,总造价 = 每千米造价×千米数.【解】在Rt △OMN 中,根据勾股定理得 MN 2+ON 2 = OM 2, ∴ 302+402 = OM 2, ∴ OM = 50 km. 同理O Q = 130 km ,∴ 造价为(50+130)×5 000 = 900 000(万元). 答:造价预计是900 000万元. 【总结】解答本题的关键是先利用勾股定理求出高速公路的长度,再求总造价.教学反思课堂练习1.若等腰三角形的腰长为13 cm,底边长为10 cm,则它的面积为()A.30 cm2B.130 cm2C.120 cm2D.60 cm22.放学以后,小丽和小红从学校出发,分别沿东南方向和西南方向回家.若小丽和小红行走的速度都是40 m/min,小丽走了15 min回到家,小红走了20 min回到家,则小丽家和小红家间的距离为()A.600 m B.800 mC.1 000 m D.不确定3.直角三角形两直角边长分别为8 cm,15cm,则斜边上的高为______.4.某农舍的大门是一个木制的矩形栅栏,它的高为2 m,宽为1.5 m,现在需要在相对的顶点间用一块木板加固,则这块木板的长为______.5.如图,高速公路的同侧有A,B两个村庄,它们到高速公路所在直线MN的距离分别为AA1 = 2 km,BB1 = 4 km,A1B1 = 8 km.现要在高速公路上A1,B1之间设一个出口P,使A,B两个村庄到P的距离之和最短,求这个最短距离之和.参考答案1.D2.C3.12017cm 4.2.5 m5.解:如图作点B关于MN的对称点B′,连接AB′交A1B1于点P,连接BP.则AP+BP = AP+PB′ = AB′,易知点P即为到点A,B距离之和最短的点.过点A作AE⊥BB′于点E,则AE = A1B1 = 8 km,B′E = AA1+BB1 = 2+4 = 6( km).由勾股定理,得B′A2 = AE 2+B′E 2 = 82+62,∴AB′ = 10 km,即AP+BP = AB′ = 10 km.故出口P到A,B两村庄的最短距离之和是10 km.课堂小结(学生总结,老师点评)勾股定理的内容:直角三角形两直角边的平方和等于斜边的平方.验证方法:两种证法.布置作业1.(必做题)习题1.2第1,3题2.(选做题)第4题板书设计1 探索勾股定理教学反思第2课时勾股定理的证明及应用1.勾股定理:直角三角形两直角边的平方和等于斜边的平方.2.两种证明方法.。

北师大八年级数学上册导学案(全套)

北师大八年级数学上册导学案(全套)

弦股勾1.1 探索勾股定理(1) 导学案【学习目标】在方格纸上计算面积的方法探索勾股定理,掌握勾股定理,并能运用勾股定理解决一些实际问题。

【重点】掌握勾股定理,并能运用勾股定理解决一些实际问题。

【难点】探索勾股定理。

【新课学习和探究】1、导入新课:P 22、探索发现图1图2观察图形完成下列问题: 如果正方形 A 边长为,则其面积为______;正方形 B 边长为b , 则其面积为________;正方形 C 边长为c ,则其面积为_______;你能发现正方形A 、B 、C 围住的直角三角形的两直角边长a 、b ,斜边c 之间有怎样的关系。

(小组讨论) 结论:_____________________ 3、画一画:在草稿纸上,以cm 3、cm 4为直角边画一个直角三角形,并测量斜边的长度,前面的结论对这个三角形还成立吗?4、归纳:勾股定理:直角三角形两直角边的平方和等于斜边的平方。

222ab c 或 222AC BC AB注:① 作用:知道直角三角形的任意两边可以求出第三边。

②我国古代把直角三角形中较短的直角边称为勾., 较长的直角边称为股.,斜边称为弦.. A 的面积(单位面积) B 的面积(单位面积) C 的面积(单位面积) A 、B 、C 面积关系式图1图2图3图4【巩固练习】1、【新课学习和探究】中“导入新课”中的答案为_______米。

2、正方形A的面积为______,正方形B的面积为______。

【例题精讲】如图,强台风使得一根旗杆在离地面9m处折断倒下,旗杆顶部落在离旗杆底部12m处.旗杆折断之前有多高?【巩固练习】求出下列直角三角形中未知边的长度。

(要求写出简单过程)(1)(2)【课堂小结】本节课有哪些收获?【课后作业】1、在△ABC中,∠C=90°,(l)若 a=5,b=12,则 c=;(2)若c=15,a=9,则b= .2、直角三角形的斜边长为17cm,一条直角边长为15cm,则直角三角形的面积为_________cm23、如图,求等腰△ABC的面积。

八年级数学上册1_1探索勾股定理导学案2无答案新版北师大版

八年级数学上册1_1探索勾股定理导学案2无答案新版北师大版

第1节探索勾股定理【学习目标】1、会用勾股定理进行简单的计算。

2、树立数形结合的思想、分类讨论思想。

3、培养思维意识,发展数学理念,理会勾股定理的应用价值。

【学习方法】引导——探究——应用.【学习重难点】重点:勾股定理的简单计算。

难点:勾股定理的灵活运用。

【学习过程】模块一预习反馈一、知识回顾1、勾股定理:直角三角形两直角边的等于斜边的.即:2、勾股定理有以下应用:(1)已知直角三角形的两边,求;(2)已知直角三角形的一边,求另两边的。

3、应用勾股定理时该注意些什么? 。

二、自主学习1、观察下面图形:(1)如图1你能表示大正方形的面积吗?能用两种方法吗?S解:正方形的面积的第一种表示方法:=1S正方形的面积的第二种表示方法:=2(2)你能由此得到勾股定理吗?为什么?解:(3)你还能利用图2验证勾股定理吗?解:正方形的面积的第一种表示方法:=1S正方形的面积的第二种表示方法:=2S实践练习:利用右图验证勾股定理:解:正方形的面积的第一种表示方法:=1S正方形的面积的第二种表示方法:=2S 因为:1S 2S2、 一个25m 长的梯子AB ,斜靠在一竖直的墙AO 上,这时的AO 距离为24m ,如果梯子的顶端A 沿墙下滑4m ,那么梯子底端B 也外移4m 吗?解:模块二 合作探究1、如图,在海上观察所A,我边防海警发现正北6km 的B 处有一可疑船只正在向东方向8km 的C 处行驶.我边防海警即刻派船前往C 处拦截.若可疑船只的行驶速度为40km/h ,则我边防海警船的速度为多少时,才能恰好在C 处将可疑船只截住?模块三小结评价一、本课知识:1、勾股定理的验证方法:利用图形面积相等(用不同方法表示同一图形面积)。

2、将实际问题转化为直角三角形问题,利用勾股定理解决.模块四形成提升1、锐角△ABC中,A B=15,AC=13,高AD=12,则△ABC的周长为。

2、如图,一棵大树在离地面9米处断裂,树顶部落在离树底12米处,则树断裂之前的高度为( )A.9米B.15米C.24米D.无法确定3、小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度.【拓展延伸】一轮船在大海中航行,它先向正北方向航行8千米,接着它又掉头向正东方向航行15千米.(1)此时轮船离出点多少千米?(2)若轮船每航行1千米需耗油0.4升,那么在此过程中轮船共耗油多少升?组长评价:你认为该成员这一节课的表现:(A)很棒 ( B)一般 (C) 没发挥出来 (D)还需努力.家长签名:。

八年级数学上册第一章勾股定理导学案(2013新北师大版)

八年级数学上册第一章勾股定理导学案(2013新北师大版)

八年级数学上册第一章勾股定理导学案(2013新北师大版)第一章勾股定理导学案第1课时探索勾股定理(1)编写人:时间:8月30日姓名:学习目标:1、经历探索勾股定理的过程,发展学生的合情推理意识,体会数形结合的思想。

2 、会初步利用勾股定理解决实际问题。

学习过程:一、课前预习:1、三角形按角的大小可分为:、、。

2、三角形的三边关系:三角形的任意两边之和;任意两边之差。

3、直角三角形的两个锐角;4、在RtΔABC中,两条直角边长分别为a、b,则这个直角三角形的面积可以表示为:。

二、自主学习:探索直角三角形三边的特殊关系:(1)画一直角三角形,使其两边满足下面的条件,测量第三边的长度,完成下表;直角三角形1直角边a直角边b斜边c三边关系满足关系34直角三角形2直角边a直角边b斜边c三边关系满足关系513(2)猜想:直角三角形的三边满足什么关系?(3)任画一直角三角形,量出三边长度,看得到的数据是否符合你的猜想。

猜想:三、合作探究::如果下图中小方格的边长是1,观察图形,完成下表,并与同学交流:你是怎样得到的?图形A的面积B的面积C的面积A、B、C面积的关系图1-1图1-2图1-3图1-4思考:每个图中正方形的面积与三角形的边长有何关系?归纳得出勾股定理。

勾股定理:直角三角形等于;几何语言表述:如图1.1-1,在RtΔA BC中,C=90°,则:;若BC=a,AC=b,AB=c,则上面的定理可以表示为:。

四、课堂练习:1、求下图中字母所代表的正方形的面积2、求出下列各图中x的值。

3.如图所示,强大的台风使得一根旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处。

旗杆折断之前有多高?五、当堂检测:1.在△ABC中,∠C=90°,(1)若BC=5,AC=12,则AB=;(2)若BC=3,AB=5,则AC=;(3)若BC∶AC=3∶4,AB=10,则BC=,AC=.(4) 若AB=8.5,AC=7.5,则BC=。

北师大版-数学-八年级上册-第一章第1节探索勾股定理(1) 教案

北师大版-数学-八年级上册-第一章第1节探索勾股定理(1) 教案

北师大版八年级上第一章第1节探索勾股定理(1)教案教学目标:(一)教学知识点1. 经历用计算和数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

.2.掌握勾股定理的内容,能应用勾股定理解决简单的实际问题.(二)能力训练要求通过探索直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

