初中几何学霸内部秘籍系列1(学而思培优竞赛)

合集下载

(word完整版)学而思寒假七年级尖子班讲义第1讲平行线四大模型(1)

(word完整版)学而思寒假七年级尖子班讲义第1讲平行线四大模型(1)

目录Contents第1讲平行线四大模型 (1)第2讲实数三大概念 (17)第3讲平面直角坐标系 (33)第4讲坐标系与面积初步 (51)第5讲二元一次方程组进阶 (67)第6讲含参不等式〔组〕 (79)1 平行线四大模型知识目标目标一熟练掌握平行线四大模型的证实目标二熟练掌握平行线四大模型的应用目标三掌握辅助线的构造方法,熟悉平行线四大模型的构造秋季回忆平行线的判定与性质1、平行线的判定根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,假设/ 1 = 72,那么AB// CD 〔同位角相等,两直线平行〕;假设/ 1 = 7 3,那么AB// CD 〔内错角相等,两直线平行〕;假设/ 1+ /4= 180°,那么AB//CD 〔同旁内角互补,两直线平行〕.另有平行公理推论也能证实两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.2、平行线的性质利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的数量关系,这就是平行线的性质.性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补本讲进阶平行线四大模型模型一“铅笔〞模型点P在EF右侧,在AB、CD内部结论 1 :假设AB // CD,贝U/ P+Z AEP + ZPFC =3 60° ;结论2:假设/ P+/AEP+/PFC= 360°,贝U AB//CD.模型二“猪ET模型〔M模型〕点P在EF左侧,在AB、CD内部“猪蹄〞模型结论 1 :假设AB // CD,贝U/ P=/AEP + /CFP ;结论 1 :假设AB // CD ,贝U/ P=Z AEP-ZCFP 或/ P=/ CFP-/AEP; 结论2:假设/ P=/AEP- / CFP 或/ P=/CFP- / AEP,贝U AB // CD.模型四“骨折〞模型点P在EF左侧,在AB、CD外部“骨折〞模型结论 1 :假设AB // CD ,贝U/ P=Z CFP- / AEP 或/ P=Z AEP-/ CFP ; 结论2:假设/ P= ZCFP- / AEP 或/ P= ZAEP- / CFP,贝U AB // CD.稳固练习平行线四大模型证实(1) AE // CF ,求证/ P +/AEP +/ PFC = 360(2) / P=Z AEP+ZCFP,求证AE//CF.(3) AE//CF,求证/ P=/AEP-/CFP.(4) ZP= ZCFP -/AEP,求证AE //CF .模块一平行线四大模型应用例1(1)如图,a//b, M、N分别在a、b上,P为两平行线间一点,那么/ l + /2+/3= .(2)如图,AB//CD,且/ A=25° , / 0=45°,那么/ E 的度数是(3)如图, AB// DE, /ABC=80° , / 0DE =140°,那么/ B0D= .A* ---------------------- rB (4)如图,射线AC//BD, / A= 70° , / B= 40°,那么/ P=(1)如下图,AB//CD, /E=37° , / 0= 20 °,那么/ EAB 的度数为(2) (七一中学2021-2021七下3月月考)如图,AB // CD, / B=30° , / O=/ C.那么/ 0=例2如图, AB//DE, BF、DF分别平分/ ABC、/ CDE,求/ C、/ F的关系.练如图, AB//DE, /FBC = 1/ABF, /FDC = 1/FDE. n n⑴假设n=2,直接写出/ C、/ F的关系 ;(2)假设n=3,试探冗/ C、/F的关系;(3)直接写出/ C、/ F的关系 (用含n的等式表示)如图, AB//CD, BE 平分/ABC, DE 平分 / ADC .求证:/ E= 2 (/A+/C).如图,己知AB//DE, BF、DF分别平分/ ABC、/ CDE ,求/ C、/ F的关系.例4如图,/ 3==/1+/2,求证:/ A+/B+/C+/D=180〔武昌七校2021-2021七下期中〕如图, ABXBC, AE 平分/ BAD 交BC 于E, AEXDE , / 1+ / 2= 90° ,M、N分别是BA、CD的延长线上的点,/ EAM和/ EDN的平分线相交于点F那么/ F的度数为〔〕A. 120° B.135° C. 145°D,150°模块二平行线四大模型构造例5如图,直线AB//CD, / EFA= 30° , / FGH = 90 /GHM = . ,/ HMN =30° , / CNP= 50°,那么如图,直线AB//CD, / EFG =100° , / FGH =140°,那么/ AEF+ ZCHG =例6/ B =25° , / BCD=45° , / CDE =30 ° , Z E=l0°,求证:AB // EF .练AB // EF,求/ 1- / 2+/3+/4 的度数.⑴如图⑴, MA i//NA n,探索/ A i、/A2、…、/ A n, / B i、/ B2…/B n-1之间的关系.(2)如图(2),己知MA i// NA4,探索/ A i、/ A2、/ A3、/ A4, / B i、/ B2之间的关系.(3)如图(3),MA i// NA n,探索/ A i、/ A2、…、/ A n之间的关系.如下图,两直线AB//CD平行,求/ i+/2+/3+/4+/5+/6.挑战压轴题(粮道街2021—2021七下期中)如图1,直线AB//CD, P是截线MN上的一点,MN与CD、AB分别交于E、F.(1)假设/EFB=55° , / EDP= 30°,求/ MPD 的度数;(2)当点P在线段EF上运动时,/ CPD与/ ABP的平分线交于Q,问:一Q-是否为定值?假设是定值, 请DPB求出定值;假设不是,说明其范围;(3)当点P在线段EF的延长线上运动时,/ CDP与/ ABP的平分线交于Q,问——的值足否认值,请DPB在图2中将图形补充完整并说明理由.图1 图2第一讲平行线四大模型〔课后作业〕1.如图,AB // CD // EF , EH^CD 于 H ,贝U/ BAC+/ACE +/CEH 等于〔〕.3 .如图 3,己知 AE// BD, / 1=130° , / 2=30 ° ,贝U/ C=4 .如图,直线 AB//CD, /C =115° , / A= 25 ° ,那么/ E=5 .如阁所示,AB// CD, / l=l l0° , / 2=120° ,那么/ 后6 .如下图, AB// DF, /D =116° , / DCB=93° ,那么/ B=A.180°B.270°C.360°2.(武昌七校 2021-2021七下期中) D. 450假设 AB // CD , / CDF =-/ CDE, 3 / ABF = - Z ABE,3贝叱 E: / F=( ).A. 2: 1B. 3: 1C. 4: 3AE7.如图,将三角尺的直角顶点放在直线 a 上,a// b. Z 1=50° , Z 2 =60°,那么/ 3的度数为8.如图,AB//CD, EP± FP,/1=30° , / 2=20°.那么/F的度数为9 .如图,假设AB//CD, ZBEF=70°,求/ B+/F+/C 的度数.10 .,直线AB// CD.(1)如图l, / A、/C、/ AEC之间有什么关系?请说明理由;(2)如图2, / AEF、/ EFC、/ FCD之间有什么关系?请说明理由;(3)如图3, / A、/ E、/ F、/ G、/ H、/ O、/ C 之间的关是—FA第11页共11。

学而思寒假七年级尖子班讲义第1讲平行线四大模型(1)

学而思寒假七年级尖子班讲义第1讲平行线四大模型(1)

目次之袁州冬雪创作Contents第1讲平行线四大模子 (1)第2讲实数三大概念 (17)第3讲平面直角坐标系 (33)第4讲坐标系与面积初步 (51)第5讲二元—次方程组进阶 (67)第6讲含参不等式(组) (79)1平行线四大模子知识方针方针一熟练掌握平行线四大模子的证明方针二熟练掌握平行线四大模子的应用方针三掌握辅助线的构造方法,熟悉平行线四大模子的构造秋季回顾平行线的断定与性质l、平行线的断定根据平行线的定义,如果平面内的两条直线不相交,便可以断定这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有坚苦,所以难以直接根据定义来断定两条直线是否平行,这就需要更简单易行的断定方法来断定两直线平行.断定方法l:两条直线被第三条直线所截,如果同位角相等,那末这两条直线平行.简称:同位角相等,两直线平行.断定方法2:两条直线被第三条直线所截,如果内错角相等,那末这两条直线平行.简称:内错角相等,两直线平行,断定方法3:两条直线被第三条直线所截,如果同旁内角互补,那末这两条直线平行.简称:同旁内角互补,两直线平行,如上图:若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行).还有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那末这两条直线也互相平行.2、平行线的性质操纵同位角相等,或者内错角相等,或者同旁内角互补,可以断定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的数量关系,这就是平行线的性质.性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补本讲进阶平行线四大模子模子一“铅笔”模子点P在EF右侧,在AB、CD外部“铅笔”模子结论1:若AB∥CD,则∠P+∠AEP+∠PFC=360°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.模子二“猪蹄”模子(M模子)点P在EF左侧,在AB、CD外部“猪蹄”模子结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.模子三“臭脚”模子点P在EF右侧,在AB、CD外部“臭脚”模子结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.模子四“骨折”模子点P在EF左侧,在AB、CD外部“骨折”模子结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.巩固操练平行线四大模子证明(1)已知AE // CF ,求证∠P +∠AEP +∠PFC = 360°.(2)已知∠P=∠AEP+∠CFP,求证AE∥CF.(3)已知AE∥CF,求证∠P=∠AEP-∠CFP.(4) 已知∠P = ∠CFP -∠AEP ,求证AE //CF .模块一 平行线四大模子应用例1(1)如图,a ∥b ,M 、N 分别在a 、b 上,P 为两平行线间一点,那末∠l +∠2+∠3= .(2)如图,AB ∥CD ,且∠A =25°,∠C =45°,则∠E的度数是. (3)如图,已知AB ∥DE ,∠ABC =80°,∠CDE =140°,则∠BCD = .(4) 如图,射线AC ∥BD ,∠A = 70°,∠B = 40°,则∠P =.练(1)如图所示,AB ∥CD ,∠E =37°,∠C = 20°,则∠EAB 的度数为.(2) (七一中学2015-2016七下3月月考)如图,AB ∥CD ,∠B =30°,∠O =∠C .则∠C =.例2如图,已知AB ∥DE ,BF 、DF 分别平分∠ABC 、∠CDE ,求∠C 、∠F 的关系.练如图,已知AB ∥DE ,∠FBC =n 1∠ABF ,∠FDC =n 1∠FDE . (1)若n =2,直接写出∠C 、∠F 的关系; (2)若n =3,试探宄∠C 、∠F 的关系;(3)直接写出∠C 、∠F的关系 (用含n 的等式暗示). 例3如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC .求证:∠E = 2 (∠A +∠C ) .练如图,己知AB∥DE,BF、DF分别平分∠ABC、∠CDE,求∠C、∠F的关系.例4如图,∠3==∠1+∠2,求证:∠A+∠B+∠C+∠D= 180°.练(武昌七校2015-2016七下期中)如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠l+∠2= 90°,M、N分别是BA、CD的延长线上的点,∠EAM和∠EDN的平分线相交于点F则∠F的度数为().A. 120°B. 135°C. 145°D. 150°模块二平行线四大模子构造例5如图,直线AB∥CD,∠EFA= 30°,∠FGH= 90°,∠HMN=30°,∠CNP= 50°,则∠GHM=.练如图,直线AB∥CD,∠EFG =100°,∠FGH =140°,则∠AEF+ ∠CHG=.例6已知∠B =25°,∠BCD=45°,∠CDE =30°,∠E=l0°,求证:AB∥EF.练已知AB∥EF,求∠l-∠2+∠3+∠4的度数.(1)如图(l ),已知MA 1∥NA n ,探索∠A 1、∠A 2、…、∠A n ,∠B 1、∠B 2…∠B n -1之间的关系.(2)如图(2),己知MA 1∥NA 4,探索∠A 1、∠A 2、∠A 3、∠A 4,∠B 1、∠B 2之间的关系.(3)如图(3),已知MA 1∥NA n ,探索∠A 1、∠A 2、…、∠A n 之间的关系.如图所示,两直线AB ∥CD 平行,求∠1+∠2+∠3+∠4+∠5+∠6. 挑战压轴题(粮道街2015—2016七下期中)如图1,直线AB ∥CD ,P 是截线MN 上的一点,MN 与CD 、AB 分别交于E 、F .(1)若∠EFB =55°,∠EDP = 30°,求∠MPD 的度数;(2)当点P 在线段EF 上运动时,∠CPD 与∠ABP 的平分线交于Q ,问:DPB Q∠∠是否为定值?若是定值,请求出定值;若不是,说明其范围;(3)当点P 在线段EF 的延长线上运动时,∠CDP 与∠ABP 的平分线交于Q ,问DPB Q∠∠的值足否定值,请在图2中将图形补偿完整并说明来由.第一讲平行线四大模子(课后作业)1.如图,AB // CD // EF , EH ⊥CD 于H ,则∠BAC +∠ACE +∠CEH 等于( ).A . 180°B . 270°C . 360°D . 450°2.(武昌七校2015-2016七下期中)若AB ∥CD ,∠CDF =32∠CDE ,∠ABF =32∠ABE ,则∠E :∠F =( ).A .2:1B .3:1C .4:3D .3:23.如图3,己知AE ∥BD ,∠1=130°,∠2=30°,则∠C =.4.如图,已知直线AB ∥CD ,∠C =115°,∠A = 25°,则∠E =. 5.如阁所示,AB ∥CD ,∠l =ll 0°,∠2=120°,则∠α=. 6.如图所示,AB ∥DF ,∠D =116°,∠DCB =93°,则∠B =. 7.如图,将三角尺的直角顶点放在直线a 上,a ∥b .∠1=50°,∠2=60°,则∠3的度数为.8.如图,AB ∥CD ,EP ⊥FP , 已知∠1=30°,∠2=20°.则∠F 的度数为.9.如图,若AB ∥CD ,∠BEF =70°,求∠B +∠F +∠C 的度数.10.已知,直线AB ∥CD .(1)如图l ,∠A 、∠C 、∠AEC 之间有什么关系?请说明来由;(2)如图2,∠AEF 、∠EFC 、∠FCD 之间有什么关系?请说明来由;(3)如图3,∠A 、∠E 、∠F 、∠G 、∠H 、∠O 、∠C 之间的关是.。

学而思培优内部资料七年级上册第四章几何初步(学生版)

学而思培优内部资料七年级上册第四章几何初步(学生版)

8 (2分)小方家距学校为 ,小强家距离学校为 ,则小方家与小强家的距离为( ).
A.
B.
C.
D. 不能确定
9 (2分)线段 A.
,点 在 上,且
, 为 的中点, 的长为( ).
B.
C.
D.
10 (2分)如图, ).
的大小可由量角器测得,作
的角平分线 ,则
的大小为(
A.
B.
C.
D.
11 (2分)如图所示,已知
单位/s的速度从点 向右运动,同时点 以 个单位/s的速度向左运动,点 以 个单位/s的速度向
右运动,在运动过程中, 、 分别是 、 的中点,设运动时间为 秒.请问:
的值
是否发生变化?请说明理由.
21 (8分)如图所示,把崔大花的腰带对折成线段 ,从点 处把腰带剪断,已知

若剪断后的各段腰带中最长的一段为 ,求腰带的原长.
22 (3分)上午 点 分,时钟的时针和分针成的锐角为( ).
A.
B.
C.
D.
23 (3分)时钟 点 分,时针和分针所夹的锐角的度数是( ).
A.
B.
C.
D.
24 (3分)如图,已知

,是
的平分线,
,则( ).
A. 射线 的方向为东偏北 C. 射线 的方向为西偏南
B. 射线 的方向为北偏东 D. 射线 的方向为南偏西
4 (3分)已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为( ).
A.
B.
C. 或
D. 或
5 (2分)如图,是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数 可能是( ).

学而思培优内部资料七年级上册第四章几何初步(解析版)

学而思培优内部资料七年级上册第四章几何初步(解析版)

B.
C.
D.
答案 C
解析 由图知: ∵ 平分 ∴
, ,

考点 几何图形初步 > 角 > 角度的运算 > 题型:角的和差的计算与证明-有图
11 (2分)如图所示,已知

, 平分
, 平分
,则
的度数为( ).
A.
B.
C.
D.
答案 B
解析 ∵ 平分 ∴ ∵ ∴
, 平分 , ,
, ,





故选 .
考点 几何图形初步 > 角 > 角度的运算 > 题型:角的和差的计算与证明-有图
答案 D
解析 点 可以在直线 上,也可以在直线 外,但是不能在线段 上.
考点 几何图形初步 > 直线、射线、线段 > 直线、射线、线段问题 > 题型:线段和差-无图
“ ”与“ ”是相对面,
所以,相对两个面上的数字之和的最大值是

故选 .
考点 几何图形初步 > 几何图形 > 展开图 > 题型:正方体展开图
3 (8分)马小虎准备制作一个封闭的正方体盒子,他先用 个大小一样的正方形制成如图所示的拼 接图(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新 拼接成的图形经过折叠后能成为一个封闭的正方体盒子.【注:( )只需添加一个符合要求的 正方形.( )添加的正方形用阴影表示】
错误,有三条线段; 正确,每个点有两条射线,总共六条; 错误,直线没有延长线; 错误,距离不是线段,而是线段的长度.
考点 几何图形初步 > 直线、射线、线段 > 直线、射线、线段问题 > 题型:直线、射线、线段概念 考查

初二学而思数学旋转在解几何题中的九种常用技巧

初二学而思数学旋转在解几何题中的九种常用技巧

初二学而思数学旋转在解几何题中的九种常用技巧摘要:1.旋转的基本概念和作用2.九种常用旋转技巧概述3.旋转在解几何题中的应用实例4.总结与建议正文:随着年龄的增长和学业的深入,初二年级的学生已开始接触几何知识。

在学习过程中,旋转这一概念的应用越来越重要。

本文将为大家介绍初二学而思数学中,旋转在解几何题中的九种常用技巧,帮助大家在解题过程中事半功倍。

一、旋转的基本概念和作用旋转是指在平面内,将一个图形围绕某个点或轴进行转动。

旋转后的图形与原图形相似,但位置和方向发生了变化。

在几何题中,合理运用旋转可以简化问题,化繁为简。

二、九种常用旋转技巧概述1.旋转对称:将图形围绕某一点旋转一定角度,得到与原图形关于旋转中心对称的图形。

2.轴对称:将图形围绕某一直线轴旋转180度,得到与原图形关于轴对称的图形。

3.中心对称:将图形围绕某一点旋转180度,得到与原图形关于中心对称的图形。

4.旋转变换:将图形围绕某一点旋转一定角度,用于转化图形的形状和位置。

5.相似变换:将图形围绕某一点旋转一定角度,使得图形的形状相似,但大小和位置发生变化。

6.垂直平分线:将图形的某一边或线段旋转180度,得到与原图形垂直且平分的线段。

7.角平分线:将图形的某个角旋转180度,得到与原角平分的角。

8.平行线变换:将图形中的一条直线旋转一定角度,使得旋转后的直线与另一条直线平行。

9.切线变换:将图形的某一点作为旋转中心,使得旋转后的图形切线与原图形的切线重合。

三、旋转在解几何题中的应用实例1.题目:已知矩形ABCD,求证AB=CD。

解题思路:将矩形ABCD围绕对角线AC旋转180度,得到平行四边形ABCD"。

由于旋转后的平行四边形与原矩形相似,且对应边相等,故可证明AB=CD。

2.题目:已知等腰三角形ABC,求证∠ACB=90°。

解题思路:将等腰三角形ABC围绕顶点A旋转180度,得到等腰三角形ABC"。

学而思秘籍分类

学而思秘籍分类

巧算分数5-2巧算加减法综合5-10分数初识5-13巧算乘法9-1分数乘除5-14巧算除法9-2分数加减6-2巧算综合11-1分数裂项7-13多位数计算10-13分数四则混合运算8-4第五种运算9-16分数应用题10-18完全平方数6-9小数的认识10-19位值原理7-4小数的计算11-17比较与估算8-1小数巧算9-14循环小数9-9比和比例9-10比例模型10-7比例应用题11-19比例法解行程解方程数列5-20等式代换6-13等差数列初步6-3用字母表示数7-5等差数列进阶6-18解方程8-8整数与数列6-19列方程11-6整数裂项与通项归纳7-10定义新运算初步10-3定义新运算进阶8-18方程与方程组8-19列方程(组)解应用题11-15列方程(组)解应用题10-4方程法解行程10-16不定方程数论几何5-16周期问题进阶5-6巧求周长进阶5-18奇数与偶数进阶5-9长方形与正方形8-10整数特征进阶6-1角度9-18神奇的96-10平行四边形与梯形8-16进位制初步7-2三角形初步12-12进位制进阶7-3三角形进阶8-5质数与合数初步8-2格点与割补9-6质数与合数进阶10-8时钟问题5-19字典排列法与树形图10-9圆与扇形初步6-12带余除法进阶10-12勾股定理7-8整除特征初步10-17圆与扇形进阶10-14带余除法综合11-10特殊图形10-15同余12-1图形结合9-13因数和倍数初步12-3复合图形分拆10-11因数与倍数进阶12-6旋转与轨迹11-9数论中的组合7-14等积变形12-5数论中的规律7-15一半模型9-15鸟头模型9-19蝴蝶模型10-2燕尾模型10-5长方体与正方体10-20立体图形与空间想象12-2圆柱与圆锥应用问题行程问题逻辑推理5-8归一问题6-20速度、路程与时间6-6逻辑推理综合1 5-11和倍问题7-6相遇问题7-9逻辑推理综合2 5-12差倍问题7-7追及问题11-8逻辑推理综合3 6-4和差倍综合7-20环形跑道7-16最值问题初步5-15鸡兔同笼进阶8-6火车过桥8-14最值问题进阶5-17盈亏问题8-12流水行船11-14最值问题综合6-7方阵8-17相遇与追及综合8-9统筹与最优化6-11年龄问题进阶9-17电梯与发车问题8-15操作类智巧趣题9-7牛吃草问题11-12多次相遇与追及9-3棋盘中的数学11-18浓度问题12-11变速问题9-11斥容问题12-4经济问题8-7包含与排除9-20工程问题初步9-12必胜策略12-10工程问题进阶11-2归纳与递推11-5应用题综合111-3切片与染色11-13应用题综合211-4韩信点兵12-13应用题综合312-15计算问题综合选讲12-16图形问题综合选讲12-17整数问题综合选讲12-18组合问题综合选讲12-19应用问题综合选讲12-20行程问题综合选讲数字谜计数解题方法5-3加减法竖式数字谜进阶5-1找规律综合6-16标数法5-4突破乘法竖式6-15平面图形计数综合9-4枚举法5-5突破除法竖式7-12几何计数初步11-11从整体考虑6-8巧填算符综合10-10几何计数进阶12-7算两次7-19破译乘除法竖式6-14统计12-8从极端中考虑7-17数阵图初步5-7平均数初步6-5逆向思考进阶9-8数阵图综合7-18平均数进阶8-3数表-从日历谈起8-13抽屉原理初步10-6数表-杨辉三角12-14抽屉原理进阶11-7弦图11-16排列组合进阶10-1数字谜中的最值9-5排列组合初步12-9数字谜中的计数7-1加乘原理初步8-11加乘原理进阶6-17页码问题7-11体育比赛中的数学11-20概率初识。

学而思1v1初中数物化知识清单

学而思1v1初中数物化知识清单

学而思1v1初中数物化知识清单学而思1v1初中数物化科目是指数学、物理和化学三个科目的辅导课程。

这些课程涵盖了初中数物化的全部知识内容,并且通过一对一的教学方式,帮助学生提高课程的学习效果和成绩。

下面是学而思1v1初中数物化知识清单,总结了常见的课题和重点知识点。

1、数学(1)代数知识:包括代数式、方程、不等式、函数等基本概念和基本解法。

(2)几何知识:包括线、面、体的基本性质,图形的分类和性质,三角形、四边形、圆的性质等。

(3)概率与统计:包括事件的概率、样本调查、频率分布、平均数、中位数、众数等基本概念和计算方法。

(4)数与式:包括整数、有理数、分数、百分数等数的基本性质和运算法则。

(5)数与图:包括数轴、坐标轴、函数图形等基本概念和作图方法。

(6)变量与变化:包括函数的图像、函数的性质和变化规律等基本概念和计算方法。

2、物理(1)物理量和单位:包括常用物理量的定义、计量单位的换算和使用方法。

(2)力和运动:包括力的作用、力的合成与分解、运动的基本概念和运动规律。

(3)机械能:包括力的功与能量、机械能的转化和守恒等基本概念和计算方法。

(4)光学:包括光的传播、光的反射、光的折射等基本概念和现象。

(5)电学:包括电流、电压、电阻等基本概念,电路中的串联和并联,电平衡和电能转化等。

(6)热学:包括热的传递方式、热的量和单位、热的膨胀等基本概念和计算方法。

3、化学(1)物质的组成与变化:包括元素、化合物、混合物的定义和区分,化学反应的基本概念和表示方式。

(2)常见物质:包括常见元素、常见化合物、常见气体等的性质和用途。

(3)溶液与分离:包括溶液的制备和性质,溶解度的影响因素,常见分离方法的原理和应用。

(4)酸碱与盐:包括酸碱的性质和特征,酸碱中和反应和中和计算等基本概念和数学计算方法。

(5)氧化与还原:包括氧化还原反应的基本概念和表示方式,常见氧化还原反应的实际应用。

(6)化学能:包括能量的守恒和转化,燃烧和火焰的产生原理等基本概念和计算方法。

学而思七年级数学培优讲义word版(全年级章节培优-绝对经典)

学而思七年级数学培优讲义word版(全年级章节培优-绝对经典)