(三)情感与价值观通过自主学习的发展体验获取数学知识的感受;了解勾股勾股定理的历史,体会它的重大意义和文化价值教学重点:了解勾股定理的由来并能用它解决一些简单问题。

教学难点:勾股定理中数量关系的发现的发现课堂导入:我们生活的这个世界,蕴涵着无穷的秘密,人们不断去发现它,探索它,促使人类社会不断发展进步,可以说,人类不断发展的历史就是我们不断认识自然、发现自然规律的过程,其中有一些重要的发现对人类的历史进程产生了重大的影响。

我们今天所要研究的就是这样一个伟大的发现,无论是我国古代科技所代表的东方文明还是毕达哥拉斯学派所代表的西方文明,先后都发现了这个规律,有的科学家建议把这个规律作为地球人和外星文明交流的工具。

教学过程:1、知识准备谁能有办法得到下面几个格点图形的面积在网格图形中,简单的图形可以通过数格子的方法得到面积,复杂的图形总可以利用长方形和直角三角形的和或差得到面积。

1观察图1,正方形A中有_______个小方格,即A的面积为______个单位。

正方形B中有_______个小方格,即A的面积为______个单位。

正方形C 中有_______个小方格,即A 的面积为______个单位。

1、 你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:2、 图2中,A,B,C 之间的面积之间有什么关系?学生交流后形成共识,教师板书,A+B=C 。

2、做一做出示投影提问:1、图3中,A,B,C 之间有什么关系?2、图4中,A,B,C 之间有什么关系?1、 从图1, 2, 3, 4中你发现什么?学生讨论、交流形成共识后,教师总结:以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

北师版八年级上册数学第一章导学案

北师版八年级上册数学第一章导学案

第一章勾股定理第一课时探索勾股定理(1)【学习目标】1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

3、【学习重点】了结勾股定理的由来,并能用它来解决一些简单的问题。

【学前准备】1、画一个直角三角形并测量三边的长。

2、准备一张坐标纸【自学探究】阅读课本2-5页回答下列问题1、直角三角形的两条直角边的长度分别为a=3㎝,b=4㎝和a=6㎝,b=8㎝①请你量出斜边c的长度。

(1)(2)②、进行有关的计算。

(1)a2+b2= c2=(2) a2+b2= c2=③、得出结论:23cm6cm8cm(图中每个小方格代表一个单位面积)(2)你能发现图1-1中三个正方形A,B,C的面积之间有什么关系吗?图1-2中的呢?(3)你能发现图1-1中三个正方形A,B,C围成的直角三角形三边的关系吗?(4)你能发现课本图1-3中三个正方形A,B,C围成的直角三角形三边的关系吗?(5)如果直角三角形的两直角边分别为1.6个单位长度和2.4个长度单位,上面所猜想的数量关系还成立吗?说明你的理由。

预习后你还有什么问题?最想和大家讨论交流的问题是什么?【合作交流】勾股定理例题:P2引例【随堂练习】1、P3随堂练习1、2【小结】你学到了什么:知识方面方法你还有什么问题:【今日作业】1. 求出下列直角三角形中未知边的长度。

2、求斜边长17厘米、一条直角边长15厘米的直角三角形的面积【巩固练习】1.在△ABC中,∠C=90°,(l)若 a=5,b=12,则 c=(2)若c=41,a=9,则b=2.等腰△ABC的腰长AB=10cm,底BC为16cm,则底边上的高为,面积为。

3.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42 B.32 C.42 & 32 D.37 & 334.一个抽斗的长为24cm,宽为7cm,在抽斗里放铁条,铁条最长能是多少?【延伸拓展】1.若正方形的面积为2cm2,则它的对角线长为2cm()2.已知四边形 ABCD中,AD∥BC,∠A=90°,AB=8,AD=4,BC=6,则以DC为边的正方形面积为3.在△ABC中,∠ACB=90°,AC=12,CB=5,M、N在AB上且AM=AC,BN =BC则MN的长为()A.2 B.26 C.3 D.42、P4数学理解3【课后记】第二课时探索勾股定理(2)【学习目标】利用拼图及列式变形等方法验证勾股定理。

北师大版-数学-八年级上册-第一章第一节勾股定理 第一课时教案--

北师大版-数学-八年级上册-第一章第一节勾股定理 第一课时教案--

《八年级上第一章第一节勾股定理》教案第1课时 1.1勾股定理(1)【教学课型】:新课◆课程目标导航:【教学目标】:1. 经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2. 探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单推理的意识及能力。

【教学重点】:了解勾股定理的由来并能用它解决一些简单问题。

【教学难点】:勾股定理的发现【教学工具】:1.学生准备方格纸.2.多媒体课件,易折的小木棍◆教学情景导入王大妈家的天线杆在一次大风中被刮成了两节,成了如图所示的样子,(出示动画课件)rew天线杆高24米,在离地面9米处断裂,杆顶落地点离线杆底的距离在什么范围内?生:这是已知三角形的两边,求第三边范围,利用三角形三边关系可求出杆顶落地点离线杆底的距离在大于7米且小于24米之间。

师:好!如果线杆底部仍和地面垂直,顶部到底部的距离唯一吗?如何解决?(用小木棍演示三角形三边的变化过程。

)将这个图形抽象成数学图形,这是已知直角三角形两边求第三边的问题,这节课我们就来探索直角三角形三边有什么关系。

(板书课题)◆教学过程设计1.活动与探究[师](出示课件)观察右图,并回答问题:图中的三个正方形和直角三角形之间有什么关系?正方形的边长恰好是直角三角形的三边长。

[师]好!那这三个正方形的面积有无联系呢?我们先来看看方个格中的图形:bca(1)观察方格中的图1.正方形A 中含有_________个小方格,即A 的面积是_________; 正方形B 中含有_________个小方格,即B 的面积是_________ 正方形C 中含有_________个小方格,即C 的面积是_________.(2)在图2、图3中,正方形A 、B 、C 中各含有多少个小方格?它们的面积各是多少?你是如何得到上述结果的?(与同伴交流.)A 的面积(单位面积)B 的面积(单位面积) C 的面积(单位面积) 图1 图2 图3([生1]在图1中,正方形A 含1个小方格,所以它的面积是1个单位面积;正方形B 含1个小方格,所以B 的面积也是1个单位面积;正方形C 含2个小方格,所以C 的面积是2个单位面积.[师]如何求得正方形C 的面积呢?[生2]正方形C 可划分为四个直角边长都为1个单位的四个全等的等腰直角三角形,所以C 的面积为4×(21×1×1)=2个单位面积. [生3]我们观察可发现,这四个等腰直角三角形重新拼摆,刚好可拼摆成2个小方格,所以C 的面积为2个单位面积.[生4]正方形C 还可以看成边长为2个单位的正方形面积的一半,即C 的面积为21×22=2个单位面积.)[师]同学们能够不拘一格地积极思考问题,用多种方法去求得图1中C 的面积,图2,图3中的A ,B ,C 的面积是否可借鉴图1中的A ,B ,C 的求法获得呢?请小组讨论、交流。