第1讲 与有理数有关的概念 考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量. 2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数. 经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米⑵收人-50元⑶体重增加-3千克【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等” 解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作( ) A . -18% B . -8% C . +2% D . +8% 02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( ) A . -5吨 B . +5吨 C . -3吨 D . +3吨 03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间l5:00,纽约时问是____【例2】在-227,π,0.033.3这四个数中有理数的个数( )A . 1个B . 2个C . 3个D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C . 【变式题组】01.在7,0.1 5,-12,-301.31.25,-18,100.l ,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置 15,-1,2,-13,0.1.-5.32,123, 2.333【例3】(宁夏)有一列数为-1,12,-13,14.-15,16,…,找规律到第2017个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.击归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2017个数的分子也是1.分母是2017,并且是一个负数,故答案为-12007. 【变式题组】 01.(湖北宜宾)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四十数是17=9+8…观察并精想第六个数是 . 02.(毕节)毕选哥拉斯学派发明了一种“馨折形”填数法,如图则?填____. 03.(茂名)有一组数l ,2,5,10,17,26…请观察规律,则第8个数为____. 【例4】(2017年河北张家口)若l +m 2的相反数是-3,则m 的相反数是____.【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫互为相反数,本题m2=-4,m =-8【变式题组】 01.(四川宜宾)-5的相反数是( ) A .5 B . 15 C . -5 D . -1502.已知a 与b 互为相反数,c 与d 互为倒数,则a +b +cd =______03.如图为一个正方体纸盒的展开图,若在其中的三个正方形A 、B 、C 内分别填人适当的数,使得它们折成正方体.若相对的面上的两个数互为相反数,则填人正方形A 、B 、C 内的三个数依次为( )A . - 1 ,2,0B . 0,-2,1C . -2,0,1D . 2,1,0 【例5】(湖北)a 、b 为有理数,且a >0,b <0,|b|>a ,则a,b 、-a,-b 的大小顺序是( ) A . b <-a <a <-b B . –a <b <a <-b C . –b <a <-a <b D . –a <a <-b <b【解法指导】理解绝对值的几何意义:一个数的绝对值就是数轴上表示a 的点到原点的距离,即|a|,用式子表示为|a|=0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩(.本题注意数形结合思想,画一条数轴标出a 、b,依相反数的意义标出-b,-a,故选A .【变式题组】01.推理①若a =b ,则|a|=|b|;②若|a|=|b|,则a =b ;③若a≠b ,则|a|≠|b|;④若|a|≠|b|,则a≠b ,其中正确的个数为( )A . 4个B . 3个C . 2个D . 1个02.a 、b 、c 三个数在数轴上的位置如图,则|a|a +|b|b +|c|c = .03.a 、b 、c 为不等于O 的有理散,则a |a|+b |b|+c|c|的值可能是____.【例6】(江西课改)已知|a -4|+|b -8|=0,则a+bab的值.【解法指导】本题主要考查绝对值概念的运用,因为任何有理数a 的绝对值都是非负数,即|a|≥0.所以|a -4|≥0,|b -8|≥0.而两个非负数之和为0,则两数均为0.解:因为|a -4|≥0,|b -8|≥0,又|a -4|+|b -8|=0,∴|a -4|=0,|b -8|=0即a -4=0,b -8=0,a =4,b =8.故a+b ab =1232=38【变式题组】01.已知|a|=1,|b|=2,|c|=3,且a >b >c ,求a +b +C . 02.(毕节)若|m -3|+|n +2|=0,则m +2n 的值为( ) A . -4 B . -1 C . 0 D . 403.已知|a|=8,|b|=2,且|a -b|=b -a ,求a 和b 的值 【例7】(第l8届迎春杯)已知(m +n)2+|m|=m ,且|2m -n -2|=0.求mn 的值. 【解法指导】本例关键是通过分析(m +n)2+|m|的符号,挖掘出m 的符号特征,从而把问题转化为(m +n)2=0,|2m -n -2|=0,找到解题途径. 解:∵(m +n)2≥0,|m|≥O∴(m +n)2+|m|≥0,而(m +n)2+|m|=m ∴ m≥0,∴(m +n)2+m =m ,即(m +n)2=0 ∴m +n =O ① 又∵|2m -n -2|=0 ∴2m -n -2=0 ②由①②得m =23,n =-23,∴ mn =-49【变式题组】01.已知(a +b)2+|b +5|=b +5且|2a -b –l|=0,求a -B . 02.(第16届迎春杯)已知y =|x -a|+|x +19|+|x -a -96|,如果19<a <96.a≤x≤96,求y 的最大值. 演练巩固·反馈提高 01.观察下列有规律的数12,16,112,120,130,142…根据其规律可知第9个数是( )A .156 B . 172 C . 190 D . 111002.(芜湖)-6的绝对值是( )A . 6B . -6C . 16D . -1603.在-227,π,8..0.3四个数中,有理数的个数为( )A . 1个B . 2个C . 3个D . 4个 04.若一个数的相反数为a +b ,则这个数是( )A . a -bB . b -aC . –a +bD . –a -b05.数轴上表示互为相反数的两点之间距离是6,这两个数是( )06.若-a 不是负数,则a( )A . 是正数B . 不是负数C . 是负数D . 不是正数 07.下列结论中,正确的是( )①若a =b,则|a|=|b| ②若a =-b,则|a|=|b| ③若|a|=|b|,则a =-b ④若|a|=|b|,则a =bA . ①②B . ③④C . ①④D . ②③08.有理数a 、b 在数轴上的对应点的位置如图所示,则a 、b ,-a ,|b|的大小关系正确 的是( )A . |b|>a >-a >bB . |b| >b >a >-aC . a >|b|>b >-aD . a >|b|>-a >b09.一个数在数轴上所对应的点向右移动5个单位后,得到它的相反数的对应点,则这个数是____. 10.已知|x +2|+|y +2|=0,则xy =____. 11.a 、b 、c 三个数在数轴上的位置如图,求|a|a+|b|b +|abc|abc +|c|c12.若三个不相等的有理数可以表示为1、a 、a +b 也可以表示成0、b 、ba 的形式,试求a 、b 的值.13.已知|a|=4,|b|=5,|c|=6,且a >b >c ,求a +b -C .14.|a|具有非负性,也有最小值为0,试讨论:当x 为有理数时,|x -l|+|x -3|有没有最小值,如果有,求出最小值;如果没有,说明理由.15.点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为|AB|.当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,|AB|=|OB|=|b|=|a -b| 当A 、B 两点都不在原点时有以下三种情况: ①如图2,点A 、B 都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=b -a =|a -b|;②如图3,点A 、B 都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b -(-a)=|a -b|; ③如图4,点A 、B 在原点的两边,|AB|=|OB|-|OA|=|b|-|a|=-b -(-a )=|a -b|; 综上,数轴上A 、B 两点之间的距离|AB|=|a -b|.回答下列问题:⑴数轴上表示2和5的两点之间的距离是 , 数轴上表示-2和-5的两点之间的距离是 , 3 ,数轴上表示1和-3的两点之间的距离是 4 ;⑵数轴上表示x 和-1的两点分别是点A 和B ,则A 、B 之间的距离是 |x+1| ,如果|AB|=2,那么x = 1或3;⑶当代数式|x +1|+|x -2|取最小值时,相应的x 的取值范围是 7 .培优升级·奥赛检测 01.(重庆市竞赛题)在数轴上任取一条长度为201719的线段,则此线段在这条数轴上最多能盖住的整数点的个数是( )A . 2017B . 2017C . 2017D . 2017 02.(第l8届希望杯邀请赛试题)在数轴上和有理数a 、b 、c 对应的点的位置如图所示,有下列四个结论:①abc <0;②|a -b|+|b -c|=|a -c|;③(a -b )(b -c)(c -a)>0;④|a|<1-bc .其中正确的结论有( ) A . 4个 B . 3个 C . 2个 D . 1个03.如果a 、b 、c 是非零有理数,且a +b +c =0.那么a |a|+b |b|+c |c|+abc|abc|的所有可能的值为( )A . -1B . 1或-1C . 2或-2D . 0或-2 04.已知|m|=-m ,化简|m -l|-|m -2|所得结果( )A . -1B . 1C . 2m -3D . 3- 2m05.如果0<p <15,那么代数式|x -p|+|x -15|+|x -p -15|在p ≤x ≤15的最小值( ) A . 30 B . 0 C . 15 D . 一个与p 有关的代数式 06.|x +1|+|x -2|+|x -3|的最小值为 .07.若a >0,b <0,使|x -a|+|x -b|=a -b 成立的x 取值范围 . 08.(武汉市选拔赛试题)非零整数m 、n 满足|m|+|n|-5=0所有这样的整数组(m ,n)共有 组 09.若非零有理数m 、n 、p 满足|m|m +|n|n +|p|p =1.则2mnp |3mnp|= .11.已知(|x+l|+|x-2|)(|y-2|+|y+1|)(|z-3|+|z+l|)=36,求x+2y+3的最大值和最小值.12.电子跳蚤落在数轴上的某点k0,第一步从k0向左跳1个单位得k1,第二步由k1向右跳2个单位到k2,第三步由k2向左跳3个单位到k3,第四步由k3向右跳4个单位到k4…按以上规律跳100步时,电子跳蚤落在数轴上的点k100新表示的数恰好19.94,试求k0所表示的数.13.某城镇,沿环形路上依次排列有五所小学,它们顺扶有电脑15台、7台、1l台、3台,14台,为使各学校里电脑数相同,允许一些小学向相邻小学调出电脑,问怎样调配才能使调出的电脑总台数最小?并求出调出电脑的最少总台数.第02讲有理数的加减法考点·方法·破译1.理解有理数加法法则,了解有理数加法的实际意义.2.准确运用有理数加法法则进行运算,能将实际问题转化为有理数的加法运算.3.理解有理数减法与加法的转换关系,会用有理数减法解决生活中的实际问题.4.会把加减混合运算统一成加法运算,并能准确求和.经典·考题·赏析【例1】(河北唐山)某天股票A开盘价18元,上午11:30跌了1.5元,下午收盘时又涨了0.3元,则股票A 这天的收盘价为()A.0.3元B.16.2元C.16.8元D.18元【解法指导】将实际问题转化为有理数的加法运算时,首先将具有相反意义的量确定一个为正,另一个为负,其次在计算时正确选择加法法则,是同号相加,取相同符号并用绝对值相加,是异号相加,取绝对值较大符号,并用较大绝对值减去较小绝对值.解:18+(-1.5)+(0.3)=16.8,故选C.【变式题组】01.今年陕西省元月份某一天的天气预报中,延安市最低气温为-6℃,西安市最低气温2℃,这一天延安市的最低气温比西安低()A.8℃B.-8℃C.6℃D.2℃02.(河南)飞机的高度为2400米,上升250米,又下降了327米,这是飞机的高度为__________ 03.(浙江)珠穆朗玛峰海拔8848m,吐鲁番海拔高度为-155 m,则它们的平均海拔高度为__________【例2】计算(-83)+(+26)+(-17)+(-26)+(+15)【解法指导】应用加法运算简化运算,-83与-17相加可得整百的数,+26与-26互为相反数,相加为0,有理数加法常见技巧有:⑴互为相反数结合一起;⑵相加得整数结合一起;⑶同分母的分数或容易通分的分数结合一起;⑷相同符号的数结合一起.解:(-83)+(+26)+(-17)+(-26)+(+15)=[(-83)+(-17)]+[(+26)+(-26)]+15=(-100)+15=-85【变式题组】01.(-2.5)+(-312)+(-134)+(-114)13216411618141202.(-13.6)+0.26+(-2.7)+(-1.06)03.0.125+314+(-318)+1123+(-0.25)【例3】计算111112233420082009++++⨯⨯⨯⨯【解法指导】依111(1)1n n n n =-++进行裂项,然后邻项相消进行化简求和.解:原式=1111111(1)()()()2233420082009-+-+-++-=111111112233420082009-+-+-++-=112009-=20082009【变式题组】01.计算1+(-2)+3+(-4)+ … +99+(-100)02.如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的正方形,再把面积为14的正方形等分成两个面积为18的长方形,如此进行下去,试利用图形揭示的规律计算11111111248163264128256+++++++=__________.-a -b 0b a 【例4】如果a <0,b >0,a +b <0,那么下列关系中正确的是( ) A .a >b >-b >-a B .a >-a >b >-b C .b >a >-b >-a D .-a >b >-b >a【解法指导】紧扣有理数加法法则,由两加数及其和的符号,确定两加数的绝对值的大小,然后根据相反数的关系将它们在同一数轴上表示出来,即可得出结论. 解:∵a <0,b >0,∴a +b 是异号两数之和又a +b <0,∴a 、b 中负数的绝对值较大,∴| a |>| b |将a 、b 、-a 、-b 表示在同一数轴上,如图,则它们的大小关系是-a >b >-b >a 【变式题组】01.若m >0,n <0,且| m |>| n |,则m +n ________ 0.(填>、<号)02.若m <0,n >0,且| m |>| n |,则m +n ________ 0.(填>、<号)03.已知a <0,b >0,c <0,且| c |>| b |>| a |,试比较a 、b 、c 、a +b 、a +c 的大小【例5】425-(-33311)-(-1.6)-(-21811)【解法指导】有理数减法的运算步骤:⑴依有理数的减法法则,把减号变为加号,并把减数变为它的相反数;⑵利用有理数的加法法则进行运算.解:425-(-33311)-(-1.6)-(-21811)=425+33311+1.6+21811 =4.4+1.6+(33311+21811)=6+55=61【变式题组】01.21511()()()()(1)32632--+---+-+02.434-(+3.85)-(-314)+(-3.15)03.178-87.21-(-43221)+1531921-12.79【例6】试看下面一列数:25、23、21、19…⑴观察这列数,猜想第10个数是多少?第n个数是多少?⑵这列数中有多少个数是正数?从第几个数开始是负数?⑶求这列数中所有正数的和.【解法指导】寻找一系列数的规律,应该从特殊到一般,找到前面几个数的规律,通过观察推理、猜想出第n个数的规律,再用其它的数来验证.解:⑴第10个数为7,第n个数为25-2(n-1)⑵∵n=13时,25-2(13-1)=1,n=14时,25-2(14-1)=-1故这列数有13个数为正数,从第14个数开始就是负数.⑶这列数中的正数为25,23,21,19,17,15,13,11,9,7,5,3,1,其和=(25+1)+(23+3)+…+(15+11)+13=26×6+13=169【变式题组】01.(杭州)观察下列等式1-12=12,2-25=85,3-310=2710,4-417=6417…依你发现的规律,解答下列问题.⑴写出第5个等式;⑵第10个等式右边的分数的分子与分母的和是多少?02.观察下列等式的规律9-1=8,16-4=12,25-9=16,36-16=20⑴用关于n(n≥1的自然数)的等式表示这个规律;⑵当这个等式的右边等于2017时求n.【例7】(第十届希望杯竞赛试题)求12+(13+23)+(14+24+34)+(15+25+35+45)+…+(150+250+…+4850+4950)【解法指导】观察式中数的特点发现:若括号内在加上相同的数均可合并成1,由此我们采取将原式倒序后与原式相加,这样极大简化计算了.解:设S=12+(13+23)+(14+24+34)+…+(150+250+…+4850+4950)则有S=12+(23+13)+(34+24+14)+…+(4950+4850+…+250+150)将原式和倒序再相加得2S=12+12+(13+23+23+13)+(14+24+34+34+24+14)+…+(150+250+…+4850+4950+4950+4850+…+250+150)即2S=1+2+3+4+…+49=49(491)2⨯+=1225∴S=1225 2【变式题组】01.计算2-22-23-24-25-26-27-28-29+21002.(第8届希望杯试题)计算(1-12-13-…-12003)(12+13+14+…+12003+12004)-(1-12-13-…-12004)(12+13+14+…+12003)演练巩固·反馈提高01.m是有理数,则m+|m|()A.可能是负数B.不可能是负数C.比是正数D.可能是正数,也可能是负数02.如果|a|=3,|b|=2,那么|a+b|为()A. 5 B.1 C.1或5 D.±1或±503.在1,-1,-2这三个数中,任意两数之和的最大值是()A. 1 B.0 C.-1 D.-304.两个有理数的和是正数,下面说法中正确的是()A.两数一定都是正数B.两数都不为0C.至少有一个为负数D.至少有一个为正数05.下列等式一定成立的是()A.|x|-x =0 B.-x-x =0 C.|x|+|-x| =0 D.|x|-|x|=006.一天早晨的气温是-6℃,中午又上升了10℃,午间又下降了8℃,则午夜气温是()A.-4℃B.4℃C.-3℃D.-5℃07.若a<0,则|a-(-a)|等于()A.-a B.0 C.2a D.-2a08.设x是不等于0的有理数,则||||2x xx-值为()A.0或1 B.0或2 C.0或-1 D.0或-2 09.(济南)2+(-2)的值为__________10.用含绝对值的式子表示下列各式:⑴若a<0,b>0,则b-a=__________,a-b=__________⑵若a>b>0,则|a-b|=__________⑶若a<b<0,则a-b=__________11.计算下列各题:⑴23+(-27)+9+5 ⑵-5.4+0.2-0.6+0.35-0.25⑶-0.5-314+2.75-712⑷33.1-10.7-(-22.9)-|-2310|12.计算1-3+5-7+9-11+…+97-9913.某检修小组乘汽车沿公路检修线路,规定前进为正,后退为负,某天从A地出发到收工时所走的路线(单位:千米)为:+10,-3,+4,-2,-8,+13,-7,+12,+7,+5⑴问收工时距离A地多远?⑵若每千米耗油0.2千克,问从A地出发到收工时共耗油多少千克?14.将2017减去它的12,再减去余下的13,再减去余下的14,再减去余下的15……以此类推,直到最后减去余下的11997,最后的得数是多少?15.独特的埃及分数:埃及同中国一样,也是世界著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为1的分数,例如13+115来表示25,用14+17+128表示37等等.现有90个埃及分数:12,13,14,15,…190,191,你能从中挑出10个,加上正、负号,使它们的和等于-1吗?培优升级·奥赛检测01.(第16届希望杯邀请赛试题)1234141524682830-+-+-+-+-+-+-等于( ) A .14B .14-C .12D .12-02.自然数a 、b 、c 、d 满足21a +21b +21c +21d =1,则31a +41b +51c +61d 等于( ) A .18B .316C .732D .156403.(第17届希望杯邀请赛试题)a 、b 、c 、d 是互不相等的正整数,且abcd =441,则a +b +c +d 值是( ) A .30 B .32 C .34 D .3604.(第7届希望杯试题)若a =1995199519961996,b =1996199619971997,c =1997199719981998,则a 、b 、c 大小关系是( )A .a <b <cB .b <c <aC .c <b <aD .a <c <b25632015201051216158412410982654321534333231305.11111(1)(1)(1)(1)(1)1324351998200019992001+++++⨯⨯⨯⨯⨯的值得整数部分为( )A .1B .2C .3D .406.(-2)2017+3×(-2)2017的值为( ) A .-22017 B .22017 C .-22017 D .2201707.(希望杯邀请赛试题)若|m|=m +1,则(4m +1)2017=__________08.12+(13+23)+(14+24+34)+ … +(160+260+…+5960)=__________ 09.19191976767676761919-=__________ 10.1+2-22-23-24-25-26-27-28-29+210=__________ 11.求32017×72017×132017所得数的末位数字为__________ 12.已知(a +b)2+|b +5|=b +5,且|2a -b -1|=0,求aB .13.计算(11998-1)(11997-1) (11996-1) … (11001-1) (11000-1)14.请你从下表归纳出13+23+33+43+…+n3的公式并计算出13+23+33+43+…+1003的值.第03讲 有理数的乘除、乘方考点·方法·破译1.理解有理数的乘法法则以及运算律,能运用乘法法则准确地进行有理数的乘法运算,会利用运算律简化乘法运算.2.掌握倒数的概念,会运用倒数的性质简化运算.3.了解有理数除法的意义,掌握有理数的除法法则,熟练进行有理数的除法运算.4.掌握有理数乘除法混合运算的顺序,以及四则混合运算的步骤,熟练进行有理数的混合运算. 5.理解有理数乘方的意义,掌握有理数乘方运算的符号法则,进一步掌握有理数的混合运算. 经典·考题·赏析 【例1】计算⑴11()24⨯- ⑵1124⨯ ⑶11()()24-⨯- ⑷25000⨯ ⑸3713()()(1)()5697-⨯-⨯⨯-【解法指导】掌握有理数乘法法则,正确运用法则,一是要体会并掌握乘法的符号规律,二是细心、稳妥、层次清楚,即先确定积的符号,后计算绝对值的积.解:⑴11111 ()() 24248⨯-=-⨯=-⑵11111() 24248⨯=⨯=⑶11111 ()()() 24248 -⨯-=+⨯=⑷250000⨯=⑸3713371031 ()()(1)()() 569756973 -⨯-⨯⨯-=-⨯⨯⨯=-【变式题组】01.⑴(5)(6)-⨯-⑵11()124-⨯⑶(8)(3.76)(0.125)-⨯⨯-⑷(3)(1)2(6)0(2)-⨯-⨯⨯-⨯⨯-⑸111112(2111)42612-⨯-+-02.24(9)5025-⨯3.1111(2345)()2345⨯⨯⨯⨯---04.111 (5)323(6)3333 -⨯+⨯+-⨯【例2】已知两个有理数a、b,如果ab<0,且a+b<0,那么()A.a>0,b<0 B.a<0,b>0C.a、b异号D.a、b异号且负数的绝对值较大【解法指导】依有理数乘法法则,异号为负,故a、b异号,又依加法法则,异号相加取绝对值较大数的符号,可得出判断.解:由ab<0知a、b异号,又由a+b<0,可知异号两数之和为负,依加法法则得负数的绝对值较大,选D.【变式题组】01.若a+b+c=0,且b<c<0,则下列各式中,错误的是()A.a+b>0 B.b+c<0 C.ab+ac>0 D.a+bc>002.已知a+b>0,a-b<0,ab<0,则a___________0,b___________0,|a|___________|b|.03.(山东烟台)如果a+b<0,ba>,则下列结论成立的是()A.a>0,b>0 B.a<0,b<0 C.a>0,b<0 D.a<0,b>0 04.(广州)下列命题正确的是()A.若ab>0,则a>0,b>0 B.若ab<0,则a<0,b<0C.若ab=0,则a=0或b=0 D.若ab=0,则a=0且b=0 【例3】计算⑴(72)(18)-÷-⑵11(2)3÷-⑶13()()1025-÷⑷0(7)÷-【解法指导】进行有理数除法运算时,若不能整除,应用法则1,先把除法转化成乘法,再确定符号,然后把绝对值相乘,要注意除法与乘法互为逆运算.若能整除,应用法则2,可直接确定符号,再把绝对值相除.解:⑴(72)(18)72184 -÷-=÷=⑵1733 1(2)1()1()3377÷-=÷-=⨯-=-⑶131255 ()()()() 10251036 -÷=-⨯=-⑷0(7)0÷-=【变式题组】01.⑴(32)(8)-÷-⑵112(1)36÷-⑶10(2)3÷-⑷13()(1)78÷-02.⑴12933÷⨯⑵311()(3)(1)3524-⨯-÷-÷⑶530()35÷-⨯03.113()(10.2)(3) 245÷-+-÷⨯-【例4】(茂名)若实数a、b满足a ba b+=,则abab=___________.【解法指导】依绝对值意义进行分类讨论,得出a、b的取值范围,进一步代入结论得出结果.解:当ab>0,2(0,0)2(0,0)a ba ba ba b>>⎧+=⎨-<<⎩;当ab<0,a ba b+=,∴ab<0,从而abab=-1.【变式题组】01.若k是有理数,则(|k|+k)÷k的结果是()A.正数B.0 C.负数D.非负数02.若A.b都是非零有理数,那么aba ba b ab++的值是多少?03.如果x yx y+=,试比较xy-与xy的大小.【例5】已知223(2),1 x y=-=-⑴求2008xy的值;⑵求32008xy的值.【解法指导】n a表示n个a相乘,根据乘方的符号法则,如果a为正数,正数的任何次幂都是正数,如果a 是负数,负数的奇次幂是负数,负数的偶次幂是正数.解:∵223(2),1 x y=-=-⑴当2,1x y==-时,200820082(1)2xy=-=当2,1x y=-=-时,20082008(2)(1)2xy=-⨯-=-⑵当2,1x y==-时,332008200828(1)xy==-当2,1x y=-=-时,3320082008(2)8(1)xy-==--【变式题组】01.(北京)若2(2)0m n m-+-=,则nm的值是___________.02.已知x、y互为倒数,且绝对值相等,求()n nx y--的值,这里n是正整数.【例6】(安徽)2017年我省为135万名农村中小学生免费提供教科书,减轻了农民的负担,135万用科学记数法表示为()A.0.135×106 B.1.35×106 C.0.135×107 D.1.35×107【解法指导】将一个数表示为科学记数法的a×10n 的形式,其中a 的整数位数是1位.故答案选B . 【变式题组】 01.(武汉)武汉市今年约有103000名学生参加中考,103000用科学记数法表示为( ) A .1.03×105 B .0.103×105 C .10.3×104 D .103×103 02.(沈阳)沈阳市计划从2017年到2012年新增林地面积253万亩,253万亩用科学记数法表示正确的是( ) A .25.3×105亩 B .2.53×106亩 C .253×104亩 D .2.53×107亩 【例7】(上海竞赛)222222221299110050002200500010050009999005000k k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+【解法指导】找出21005000k k -+的通项公式=22(50)50k -+原式=2222222222221299(150)50(250)50(50)50(9950)50k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+ =222222222222199298[][](150)50(9950)50(250)50(9850)50++++⋅⋅⋅+-+-+-+-+222222222495150[](4950)50(5150)50(5050)50++-+-+-+=49222+1++⋅⋅⋅+个=99【变式题组】3333+++=( )2+4+6++10042+4+6++10062+4+6++10082+4+6++2006⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ A .31003 B .31004 C .1334 D .11000 02.(第10届希望杯试题)已知11111111 1.2581120411101640+++++++= 求111111112581120411101640---+--++的值.演练巩固·反馈提高01.三个有理数相乘,积为负数,则负因数的个数为( )A .1个B .2个C .3个D .1个或3个 02.两个有理数的和是负数,积也是负数,那么这两个数( )A .互为相反数B .其中绝对值大的数是正数,另一个是负数C .都是负数D .其中绝对值大的数是负数,另一个是正数 03.已知abc >0,a >0,ac <0,则下列结论正确的是( )A.b<0,c>0 B.b>0,c<0 C.b<0,c<0 D.b>0,c>0 04.若|ab|=ab,则()A.ab>0 B.ab≥0 C.a<0,b<0 D.ab<005.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则代数式a bm cdm+-+的值为()A.-3 B.1 C.±3 D.-3或106.若a>1a,则a的取值范围()A.a>1 B.0<a<1 C.a>-1 D.-1<a<0或a>107.已知a、b为有理数,给出下列条件:①a+b=0;②a-b=0;③ab<0;④1ab=-,其中能判断a、b互为相反数的个数是()A.1个B.2个C.3个D.4个08.若ab≠0,则a ba b+的取值不可能为()A.0 B.1 C.2 D.-209.1110(2)(2)-+-的值为()A.-2 B.(-2)21 C.0 D.-21010.(安徽)2010年一季度,全国城镇新增就业人数289万人,用科学记数法表示289万正确的是()A.2.89×107 B.2.89×106 C.2.89×105 D.2.89×10411.已知4个不相等的整数a、b、c、d,它们的积abcd=9,则a+b+c+d=___________.12.21221(1)(1)(1)n n n+--+-+-(n为自然数)=___________.13.如果2x yx y+=,试比较xy-与xy的大小.14.若a、b、c为有理数且1a b ca b c++=-,求abcabc的值.15.若a、b、c均为整数,且321a b c a-+-=.求a c cb b a-+-+-的值.培优升级·奥赛检测01.已知有理数x、y、z两两不相等,则,,x y y z z xy z z x x y------中负数的个数是()A.1个B.2个C.3个D.0个或2个02.计算12345211,213,217,2115,2131-=-=-=-=-=⋅⋅⋅归纳各计算结果中的个位数字规律,猜测201021-的个位数字是()A.1 B.3 C.7 D.503.已知23450ab c d e<,下列判断正确的是()A.abcde<0 B.ab2cd4e<0 C.ab2cde<0 D.abcd4e<004.若有理数x、y使得,,,xx y x y xyy+-这四个数中的三个数相等,则|y|-|x|的值是()A.12-B.0 C.12D.3205.若A=248163264(21)(21)(21)(21)(21)(21)(21)+++++++,则A-2017的末位数字是()A.0 B.1 C.7 D.906.如果20012002()1,()1a b a b+=--=,则20032003a b+的值是()A.2 B.1 C.0 D.-107.已知5544332222,33,55,66a b c d====,则a、b、c、d大小关系是()A.a>b>c>d B.a>b>d>c C.b>a>c>d D.a>d>b>c08.已知a、b、c都不等于0,且a b c abca b c abc+++的最大值为m,最小值为n,则2005()m n+=___________.09.(第13届“华杯赛”试题)从下面每组数中各取一个数将它们相乘,那么所有这样的乘积的总和是___________.第一组:15,3,4.25,5.753-第二组:11 2,315 -第三组:5 2.25,,412-10.一本书的页码从1记到n,把所有这些页码加起来,其中有一页码被错加了两次,结果得出了不正确的和2017,这个被加错了两次的页码是多少?11.(湖北省竞赛试题)观察按下列规律排成一列数:11,12,21,13,22,31,14,23,32,41,15,24,23,42,51,16,…(*),在(*)中左起第m 个数记为F(m),当F(m)=12001时,求m 的值和这m 个数的积.12.图中显示的填数“魔方”只填了一部分,将下列9个数:11,,1,2,4,8,16,32,6442填入方格中,使得所有行列及对角线上各数相乘的积相等,求x 的值.32 x6413.(第12届“华杯赛”试题)已知m 、n 都是正整数,并且111111(1)(1)(1)(1)(1)(1);2233A m m =-+-+⋅⋅⋅-+ 111111(1)(1)(1)(1)(1)(1).2233B n n =-+-+⋅⋅⋅-+证明:⑴11,;22m n A B m n ++==⑵126A B -=,求m 、n 的值.第04讲 整式 考点·方法·破译1.掌握单项式及单项式的系数、次数的概念.2.掌握多项式及多项式的项、常数项及次数等概念. 3.掌握整式的概念,会判断一个代数式是否为整式.4.了解整式读、写的约定俗成的一般方法,会根据给出的字母的值求多项式的值. 经典·考题·赏析【例1】判断下列各代数式是否是单项式,如果不是请简要说明理由,如果是请指出它的系数与次数.【解法指导】 理解单项式的概念:由数与字母的积组成的代数式,单独一个数或一个字母也是单项式,数字的次数为0,是常数,单项式中所有字母指数和叫单项式次数. 解:⑴不是,因为代数式中出现了加法运算; ⑵不是,因为代数式是与x 的商; ⑶是,它的系数为π,次数为2;⑷是,它的系数为32,次数为3.【变式题组】01.判断下列代数式是否是单项式02.说出下列单项式的系数与次数【例2】如果与都是关于x、y的六次单项式,且系数相等,求m、n的值.【解法指导】单项式的次数要弄清针对什么字母而言,是针对x或y或x、y等是有区别的,该题是针对x 与y而言的,因此单项式的次数指x、y的指数之和,与字母m无关,此时将m看成一个要求的已知数.解:由题意得【变式题组】01.一个含有x、y的五次单项式,x的指数为3.且当x=2,y=-1时,这个单项式的值为32,求这个单项式. 02.(毕节)写出含有字母x、y的五次单项式______________________.【例3】已知多项式⑴这个多项式是几次几项式?⑵这个多项式最高次项是多少?二次项系数是什么?常数项是什么?【解法指导】n个单项式的和叫多项式,每个单项式叫多项式的项,多项式里次数最高项的次数叫多项式的次数.解:⑴这个多项式是七次四项式;(2)最高次项是,二次项系数为-1,常数项是1.【变式题组】01.指出下列多项式的项和次数⑴(2)02.指出下列多项式的二次项、二次项系数和常数项⑴(2)【例4】多项式是关于x的三次三项式,并且一次项系数为-7.求m+n-k的值【解法指导】多项式的次数是单项式中次数最高的次数,单项式的系数是数字与字母乘积中的数字因数. 解:因为是关于x的三次三项式,依三次知m=3,而一次项系数为-7,即-(3n+1)=-7,故n=2.已有三次项为,一次项为-7x,常数项为5,又原多项式为三次三项式,故二次项的系数k=0,故m+n-k=3+2-0=5.【变式题组】01.多项式是四次三项式,则m的值为()A.2 B.-2 C.±2 D.±102.已知关于x、y的多项式不含二次项,求5a-8b的值.03.已知多项式是六次四项式,单项式的次数与这个多项式的次数相同,求n的值.【例5】已知代数式的值是8,求的值.【解法指导】由,现阶段还不能求出x的具体值,所以联想到整体代入法.解:由得由(3【变式题组】01.(贵州)如果代数式-2a+3b+8的值为18,那么代数式9b-6a+2的值等于()A.28 B.-28 C.32 D.-3202.(同山)若,则的值为_______________.03.(潍坊)代数式的值为9,则的值为______________.【例6】证明代数式的值与m的取值无关.【解法指导】欲证代数式的值与m的取值无关,只需证明代数式的化简结果不出现字母即可.证明:原式=∴无论m的值为何,原式值都为4.∴原式的值与m的取值无关.【变式题组】01.已知,且的值与x无关,求a的值.02.若代数式的值与字母x的取值无关,求a、b的值.【例7】(北京市选拔赛)同时都含有a、b、c,且系数为1的七次单项式共有()个A.4 B.12 C.15 D.25【解法指导】首先写出符合题意的单项式,x、y、z都是正整数,再依x+y+z=7来确定x、y、z的值.解:为所求的单项式,则x、y、z都是正整数,且x+y+z=7.当x=1时,y=1,2,3,4,5,z=5,4,3,2,1.当x=2时,y=1,2,3,4,z=4,3,2,1. 当x=3时,y=1,2,3,z=3,2,1.当x=4时,y=1,2,z=2,1.当x=5时,y=z=1.所以所求的单项式的个数为5+4+3+2+1=15,故选C.【变式题组】01.已知m、n是自然数,是八次三项式,求m、n值.02.整数n=___________时,多项式是三次三项式.演练巩固·反馈提高01.下列说法正确的是()A.是单项式B.的次数为5 C.单项式系数为0 D.是四次二项式02.a表示一个两位数,b表示一个一位数,如果把b放在a的右边组成一个三位数.则这个三位数是()A.100b+a B.10a+b C.a+b D.100a+b03.若多项式的值为1,则多项式的值是()A.2 B.17 C.-7 D.704.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌电脑原售价为n元,降低m元后,又降低20%,那么该电脑的现售价为()A.B.C.D.05.若多项式是关于x的一次多项式,则k的值是()A.0 B.1 C.0或1 D.不能确定06.若是关于x、y的五次单项式,则它的系数是____________.07.电影院里第1排有a个座位,后面每排都比前排多3个座位,则第10排有_______个座位.08.若,则代数式xy+mn值为________.09.一项工作,甲单独做需a天完成,乙单独做需b天完成,如果甲、乙合做7天完成工作量是____________. 10.(河北)有一串单项式(1)请你写出第100个单项式;⑵请你写出第n个单项式.11.(安徽)一个含有x、y的五次单项式,x的指数为3,且当x=2,y=-1时,这个单项式值为32,求这个单项式.12.(天津)已知x=3时多项式的值为-1,则当x=-3时这个多项式的值为多少?13.若关于x、y的多项式与多项式的系数相同,并且最高次项的系数也相同,求a-b的值.14.某地电话拨号入网有两种方式,用户可任取其一.A:计时制:0.05元/分B:包月制:50元/月(只限一部宅电上网).此外,每种上网方式都得加收通行费0.02元/分.⑴某用户某月上网时间为x小时,请你写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月内上网时间为20小时,你认为采用哪种方式更合算.培优升级·奥赛检测01.(扬州)有一列数,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差.若,则为()A.2017 B.2 C.D.-102.(华师一附高招生)设记号*表示求a、b算术平均数的运算,即,则下列等式中对于任意实数a、b、c都成立的是()①②③④A.①②③B.①②④C.①③④D.②④03.已知,那么在代数式中,对任意的a、b,对应的代数式的值最大的是()A.B.C.D.04.在一个地球仪的赤道上用铁丝箍半径增大1米,需增加m米长的铁丝,假设地球的赤道上一个铁丝箍,同样半径增大1米,需增加n米长的铁丝,则m与n大小关系()A.m>n B.m<n C.m=n D.不能确定05.(广安)已知_____________.06.某书店出售图书的同时,推出一项租书业务,每租看一本书,租期不超过3天,每天租金a元,租期超过3天,从第4天开始每天另加收b元,如果租看1本书7天归还,那么租金为____________元.07.已知=_____________.08.有理数a、b、c在数轴上的位置如图所示,化简后的结果是______________.09.已知=______________.10.(全国初中数学竞赛)设a、b、c的平均数为M,a、b的平均数为N,又N、c的平均数为P,若a>b>c,则M与P大小关系______________.11.(资阳)如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB,BC,CA至点A1,B1,C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1,B1,C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2;…;按此规律继续下去,可得到△A5B5C5,则其面积S5=________________195.。

学而思初中数学几何模型秘籍

学而思初中数学几何模型秘籍

且延长 AC 交 BD 与点 E
必有 BEC BOA
非常重要的结论,必须会熟练证明
滴水穿石
~4~
锲而不舍
经典模型系列手册
手拉手相似(特殊情况)
O
C
D
A
B
A
当 AOB 90 时,
D O
C E
B
除 OCD∽OAB OAC∽OBD 之外
还会隐藏 BD OD OB tan OCD AC OC OA
最短路程模型之一(将军饮马类)
A
A'
l1
PA+PB
B
PA
B
P
l
Q
l2 B'
B'
PA+PQ+BQ
A A'
A
B
A'
P
l1
PQ
l
Q
l2
AP+PQ+QB B' AP+PQ+QB
\
B
总结:以上四图为常见的轴对称类最短路程问题,
最后都转化到:“两点之间,线段最短”解决
特点:①动点在直线上;②起点,终点固定
滴水穿石
~ 30 ~
锲而不舍
经典模型系列手册
最短路程模型之二(点到直线类)
A
A
H Q'
PC
P
垂线段最短
OQMB
条件:如右图① OC 平分 AOB
② M 为 OB 上一定点
③ P 为 OC 上动点
④ Q 为 OB 上动点
求: MP PQ 最小时, P 、 Q 的位置
辅助线:将作 Q 关于 OC 对称点 Q ' ,转化

学而思秘籍分类

学而思秘籍分类

巧算分数5-2巧算加减法综合5-10分数初识5-13巧算乘法9-1分数乘除5-14巧算除法9-2分数加减6-2巧算综合11-1分数裂项7-13多位数计算10-13分数四则混合运算8-4第五种运算9-16分数应用题10-18完全平方数6-9小数的认识10-19位值原理7-4小数的计算11-17比较与估算8-1小数巧算9-14循环小数9-9比和比例9-10比例模型10-7比例应用题11-19比例法解行程解方程数列5-20等式代换6-13等差数列初步6-3用字母表示数7-5等差数列进阶6-18解方程8-8整数与数列6-19列方程11-6整数裂项与通项归纳7-10定义新运算初步10-3定义新运算进阶8-18方程与方程组8-19列方程(组)解应用题11-15列方程(组)解应用题10-4方程法解行程10-16不定方程数论几何5-16周期问题进阶5-6巧求周长进阶5-18奇数与偶数进阶5-9长方形与正方形8-10整数特征进阶6-1角度9-18神奇的96-10平行四边形与梯形8-16进位制初步7-2三角形初步12-12进位制进阶7-3三角形进阶8-5质数与合数初步8-2格点与割补9-6质数与合数进阶10-8时钟问题5-19字典排列法与树形图10-9圆与扇形初步6-12带余除法进阶10-12勾股定理7-8整除特征初步10-17圆与扇形进阶10-14带余除法综合11-10特殊图形10-15同余12-1图形结合9-13因数和倍数初步12-3复合图形分拆10-11因数与倍数进阶12-6旋转与轨迹11-9数论中的组合7-14等积变形12-5数论中的规律7-15一半模型9-15鸟头模型9-19蝴蝶模型10-2燕尾模型10-5长方体与正方体10-20立体图形与空间想象12-2圆柱与圆锥应用问题行程问题逻辑推理5-8归一问题6-20速度、路程与时间6-6逻辑推理综合1 5-11和倍问题7-6相遇问题7-9逻辑推理综合2 5-12差倍问题7-7追及问题11-8逻辑推理综合3 6-4和差倍综合7-20环形跑道7-16最值问题初步5-15鸡兔同笼进阶8-6火车过桥8-14最值问题进阶5-17盈亏问题8-12流水行船11-14最值问题综合6-7方阵8-17相遇与追及综合8-9统筹与最优化6-11年龄问题进阶9-17电梯与发车问题8-15操作类智巧趣题9-7牛吃草问题11-12多次相遇与追及9-3棋盘中的数学11-18浓度问题12-11变速问题9-11斥容问题12-4经济问题8-7包含与排除9-20工程问题初步9-12必胜策略12-10工程问题进阶11-2归纳与递推11-5应用题综合111-3切片与染色11-13应用题综合211-4韩信点兵12-13应用题综合312-15计算问题综合选讲12-16图形问题综合选讲12-17整数问题综合选讲12-18组合问题综合选讲12-19应用问题综合选讲12-20行程问题综合选讲数字谜计数解题方法5-3加减法竖式数字谜进阶5-1找规律综合6-16标数法5-4突破乘法竖式6-15平面图形计数综合9-4枚举法5-5突破除法竖式7-12几何计数初步11-11从整体考虑6-8巧填算符综合10-10几何计数进阶12-7算两次7-19破译乘除法竖式6-14统计12-8从极端中考虑7-17数阵图初步5-7平均数初步6-5逆向思考进阶9-8数阵图综合7-18平均数进阶8-3数表-从日历谈起8-13抽屉原理初步10-6数表-杨辉三角12-14抽屉原理进阶11-7弦图11-16排列组合进阶10-1数字谜中的最值9-5排列组合初步12-9数字谜中的计数7-1加乘原理初步8-11加乘原理进阶6-17页码问题7-11体育比赛中的数学11-20概率初识。

九年级上几何复习学而思培优

九年级上几何复习学而思培优

第十三讲 几何复习【方法与技巧】如图,已知线段AB 和直线l ,在直线l 上找点P ,使△ABP 为等腰三角形。

lBA【例1】(2009-2010顺义期末)已知:如图,在平面直角坐标系xOy 中,AB ∥x 轴,点C 是点B 关于原点O 的对称点,连接AC 交x 轴于点D ,点A 的坐标为(0,-3),sin B =35。

⑴求B 、C 、D 三点的坐标;⑵求过A 、B 、C 三点的抛物线的解析式;⑶设点E (8,n )在⑵中的抛物线上,请你在x 轴上求一点F ,使得△DEF是以DE 为底边的等腰三角形。

【例2】(2009-2010五中期中)已知:如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,tan ∠ACO =23。

过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E 。

⑴求过点E 、D 、C 的抛物线的解析式;⑵将∠EDC 绕点D 按顺时针方向旋转后,角的一边与 y 轴的正半轴交于点F ,另一边与线段OC交于点G 。

如果DF 与⑴中的抛物线交于另一点M ,点M 的横坐标为65,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;⑶对于⑵中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由。

x【方法与技巧】如图,已知线段AB 和直线l ,在直线l 上找点P ,使△ABP 为等腰三角形。

lBA【例3】已知:如图一次函数112y x =+的图象与x 轴交于点A ,与y 轴交于点B ,二次函数212y x bx c =++的图象与一次函数112y x =+的图象交于B 、C 两点,与x 轴交于D 、E 两点且D 点坐标为(1,0)⑴求二次函数的解析式; ⑵求四边形BDEC 的面积S ;⑶在x 轴上是否存在点P ,使得△PBC 是以P为直角顶点的直角三角形?若存在,求出所有的点P ,若不存在,请说明理由。