北师大版八年级数学上册《勾股定理的应用》示范课教学设计

北师大版八年级数学上册《勾股定理的应用》示范课教学设计

第一章勾股定理3 勾股定理的应用一、教学目标1.会灵活运用勾股定理求解立体图形上两点之间路线最短的问题.体会勾股定理在代数问题和几何问题中的应用.2.能正确运用勾股定理及直角三角形的判别方法解决简单的实际问题.3.能够运用勾股定理解决实际生活中的问题,熟练运用勾股定理进行计算,增强数学知识的应用意识.4.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.二、教学重难点重点:会用勾股定理求解立体图形上两点之间路线最短的问题.难点:能正确运用勾股定理及直角三角形的判别方法解决简单的实际问题.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【复习回顾】教师活动:教师引导学生回顾勾股定理,并通过简单的提问,回顾勾股定理逆定理以及勾股数的内容,接着通过小情境引入本节课要讲解的内容.勾股定理:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a²+b²=c².如果三角形的三边长a、b、c满足a²+b²=c²,那么这个三角形是.预设答案:直角三角形.满足a²+b²=c²的三个正整数,称为.预设答案:勾股数.观察思考:小明要去野外郊游,走哪条路最近呢?为什么呢?教师活动:教师提出问题,观察学生如何思考,再让学生说明理由.关注学生能否都认真看题积极思考,能否立刻利用两点之间线段最短确定最短路径.答案:线路③.【问题探究】有一个圆柱,它的高等于12cm,底面上圆的周长等于18cm.在圆柱下底面的点A有一只蚂蚁,它想吃到上底面上与点A相对的点B处的食物,沿圆柱侧面蚂蚁怎么爬行的路程最短呢?做一做自己做一个圆柱,尝试从A点到B点沿圆柱侧面画出几条路线,你觉得哪条路线最短呢?教师活动:让学生说出自己规划的蚂蚁的路线,然后用课件展示.③A→B的路线长为:AA′+A′B ;③A→B的路线长为:AA′+曲线A′B;③A→B的路线长为:曲线AP +曲线PB;③A→B的路线长:曲线AB.将圆柱侧面剪开展成一个长方形,从点A到点B的最短路线是什么?你画对了吗?教师活动:对照圆柱上的线路,用课件展示侧面剪开图,让学生观察并说出哪条线路最近.教师活动:将圆柱的侧面展开,把曲线分别转化为对应线段,然后结合两点之间线段最短,得出结论:第(4)种方案路程最短.追问:蚂蚁从点A出发,想吃到点B上的食物,它沿圆柱侧面爬行的最短路程是多少?该如何计算呢?答案:在Rt③A′AB中,利用勾股定理,得AB²=AA′²+A′B².其中AA′是圆柱体的高,A′B是底面圆周长的一半(πr) .已知圆柱体高为12 cm,底面周长为18 cm,则AB=15cm.做一做如图,在棱长为10 cm的正方体的一个顶点A处有一只蚂蚁,现要向顶点B处爬行,已知蚂蚁爬行的速度是1 cm/s,且速度保持不变,问蚂蚁能否在20 s内从A爬到B?教师活动:先由学生独立完成,教师及时给予指导,在此活动中,教师应重点关注学生能否进一步理解蚂蚁最近线路该如何走.多媒体展示答题过程解:将正方体展开得到如下图形,由勾股定理得,22AB2.=10+20=50020×1=20(cm).③202<500.③蚂蚁不能在20 s内从A爬到B.【思考探究】教师活动:多媒体演示课件,引导学生观察并思考:李叔叔想要检测雕塑底座正面的边AD和边BC是否分别垂于底边AB,但他随身只带了卷尺.你能替他想办法完成任务吗?提示:连接BD,如果能算出AD2+AB2=BD2 ,就可以说明边AD和边BC分别垂于底边AB.提示:连接AC,如果能算出AB2+BC2=AC2 ,就可以说明边BC垂于底边AB.问题:李叔叔想要检测雕塑底座正面的边AD 和边BC是否分别垂直于底边AB,但他随身只带了卷尺.李叔叔量得边AD长是30 cm,边AB长是40 cm,边BD长是50 cm.边AD垂直于边AB 吗?教师活动:引导学生通过勾股定理证得BC垂直于AB得出结论.巡视同学做题过程,对于有困难的学生给予指导,然后用多媒体展示答题过程.解:连接BD③AD=30,AB=40,BD=50又③AD2+AB2=302+402=502=BD2③ΔABD为直角三角形,③A=90°③AD⊥AB同理可证得:BC⊥AB.问题:小明随身只有一个长度为20cm的刻度尺,他能有办法检验边AD是否垂直于边AB吗?解:在AD上取点M,使AM=9,在AB上取点N,使AN=12,92+122=152【典型例题】教师提出问题,学生先独立思考,解答.然后再在小组内交流探讨,教师巡视,如遇到有困难的学生适当点拨,最终教师展示答题过程.典型例题【例1】如图是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长.已知滑梯的高度CE=3 m,CD=1 m,试求滑道AC的长.分析:根据题意可的AC=AB,可设AC为x m,从而AE是(x-1)m,而③AEC是直角三角形,由勾股定理可得AC的值.解:设滑道AC的长度为x m,则AB的长度为x m,AE的长度为(x-1)m.在Rt③AEC中,③AEC=90°,由勾股定理得AE2+CE2=AC2,即(x-1)2+32= x 2,解得x =5.故滑道AC的长度为5 m.【例2】在一次台风的袭击中,小明家房前的一棵大树在离地面6米处断裂,树的顶部落在离树根底部8米处.你能告诉小明这棵树折断之前有多高吗?教师根据题干分析题中提供的已知条件,并画出图形.解:根据题意可以构建一直角三角形模型,如图.在Rt③ABC中,AC=6米,BC=8米,由勾股定理得AB=10米.③这棵树在折断之前的高度是10+6=16(米).教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.小华和小刚兄弟两个同时从家去同一所学校上学,速度都是每分钟走50米.小华从家到学校走直线用了10分钟,而小刚从家出发先去找小明再到学校(均走直线),小刚到小明家用了6分钟,小明家到学校用了8分钟,小刚上学走了个()A.锐角弯B.钝角弯C.直角弯D.不能确定教师画示意图:222⨯+⨯=⨯(650)(850)(1050)∴所以小刚上学走了个直角弯.答案:C2.如图是一张直角三角形的纸片,两直角边AC=6 cm,BC=8 cm,将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长是.教师提示:因为DE是折痕,所以E为AB的中点,AE=BE=12AB,只要根据勾股定理求出Rt△ABC斜边AB的长,就可求出BE的长.答案:5 cm.3.如图,某探险队的A组由驻地O点出发,以12km/h的速度前进,同时,B组也由驻地O出发,以9km/h的速度向另一个方向前进,2h后同时停下来,这时A、B两组相距30km.此时,A,B两组行进的方向成直角吗?请说明理由.解:2小时后,A组行驶的路程为:12×2=24(km);B组行驶的路程为:9×2=18(km);又因为A,B两组相距30 km,且有242+182=302所以A,B两组行进的方向成直角.。

北师大版八年级上第一章勾股定理(附习题和答案)

北师大版八年级上第一章勾股定理(附习题和答案)

第一章 勾股定理1、勾股定理(性质定理)直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2、勾股定理的逆定理(判定定理)如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

要点诠释:用勾股定理的逆定理判定一个三角形是否是直角三角形应注意 (1)首先确定最大边,不妨设最长边长为c ;(2)验证c 2和a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形(若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2<a 2+b 2,则△ABC 为锐角三角形)。

3、勾股数:满足222c b a =+的三个正整数,称为勾股数。

经典的勾股数:3、4、5(3n 、4n 、5n ) 5、12、13(5n 、12n 、13n ) 7、24、25(7n 、24n 、25n ) 8、15、17(8n 、15n 、17n ) 9、40、41(9n 、40n 、41n ) 11、60、61(11n 、60n 、61n ) 13、84、85(13n 、84n 、85n )例1. 如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C点与A 点重合,则EB 的长是( ). A .3 B .4 C 5 D .5练习1:如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C'处,BC'交AD 于E ,AD=8,AB=4,则DE 的长为( )A.3B.4C.5D.6FEDCBAC A B ED 练习2:如图,有一个直角三角形纸片,两直角边AC=6,BC=8,现将直角边AC 沿直线AD 折叠,使其落在斜边AB 上,且与AE 重合,则CD 的长为例2. 三角形的三边长a,b,c满足2ab=(a+b)2-c2,则此三角形是 ( ). A 、钝角三角形 B 、锐角三角形 C 、直角三角形 D 、等边三角形练习1:已知a 、b 、c 是三角形的三边长,如果满足2(6)8100a b c ---=,则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形练习2:已知a 、b 、c 是△ABC 的三边,且a 2c 2-b 2c 2=a 4-b 4,试判断三角形的形状.例3. 将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm ,则h 的取值范围是( ). A .h ≤17cm B .h ≥8cm C .15cm ≤h ≤16cm D .7cm ≤h ≤16cm练习:如图,圆柱形玻璃容器高20cm ,底面圆的周长为48cm ,在外侧距下底1cm 的 点A 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距上口1cm 的点B 处有一只CABDS 3S 2S 1C B A 苍蝇,则蜘蛛捕获苍蝇所走的最短路线长度为________.例4. a 2+b 2+c 2=10a +24b +26c -338,试判定△ABC 的形状,并说明你的理由练习:已知直角三角形的周长是62+,斜边长2,求它的面积.例5. 已知,如图,四边形ABCD 中,AB=3cm ,AD=4cm ,BC=13cm ,CD=12cm ,且∠A=90°, 求四边形ABCD 的面积。