学而思2018春季八下培优班讲义1-15讲(word版)教师版

学而思2018春季八下培优班讲义1-15讲(word版)教师版
第1讲二次根式巩固1
第2讲勾股复习及综合13
第3讲中位线与斜边中线(一)25
第4讲中位线与斜边中线(二)37
第5讲几何最值49
第6讲期中复习之勾股定理59
第7讲期中复习之四边形69
同步中考培优课程
1二次根式巩固
知识目标与切片
目标一复习巩固二次根式相关基础概念
目标二熟练掌握二次根式的化简和计算
模块一二次根式回顾
∴DF=2AP=2AB=2 AE.
例6★★
已知:在△ABC中,∠B=2∠C,M是BC中点,AD⊥BC于D.求证:DM= AB.
证明:延长CB至点K,使BK=AB,连接AK,则∠K=∠C,AK=AC,∵AD⊥BC,∴CD= CK,
∵M是BC中点,∴CM= BC,∴DM=CD-CM= CK- BC= (CK–BC)= BK= AB.
∴ =
1二次根式巩固
1.若 与5 既是最简二次根式,又是同类二次根式,则x=
解:4+3x=x+6x=1
2.若 +b2-2b+1=0,则 -| -b|=
答案: +(b-1)2=0
∴a2-3a+1=0b=0∴a-3+ =0,∴a+ =3,∴ =7
原式=1
3.计算:
(1) 3 - + - (2)7a -4a2 +7a
知识目标切片
目标一掌握斜边中线定理
目标二学会运用斜边中线
目标三掌握斜边中线的构造方法
模块一斜边中线定理
知识导航
直角三角形斜边中线(定理):如果一个三角形是直角三角形三角形,那么这个三角形斜边上的中线等于斜边的一半.
已知△ABC为直角三角形,∠ABC=90°,BD为△ABC斜边上的中线,求证:BD= AC
例5★★
把下列各式分母有理化

学而思七年级数学培优讲义全年级章节培优绝对经典

学而思七年级数学培优讲义全年级章节培优绝对经典

第1讲 与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量.2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数.经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米⑵收人-50元⑶体重增加-3千克【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作( )A . -18%B . -8%C . +2%D . +8%02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( )A . -5吨B . +5吨C . -3吨D . +3吨03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间l5:00,纽约时问是____【例2】在-227,π,0.033.3这四个数中有理数的个数( ) A . 1个 B . 2个 C . 3个 D . 4个 【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C .【变式题组】01.在7,0.1 5,-12,-301.31.25,-18,100.l ,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置15,-19,215,-138,0.1.-5.32,123, 2.333 【例3】(宁夏)有一列数为-1,12,-13,14.-15,16,…,找规律到第2007个数是 . 【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.击归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007. 【变式题组】01.(湖北宜宾)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四十数是17=9+8…观察并精想第六个数是 .02.(毕节)毕选哥拉斯学派发明了一种“馨折形”填数法,如图则填____.03.(茂名)有一组数l ,2,5,10,17,26…请观察规律,则第8个数为____.【例4】(2008年河北张家口)若l +m 2的相反数是-3,则m 的相反数是____. 【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫互为相反数,本题m 2=-4,m =-8 【变式题组】01.(四川宜宾)-5的相反数是( )A .5B . 15C . -5D . -1502.已知a 与b 互为相反数,c 与d 互为倒数,则a +b +cd =______03.如图为一个正方体纸盒的展开图,若在其中的三个正方形A 、B 、C 内分别填人适当的数,使得它们折成正方体.若相对的面上的两个数互为相反数,则填人正方形A 、B 、C 内的三个数依次为( )A . - 1 ,2,0B . 0,-2,1C . -2,0,1D . 2,1,0【例5】(湖北)a 、b 为有理数,且a >0,b <0,|b|>a ,则a,b 、-a,-b 的大小顺序是( )A . b <-a <a <-bB . –a <b <a <-bC . –b <a <-a <bD . –a <a <-b <b【解法指导】理解绝对值的几何意义:一个数的绝对值就是数轴上表示a 的点到原点的距离,即|a|,用式子表示为|a|=0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩(.本题注意数形结合思想,画一条数轴 标出a 、b,依相反数的意义标出-b,-a,故选A .【变式题组】01.推理①若a =b ,则|a|=|b|;②若|a|=|b|,则a =b ;③若a ≠b ,则|a |≠|b|;④若|a |≠|b|,则a ≠b ,其中正确的个数为( )A . 4个B . 3个C . 2个D . 1个02.a 、b 、c 三个数在数轴上的位置如图,则|a|a +|b|b +|c|c = . 03.a 、b 、c 为不等于O 的有理散,则a |a|+b |b|+c |c|的值可能是____. 【例6】(江西课改)已知|a -4|+|b -8|=0,则a+b ab的值. 【解法指导】本题主要考查绝对值概念的运用,因为任何有理数a 的绝对值都是非负数,即|a |≥0.所以|a -4|≥0,|b -8|≥0.而两个非负数之和为0,则两数均为0.解:因为|a -4|≥0,|b -8|≥0,又|a -4|+|b -8|=0,∴|a -4|=0,|b -8|=0即a -4=0,b -8=0,a =4,b =8.故a+b ab =1232=38【变式题组】01.已知|a|=1,|b|=2,|c|=3,且a >b >c ,求a +b +C .02.(毕节)若|m -3|+|n +2|=0,则m +2n 的值为( )A . -4B . -1C . 0D . 403.已知|a|=8,|b|=2,且|a -b|=b -a ,求a 和b 的值【例7】(第l8届迎春杯)已知(m +n)2+|m|=m ,且|2m -n -2|=0.求mn 的值.【解法指导】本例关键是通过分析(m +n)2+|m|的符号,挖掘出m 的符号特征,从而把问题转化为(m +n)2=0,|2m -n -2|=0,找到解题途径.解:∵(m +n )2≥0,|m |≥O∴(m +n)2+|m |≥0,而(m +n)2+|m|=m∴ m ≥0,∴(m +n)2+m =m ,即(m +n)2=0∴m +n =O ①又∵|2m -n -2|=0∴2m -n -2=0 ②由①②得m =23,n =-23,∴ mn =-49【变式题组】01.已知(a +b)2+|b +5|=b +5且|2a -b –l|=0,求a -B .02.(第16届迎春杯)已知y =|x -a|+|x +19|+|x -a -96|,如果19<a <96.a ≤x ≤96,求y 的最大值.演练巩固·反馈提高01.观察下列有规律的数12,16,112,120,130,142…根据其规律可知第9个数是( ) A . 156 B . 172 C . 190 D . 111002.(芜湖)-6的绝对值是( )A . 6B . -6C . 16D . -1603.在-227,π,8..0.3四个数中,有理数的个数为( ) A . 1个 B . 2个 C . 3个 D . 4个04.若一个数的相反数为a +b ,则这个数是( )A . a -bB . b -aC . –a +bD . –a -b05.数轴上表示互为相反数的两点之间距离是6,这两个数是( )A . 0和6B . 0和-6C . 3和-3D . 0和306.若-a 不是负数,则a( )A . 是正数B . 不是负数C . 是负数D . 不是正数07.下列结论中,正确的是( )①若a =b,则|a|=|b| ②若a =-b,则|a|=|b|③若|a|=|b|,则a =-b ④若|a|=|b|,则a =bA . ①②B . ③④C . ①④D . ②③08.有理数a 、b 在数轴上的对应点的位置如图所示,则a 、b ,-a ,|b|的大小关系正确 的是( )A . |b|>a >-a >bB . |b| >b >a >-aC . a >|b|>b >-aD . a >|b|>-a >b09.一个数在数轴上所对应的点向右移动5个单位后,得到它的相反数的对应点,则这个数是____.10.已知|x +2|+|y +2|=0,则xy =____.11.a 、b 、c 三个数在数轴上的位置如图,求|a|a +|b|b +|abc|abc +|c|c12.若三个不相等的有理数可以表示为1、a 、a +b 也可以表示成0、b 、b a的形式,试求a 、b 的值.13.已知|a|=4,|b|=5,|c|=6,且a >b >c ,求a +b -C .14.|a|具有非负性,也有最小值为0,试讨论:当x 为有理数时,|x -l|+|x -3|有没有最小值,如果有,求出最小值;如果没有,说明理由.15.点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为|AB|.当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,|AB|=|OB|=|b|=|a -b|??当A 、B 两点都不在原点时有以下三种情况:①如图2,点A 、B 都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=b -a =|a -b|;②如图3,点A 、B 都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b -(-a)=|a -b|; ③如图4,点A 、B 在原点的两边,|AB|=|OB|-|OA|=|b|-|a|=-b -(-a )=|a -b|; 综上,数轴上A 、B 两点之间的距离|AB|=|a -b|.回答下列问题:⑴数轴上表示2和5的两点之间的距离是 , 数轴上表示-2和-5的两点之间的距离是 , 3,数轴上表示1和-3的两点之间的距离是 4;⑵数轴上表示x 和-1的两点分别是点A 和B ,则A 、B 之间的距离是 |x+1| ,如果|AB|=2,那么x = 1或3;⑶当代数式|x +1|+|x -2|取最小值时,相应的x 的取值范围是 7.培优升级·奥赛检测01.(重庆市竞赛题)在数轴上任取一条长度为199919的线段,则此线段在这条数轴上最多能盖住的整数点的个数是( )A . 1998B . 1999C . 2000D . 200102.(第l8届希望杯邀请赛试题)在数轴上和有理数a 、b 、c 对应的点的位置如图所示,有下列四个结论:①abc <0;②|a -b|+|b -c|=|a -c|;③(a -b )(b -c)(c -a)>0;④|a|<1-bc .其中正确的结论有( )A . 4个B . 3个C . 2个D . 1个03.如果a 、b 、c 是非零有理数,且a +b +c =0.那么a |a|+b |b|+c |c|+abc |abc|的所有可能的值为( )A . -1B . 1或-1C . 2或-2D . 0或-204.已知|m|=-m ,化简|m -l|-|m -2|所得结果( )A . -1B . 1C . 2m -3D . 3- 2m05.如果0<p <15,那么代数式|x -p|+|x -15|+|x -p -15|在p ≤x ≤15的最小值( )A . 30B . 0C . 15D . 一个与p 有关的代数式06.|x +1|+|x -2|+|x -3|的最小值为 .07.若a >0,b <0,使|x -a|+|x -b|=a -b 成立的x 取值范围 .08.(武汉市选拔赛试题)非零整数m 、n 满足|m|+|n|-5=0所有这样的整数组(m ,n)共有 组09.若非零有理数m 、n 、p 满足|m|m +|n|n +|p|p =1.则2mnp |3mnp|= . 10.(19届希望杯试题)试求|x -1|+|x -2|+|x -3|+…+|x -1997|的最小值.11.已知(|x +l|+|x -2|)(|y -2|+|y +1|)(|z -3|+|z +l|)=36,求x +2y +3的最大值和最小值.12.电子跳蚤落在数轴上的某点k0,第一步从k0向左跳1个单位得k1,第二步由k1向右跳2个单位到k2,第三步由k2向左跳3个单位到k3,第四步由k3向右跳4个单位到k4…按以上规律跳100步时,电子跳蚤落在数轴上的点k100新表示的数恰好19.94,试求k0所表示的数.13.某城镇,沿环形路上依次排列有五所小学,它们顺扶有电脑15台、7台、1l 台、3台,14台,为使各学校里电脑数相同,允许一些小学向相邻小学调出电脑,问怎样调配才能使调出的电脑总台数最小并求出调出电脑的最少总台数.第02讲 有理数的加减法考点·方法·破译1.理解有理数加法法则,了解有理数加法的实际意义.2.准确运用有理数加法法则进行运算,能将实际问题转化为有理数的加法运算.3.理解有理数减法与加法的转换关系,会用有理数减法解决生活中的实际问题.4.会把加减混合运算统一成加法运算,并能准确求和.经典·考题·赏析【例1】(河北唐山)某天股票A 开盘价18元,上午11:30跌了1.5元,下午收盘时又涨了0.3元,则股票A 这天的收盘价为( )A .0.3元B .16.2元C .16.8元D .18元【解法指导】将实际问题转化为有理数的加法运算时,首先将具有相反意义的量确定一个为正,另一个为负,其次在计算时正确选择加法法则,是同号相加,取相同符号并用绝对值相加,是异号相加,取绝对值较大符号,并用较大绝对值减去较小绝对值.解:18+(-1.5)+(0.3)=16.8,故选C .【变式题组】01.今年陕西省元月份某一天的天气预报中,延安市最低气温为-6℃,西安市最低气温2℃,这一天延安市的最低气温比西安低()A.8℃B.-8℃C.6℃D.2℃02.(河南)飞机的高度为2400米,上升250米,又下降了327米,这是飞机的高度为__________03.(浙江)珠穆朗玛峰海拔8848m,吐鲁番海拔高度为-155 m,则它们的平均海拔高度为__________【例2】计算(-83)+(+26)+(-17)+(-26)+(+15)【解法指导】应用加法运算简化运算,-83与-17相加可得整百的数,+26与-26互为相反数,相加为0,有理数加法常见技巧有:⑴互为相反数结合一起;⑵相加得整数结合一起;⑶同分母的分数或容易通分的分数结合一起;⑷相同符号的数结合一起.解:(-83)+(+26)+(-17)+(-26)+(+15)=[(-83)+(-17)]+[(+26)+(-26)]+15=(-100)+15=-85【变式题组】01.(-2.5)+(-312)+(-134)+(-114)02.(-13.6)+0.26+(-2.7)+(-1.06)03.0.125+314+(-318)+1123+(-0.25)【例3】计算1111 12233420082009 ++++⨯⨯⨯⨯L【解法指导】依111(1)1n n n n=-++进行裂项,然后邻项相消进行化简求和.解:原式=1111111 (1)()()()2233420082009 -+-+-++-L=1111111 12233420082009 -+-+-++-L=112009-=20082009【变式题组】01.计算1+(-2)+3+(-4)+…+99+(-100)02.如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的正方形,再把面积为14的正方形等分成两个面积为18的长方形,如此进行下去,试利用图形揭示的规律计算11111111248163264128256+++++++=__________.【例4】如果a <0,b >0,a +b <0,那么下列关系中正确的是( )A .a >b >-b >-aB .a >-a >b >-bC .b >a >-b >-aD .-a >b >-b >a【解法指导】紧扣有理数加法法则,由两加数及其和的符号,确定两加数的绝对值的大小,然后根据相反数的关系将它们在同一数轴上表示出来,即可得出结论.解:∵a <0,b >0,∴a +b 是异号两数之和又a +b <0,∴a 、b 中负数的绝对值较大,∴| a |>| b |将a 、b 、-a 、-b 表示在同一数轴上,如图,则它们的大小关系是-a >b >-b >a【变式题组】01.若m >0,n <0,且| m |>| n |,则m +n ________ 0.(填>、<号)02.若m <0,n >0,且| m |>| n |,则m +n ________ 0.(填>、<号)03.已知a <0,b >0,c <0,且| c |>| b |>| a |,试比较a 、b 、c 、a +b 、a +c 的大小【例5】425-(-33311)-(-1.6)-(-21811)【解法指导】有理数减法的运算步骤:⑴依有理数的减法法则,把减号变为加号,并把减数变为它的相反数;⑵利用有理数的加法法则进行运算.解:425-(-33311)-(-1.6)-(-21811)=425+33311+1.6+21811=4.4+1.6+(33311+21811)=6+55=61【变式题组】01.21511()()()()(1)32632--+---+-+ 02.434-(+3.85)-(-314)+(-3.15)03.178-87.21-(-43221)+1531921-12.79【例6】试看下面一列数:25、23、21、19…⑴观察这列数,猜想第10个数是多少第n个数是多少⑵这列数中有多少个数是正数从第几个数开始是负数⑶求这列数中所有正数的和.【解法指导】寻找一系列数的规律,应该从特殊到一般,找到前面几个数的规律,通过观察推理、猜想出第n个数的规律,再用其它的数来验证.解:⑴第10个数为7,第n个数为25-2(n-1)⑵∵n=13时,25-2(13-1)=1,n=14时,25-2(14-1)=-1故这列数有13个数为正数,从第14个数开始就是负数.⑶这列数中的正数为25,23,21,19,17,15,13,11,9,7,5,3,1,其和=(25+1)+(23+3)+…+(15+11)+13=26×6+13=169【变式题组】01.(杭州)观察下列等式1-12=12,2-25=85,3-310=2710,4-417=6417…依你发现的规律,解答下列问题.⑴写出第5个等式;⑵第10个等式右边的分数的分子与分母的和是多少02.观察下列等式的规律9-1=8,16-4=12,25-9=16,36-16=20⑴用关于n(n≥1的自然数)的等式表示这个规律;⑵当这个等式的右边等于2008时求n.【例7】(第十届希望杯竞赛试题)求12+(13+23)+(14+24+34)+(15+25+35+45)+…+(150+250+…+4850+4950)【解法指导】观察式中数的特点发现:若括号内在加上相同的数均可合并成1,由此我们采取将原式倒序后与原式相加,这样极大简化计算了.解:设S=12+(13+23)+(14+24+34)+…+(150+250+…+4850+4950)则有S=12+(23+13)+(34+24+14)+…+(4950+4850+…+250+150)将原式和倒序再相加得2S=12+12+(13+23+23+13)+(14+24+34+34+24+14)+…+(150+250+…+4850+4950+4950+4850+…+250+150)即2S=1+2+3+4+…+49=49(491)2⨯+=1225∴S=1225 2【变式题组】01.计算2-22-23-24-25-26-27-28-29+21002.(第8届希望杯试题)计算(1-12-13-…-12003)(12+13+14+…+12003+12004)-(1-12-13-…-12004)(12+13+14+…+12003)演练巩固·反馈提高01.m是有理数,则m+|m|()A.可能是负数B.不可能是负数C.比是正数D.可能是正数,也可能是负数02.如果|a|=3,|b|=2,那么|a+b|为()A. 5 B.1 C.1或5 D.±1或±503.在1,-1,-2这三个数中,任意两数之和的最大值是()A. 1 B.0 C.-1 D.-304.两个有理数的和是正数,下面说法中正确的是()A.两数一定都是正数B.两数都不为0C.至少有一个为负数D.至少有一个为正数05.下列等式一定成立的是()A.|x|-x =0 B.-x-x =0 C.|x|+|-x| =0 D.|x|-|x|=006.一天早晨的气温是-6℃,中午又上升了10℃,午间又下降了8℃,则午夜气温是()A.-4℃B.4℃C.-3℃D.-5℃07.若a<0,则|a-(-a)|等于()A.-a B.0 C.2a D.-2a08.设x是不等于0的有理数,则||||2x xx值为()A.0或1 B.0或2 C.0或-1 D.0或-2 09.(济南)2+(-2)的值为__________10.用含绝对值的式子表示下列各式:⑴若a<0,b>0,则b-a=__________,a-b=__________⑵若a>b>0,则|a-b|=__________⑶若a<b<0,则a-b=__________11.计算下列各题:⑴23+(-27)+9+5 ⑵-5.4+0.2-0.6+0.35-0.25⑶-0.5-314+2.75-712⑷33.1-10.7-(-22.9)-|-2310|12.计算1-3+5-7+9-11+…+97-9913.某检修小组乘汽车沿公路检修线路,规定前进为正,后退为负,某天从A地出发到收工时所走的路线(单位:千米)为:+10,-3,+4,-2,-8,+13,-7,+12,+7,+5⑴问收工时距离A 地多远⑵若每千米耗油0.2千克,问从A 地出发到收工时共耗油多少千克14.将1997减去它的12,再减去余下的13,再减去余下的14,再减去余下的15……以此类推,直到最后减去余下的11997,最后的得数是多少15.独特的埃及分数:埃及同中国一样,也是世界着名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为1的分数,例如13+115来表示25,用14+17+128表示37等等.现有90个埃及分数:12,13,14,15,…190,191,你能从中挑出10个,加上正、负号,使它们的和等于-1吗培优升级·奥赛检测01.(第16届希望杯邀请赛试题)1234141524682830-+-+-+-+-+-+-L L 等于( )A .14 B .14- C .12D .12- 02.自然数a 、b 、c 、d 满足21a +21b +21c +21d =1,则31a +41b +51c +61d 等于( )A .18 B .316 C .732D .1564 03.