北师大版八年级数学上册第一章《勾股定理》教案

北师大版八年级数学上册第一章《勾股定理》教案

第一章勾股定理1 探索勾股定理第1课时勾股定理(1)1.经历测量和用数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系.2.探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单推理的意识及能力.3.利用勾股定理,已知直角三角形的两边求第三边长.4.在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想.5.经历观察与发现直角三角形三边关系的过程,感受勾股定理的应用意识.6.通过对勾股定理历史的了解,感受数学变化,激发学习热情.7.在探究活动中,体现解决问题方法的多样性,培养学生的合作交流意识和探索精神.【教学重点】探索勾股定理.【教学难点】用测量和数格子的方法探索勾股定理.一、创设情境,导入新课我们知道,任意三角形的三条边必须满足定理:三角形的两边之和大于第三边.对于等腰三角形和等边三角形的边,除满足三边关系定理外,它们还分别存在着两边相等和三边相等的特殊关系.那么对于直角三角形的边,除满足三边关系定理外,它们之间也存在着特殊的关系,这就是我们这一节要研究的问题:勾股定理.出示投影1(章前的图文P1),介绍数学家曾用这个图形作为与“外星人”联系的信号.【教学说明】通过复习旧知识,引入新课.出示投影,介绍与勾股定理有关的背景,激发学生的学习兴趣.二、思考探究,获取新知勾股定理做一做:1.在纸上画若干个直角三角形,分别测量它们的三条边,看看三边长的平方之间有怎样的关系?与同伴交流.【教学说明】学生根据教师的要求完成这个问题,自主交流发现直角三角形的性质.2.观察教材图1—2,正方形A中有个小方格,即A的面积为个面积单位.正方形B中有个小方格.即B的面积为个面积单位.正方形C中有个小方格,即C的面积为个面积单位.你是怎样得出上面结果的?在学生交流回答的基础上教师接着发问.教材图1—2中,A、B、C之间的面积之间有什么关系?【教学说明】通过观察特殊图形下方格数与正方形面积之间的转化,进一步体会探索勾股定理.归纳得出结论:S A+S B=S C.3.教材图1—3中,A、B、C之间是否还满足上面的关系?你是如何计算的?【教学说明】通过观察计算一般情况下方格数与正方形面积之间的转化,进一步加强对勾股定理的理解.4.如果直角三角形两直角边分别是1.6个单位长度和2.4个单位长度,上面所猜想的数量关系还成立吗?说明你的理由.【教学说明】渗透从特殊到一般的数学思想,充分发挥学生的主体地位,让学生体会到观察、猜想、归纳的思想,也让学生的分析问题、解决问题的能力得到了提高.议一议:你能发现直角三角形三边长度之间的关系吗?【教学说明】学生自主探究,发现直角三角形的性质,并整合成精确的语言将之表达出来,有利于培养学生综合概括能力和语言表达能力.【归纳结论】直角三角形的两直角边的平方和等于斜边的平方.这就是著名的“勾股定理”.也就是说:如果直角三角形的两直角边为a、b,斜边为c,那么a2+b2=c2.我国古代称直角三角形的较短的直角边为勾,较长的直角边为股,斜边为弦,这便是勾股定理的由来.三、运用新知,深化理解1.在直角三角形ABC中,∠C=90°,若a=5,b=12,则c= .2.在直角三角形的ABC中,它的两边长的比是3∶4,斜边长是20,则两直角边长分别是.【教学说明】学生的完成,加深对勾股定理的理解和检测对勾股定理的简单运用,对学生的疑惑或出现的错误及时指导,并进行强化.【答案】1.13;2.12,16四、师生互动,课堂小结通过本节课的学习,你掌握了哪些新知识,还有什么困惑?【教学说明】教师引导学生回顾新知识,加强对勾股定理的理解,进一步完善了学生对知识的梳理.完成练习册中本课时相应练习.本节内容重在探索与发现,要给充分的时间让学生讨论与交流.适当的练习以巩固所学也是必要的,当然,这些内容还需在后面的教学内容再加深加广.第2课时勾股定理(2)1.经历运用拼图的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯.2.掌握勾股定理和它的简单应用.3.通过从实际问题中抽象出直角三角形这一模型,初步掌握转化和数形结合的思想方法.4.经历探究勾股定理在实际问题中的应用过程,感受勾股定理的应用方法.5.在数学活动中发展了学生的探究意识和合作交流的习性;体会勾股定理的应用价值,通过本节课学习,让学生体会到数学来源于生活,又应用到生活中,增加学生应用数学知识解决实际问题的经验和感受.【教学重点】能熟练应用拼图法证明勾股定理.【教学难点】用面积证勾股定理.一、创设情境,导入新课我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需要加以论证,下面就是今天所要研究的内容.【教学说明】让学生经历从特殊到一般的数学方法,明白数学问题是需要通过一定的论证才能说明它的正确性,为后面学习证明打下埋伏.二、思考探究,获取新知勾股定理的验证及简单运用做一做:1.画一个直角三角形,分别以这个直角三角的三边为边长向外作正方形,你能利用这个图证明勾股定理的正确性吗?你是如何做的?与同伴进行交流.【教学说明】让学生进一步体会探索勾股定理的过程,体会数形结合的思想.2.为了计算教材图1—4中大正方形的面积,小明对这个大正方形适当割补后,得到教材P51—5、1—6图.(1)将所有三角形和正方形的面积用a,b,c的关系式表示出来;(2)教材图1—5、1—6中正方形ABCD的面积分别是多少?你们有哪些表示方式?与同伴进行交流.(3)你能分别利用教材图1—5、1—6验证勾股定理吗?【教学说明】学生通过各种方法验证勾股定理的正确性,加深对勾股定理的理解,又让学生体会到一题多解.【归纳结论】勾股定理的证明方法达300多种,请同学们利用业余时间探究、讨论并阅读教材P7-8的其它证明勾股定理的方法,以开阔事学们的视野.三、运用新知,深化理解1.一块长3m,宽2.2m的薄木板能否从一个长2m,宽1m的门框内通过,为什么?2.飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,飞机每小时飞行多少千米?【教学说明】让学生从实际生活的角度大胆的去考虑,用生活经验和学过的知识去解答.并学会把实际问题抽象为直角三角形的数学模型的过程,能够熟练地将勾股定理应用到现实生活中去.【答案】1.能,让薄木板的宽从门框的对角线斜着通过.2.分析:根据题意,可以先画出符合题意的图形.如图,图中△ABC的∠C=90°,AC=4000米,AB=5000米欲求飞机每时飞行多少千米,就要知道20秒时间里飞行的路程,即图中的CB的长,由于△ABC的斜边AB=5000米,AC=4000米,这样BC就可以通过勾股定理得出,这里一定要注意单位的换算.解:由勾股定理得BC2=AB2-AC2=52-42=9(km2)即BC=3千米飞机20秒飞行3千米.那么它1小时飞行的距离为:3600/20×3=540(千米/时)答:飞机每小时飞行540千米.四、师生互动,课堂小结通过这节课的学习,你学会了哪几种证明勾股定理的方法?还有哪些疑问?【教学说明】总结归纳帮助学生进一步掌握解决实际问题的关键是抽象出相应的数学模型.完成练习册中本课时相应练习.了解多种证明勾股定理的方法,有助于加深对勾股定理内容的理解,但这需要花一定的时间,可以让学生课外了解.并运用所学知识解决实际问题,体验数学来源于生活,生活中也蕴含着许多数学道理.2 一定是直角三角形吗1.掌握直角三角形的判别条件,并能进行简单应用.2.通过用三角形的三边的数量关系来判断三角形的形状,体验数形结合方法的应用.3.敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.【教学重点】探索并掌握直角三角形的判别条件.【教学难点】运用直角三角形判别条件解题.一、创设情境,导入新课展示一根用13个等距的结把它分成等长的12段的绳子,请三个同学上台,按老师的要求操作.甲:同时握住绳子的第一个结和第十三个结.乙:握住第四个结.丙:握住第八个结.拉紧绳子,让一个同学用量角器,测出这三角形其中的最大角.发现这个角是多少度?古埃及人曾经用这种方法得到直角,这三边满足了什么条件?怎样的三角形才能成为直角三角形呢?这就是我们今天要研究的内容.【教学说明】利用古埃及人得到直角的方法,学生亲自动手实践,体验从实际问题中发现数学,同时明确了本节课的研究问题.既进行了数学史的教育,又锻炼了学生的动手实践、观察探究的能力.二、思考探究,获取新知直角三角形的判别做一做:下面的三组数分别是一个三角形的三边a、b、c.5、12、137、24、258、15、171.这三组数都满足a2+b2=c2吗?2.分别用每组数为三边作三角形,用量角器量一量,它们都是直角三角形吗?3.如果三角形的三边长为a、b、c,并满足a2+b2=c2.那么这个三角形是直角三角形吗?【教学说明】鼓励学生大胆发言,让他们体验通过实际的计算和探究得到结论的乐趣,增强了他们勇于探索的精神.【归纳结论】如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形.满足a2+b2=c2的三个正整数,称为勾股数.大家可以想这样的勾股数是很多的.今后我们可以利用“三角形三边a、b、c满足a2+b2=c2时,三角形为直角三角形”来判断三角形的形状,同时也可以用来判定两条直线是否垂直的方法.三、运用新知,深化理解1.下列几组数能否作为直角三角形的三边长?说说你的理由.(1)9,12,15;(2)15,36,39;(3)12,35,36;(4)12,18,22.2.已知△ABC中BC=41,AC=40,AB=9,则此三角形为三角形,是最大角.3.四边形ABCD中已知AB=3,BC=12,CD=13,DA=4,且∠DAB=90°,求这个四边形的面积.【教学说明】学生独立完成,能够加深判断一个三角形是直角三角形的条件的理解,帮助学生答疑解惑,及时指导,矫正强化.在完成上述题目后,引导学生完成《创优作业》中本课时的“课堂自主演练”部分.【答案】1.(1)(2)两组能作为直角三角形的三边长.∵92+122=152,152+362=392.∴这两个三角形都是直角三角形.2.直角,∠A3.解:连结BD,在△ABD中,∠DBA=90°,BD2=AB2+AD2=32+42,BD=5.在△DBC中,∵52+122=132,即DB2+BC2=DC2,∴△DBC为直角三角形,∠DBC=90°,∴S四边形ABCD=S△DAB+S△DBC=12×3×4+12×5×12=36.四、师生互动,课堂小结1.判断一个三角形是直角三角形的条件.2.今天的学习,你有哪些收获?还有哪些困惑?与同学交流.【教学说明】及时反馈教与学双边活动的结果,查漏补缺,让学生养成系统整理知识的好习惯.1.教材P10-11习题1.3第2、3、4题.2.完成练习册中本课时相应练习.这是勾股定理的逆向应用.大部分同学只要能正确掌握勾股定理的话,都不难理解.当然勾股定理的理解是关键.3勾股定理的应用1.能运用勾股定理及直角三角形的判别条件解决简单的实际问题.2.学生观察图形,勇于探索图形间的关系,培养学生的空间观念.3.在将实际问题抽象成几何图形的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.4.在不同条件,不同环境中反复运用勾股定理及直角三角形的判定条件,使学生达到熟练、灵活运用的程度.在解决问题的过程中,培养学生的空间观念,提高学生建立数学模型的能力.5.通过解决实际问题,提高了学生应用数学的意识和锻炼了学生与他人交流合作的意识,再次感悟勾股定理和直角三角形判定的应用价值.【教学重点】探索发现给定事物中隐含的勾股定理及直角三角表判定条件,并用它们解决生活中的实际问题.【教学难点】利用数学中的建模思想构造直角三角形,灵活运用勾股定理及直角三角形的判定,解决实际问题.一、创设情境,导入新课勾股定理的应用前几节课我们学习了勾股定理,你还记得它有什么作用吗?例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需要多长的梯子?日常生活当中,我们还会遇到下面的问题.【教学说明】回忆勾股定理,巩固旧知识,解决实际问题,完成知识的过渡,为学生学习新知识又一次打下了坚实的基础.二、思考探究,获取新知蚂蚁怎么走最近?出示问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,需要爬行的最短路程是多少?(π的取值3).(1)同学们可自己做一个圆柱,尝试从A点到B点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢?(2)如图,将圆柱侧面剪开展开成一个长方形,从A点到B点的最短路线是什么?你画对了吗?(3)蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱的侧面爬行的最短路程是多少?【教学说明】让学生经历把曲面上两点之间的距离转化为平面上两点之间线段最短更为直观,再次利用勾股定理解决生活中较为复杂的实际问题,使所学的知识得到充分运用.【归纳结论】我们知道,圆柱的侧面展开图是一长方形.好了,现在咱们就用剪刀沿母线AA′将圆柱的侧面展开(如下图).我们不难发现,刚才几位同学的走法:哪条路线是最短呢?你画对了吗?第(4)条路线最短.因为“两点之间的连线中线段最短”.三、运用新知,深化理解1.甲、乙两位探险者,到沙漠进行探险.某日早晨8∶00甲先出发,他以6千米/时的速度向东行走.1小时后乙出发,他以5千米/时的速度向北进行,上午10∶00,甲、乙两人相距多远?2.如图,有一个高1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分是0.5米,问这根铁棒应有多长?【教学说明】学生独立解决,把生活中的实际问题转化为解直角三角形,对学生所学的知识进行强化,以利于教师及时纠正.【答案】1.分析:首先我们需要根据题意将实际问题转化成数学模型.解:(如图)根据题意,可知A是甲、乙的出发点,10∶00时甲到达B点,则AB=2×6=12(千米);乙到达C点,则AC=1×5=5(千米).在Rt△ABC中,BC2=AC2+AB2=52+122=169=132,所以BC=13千米.即甲、乙两人相距13千米.2.分析:从题意可知,没有告诉铁棒是如何插入油桶中,因而铁棒的长是一个取值范围而不是固定的长度,所以铁棒最长时,是插入至底部的A点处,铁棒最短时是垂直于底面时.解:设伸入油桶中的长度为x米,则应求最长时和最短时的值.(1)x2=1.52+22,x2=6.25,x=2.5所以最长是2.5+0.5=3(米).(2)x=1.5,最短是1.5+0.5=2(米).答:这根铁棒的长应在2~3米之间(包含2米、3米).四、师生互动,课堂小结通过本节课的学习,你掌握了哪些知识?还有哪些疑问?【教学说明】学生梳理知识,加强教与学的互通,进一步提高课堂教学的效果.1.教材P14~15第1、2、3、4题.2.完成练习册中本课时相应练习.这节课的内容综合性比较强,可能有些同学掌握得不是太好,今后要继续加强这方面的训练.本章归纳总结1.掌握勾股定理和如何判断一个三角形是直角三角形,能灵活运用它们解决实际问题.2.通过梳理本章知识点,回顾解决实际问题中所涉及的数形合的思想和逆向思维思考问题,以便能熟练灵活运用.3.让学生养成把已有的知识建立联系的思维习性,积极参与数学活动,在活动中学会思考、讨论、交流和合作,激发他们的求知欲望.4.用勾股定理和如何判断一个三角形是直角三角形解决简单问题.【教学难点】能理解运用勾股定理解题的基本过程;掌握在复杂图形中确定相应的直角三角形,根据勾股定理建立方程.一、知识框图,整体把握【教学说明】引导学生回顾本章知识点,构建知识结构框架,让学生比较系统地了解本章知识及它们之间的相互联系.二、释疑解惑,加深理解1.勾股定理的证明勾股定理的证明方法有多种,一般是采用剪拼的方法,它把“数与形”巧妙地联系起来,是几何与代数沟通的桥梁,同时也为后面的四边形、圆、圆形变换、三角函数等知识的学习提供了方法和依据.说明:利用面积相等是证明勾股定理的关键所在.2.勾股定理中的分类讨论在勾股定理的实际运用中,如果不明给出直角三角形中有两条边的长,要求第三条边的长就需要分两种情况讨论,即第一种情况是告诉两条直角边长求斜边,第二种情况是告诉一条直角边和斜边长求另一条直角边.3.曲面两点间的距离问题在解决曲面中两点间的距离时,往往是要将曲面问题转化为同一平面内两点之间的距离,这是解决问题的关键.三、典例精析,复习新知例1 一张直角三角形纸片,两直角边AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕是DE(如图所示),求CD的长.【分析】设CD为x,∵AD=BD,∴AD=8-x. ∴在△ACD中,根据勾股定理列出关于x的方程即可求解.解:由折叠知,DA=DB.在Rt△ACD中,由勾股定理得AC2+CD2=AD2,若设CD=xcm,则AD=DB=(8-x)cm,代入上式得62+x2=(8-x)2,解得x=7/4=1.75(cm),即CD的长为1.75cm.例2有一个立方体礼盒如图所示,在底部A处有一只壁虎,C′处有一只蚊子,壁虎急于捕捉到蚊子充饥.(1)试确定壁虎所走的最短路线;(2)若立方体礼盒的棱长为20cm,则壁虎如果想在半分钟内捕捉到蚊子,每分钟至少要爬行多少厘米?(保留整数)【分析】求几何表面的最短距离时,通常可以将几何体表面展开,把立体图形转化为平面图形.解:(1)若把礼盒上的底面A′B′C′D′竖起来,如图所示,使它与立方体的正面(ABB′A′)在同一平面内,然后连接AC′,根据“两点间线段最短”知线段AC′就是壁虎捕捉蚊子所走的最短路线.(2)由(1)得,△ABC′是直角三角形,且AB=20,BC′=40.根据勾股定理,得AC′2=AB2+BC′2=202+402,AC′≈44.7(cm),44.7÷0.5≈90(cm/min).所以壁虎要想在半分钟内捕捉到蚊子,它每分钟至少爬行90厘米(只入不舍).【教学说明】师生共同回顾本章主要知识,对于例题中需要注意的事项教师可以适当点评,便于学生熟练加以运用.四、复习训练,巩固提高1.已知在△ABC中,∠B=90°,一直角边为a,斜边为b,则另一条直角边c满足c2= .2.在Rt△ABC中,∠C=90°,若a=12,c-b=8,则b= ,c= .3.如图所示,在△ABC中,∠ACB=90°,CD⊥AB,D为垂足,AC=2.1,BC=2.8.求:(1)△ABC的面积;(2)斜边AB的长;(3)斜边AB上的高CD的长;(4)斜边被分成的两部分AD和BD的长.【答案】1.b2-a2;2.5,13;3.解:(1)S△ABC=12AC×BC=12×2.1×2.8=2.94.(2)AB2=AC2+BC2=2.12+2.82=12.5,∴AB=3.5.(3)由三角形的面积公式得12AC×BC=12AB×CD,所以12×2.1×2.8=12×3.5×CD,解得CD=1.68.(4)在Rt△ACD中,由勾股定理得AD2+CD2=AC2,∴AD2=AC2-CD2=2.12-1.682=(2.1+1.68)(2.1-1.68)=3.78×0.42=2×1.89×2×0.21=22×9×0.214×0.21.∴AD=2×3×0.21=1.26.∴BD=AB-AD=3.5-1.26=2.24.五、师生互动,课堂小结本节复习课你能灵活运用勾股定理和如何判断一个三角形是直角三角形的解决问题吗?还有哪些不足?【教学说明】教师引导学生归纳本章主要的知识点,对于遗漏或需要强调的地方,教师应及时补充和点拨.1.复习题4.5第11、12题.2.完成练习册中本课时相应练习.勾股定理是解决线段计算问题的主要依据,它单独命题比较少见,更多时候是与其他知识综合应用,在综合题中如何找到适当的直角三角形是解题的关键.。