(第17届希望杯邀请赛试题)a 、b 、c 、d 是互不相等的正整数,且abcd =441,则a +b +c +d 值是( )A .30B .32C .34D .3604.(第7届希望杯试题)若a =1995199519961996,b =1996199619971997,c =1997199719981998,则a 、b 、c 大小关系是( )A .a <b <cB .b <c <aC .c <b <aD .a <c <b05.11111(1)(1)(1)(1)(1)1324351998200019992001+++++⨯⨯⨯⨯⨯L 的值得整数部分为( ) A .1 B .2 C .3 D .4534333231306.(-2)2004+3×(-2)2003的值为( ) A .-22003 B .22003 C .-22004 D .2200407.(希望杯邀请赛试题)若|m|=m +1,则(4m +1)2004=__________08.12+(13+23)+(14+24+34)+ … +(160+260+…+5960)=__________ 09.19191976767676761919-=__________10.1+2-22-23-24-25-26-27-28-29+210=__________ 11.求32001×72002×132003所得数的末位数字为__________ 12.已知(a +b)2+|b +5|=b +5,且|2a -b -1|=0,求aB .13.计算(11998-1)(11997-1) (11996-1) … (11001-1) (11000-1)14.请你从下表归纳出13+23+33+43+…+n3的公式并计算出13+23+33+43+…+1003的值.第03讲 有理数的乘除、乘方考点·方法·破译1.理解有理数的乘法法则以及运算律,能运用乘法法则准确地进行有理数的乘法运算,会利用运算律简化乘法运算.2.掌握倒数的概念,会运用倒数的性质简化运算.3.了解有理数除法的意义,掌握有理数的除法法则,熟练进行有理数的除法运算.4.掌握有理数乘除法混合运算的顺序,以及四则混合运算的步骤,熟练进行有理数的混合运算.5.理解有理数乘方的意义,掌握有理数乘方运算的符号法则,进一步掌握有理数的混合运算.经典·考题·赏析 【例1】计算⑴11()24⨯- ⑵1124⨯ ⑶11()()24-⨯- ⑷25000⨯ ⑸3713()()(1)()5697-⨯-⨯⨯- 【解法指导】掌握有理数乘法法则,正确运用法则,一是要体会并掌握乘法的符号规律,二是细心、稳妥、层次清楚,即先确定积的符号,后计算绝对值的积.解:⑴11111()()24248⨯-=-⨯=-⑵11111()24248⨯=⨯=⑶11111 ()()() 24248 -⨯-=+⨯=⑷250000⨯=⑸3713371031 ()()(1)()() 569756973 -⨯-⨯⨯-=-⨯⨯⨯=-【变式题组】01.⑴(5)(6)-⨯-⑵11()124-⨯⑶(8)(3.76)(0.125)-⨯⨯-⑷(3)(1)2(6)0(2)-⨯-⨯⨯-⨯⨯-⑸111112(2111)42612-⨯-+-02.24(9)5025-⨯3.1111(2345)()2345⨯⨯⨯⨯---04.111 (5)323(6)3333 -⨯+⨯+-⨯【例2】已知两个有理数a、b,如果ab<0,且a+b<0,那么()A.a>0,b<0 B.a<0,b>0C.a、b异号D.a、b异号且负数的绝对值较大【解法指导】依有理数乘法法则,异号为负,故a、b异号,又依加法法则,异号相加取绝对值较大数的符号,可得出判断.解:由ab<0知a、b异号,又由a+b<0,可知异号两数之和为负,依加法法则得负数的绝对值较大,选D.【变式题组】01.若a+b+c=0,且b<c<0,则下列各式中,错误的是()A.a+b>0 B.b+c<0 C.ab+ac>0 D.a+bc>002.已知a+b>0,a-b<0,ab<0,则a___________0,b___________0,|a|___________|b|.03.(山东烟台)如果a+b<0,ba>,则下列结论成立的是()A.a>0,b>0 B.a<0,b<0 C.a>0,b<0 D.a<0,b>0 04.(广州)下列命题正确的是()A.若ab>0,则a>0,b>0 B.若ab<0,则a<0,b<0C.若ab=0,则a=0或b=0 D.若ab=0,则a=0且b=0 【例3】计算⑴(72)(18)-÷-⑵11(2)3÷-⑶13()()1025-÷⑷0(7)÷-【解法指导】进行有理数除法运算时,若不能整除,应用法则1,先把除法转化成乘法,再确定符号,然后把绝对值相乘,要注意除法与乘法互为逆运算.若能整除,应用法则2,可直接确定符号,再把绝对值相除.解:⑴(72)(18)72184 -÷-=÷=⑵1733 1(2)1()1()3377÷-=÷-=⨯-=-⑶131255 ()()()() 10251036 -÷=-⨯=-⑷0(7)0÷-=【变式题组】01.⑴(32)(8)-÷-⑵112(1)36÷-⑶10(2)3÷-⑷13()(1)78÷-02.⑴12933÷⨯⑵311()(3)(1)3524-⨯-÷-÷⑶530()35÷-⨯03.113()(10.2)(3) 245÷-+-÷⨯-【例4】(茂名)若实数a、b满足a ba b+=,则abab=___________.【解法指导】依绝对值意义进行分类讨论,得出a、b的取值范围,进一步代入结论得出结果.解:当ab>0,2(0,0)2(0,0)a ba ba ba b>>⎧+=⎨-<<⎩;当ab<0,a ba b+=,∴ab<0,从而abab=-1.【变式题组】01.若k是有理数,则(|k|+k)÷k的结果是()A.正数B.0 C.负数D.非负数02.若A.b都是非零有理数,那么aba ba b ab++的值是多少03.如果x yx y+=,试比较xy-与xy的大小.【例5】已知223(2),1 x y=-=-⑴求2008xy的值;⑵求32008xy的值.【解法指导】n a表示n个a相乘,根据乘方的符号法则,如果a为正数,正数的任何次幂都是正数,如果a是负数,负数的奇次幂是负数,负数的偶次幂是正数.解:∵223(2),1 x y=-=-⑴当2,1x y==-时,200820082(1)2xy=-=当2,1x y=-=-时,20082008(2)(1)2xy=-⨯-=-⑵当2,1x y==-时,332008200828(1)xy==-当2,1x y=-=-时,3320082008(2)8(1)xy-==--【变式题组】01.(北京)若2(2)0m n m-+-=,则nm的值是___________.02.已知x、y互为倒数,且绝对值相等,求()n nx y--的值,这里n是正整数.【例6】(安徽)2007年我省为135万名农村中小学生免费提供教科书,减轻了农民的负担,135万用科学记数法表示为()A.0.135×106 B.1.35×106 C.0.135×107 D.1.35×107【解法指导】将一个数表示为科学记数法的a×10n 的形式,其中a的整数位数是1位.故答案选B.【变式题组】01.(武汉)武汉市今年约有103000名学生参加中考,103000用科学记数法表示为()A.1.03×105 B.0.103×105 C.10.3×104 D.103×103 02.(沈阳)沈阳市计划从2008年到2012年新增林地面积253万亩,253万亩用科学记数法表示正确的是()A.25.3×105亩B.2.53×106亩C.253×104亩D.2.53×107亩【例7】(上海竞赛)【解法指导】找出21005000k k-+的通项公式=22(50)50k-+原式=222222222222 1299 (150)50(250)50(50)50(9950)50kk++⋅⋅⋅++⋅⋅⋅+-+-+-+-+=222222222222199298[][] (150)50(9950)50(250)50(9850)50++++⋅⋅⋅+ -+-+-+-+=49222+1++⋅⋅⋅+1442443个=99【变式题组】A .31003B .31004C .1334D .1100002.(第10届希望杯试题)已知11111111 1.2581120411101640+++++++= 求111111112581120411101640---+--++的值.演练巩固·反馈提高01.三个有理数相乘,积为负数,则负因数的个数为( )A .1个B .2个C .3个D .1个或3个 02.两个有理数的和是负数,积也是负数,那么这两个数( )A .互为相反数B .其中绝对值大的数是正数,另一个是负数C .都是负数D .其中绝对值大的数是负数,另一个是正数 03.已知abc >0,a >0,ac <0,则下列结论正确的是( )A .b <0,c >0B .b >0,c <0C .b <0,c <0D .b >0,c >0 04.若|ab|=ab ,则( )A .ab >0B .ab ≥0C .a <0,b <0D .ab <005.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则代数式a bm cd m +-+的值为( )A .-3B .1C .±3D .-3或106.若a >1a ,则a 的取值范围( )A .a >1B .0<a <1C .a >-1D .-1<a <0或a >107.已知a 、b 为有理数,给出下列条件:①a +b =0;②a -b =0;③ab <0;④1ab =-,其中能判断a 、b 互为相反数的个数是( )A .1个B .2个C .3个D .4个08.若ab≠0,则a b a b+的取值不可能为( )A .0B .1C .2D .-209.1110(2)(2)-+-的值为( )A .-2B .(-2)21C .0D .-21010.(安徽)2010年一季度,全国城镇新增就业人数289万人,用科学记数法表示289万正确的是( )A .2.89×107B .2.89×106C .2.89×105D .2.89×104 11.已知4个不相等的整数a 、b 、c 、d ,它们的积abcd =9,则a +b +c +d =___________.12.21221(1)(1)(1)n n n +--+-+-(n 为自然数)=___________.13.如果2xy xy+=,试比较xy -与xy 的大小.14.若a 、b 、c 为有理数且1a b ca b c++=-,求abc abc的值.15.若a 、b 、c 均为整数,且321a b c a -+-=.求a c cb b a-+-+-的值.培优升级·奥赛检测01.已知有理数x 、y 、z 两两不相等,则,,x y y z z xy z z x x y ------中负数的个数是( )A .1个B .2个C .3个D .0个或2个02.计算12345211,213,217,2115,2131-=-=-=-=-=⋅⋅⋅归纳各计算结果中的个位数字规律,猜测201021-的个位数字是( )A .1B .3C .7D .5 03.已知23450ab c d e <,下列判断正确的是( )A .abcde <0B .ab2cd4e <0C .ab2cde <0D .abcd4e <004.若有理数x 、y 使得,,,xx y x y xy y +-这四个数中的三个数相等,则|y|-|x|的值是( )A .12-B .0C .12D .3205.若A =248163264(21)(21)(21)(21)(21)(21)(21)+++++++,则A -1996的末位数字是( )A .0B .1C .7D .906.如果20012002()1,()1a b a b +=--=,则20032003a b +的值是( ) A .2 B .1 C .0 D .-107.已知5544332222,33,55,66a b c d ====,则a 、b 、c 、d 大小关系是( )A .a >b >c >dB .a >b >d >cC .b >a >c >dD .a >d >b >c08.已知a、b、c都不等于0,且a b c abca b c abc+++的最大值为m,最小值为n,则2005()m n+=___________.09.(第13届“华杯赛”试题)从下面每组数中各取一个数将它们相乘,那么所有这样的乘积的总和是___________.第一组:15,3,4.25,5.753-第二组:11 2,315 -第三组:5 2.25,,412-10.一本书的页码从1记到n,把所有这些页码加起来,其中有一页码被错加了两次,结果得出了不正确的和2002,这个被加错了两次的页码是多少11.(湖北省竞赛试题)观察按下列规律排成一列数:11,12,21,13,22,31,14,23,3 2,41,15,24,23,42,51,16,…(*),在(*)中左起第m个数记为F(m),当F(m)=12001时,求m的值和这m个数的积.12.图中显示的填数“魔方”只填了一部分,将下列9个数:11,,1,2,4,8,16,32,6442填入方格中,使得所有行列及对角线上各数相乘的积相等,求x的值.13.(第12届“华杯赛”试题)已知m、n都是正整数,并且证明:⑴11,;22m nA Bm n++ ==⑵126A B-=,求m、n的值.第04讲整式考点·方法·破译1.掌握单项式及单项式的系数、次数的概念.2.掌握多项式及多项式的项、常数项及次数等概念.3.掌握整式的概念,会判断一个代数式是否为整式.4.了解整式读、写的约定俗成的一般方法,会根据给出的字母的值求多项式的值. 经典·考题·赏析【例1】判断下列各代数式是否是单项式,如果不是请简要说明理由,如果是请指出它的系数与次数.【解法指导】 理解单项式的概念:由数与字母的积组成的代数式,单独一个数或一个字母也是单项式,数字的次数为0,是常数,单项式中所有字母指数和叫单项式次数. 解:⑴不是,因为代数式中出现了加法运算; ⑵不是,因为代数式是与x 的商; ⑶是,它的系数为π,次数为2;⑷是,它的系数为32,次数为3.【变式题组】01.判断下列代数式是否是单项式02.说出下列单项式的系数与次数【例2】 如果与都是关于x 、y 的六次单项式,且系数相等,求m 、n 的值.【解法指导】 单项式的次数要弄清针对什么字母而言,是针对x 或y 或x 、y 等是有区别的,该题是针对x 与y 而言的,因此单项式的次数指x 、y的指数之和,与字母m 无关,此时将m 看成一个要求的已知数. 解:由题意得【变式题组】01.一个含有x 、y 的五次单项式,x 的指数为3.且当x =2,y =-1时,这个单项式的值为32,求这个单项式. 02.(毕节)写出含有字母x 、y 的五次单项式______________________. 【例3】 已知多项式 ⑴这个多项式是几次几项式⑵这个多项式最高次项是多少二次项系数是什么常数项是什么【解法指导】 n 个单项式的和叫多项式,每个单项式叫多项式的项,多项式里次数最高项的次数叫多项式的次数.解:⑴这个多项式是七次四项式; (2)最高次项是,二次项系数为-1,常数项是1.【变式题组】01.指出下列多项式的项和次数⑴(2)02.指出下列多项式的二次项、二次项系数和常数项⑴(2)【例4】多项式是关于x的三次三项式,并且一次项系数为-7.求m+n-k的值【解法指导】多项式的次数是单项式中次数最高的次数,单项式的系数是数字与字母乘积中的数字因数.解:因为是关于x的三次三项式,依三次知m=3,而一次项系数为-7,即-(3n+1)=-7,故n=2.已有三次项为,一次项为-7x,常数项为5,又原多项式为三次三项式,故二次项的系数k=0,故m+n-k=3+2-0=5.【变式题组】01.多项式是四次三项式,则m的值为()A.2 B.-2 C.±2 D.±102.已知关于x、y的多项式不含二次项,求5a-8b的值.03.已知多项式是六次四项式,单项式的次数与这个多项式的次数相同,求n的值.【例5】已知代数式的值是8,求的值.【解法指导】由,现阶段还不能求出x的具体值,所以联想到整体代入法. 解:由得由(3【变式题组】01.(贵州)如果代数式-2a+3b+8的值为18,那么代数式9b-6a+2的值等于()A.28 B.-28 C.32 D.-3202.(同山)若,则的值为_______________.03.(潍坊)代数式的值为9,则的值为______________.【例6】证明代数式的值与m的取值无关.【解法指导】欲证代数式的值与m的取值无关,只需证明代数式的化简结果不出现字母即可.证明:原式=∴无论m的值为何,原式值都为4.∴原式的值与m的取值无关.【变式题组】01.已知,且的值与x无关,求a的值.02.若代数式的值与字母x的取值无关,求a、b 的值.【例7】(北京市选拔赛)同时都含有a、b、c,且系数为1的七次单项式共有()个A.4 B.12 C.15 D.25【解法指导】首先写出符合题意的单项式,x、y、z都是正整数,再依x+y+z=7来确定x、y、z的值.解:为所求的单项式,则x、y、z都是正整数,且x+y+z=7.当x=1时,y=1,2,3,4,5,z=5,4,3,2,1.当x=2时,y=1,2,3,4,z=4,3,2,1. 当x=3时,y=1,2,3,z=3,2,1.当x=4时,y =1,2,z=2,1.当x=5时,y=z=1.所以所求的单项式的个数为5+4+3+2+1=15,故选C.【变式题组】01.已知m、n是自然数,是八次三项式,求m、n 值.02.整数n=___________时,多项式是三次三项式.演练巩固·反馈提高01.下列说法正确的是()A.是单项式B.的次数为5 C.单项式系数为0 D.是四次二项式02.a表示一个两位数,b表示一个一位数,如果把b放在a的右边组成一个三位数.则这个三位数是()A.100b+a B.10a+b C.a+b D.100a+b03.若多项式的值为1,则多项式的值是()A.2 B.17 C.-7 D.704.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌电脑原售价为n元,降低m 元后,又降低20%,那么该电脑的现售价为()A.B.C.D.05.若多项式是关于x的一次多项式,则k的值是()A.0 B.1 C.0或1 D.不能确定06.若是关于x、y的五次单项式,则它的系数是____________.07.电影院里第1排有a个座位,后面每排都比前排多3个座位,则第10排有_______个座位.08.若,则代数式xy+mn值为________.09.一项工作,甲单独做需a天完成,乙单独做需b天完成,如果甲、乙合做7天完成工作量是____________.10.(河北)有一串单项式(1)请你写出第100个单项式;⑵请你写出第n个单项式.11.(安徽)一个含有x、y的五次单项式,x的指数为3,且当x=2,y=-1时,这个单项式值为32,求这个单项式.12.(天津)已知x=3时多项式的值为-1,则当x=-3时这个多项式的值为多少13.若关于x、y的多项式与多项式的系数相同,并且最高次项的系数也相同,求a-b的值.14.某地电话拨号入网有两种方式,用户可任取其一.A:计时制:0.05元/分B:包月制:50元/月(只限一部宅电上网).此外,每种上网方式都得加收通行费0.02元/分.⑴某用户某月上网时间为x小时,请你写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月内上网时间为20小时,你认为采用哪种方式更合算.培优升级·奥赛检测01.(扬州)有一列数,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差.若,则为()A.2007 B.2 C.D.-102.(华师一附高招生)设记号*表示求a、b算术平均数的运算,即,则下列等式中对于任意实数a、b、c都成立的是()①②③④A.①②③B.①②④C.①③④D.②④03.已知,那么在代数式中,对任意的a、b,对应的代数式的值最大的是()A .B .C .D .04.在一个地球仪的赤道上用铁丝箍半径增大1米,需增加m 米长的铁丝,假设地球的赤道上一个铁丝箍,同样半径增大1米,需增加n 米长的铁丝,则m 与n 大小关系( ) A .m >n B .m <n C .m =n D .不能确定 05.(广安)已知_____________.06.某书店出售图书的同时,推出一项租书业务,每租看一本书,租期不超过3天,每天租金a 元,租期超过3天,从第4天开始每天另加收b 元,如果租看1本书7天归还,那么租金为____________元.07.已知=_____________.08.有理数a 、b 、c 在数轴上的位置如图所示,化简后的结果是______________. 09.已知=______________.10.(全国初中数学竞赛)设a 、b 、c 的平均数为M,a 、b 的平均数为N,又N 、c 的平均数为P ,若a >b >c ,则M 与P 大小关系______________.11.(资阳)如图,对面积为1的△ABC 逐次进行以下操作:第一次操作,分别延长AB ,BC ,CA 至点A1,B1,C1,使得A1B =2AB ,B1C =2BC ,C1A =2CA ,顺次连接A1,B1,C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2;…;按此规律继续下去,可得到△A5B5C5,则其面积S5=________________195 . 12.(安徽)探索n ×n 的正方形钉子板上(n 是钉子板每边上的钉子数),连接任意两个钉子所得到的不同长度值的线段种数:当n =2时,钉子板上所连不同线段的长度值只有122种,若用S 表示不同长度值的线段种数,则S =2;当n =3时,钉子板上所连不同线段的长度值只有12,252五种,比n =2时增加了3种,即S =2+3=5. 观察图形,填写下表:写出(n -1)×(n -1)和n×n 的两个钉子板上,不同长度值的线段种数之间的关系;(用式子或语言表述均可)(3)对n ×n 的钉子板,写出用n 表示S 的代数式. 13.(青岛)提出问题:如图①,在四边形ABCD 中,P 是AD 边上任意一点,△PBC 与△ABC钉子数(n ×n) S 值 2×2 2 3×3 2+34×42+3+( ) 5×5( )n =2n =3n =4n =5。