八年级数学上册第1章《探索勾股定理(2)》优质教案(北师大版)

八年级数学上册第1章《探索勾股定理(2)》优质教案(北师大版)

第一章勾股定理1.探索勾股定理(2)一、学情与教材分析1.学情分析学生的知识技能基础:学生在七年级已经学习了整式的加、减、乘、除运算和等式的基本性质,并能进行简单的恒等变形;上节课又已经通过测量和数格子的方法,对具体的直角三角形探索并发现了勾股定理,但没有对一般的直角三角形进行验证.学生活动经验基础:学生在以前数学学习中已经经历了很多独立探究和合作学习的过程,具有了一定的自主探究经验和合作学习的经验,具备了一定的探究能力和合作与交流的能力;学生在七年级《七巧板》及《图案设计》的学习中已经具备了一定的拼图活动经验.2.教材分析本节课是八(上)勾股定理第1节第2课时,是在上节课已探索得到勾股定理之后的内容,具体学习任务:通过拼图验证勾股定理并体会其中数形结合的思想;应用勾股定理解决一些实际问题,体会勾股定理的应用价值并逐步培养学生应用数学解决实际问题意识和能力,为后面的学习打下基础.二、教学目标1.掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题.2.在上节课对具体的直角三角形探索发现了勾股定理的基础上,经历勾股定理的验证过程,体会数形结合的思想和从特殊到一般的思想.3.在勾股定理的验证活动中,培养探究能力和合作精神;通过对勾股定理历史的了解,感受数学文化,增强爱国情感,并通过应用勾股定理解决实际问题,培养应用数学的意识.三、教学重难点教学重点:用面积法验证勾股定理,应用勾股定理解决简单的实际问题.教学难点:验证勾股定理.四、教法建议1.教学方法:引导——探究——应用.2.课前准备:教具:教材,课件,电脑.学具:教材,铅笔,直尺,练习本.五、教学设计(一)课前设计1.预习任务结合课本上P5页1-5和1-6,应用等面积法证明勾股定理,(提示:图中的正方形的面积可以表示为边长的平方,也可以表示成小正方形加上四个直角三角形的面积)2.预习自测一、选择题1. 利用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦图.观察图形,可以验证()公式.A.(a+b)(a﹣b)=a2﹣b2 B.(a+b)2=a2﹣2ab+b2C.c2=a2+b2 D.(a﹣b)2=a2﹣2ab+b2答案:C解析:∵大正方形的面积表示为:c2又可以表示为:ab×4+(b﹣a)2,∴c2=ab×4+(b﹣a)2,c2=2ab+b2﹣2ab+a2,∴c2=a2+b2.故选C.点拨:利用两种方法表示出大正方形的面积,根据面积相等可以整理出c2=a2+b2.二、填空题2. 如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它解决的数学问题是_________.答案:勾股定理解析:我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它解决的数学问题是勾股定理.点拨:观察我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,发现它验证了勾股定理.3. 如图,由四个直角三角形拼成2个正方形,则4个直角三角形面积+小正方形面积=大正方形面积,即_________+_________=_________化简得:a2+b2=c2.答案:4×ab、(b﹣a)2、c2.解析:如图所示,4个直角三角形面积+小正方形面积=大正方形面积,即 4×ab+(b﹣a)2=c2,故答案是:4×ab、(b﹣a)2、c2.点拨:根据直角三角形的面积公式和正方形的面积公式进行填空.(二)课堂设计本节课设计了六个教学环节:第一环节:知识回顾;第二环节:探究发现;第三环节:数学小史;第四环节:知识运用;第五环节:随堂检测;第六环节:课堂小结.第一环节:知识回顾内容:教师提出问题:(1)勾股定理的内容是什么?(请一名学生回答)(2)上节课我们仅仅是通过测量和数格子,对具体的直角三角形探索发现了勾股定理,对一般的直角三角形,勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?事实上,现在已经有几百种勾股定理的验证方法,这节课我们也将去验证勾股定理.意图:(1)复习勾股定理内容;(2)回顾上节课探索过程,强调仍需对一般的直角三角形进行验证,培养学生严谨的科学态度;(3)介绍世界上有数百种验证方法,激发学生兴趣.效果:通过这一环节,学生明确了:仅仅探索得到勾股定理还不够,还需进行验证.当学生听到有数百种验证方法时,马上就有了去寻求属于自己的方法的渴望.第二环节:探究发现活动1: 教师导入,小组拼图.教师:今天我们将研究利用拼图的方法验证勾股定理,请你利用自己准备的四个全等的直角三角形,拼出一个以斜边为边长的正方形.(请每位同学用2分钟时间独立拼图,然后再4人小组讨论.)活动2:层层设问,完成验证一.学生通过自主探究,小组讨论得到两个图形:图2在此基础上教师提问:(1)如图1你能表示大正方形的面积吗?能用两种方法吗?(学生先独立思考,再4人小组交流);(2)你能由此得到勾股定理吗?为什么?(在学生回答的基础上板书(a+b)2=4×21ab+c 2.并得到222c b a =+)从而利用图1验证了勾股定理.活动3 : 自主探究,完成验证二.教师小结:我们利用拼图的方法,将形的问题与数的问题结合起来,联系图1整式运算的有关知识,从理论上验证了勾股定理,你还能利用图2验证勾股定理吗?(学生先独立探究,再小组交流,最后请一个小组同学上台讲解验证方法二)意图:设计活动1的目的是为了让学生在活动中体会图形的构成,既为勾股定理的验证作铺垫,同时也培养学生的动手、创新能力.在活动2中,学生在教师的层层设问引导下完成对勾股定理的验证,完成本节课的一个重点内容.设计活动3,让学生利用另一个拼图独立验证勾股定理的目的是让学生再次体会数形结合的思想并体会成功的快乐.效果:学生通过先拼图从形上感知,再分析面积验证,比较容易地掌握了本节课的重点内容之一,并突破了本节课的难点.第三环节:数学小史活动内容:由学生利用所搜集的与勾股定理相关的资料进行介绍.国内调查组报告:用图2验证勾股定理的方法,据载最早是三国时期数学家赵爽在为《周髀算经》作注时给出的,我国历史上将图2弦上的正方形称为弦图.2002年的数学家大会(ICM-2002)在北京召开,这届大会会标的中央图案正是经过艺术处理的弦图,这既标志着中国古代的数学成就,又像一只转动的风车,欢迎来自世界各地的数学家们!国际调查组报告:勾股定理与第一次数学危机.约公元前500年,毕达哥拉斯学派的弟子希帕索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线的长度是不可公度的.按照毕达哥拉斯定理(勾股定理),若正方形边长是1,则对角线的长不是一个有理数,它不能表示成两个整数之比,这一事实不但与毕氏学派的哲学信念大相径庭,而且建立在任何两个线段都可以公度基础上的几何学面临被推翻的威胁,第一次数学危机由此爆发.据说,毕达哥拉斯学派对希帕索斯的发现十分惶恐、恼怒,为了保守秘密,最后将希帕索斯投入大海.不能表示成两个整数之比的数,15世纪意大利著名画家达.芬奇称之为“无理的数”,无理数的英文“irrational”原义就是“不可比”.第一次数学危机一直持续到19世纪实数的基础建立以后才圆满解决.我们将在下一章学习有关实数的知识 .趣闻调查组报告:勾股定理的总统证法.在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景……他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨.由于好奇心驱使他循声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形……于是这位中年人不再散步,立即回家,潜心探讨小男孩给他留下的难题.他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法. 1876年4月1日,他在《新英格兰教育日志》上发表了他对勾股定理的这一证法.1881年,这位中年人—伽菲尔德就任美国第二十任总统.后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法.说明:这个环节完全由学生来组织开展,教师可在两天前布置任务,让部分同学收集勾股定理的资料,并在上课前拷贝到教师用的课件中便于展示,内容可灵活安排.意图:(1(2)学生加强了对数学史的了解,培养学习数学的兴趣;(3)通过让部分学生搜集材料,展示材料,既让学生得到充分的锻炼,同时也活跃了课堂气氛.效果:学生热情高涨,对勾股定理的历史充满了浓厚的兴趣,同时也为中国古代数学的成就感到自豪.也有同学提出:当代中国数学成就不够强,还应发奋努力.有同学能意识这一点,这让我喜出望外.第四环节:知识运用a b内容:例题:我方侦察员小王在距离东西向公路400m处侦察,发现一辆敌方汽车在公路上疾驰.他赶紧拿出红外测距仪,测得汽车与他相距400m,10s 后,汽车与他相距500m,你能帮小王计算出敌方汽车的速度吗?意图:(1)初步运用勾股定理解决实际问题,培养学生应用数学的意识和能力;(2)体会勾股定理的应用价值.效果:学生对这样的实际问题很感兴趣,基本能把实际问题转化为数学问题并顺利解决.一组生活中勾股定理的应用练习,共3道题.(1)教材P6练习题1.(2)一个25m长的梯子AB,斜靠在一竖直的墙AO上,这时的AO距离为24m,如果梯子的顶端A沿墙下滑4m,那么梯子底端B也外移4m吗?(3)受台风麦莎影响,一棵高18m的大树断裂,树的顶部落在离树根底部6米处,这棵树折断后有多高?说明:这一环节设计了3道题,设计时注意了题目的梯度,由浅入深,第一题为书上练习题,学生容易解决,第二道题虽然计算难度不大,但考查学生的实际应用能力,第三道题是应用勾股定理建立方程求解,有一定难度.意图:在例题的基础上进行拓展,训练学生将实际问题转化为数学问题,再运用勾股定理解决问题.效果:小部分学生在完成第二题时,由于欠缺生活常识时,不能准确地理解题意,约有一半同学对第3道题束手无策,主要是缺乏利用勾股定理建立方程求解的这种思路,经同学点拨,教师引导,绝大部分同学最后都能解决这个问题,通过3个小题的训练,总体感觉学生对勾股定理的应用更加熟练,并对勾股定理的应用价值体会更深.第五环节:随堂检测一、选择题1. 下列选项中,不能用来证明勾股定理的是()A.B.C.D.答案:D解析:A,B,C都可以利用图形面积得出a,b,c的关系,即可证明勾股定理;故A,B,C选项不符合题意;D、不能利用图形面积证明勾股定理,故此选项正确.故选D.点拨:根据图形的面积得出a,b,c的关系,即可证明勾股定理,分别分析得出即可.2.“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角边的长分别是3和6,则中间小正方形与大正方形的面积差是()A.﹣9 B.﹣36 C.﹣27 D.﹣34答案:B解析:根据题意得:小正方形的面积=(6﹣3)2=9,大正方形的面积=32+62=45,9﹣45=36.故选B.点拨:由正方形的性质和勾股定理求出小正方形和大正方形的面积,即可得出小正方形与大正方形的面积差.二、填空题3. 2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽弦图它是由四全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,下列说法:①a2+b2=13;②b2=1;③a2﹣b2=12;④ab=6.其中正确结论序号是_________.答案:①④解析:直角三角形的斜边长是c,则c2=a2+b2,大正方形的面积是13,即c2=a2+b2=13,①正确;∵小正方形的面积是1,∴b﹣a=1,则(b﹣a)2=1,即a2+b2﹣2ab=1,∴ab=6,故④正确;根据图形可以得到a2+b2=13,b﹣a=1,而b=1不一定成立,故②错误,进而得到③错误.故答案是:①④点拨:根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2ab即四个直角三角形的面积和,从而判断.4. 利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为_________,该定理的结论其数学表达式是_________.答案:勾股定理、a2+b2=c2.解析:用图(2)较简单,如图正方形的面积=(a+b)2,用三角形的面积与边长为c的正方形的面积表示为4×ab+c2,即(a+b)2=4×ab+c2化简得a2+b2=c2.这个定理称为勾股定理.故答案为:勾股定理、a2+b2=c2.点拨:通过图中三角形面积、正方形面积之间的关系,证明勾股定理.三、解答题5. 勾股定理是一条古老的数学定理,它有很多种证明方法.(1)请你根据图1填空;勾股定理成立的条件是_________三角形,结论是_________(三边关系)(2)以图1中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图2),请你利用图2,验证勾股定理;答案:(1)直角;a2+b2=c2;(2)见解析解析:(1)勾股定理指的是在直角三角形中,两直角边的平方的和等于斜边的平方.故答案是:直角;a2+b2=c2;(2)∵Rt△ABE≌Rt△ECD,∴∠AEB=∠EDC,又∵∠EDC+∠DEC=90°,∴∠AEB+∠DEC=90°,∴∠AED=90°.∵S梯形ABCD =SRt△ABE+SRt△DEC+SRt△AED,∴.整理,得a2+b2=c2.点拨:(1)根据图示直接填空;(2)利用S梯形ABCD =SRt△ABE+SRt△DEC+SRt△AED进行解答.第六环节:课堂小结教师提问:通过这节课的学习,你有什么样的收获?师生共同畅谈收获.目的:(1)归纳出本节课的知识要点,数形结合的思想方法;(2)教师了解学生对本节课的感受并进行总结;(3)培养学生的归纳概括能力.效果:由于这节课自始至终都注意了调动学生学习的积极性,所以学生谈的收获很多,包括利用拼图验证勾股定理中蕴含的数形结合思想,学生对勾股定理的历史的感悟及对勾股定理应用的认识等等.布置作业:1.习题1.2 T2,32.上网或查阅有关书籍,搜集至少1种勾股定理的其它证法,至少1个勾股定理的应用问题,一周后进行展评.意图:(1)巩固本节课的内容.(2)充分发挥勾股定理的育人价值.分层作业基础型:一、选择题1. 历史上对勾股定理的一种证法采用了下列图形:其中两个全等的直角三角形边AE、EB在一条直线上.证明中用到的面积相等关系是()A.S△EDA =S△CEBB.S△EDA+S△CEB=S△CDBC.S四边形CDAE =S四边形CDEBD.S△EDA+S△CDE+S△CEB=S四边形ABCD答案:D解析:∵由S△EDA +S△CDE+S△CEB=S四边形ABCD.可知ab+c2+ab=(a+b)2,∴c2+2ab=a2+2ab+b2,整理得a2+b2=c2,∴证明中用到的面积相等关系是:S△EDA +S△CDE+S△CEB=S四边形ABCD.故选D.点拨:用三角形的面积和、梯形的面积来表示这个图形的面积,从而证明勾股定理.2. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A.3 B.4 C.5 D.6答案:C解析:如图所示:∵(a+b)2=21,∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=5.故选:C.点拨:观察图形可知,小正方形的面积=大正方形的面积﹣4个直角三角形的面积,利用已知(a+b)2=21,大正方形的面积为13,可以得出直角三角形的面积,进而求出答案.二、填空题3. 如图,以Rt△ABC的三边向外作正方形,若最大正方形的边长为6cm,以AC 为边的正方形的面积为25,则正方形M的面积为________.答案:11=AB2,25=AC2,AC2+AB2=BC2=6×6,解析:根据题意知,SM=36﹣25=11(cm2).∴SM故答案是:11cm2.点拨:根据正方形的面积公式以及勾股定理解答即可.4. 如图,已知△ABC中,AB=17,AC=10,BC边上的高AD=8.则△ABC的周长为_________.答案:48解析:在直角三角形ABD中,AB=17,AD=8,根据勾股定理,得BD=15;在直角三角形ACD中,AC=10,AD=8,根据勾股定理,得CD=6;∴BC=15+6=21,∴△ABC的周长为17+10+21=48,故答案为:48.点拨:分别在两个直角三角形中求得线段BD和线段CD的长,然后求得BC的长,从而求得周长.三、解答题5. 我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a、b,试求:(a+b)2的值.答案:B解析:根据勾股定理可得a2+b2=13,四个直角三角形的面积是:ab×4=13﹣1=12,即:2ab=12则(a+b)2=a2+2ab+b2=13+12=25.点拨:根据勾股定理可以求得a2+b2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab的值,然后根据(a+b)2=a2+2ab+b2即可求解.能力型:一、选择题1. 如图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长是()A.52 B.42 C.76 D.72答案:C解析:依题意得,设“数学风车”中的四个直角三角形的斜边长为x,则x2=122+52=169,解得x=13.故“数学风车”的周长是:(13+6)×4=76.故选:C.点拨:由题意∠ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个.二、填空题2. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为3cm,则图中所有正方形的面积之和为_______cm2.答案:27解析:∵最大的正方形的边长为3cm,∴正方形G的面积为9cm2,由勾股定理得,正方形E的面积+正方形F的面积=9cm2,正方形A的面积+正方形B的面积+正方形C的面积+正方形D的面积=9cm2,∴图中所有正方形的面积之和为27cm2,故答案为:27.点拨:根据正方形的面积公式求出正方形G的面积,根据勾股定理计算即可.3. 魏晋时期,伟大数学家刘徽利用如图通过“以盈补虚,出入相补”的方法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类”证明了勾股定理,若图中BF=2,CF=4,则AE的长为_______.答案:6解析:∵BF=2,CF=4,∴BC=BF+CF=2+4=6,∵AB∥EC,∴=,即=,解得:CE=12,在Rt△ADE中,AD=6,DE=DC+CE=6+12=18,根据勾股定理得:AE==6,故答案为:6.点拨:由BF+CF求出BC的长,即为正方形ABCD的边长,由AB与CE平行,得比例求出CE的长,由DC+CE求出DE的长,在直角三角形ADE中,利用勾股定理求出AE的长即可.三、解答题4. (1)如图1是一个重要公式的几何解释.请你写出这个公式;(2)如图2,Rt△ABC≌Rt△CDE,∠B=∠D=90°,且B,C,D三点共线.试证明∠ACE=90°;(3)请利用(1)中的公式和图2证明勾股定理.答案:见解析解析:(1)这个公式为(a+b)2=a2+2ab+b2;证明:由图可知大正方形被分成了一个小正方形和两个长方形,大正方形的面积=(a+b)2,两个长方形的面积=(a+b)b+ab,小正方形的面积=a2,那么大正方形的面积=(a+b)b+ab+a2=(a+b)2=a2+2ab+b2.(2)∵Rt△ABC≌Rt△CDE,∴∠BAC=∠DCE,∴∠ACB+∠DCE=∠ACB+∠BAC=90°;由于B,C,D共线,所以∠ACE=180°﹣(∠ACB+∠DCE)=180°﹣90°=90°.(3)梯形ABDE的面积为(AB+ED)•BD=(a+b)(a+b)=(a+b)2;另一方面,梯形ABDE可分成三个直角三角形,其面积又可以表示成ab+ab+c2.所以,(a+b)2=ab+ab+c2.即a2+b2=c2.点拨:(1)用面积分割法证明:大正方形的面积等于小正方形和两个长方形的面积之和,从而推出平方和公式.(2)利用全等三角形对应角相等,直角三角形的两个锐角互余,推出直角;(3)用面积分割法法证明勾股定理:梯形ABDE的面积=三角形ABC的面积+三角形CDE的面积+三角形ACE的面积.探究型:一、解答题1. 教材第九章中探索乘法公式时,设置由图形面积的不同表示方法验证了乘法公式.我国著名的数学家赵爽,早在公元3世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个大的正方形(如图①),这个图形称为赵爽弦图,验证了一个非常重要的结论:在直角三角形中两直角边a、b与斜边c满足关系式a2+b2=c2,称为勾股定理.(1)爱动脑筋的小明把这四个全等的直角三角形拼成了另一个大的正方形(如图②),也能验证这个结论,请你帮助小明完成验证的过程.(2)小明又把这四个全等的直角三角形拼成了一个梯形(如图③),利用上面探究所得结论,求当a=3,b=4时梯形ABCD的周长.(3)如图④,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.请在图中画出△ABC的高BD,利用上面的结论,求高BD的长.答案:见解析解析:(1)证明:由图得,×ab×4+c2=(a+b)×(a+b),整理得,2ab+c2=a2+b2+2ab,即a2+b2=c2;(2)解:∵a=3,b=4,∴c==5,梯形ABCD的周长为:a+c+3a+c═4a+2c=4×3+2×5=22;(3)解:如图4,BD是△ABC的高.∵S=AC•△ABCBD=AB×3,AC==5,∴BD===.点拨:(1)根据四个全等的直角三角形的面积+阴影部分小正方形的面积=大正方形的面积,代入数值,即可证明;(2)由(1)中结论先求出c的值,再根据周长公式即可得出梯形ABCD的周长;(3)先根据高的定义画出BD,由(1)中结论求出AC的长,再根据△ABC的面积不变列式,即可求出高BD的长.2. 勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2.证明:连接DB,过点D作BC边上的高DF,则DF=EC=b﹣a.∵S四边形ADCB =S△ACD+S△ABC=b2+ab.又∵S四边形ADCB =S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+ a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.证明:连结_______,过点B作______________,则_________.∵S五边形ACBED =S△ACB+S△ABE+S△ADE=______________.又∵S五边形ACBED=______________=ab+c2+a(b﹣a),∴______________=ab+c2+a(b﹣a),∴a2+b2=c2.答案:BD,BF⊥DE于F,BF=b﹣a,ab+ b2+ab,S△ACB +S△ABE+S△ADE,ab+b2+ ab.解析:证明:连结BD,过点B作BF⊥DE于F,则BF=b﹣a,∵S五边形ACBED =S△ACB+S△ABE+S△ADE=ab+b2+ab,又∵S五边形ACBED =S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a),∴。

北师版数学八年级上册第一章《勾股定理》回顾与思考教案

北师版数学八年级上册第一章《勾股定理》回顾与思考教案

学法指

二次备课【知识回顾】
1、探索勾股定理:分割法
2、勾股定理的内容:直角三角形等于。

3、直角三角形的判别条件:如果一个三角形的三边长a,b,c满足:
那么这个三角形是直角三角形。

4、应用:在直角三角形中已知两边长求第三边长;求几何体表面上两点间的最短
距离
【例题精讲】
一、勾股定理及验证
1、如图,一架云梯长25米,斜靠在一面墙上,梯子底端离墙7米,
(1)这个梯子的顶端距离地面有多高?
(2)如果梯子的顶端下滑4米,那么梯子的底部在水平方向上滑动了多少米?
2、据传当年毕达哥拉斯借助如图所示的两个图验证了勾股定理,你能说说其中的道理吗?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章勾股定理第1课时探索勾股定理(1)一、三角形的边角关系:边:角:引例:二、探索直角三角形三边的特殊关系:(1)画一个直角三角形,使其两边满足下面的条件,测量第三边的长度,完成下表;(2)猜想:直角三角形的三边满足什么关系?勾股定理:三、利用拼图验证勾股定理:用四个全等的直角三角形拼出图1,并思考:1.拼成的图1中有_______个正方形,___个直角三角形。

2.图中大正方形的边长为_______,小正方形的边长为_______。

3.你能请用两种不同方法表示图1中大正方形的面积,列出一个等式,验证勾股定理吗?四、典型例题例1、求出下列各图中x 的值。

例2、如图所示,强大的台风使得一根旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处。

旗杆折断之前有多高?例3、飞机在空中水平飞行,某一时刻刚好飞到一个站着不动的女孩头顶正上方4000米处,过了25秒,飞机距离女孩头顶5000米处,则飞机的飞行速度是多少?例4、求下图中字母所代表的正方形的面积。

x 1517CB A例6、直角三角形两直角边长分别为5cm ,12cm ,则斜边上的高为 .五、知识巩固:1.在△ABC 中,∠C=90°,(1)若BC =5,AC =12,则AB = ; (2)若BC =3,AB =5,则AC = ;(3)若BC ∶AC =3∶4,AB =10,则BC = ,AC = .2.某农舍的大门是一个木制的矩形栅栏,它的高为2m ,宽为1.5m ,现需要在相对的顶点间用一块木棒加固,木棒的长为 .3.若直角三角形的两直角边之比为3:4,斜边长为20㎝,则斜边上的高为 。

4.如图,所有的四边形都是正方形,所有的三角形都 是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积之和为_______cm 2.5.一个直角三角形的两直角边长为3cm 、4cm ,斜边长为 a cm ,则以斜边为半径的圆的面积是 。

6.等腰三角形的腰长为13cm ,底边长为10cm ,则其面积为 .第2课时 探索勾股定理(2)一、典型例题例1、有一块直角三角形纸片,两直角边AC=6㎝,BC=8㎝,现将ABC 沿直线AD 折叠,使AC 落在斜边AB 上,且与AE 重合,求CD 的长例2、如图,一架梯子长25米,斜靠在一面墙上,梯子顶端离地面15米,要使梯子顶端离地24米,则梯子的底部在水平方向上应滑动多少米?例3、某隧道的截面是一个半径为3.6米的半圆形,一辆高2.4米、宽3米的卡车能否顺利通过该隧道?例4、 如图,铁路上A 、B 两站相距25㎞,C 、D 为两村庄,DA ⊥AB 于A,CB ⊥AB 于B,已知DA=15㎞,CB=10㎞.现在要在铁路上建一个收购站E ,使得C 、D 两村到E 站的距离相等,则E 站应建在距A 站多少㎞处?例5、在一棵树的10米高处有两只猴子,其中一只爬下树走向离树20米的池塘,而另一只猴子只爬到树顶后直扑池塘,如果两只猴子经过的路程相等,问这棵树有多高?EDBCAADEBC例6、以Rt △ABC 三边为直径作半圆,这三个半圆的面积S 1、S 2、S 3之间有什么关系?说明理由。

二、知识巩固1.等腰直角三角形三边的平方比为2.等腰三角形的底边为10cm ,周长为36cm ,则它的面积是 cm 2.3.长方形的一条对角线的长为10cm ,一边长为6cm ,它的面积是4.Rt ∆ABC 中,︒=∠90C ,AB=2,则AB 2+BC 2+CA 2= .5.一个直角三角形的三边为三个连续偶数,则它的三边长分别为 .6.直角三角形两直角边的比为3:4,面积是24,求这个三角形的周长.D第3课时 能得到直角三角形吗一、勾股定理:条件: 结论: 2、分别以下列每组数为三边作出三角形,它们都是直角三角形吗? (1)3, 4, 5, (2)6, 8, 10 (3)9,12,15 勾股逆定理:条件: 结论: 3、勾股数: 。

下列几组数是否为勾股数?说说你的理由。

(1)12,18,22 (2) 9, 12, 15二、典型例题例1、一个零件的形状如图所示,按规定这个零件中∠A和∠DBC都应为直角。

工人师傅量得AB=3,AD=4,BD=5,BC=12,DC=13,这个零件符合要求吗?例2、如图,在正方形ABCD 中,AB=4,AE=2,DF=1,图中有几个直角三角形,你是如何判断的?并验证。

(2)如果一直角三角形的三边长为a、b、c(c是斜边长),将三边长都扩大k倍(k为任意正整数)后,得到的还是直角三角形吗?说明理由。

例4、在△ABC中,三条边长分别为a,b,c,a=n2-1,b=2n,c=n2+1(n>1)。

试判断△ABC的形状.例5、如图所示的一块草地,已知AD=4m,CD=3m,AB=12m,BC=13m,且∠CDA=900,求这块草地的面积。

三、知识巩固:1. 下列说法正确的是( )A. 若a、b、c是ABC的三边,则222+=a b cB. 若a、b、c是Rt ABC的三边,则222+=a b cC. 若a、b、c是Rt ABC的三边90+=a b c∠=,则222AD. 若a、b、c是Rt ABC的三边90+=a b cC∠=,则2222、下列几组数中,是勾股数的是()A、4,5,6B、12,16,20C、-10,24,26D、2.4,4.5,5.13、若△ABC的三边a、b、c满足(a-b)(a2+b2-c2)=0,则△ABC是( )A、等腰三角形 B、直角三角形C、等腰直角三角形 D、等腰三角形或直角三角形4、 有一个木工师傅测量了等腰三角形的腰、底边和高的长,但他把这三个数据与其他数据弄混了,请你帮他找出来﹙ ﹚ A .13,12,12 ; B .12,12,8; C .13,10,12 ; D .5,8,45、如图,在平行四边形ABCD 中,CA ⊥AB ,若AB=3,BC=5,则平行四边形ABCD 的面积为6、当m= 时,以m+1,m+2,m+3的长为边的三角形是直角三角形。

D数怎么又不够用了一、知识回顾: 有理数:______和______统称为有理数,任何一个有理数都可以写成分数m/n (m ,n 都是整数,且n≠0)的形式。

任何有限小数或无限循环小数都是有理数. 有理数的分类:无理数:无限不循环小数叫无理数 。

像π,0.585885888588885…,1.41421356…,2.2360679…等这些数的小数位数都是无限的,但是又不是循环的,是无限不循环小数 实数:分为有理数和无理数两类。

实数的分类:⎧⎧⎫⎨⎬⎪⎨⎩⎭⎪→⎩整数有理数有限小数或无限循环小数实数分数无理数无限不循环小数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数正无理数实数负有理数负实数负无理数 例:练习:在73; -π; ;0;0.3 ;3π;0.33 ;0.3131131113…(两个3之间依次多一个1)中属于有理数的有: 属于无理数的有: 属于实数的有: 训练作业:一、按要求完成下列题目1.下列各数中,哪些是有理数?哪些是无理数?有理数3.14,-34,∙∙75.0,0.1010010001…,0.4583,∙7.3,-π,-712..把下列各数分别填入相应的集合里: π31-,1322-,7,327,0.1010010001…,0.5,36.0-,39,924,16 实数集{ …}, 无理数集{ …}, 有理数集{ …}, 分数集{ …}, 负无理数集{ …} 3.判断下面的语句对不对?并说明判断的理由。

(1) 无限小数都是无理数;( ) (2) 无理数都是无限小数( ) (3)有理数都是实数,实数不都是有理数;( ) (4) 实数都是无理数,无理数都是实数;( ) (5) 实数的绝对值都是非负实数;( ) (6)有理数都可以表示成分数的形式。

( )(7) 有理数与无理数的差都是有理数. ( ) (8) 两个无理数的和不一定是无理数( )平方根(一)一、预习导学: 1. 算术平方根1.计算:42= ; 72= ;92 = ;112= 。

2.填底数:( )2=16,( )2=49,( )2=81, ( )2=121. 3.2x =______2y =______2z =______2w =______二、探索新知算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的 ____记做 ;读叫做 .注:特别地,我们规定0的算术平方根是0,即00 . 2. 例1 求下列各数的算术平方根:(1)900; (2)1; (3)6449; (4)14. 例2自由下落物体的高度h (米)与下落时间t (秒)的关系为h =4.9t 2.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?结论:(1)算术平方根的概念,式子a 中的双重非负性:一是a ≥0,二是a ≥0. (2)算术平方根的性质:一个正数的算术平方根是一个正数;0的算术平方根是0;负数没有算术平方根.三、边学边练 (一)、填空题:1.若一个数的算术平方根是7,那么这个数是 ; 2.9的算术平方根是 ; 3.2)32(的算术平方根是 ; 4.若22=+m ,则2)2(+m = . (二)、求下列各数的算术平方根:36,144121,15,0.81,410-,1.96,0)65(,610,259三、如图,从帐篷支撑竿AB 的顶部A 向地面拉一根绳子AC 固定帐篷.若绳子的长度为5.5米,地面固定点C 到帐篷支撑竿底部B 的距离是4.5米,则帐篷支撑竿的高是多少米?四、一个正方形的面积变为原来的4倍,其边长变为原来的多少倍?面积变为原来的9倍,其边长变为原来的多少倍?面积变为原来的100倍,其边长变为原来的多少倍?面积变为原来的n 倍,其边长变为原来的多少倍?五、 已知042=++-y x ,求x y 的值.CA平方根(2)9.什么样的数有平方根?10.算术平方根与平方根的区别与联系是什么?谈谈你的看法?11.负数为什么没有平方根,即负数不能进行开平方运算的原因是什么?12.什么叫开平方呢?我们共学了几种运算呢,这几种运算之间有怎样的联系呢?13.一个正数有几个平方根?14.0有几个平方根?二、探讨,总结:A.平方根与算术平方根的联系与区别联系:(1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种.(2)存在条件相同:平方根和算术平方根都是只有非负数才有.(3)0的平方根,算术平方根都是0.区别:(1)定义不同:“如果一个数的平方等于a,这个数就叫做a的平方根”;“非负数a的非负平方根叫a的算术平方根”.(2)个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个.(3)表示法不同:正数a的平方根表示为±a,正数a的算术平方根表示为a.(4)取值范围不同:正数的平方根一正一负,互为相反数;正数的算术平方根只有一个.B.一个正数有两个平方根,它们互为相反数。

相关文档
最新文档