学而思七年级数学培优讲义全年级章节培优经典

学而思七年级数学培优讲义全年级章节培优经典

第1讲 与有理数有关的概念 考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量. 2.会进展有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比拟两个有理数的大小,会求一个数的相反数、绝对值、倒数. 经典·考题·赏析【例1】写出以下各语句的实际意义⑴向前-7米⑵收人-50元⑶体重增加-3千克 【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等〞解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作〔 〕 A .-18% B .-8% C .+2% D .+8% 02.〔XX 〕如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( ) A .-5吨 B .+5吨 C .-3吨 D .+3吨 03.〔XX 〕与纽约的时差-13〔负号表示同一时刻纽约时间比晚〕.如现在是时间l5:00,纽约时问是____【例2】在-227,π,0.033.3这四个数中有理数的个数〔 )A . 1个B . 2个C . 3个D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,应选C . 【变式题组】01.在7,0.1 5,-12,-301.31.25,-18,100.l ,-3 001中,负分数为 ,整数为 ,正整数 .02.〔XXXX 〕请把以下各数填入图中适当位置 15,-19,215,-138,0.1.-5.32,123, 2.333【例3】〔XX 〕有一列数为-1,12,-13,14.-15,16,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.击归纳去猜测,然后进展验证.解此题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007.【变式题组】 01.〔XXXX 〕数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四十数是17=9+8…观察并精想第六个数是 .02.〔XX 〕毕选哥拉斯学派创造了一种“馨折形〞填数法,如图那么?填____. 03.〔XX 〕有一组数l ,2,5,10,17,26…请观察规律,那么第8个数为____. 【例4】〔2021年XXXX 〕假设l +m 2的相反数是-3,那么m 的相反数是____.【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫互为相反数,此题m2=-4,m =-8【变式题组】 01.〔XXXX 〕-5的相反数是( )A .5B .15C .-5D .-1502.a 与b 互为相反数,c 与d 互为倒数,那么a +b +cd =______03.如图为一个正方体纸盒的展开图,假设在其中的三个正方形A 、B 、C 内分别填人适当的数,使得它们折成正方体.假设相对的面上的两个数互为相反数,那么填人正方形A 、B 、C 内的三个数依次为( )A .- 1 ,2,0B . 0,-2,1C .-2,0,1D . 2,1,0 【例5】〔XX 〕a 、b 为有理数,且a >0,b <0,|b|>a ,那么a,b 、-a,-b 的大小顺序是( ) A .b <-a <a <-bB . –a <b <a <-bC . –b <a <-a <bD . –a <a <-b <b 【解法指导】理解绝对值的几何意义:一个数的绝对值就是数轴上表示a 的点到原点的距离,即|a|,用式子表示为|a|=0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩(.此题注意数形结合思想,画一条数轴标出a 、b,依相反数的意义标出-b,-a,应选A .【变式题组】01.推理①假设a =b ,那么|a|=|b|;②假设|a|=|b|,那么a =b ;③假设a ≠b ,那么|a|≠|b|;④假设|a|≠|b|,那么a ≠b ,其中正确的个数为〔 〕 A . 4个 B . 3个 C . 2个 D . 1个 02.a 、b 、c 三个数在数轴上的位置如图,那么|a|a +|b|b +|c|c =.03.a 、b 、c 为不等于O 的有理散,那么a |a|+b |b|+c|c|的值可能是____.【例6】〔XX 课改〕|a -4|+|b -8|=0,那么a+bab的值.【解法指导】此题主要考察绝对值概念的运用,因为任何有理数a 的绝对值都是非负数,即|a|≥0.所以|a -4|≥0,|b -8|≥0.而两个非负数之和为0,那么两数均为0.解:因为|a -4|≥0,|b -8|≥0,又|a -4|+|b -8|=0,∴|a -4|=0,|b -8|=0即a -4=0,b -8=0,a =4,b =8.故a+b ab =1232=38【变式题组】01.|a|=1,|b|=2,|c|=3,且a >b >c ,求a +b +C .02.〔XX 〕假设|m -3|+|n +2|=0,那么m +2n 的值为( ) A .-4 B .-1 C . 0 D . 403.|a|=8,|b|=2,且|a -b|=b -a ,求a 和b 的值 【例7】〔第l8届迎春杯〕(m +n)2+|m|=m ,且|2m -n -2|=0.求mn 的值.【解法指导】本例关键是通过分析(m +n)2+|m|的符号,挖掘出m 的符号特征,从而把问题转化为(m +n)2=0,|2m -n -2|=0,找到解题途径. 解:∵(m +n)2≥0,|m|≥O∴(m +n)2+|m|≥0,而(m +n)2+|m|=m ∴m ≥0,∴(m +n)2+m =m ,即(m +n)2=0 ∴m +n =O ①又∵|2m -n -2|=0 ∴2m -n -2=0 ②由①②得m =23,n =-23,∴mn =-49【变式题组】01.(a +b)2+|b +5|=b +5且|2a -b –l|=0,求a -B .02.〔第16届迎春杯〕y =|x -a|+|x +19|+|x -a -96|,如果19<a <96.a ≤x ≤96,求y 的最大值.演练稳固·反应提高01.观察以下有规律的数12,16,112,120,130,142…根据其规律可知第9个数是( )A .156B .172C .190D .111002.〔XX 〕-6的绝对值是( ) A . 6 B .-6 C .16D .-1603.在-227,π,8..0.3四个数中,有理数的个数为( )A . 1个B . 2个C . 3个D . 4个 04.假设一个数的相反数为a +b ,那么这个数是( ) A .a -bB .b -aC . –a +bD . –a -b05.数轴上表示互为相反数的两点之间距离是6,这两个数是( )A . 0和6B .0和-6C . 3和-3D . 0和3 06.假设-a 不是负数,那么a( )A . 是正数B . 不是负数C . 是负数D . 不是正数 07.以下结论中,正确的选项是( )①假设a =b,那么|a|=|b| ②假设a =-b,那么|a|=|b| ③假设|a|=|b|,那么a =-b ④假设|a|=|b|,那么a =b A .①②B .③④C .①④D .②③08.有理数a 、b 在数轴上的对应点的位置如下图,那么a 、b ,-a ,|b|的大小关系正确 的是( )A . |b|>a >-a >bB . |b| >b >a >-aC .a >|b|>b >-aD .a >|b|>-a >b09.一个数在数轴上所对应的点向右移动5个单位后,得到它的相反数的对应点,那么这个数是____.10.|x +2|+|y +2|=0,那么xy =____.11.a 、b 、c 三个数在数轴上的位置如图,求|a|a +|b|b +|abc|abc +|c|c12.假设三个不相等的有理数可以表示为1、a 、a +b 也可以表示成0、b 、ba 的形式,试求a 、b 的值.13.|a|=4,|b|=5,|c|=6,且a >b >c ,求a +b -C .14.|a|具有非负性,也有最小值为0,试讨论:当x 为有理数时,|x -l|+|x -3|有没有最小值,如果有,求出最小值;如果没有,说明理由.15.点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为|AB|.当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,|AB|=|OB|=|b|=|a -b| 当A 、B 两点都不在原点时有以下三种情况:①如图2,点A 、B 都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=b -a =|a -b|;②如图3,点A 、B 都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b -(-a)=|a -b|; ③如图4,点A 、B 在原点的两边,|AB|=|OB|-|OA|=|b|-|a|=-b -〔-a 〕=|a -b|; 综上,数轴上A 、B 两点之间的距离|AB|=|a -b|.答复以下问题:⑴数轴上表示2和5的两点之间的距离是 ,数轴上表示-2和-5的两点之间的距离是 , 3,数轴上表示1和-3的两点之间的距离是 4 ;⑵数轴上表示x 和-1的两点分别是点A 和B ,那么A 、B 之间的距离是 |x+1| ,如果|AB|=2,那么x = 1或3;⑶当代数式|x +1|+|x -2|取最小值时,相应的x 的取值X 围是 7 .培优升级·奥赛检测01.〔XX 市竞赛题〕在数轴上任取一条长度为199919的线段,那么此线段在这条数轴上最多能盖住的整数点的个数是( )A . 1998B . 1999C . 2000D . 2001 02.〔第l8届希望杯邀请赛试题〕在数轴上和有理数a 、b 、c 对应的点的位置如下图,有以下四个结论:①abc <0;②|a -b|+|b -c|=|a -c|;③〔a -b 〕(b -c)(c -a)>0;④|a|<1-bc .其中正确的结论有( )A . 4个B .3个C .2个D . 1个03.如果a 、b 、c 是非零有理数,且a +b +c =0.那么a |a|+b |b|+c |c|+abc|abc|的所有可能的值为〔 〕A .-1B . 1或-1C . 2或-2D . 0或-2 04.|m|=-m ,化简|m -l|-|m -2|所得结果( ) A .-1 B .1 C .2m -3 D .3- 2m05.如果0<p <15,那么代数式|x -p|+|x -15|+|x -p -15|在p ≤x ≤15的最小值( ) A .30 B .0C . 15 D . 一个与p 有关的代数式 06.|x +1|+|x -2|+|x -3|的最小值为.07.假设a >0,b <0,使|x -a|+|x -b|=a -b 成立的x 取值X 围 . 08.〔XX 市选拔赛试题〕非零整数m 、n 满足|m|+|n|-5=0所有这样的整数组(m ,n)共有组09.假设非零有理数m 、n 、p 满足|m|m +|n|n +|p|p =1.那么2mnp|3mnp|=.10.〔19届希望杯试题〕试求|x -1|+|x -2|+|x -3|+…+|x -1997|的最小值.11.(|x +l|+|x -2|)〔|y -2|+|y +1|〕〔|z -3|+|z +l|〕=36,求x +2y +3的最大值和最小值.12.电子跳蚤落在数轴上的某点k0,第一步从k0向左跳1个单位得k1,第二步由k1向右跳2个单位到k2,第三步由k2向左跳3个单位到k3,第四步由k3向右跳4个单位到k4…按以上规律跳100步时,电子跳蚤落在数轴上的点k100新表示的数恰好19.94,试求k0所表示的数.13.某城镇,沿环形路上依次排列有五所小学,它们顺扶有电脑15台、7台、1l台、3台,14台,为使各学校里电脑数一样,允许一些小学向相邻小学调出电脑,问怎样调配才能使调出的电脑总台数最小?并求出调出电脑的最少总台数.第02讲有理数的加减法考点·方法·破译1.理解有理数加法法那么,了解有理数加法的实际意义.2.准确运用有理数加法法那么进展运算,能将实际问题转化为有理数的加法运算.3.理解有理数减法与加法的转换关系,会用有理数减法解决生活中的实际问题.4.会把加减混合运算统一成加法运算,并能准确求和.经典·考题·赏析【例1】〔XXXX〕某天股票A开盘价18元,上午11:30跌了1.5元,下午收盘时又涨了0.3元,那么股票A这天的收盘价为〔〕A.0.3元B.16.2元C.16.8元D.18元【解法指导】将实际问题转化为有理数的加法运算时,首先将具有相反意义的量确定一个为正,另一个为负,其次在计算时正确选择加法法那么,是同号相加,取一样符号并用绝对值相加,是异号相加,取绝对值较大符号,并用较大绝对值减去较小绝对值.解:18+〔-1.5〕+〔0.3〕=16.8,应选C.【变式题组】01.今年XX省元月份某一天的天气预报中,XX市最低气温为-6℃,XX市最低气温2℃,这一天XX市的最低气温比XX低〔〕A.8℃B.-8℃C.6℃D.2℃02.〔XX〕飞机的高度为2400米,上升250米,又下降了327米,这是飞机的高度为__________ 03.〔XX〕珠穆朗玛峰海拔8848m,吐鲁番海拔高度为-155 m,那么它们的平均海拔高度为__________【例2】计算〔-83〕+〔+26〕+〔-17〕+〔-26〕+〔+15〕【解法指导】应用加法运算简化运算,-83与-17相加可得整百的数,+26与-26互为相反数,相加为0,有理数加法常见技巧有:⑴互为相反数结合一起;⑵相加得整数结合一起;⑶同分母的分数或容易通分的分数结合一起;⑷一样符号的数结合一起.解:〔-83〕+〔+26〕+〔-17〕+〔-26〕+〔+15〕=[〔-83〕+〔-17〕]+[〔+26〕+〔-26〕]+15=〔-100〕+15=-85【变式题组】01.〔-2.5〕+〔-312〕+〔-134〕+〔-114〕02.〔-13.6〕+0.26+〔-2.7〕+〔-1.06〕03.0.125+314+〔-318〕+1123+〔-0.25〕【例3】计算111112233420082009++++⨯⨯⨯⨯【解法指导】依111(1)1n n n n =-++进展裂项,然后邻项相消进展化简求和.解:原式=1111111(1)()()()2233420082009-+-+-++-=111111112233420082009-+-+-++-=112009-=20082009【变式题组】01.计算1+〔-2〕+3+〔-4〕+ … +99+〔-100〕02.如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的正方形,再把面积为14的正方形等分成两个面积为18的长方形,如此进展下去,试利用图形提醒的规律计算11111111248163264128256+++++++=__________.【例4】如果a <0,b >0,a +b <0,那么以下关系中正确的选项是〔 〕 A .a >b >-b >-a B .a >-a >b >-b C .b >a >-b >-a D .-a >b >-b >a 【解法指导】紧扣有理数加法法那么,由两加数及其和的符号,确定两加数的绝对值的大小,然后根据相反数的关系将它们在同一数轴上表示出来,即可得出结论. 解:∵a <0,b >0,∴a +b 是异号两数之和又a +b <0,∴a 、b 中负数的绝对值较大,∴| a |>| b |将a 、b 、-a 、-b 表示在同一数轴上,如图,那么它们的大小关系是-a >b >-b >a 【变式题组】01.假设m >0,n <0,且| m |>| n |,那么m +n________ 0.〔填>、<号〕02.假设m <0,n >0,且| m |>| n |,那么m +n ________ 0.〔填>、<号〕03.a<0,b>0,c<0,且| c |>| b |>| a |,试比拟a、b、c、a+b、a+c的大小【例5】425-〔-33311〕-〔-1.6〕-〔-21811〕【解法指导】有理数减法的运算步骤:⑴依有理数的减法法那么,把减号变为加号,并把减数变为它的相反数;⑵利用有理数的加法法那么进展运算.解:425-〔-33311〕-〔-1.6〕-〔-21811〕=425+33311+1.6+21811=4.4+1.6+〔33311+21811〕=6+55=61【变式题组】01.21511 ()()()()(1) 32632 --+---+-+02.434-〔+3.85〕-〔-314〕+〔-3.15〕03.178-87.21-〔-43221〕+1531921-12.79【例6】试看下面一列数:25、23、21、19…⑴观察这列数,猜测第10个数是多少?第n个数是多少?⑵这列数中有多少个数是正数?从第几个数开场是负数?⑶求这列数中所有正数的和.【解法指导】寻找一系列数的规律,应该从特殊到一般,找到前面几个数的规律,通过观察推理、猜测出第n个数的规律,再用其它的数来验证.解:⑴第10个数为7,第n个数为25-2(n-1)⑵∵n=13时,25-2(13-1)=1,n=14时,25-2(14-1)=-1故这列数有13个数为正数,从第14个数开场就是负数.⑶这列数中的正数为25,23,21,19,17,15,13,11,9,7,5,3,1,其和=〔25+1〕+〔23+3〕+…+〔15+11〕+13=26×6+13=169【变式题组】01.(XX)观察以下等式1-12=12,2-25=85,3-310=2710,4-417=6417…依你发现的规律,解答以下问题.⑴写出第5个等式;⑵第10个等式右边的分数的分子与分母的和是多少?02.观察以下等式的规律9-1=8,16-4=12,25-9=16,36-16=20⑴用关于n〔n≥1的自然数〕的等式表示这个规律;⑵当这个等式的右边等于2021时求n.【例7】〔第十届希望杯竞赛试题〕求12+〔13+23〕+〔14+24+34〕+〔15+25+35+45〕+…+〔150+250+…+4850+4950〕【解法指导】观察式中数的特点发现:假设括号内在加上一样的数均可合并成1,由此我们采取将原式倒序后与原式相加,这样极大简化计算了.解:设S=12+〔13+23〕+〔14+24+34〕+…+〔150+250+…+4850+4950〕那么有S=12+〔23+13〕+〔34+24+14〕+…+〔4950+4850+…+250+150〕将原式和倒序再相加得2S=12+12+〔13+23+23+13〕+〔14+24+34+34+24+14〕+…+〔150+250+…+4850+4950+4950+4850+…+250+150〕即2S=1+2+3+4+…+49=49(491)2⨯+=1225∴S=1225 2【变式题组】01.计算2-22-23-24-25-26-27-28-29+21002.〔第8届希望杯试题〕计算〔1-12-13-…-12003〕〔12+13+14+…+12003+12004〕-〔1-12-13-…-12004〕〔12+13+14+…+12003〕演练稳固·反应提高01.m是有理数,那么m+|m|〔〕A.可能是负数B.不可能是负数C.比是正数D.可能是正数,也可能是负数02.如果|a|=3,|b|=2,那么|a+b|为〔〕A.5 B.1 C.1或5 D.±1或±503.在1,-1,-2这三个数中,任意两数之和的最大值是〔〕A.1 B.0 C.-1 D.-304.两个有理数的和是正数,下面说法中正确的选项是〔〕A.两数一定都是正数B.两数都不为0C.至少有一个为负数D.至少有一个为正数05.以下等式一定成立的是〔〕A.|x|-x =0 B.-x-x =0 C.|x|+|-x| =0 D.|x|-|x|=006.一天早晨的气温是-6℃,中午又上升了10℃,午间又下降了8℃,那么午夜气温是〔〕A.-4℃B.4℃C.-3℃D.-5℃07.假设a<0,那么|a-(-a)|等于〔〕A.-a B.0 C.2a D.-2a08.设x是不等于0的有理数,那么||||2x xx-值为〔〕A.0或1 B.0或2 C.0或-1 D.0或-2 09.〔XX〕2+(-2)的值为__________10.用含绝对值的式子表示以下各式:⑴假设a<0,b>0,那么b-a=__________,a-b=__________⑵假设a>b>0,那么|a-b|=__________⑶假设a<b<0,那么a-b=__________11.计算以下各题:⑴23+〔-27〕+9+5 ⑵-5.4+0.2-0.6+0.35-0.25⑶-0.5-314+2.75-712⑷33.1-10.7-〔-22.9〕-|-2310|12.计算1-3+5-7+9-11+…+97-9913.某检修小组乘汽车沿公路检修线路,规定前进为正,后退为负,某天从A地出发到收工时所走的路线〔单位:千米〕为:+10,-3,+4,-2,-8,+13,-7,+12,+7,+5⑴问收工时距离A地多远?⑵假设每千米耗油0.2千克,问从A地出发到收工时共耗油多少千克?14.将1997减去它的12,再减去余下的13,再减去余下的14,再减去余下的15……以此类推,直到最后减去余下的11997,最后的得数是多少?15.独特的埃及分数:埃及同中国一样,也是世界著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为1的分数,例如13+115来表示25,用14+17+128表示37等等.现有90个埃及分数:12,13,14,15,…190,191,你能从中挑出10个,加上正、负号,使它们的和等于-1吗?培优升级·奥赛检测01.〔第16届希望杯邀请赛试题〕1234141524682830-+-+-+-+-+-+-等于〔 〕A .14B .14-C .12 D .12- 02.自然数a 、b 、c 、d 满足21a +21b +21c +21d =1,那么31a +41b +51c +61d 等于〔 〕A .18 B .316 C .732D .1564 03.〔第17届希望杯邀请赛试题〕a 、b 、c 、d 是互不相等的正整数,且abcd =441,那么a +b +c +d 值是〔 〕A .30B .32C .34D .3604.〔第7届希望杯试题〕假设a =1995199519961996,b =1996199619971997,c =1997199719981998,那么a 、b 、c 大小关系是〔 〕A .a <b <cB .b <c <aC .c <b <aD .a <c <b05.11111(1)(1)(1)(1)(1)1324351998200019992001+++++⨯⨯⨯⨯⨯的值得整数局部为5343332313〔 〕A .1B .2C .3D .406.(-2)2004+3×(-2)2003的值为〔 〕A .-22003B .22003C .-22004D .2200407.〔希望杯邀请赛试题〕假设|m|=m +1,那么(4m +1)2004=__________ 08.12+〔13+23〕+〔14+24+34〕+ … +〔160+260+…+5960〕=__________09.19191976767676761919 =__________ 10.1+2-22-23-24-25-26-27-28-29+210=__________11.求32001×72002×132003所得数的末位数字为__________12.(a +b)2+|b +5|=b +5,且|2a -b -1|=0,求aB .13.计算(11998-1)(11997-1) (11996-1) … (11001-1) (11000-1)14.请你从下表归纳出13+23+33+43+…+n3的公式并计算出13+23+33+43+…+1003的值.第03讲 有理数的乘除、乘方考点·方法·破译1.理解有理数的乘法法那么以及运算律,能运用乘法法那么准确地进展有理数的乘法运算,会利用运算律简化乘法运算.2.掌握倒数的概念,会运用倒数的性质简化运算.3.了解有理数除法的意义,掌握有理数的除法法那么,熟练进展有理数的除法运算.4.掌握有理数乘除法混合运算的顺序,以及四那么混合运算的步骤,熟练进展有理数的混合运算.5.理解有理数乘方的意义,掌握有理数乘方运算的符号法那么,进一步掌握有理数的混合运算.经典·考题·赏析【例1】计算 ⑴11()24⨯-⑵1124⨯⑶11()()24-⨯-⑷25000⨯ ⑸3713()()(1)()5697-⨯-⨯⨯- 【解法指导】掌握有理数乘法法那么,正确运用法那么,一是要体会并掌握乘法的符号规律,二是细心、稳妥、层次清楚,即先确定积的符号,后计算绝对值的积. 解:⑴11111()()24248⨯-=-⨯=- ⑵11111()24248⨯=⨯= ⑶11111()()()24248-⨯-=+⨯= ⑷250000⨯= ⑸3713371031()()(1)()()569756973-⨯-⨯⨯-=-⨯⨯⨯=- 【变式题组】01.⑴(5)(6)-⨯-⑵11()124-⨯⑶(8)(3.76)(0.125)-⨯⨯-⑷(3)(1)2(6)0(2)-⨯-⨯⨯-⨯⨯-⑸111112(2111)42612-⨯-+-02.24(9)5025-⨯ 3.1111(2345)()2345⨯⨯⨯⨯---04.111(5)323(6)3333-⨯+⨯+-⨯【例2】两个有理数a 、b ,如果ab <0,且a +b <0,那么〔 〕A .a >0,b <0B .a <0,b >0C .a 、b 异号D .a 、b 异号且负数的绝对值较大【解法指导】依有理数乘法法那么,异号为负,故a 、b 异号,又依加法法那么,异号相加取绝对值较大数的符号,可得出判断.解:由ab <0知a 、b 异号,又由a +b <0,可知异号两数之和为负,依加法法那么得负数的绝对值较大,选D .【变式题组】01.假设a +b +c =0,且b <c <0,那么以下各式中,错误的选项是〔 〕A .a +b >0B .b +c <0C .ab +ac >0D .a +bc >002.a +b >0,a -b <0,ab <0,那么a___________0,b___________0,|a|___________|b|.03.(XXXX)如果a +b <0,0b a >,那么以下结论成立的是〔 〕A .a >0,b >0B .a <0,b <0C .a >0,b <0D .a <0,b >0 04.(XX)以下命题正确的选项是〔 〕A .假设ab >0,那么a >0,b >0B .假设ab <0,那么a <0,b <0C .假设ab =0,那么a =0或b =0D .假设ab =0,那么a =0且b =0【例3】计算⑴(72)(18)-÷-⑵11(2)3÷-⑶13()()1025-÷⑷0(7)÷- 【解法指导】进展有理数除法运算时,假设不能整除,应用法那么1,先把除法转化成乘法,再确定符号,然后把绝对值相乘,要注意除法与乘法互为逆运算.假设能整除,应用法那么2,可直接确定符号,再把绝对值相除.解:⑴(72)(18)72184-÷-=÷= ⑵17331(2)1()1()3377÷-=÷-=⨯-=- ⑶131255()()()()10251036-÷=-⨯=- ⑷0(7)0÷-=【变式题组】01.⑴(32)(8)-÷-⑵112(1)36÷-⑶10(2)3÷-⑷13()(1)78÷-02.⑴12933÷⨯⑵311()(3)(1)3524-⨯-÷-÷⑶530()35÷-⨯03.113()(10.2)(3)245÷-+-÷⨯-【例4】〔XX 〕假设实数a 、b 满足0a b a b +=,那么ab ab =___________.【解法指导】依绝对值意义进展分类讨论,得出a 、b 的取值X 围,进一步代入结论得出结果.解:当ab >0,2(0,0)2(0,0)a b a b a b a b >>⎧+=⎨-<<⎩;当ab <0,0a b a b +=,∴ab <0,从而ab ab =-1.【变式题组】01.假设k 是有理数,那么(|k|+k)÷k 的结果是〔 〕A .正数B .0C .负数D .非负数02.假设A .b 都是非零有理数,那么ab a b a b ab ++的值是多少?03.如果0xy xy +=,试比拟x y -与xy 的大小.【例5】223(2),1x y =-=- ⑴求2008xy 的值; ⑵求32008x y 的值.【解法指导】na 表示n 个a 相乘,根据乘方的符号法那么,如果a 为正数,正数的任何次幂都是正数,如果a 是负数,负数的奇次幂是负数,负数的偶次幂是正数.解:∵223(2),1x y =-=-⑴当2,1x y ==-时,200820082(1)2xy =-= 当2,1x y =-=-时,20082008(2)(1)2xy =-⨯-=- ⑵当2,1x y ==-时,332008200828(1)x y ==-当2,1x y =-=-时,3320082008(2)8(1)x y -==--【变式题组】01.〔〕假设2(2)0m n m -+-=,那么nm 的值是___________. 02.x 、y 互为倒数,且绝对值相等,求()n n x y --的值,这里n 是正整数.【例6】〔XX 〕2007年我省为135万名农村中小学生免费提供教科书,减轻了农民的负担,135万用科学记数法表示为〔 〕A .0.135×106B .1.35×106C .0.135×107D .1.35×107【解法指导】将一个数表示为科学记数法的a ×10n 的形式,其中a 的整数位数是1位.故答案选B .【变式题组】01.〔XX 〕XX 市今年约有103000名学生参加中考,103000用科学记数法表示为〔 〕A .1.03×105B .0.103×105C .10.3×104D .103×10302.〔XX 〕XX 市方案从2021年到2021年新增林地面积253万亩,253万亩用科学记数法表示正确的选项是〔 〕A .25.3×105亩B .2.53×106亩C .253×104亩D .2.53×107亩【例7】〔XX 竞赛〕222222221299110050002200500010050009999005000k k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+【解法指导】找出21005000k k -+的通项公式=22(50)50k -+ 原式=2222222222221299(150)50(250)50(50)50(9950)50k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+ =222222222222199298[][](150)50(9950)50(250)50(9850)50++++⋅⋅⋅+-+-+-+-+222222222495150[](4950)50(5150)50(5050)50++-+-+-+=49222+1++⋅⋅⋅+个=99【变式题组】3333+++=( )2+4+6++10042+4+6++10062+4+6++10082+4+6++2006⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅A .31003B .31004C .1334D .1100002.〔第10届希望杯试题〕11111111 1.2581120411101640+++++++= 求111111112581120411101640---+--++的值.演练稳固·反应提高01.三个有理数相乘,积为负数,那么负因数的个数为〔 〕A .1个B .2个C .3个D .1个或3个 02.两个有理数的和是负数,积也是负数,那么这两个数〔 〕A .互为相反数B .其中绝对值大的数是正数,另一个是负数C .都是负数D .其中绝对值大的数是负数,另一个是正数 03.abc >0,a >0,ac <0,那么以下结论正确的选项是〔 〕A .b <0,c >0B .b >0,c <0C .b <0,c <0D .b >0,c >0 04.假设|ab|=ab ,那么〔 〕A .ab >0B .ab ≥0C .a <0,b <0D .ab <005.假设a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,那么代数式a b m cd m +-+的值为〔 〕A .-3B .1C .±3D .-3或106.假设a >1a ,那么a 的取值X 围〔 〕A .a >1B .0<a <1C .a >-1D .-1<a <0或a >107.a 、b 为有理数,给出以下条件:①a +b =0;②a -b =0;③ab <0;④1ab =-,其中能判断a 、b 互为相反数的个数是〔 〕A .1个B .2个C .3个D .4个08.假设ab ≠0,那么a b a b+的取值不可能为〔 〕A .0B .1C .2D .-209.1110(2)(2)-+-的值为〔 〕A .-2B .(-2)21C .0D .-21010.(XX)2021年一季度,全国城镇新增就业人数289万人,用科学记数法表示289万正确的选项是〔 〕A .2.89×107B .2.89×106C .2.89×105D .2.89×10411.4个不相等的整数a 、b 、c 、d ,它们的积abcd =9,那么a +b +c +d =___________. 12.21221(1)(1)(1)n n n +--+-+-〔n 为自然数〕=___________.13.如果2xy x y+=,试比拟xy -与xy 的大小.14.假设a 、b 、c 为有理数且1a b ca b c++=-,求abc abc的值.15.假设a 、b 、c 均为整数,且321a b c a -+-=.求a c cb b a-+-+-的值.培优升级·奥赛检测01.有理数x 、y 、z 两两不相等,那么,,x y y z z xy z z x x y ------中负数的个数是〔 〕A .1个B .2个C .3个D .0个或2个02.计算12345211,213,217,2115,2131-=-=-=-=-=⋅⋅⋅归纳各计算结果中的个位数字规律,猜测201021-的个位数字是〔 〕A .1B .3C .7D .5 03.23450ab c d e <,以下判断正确的选项是〔 〕A .abcde <0B .ab2cd4e <0C .ab2cde <0D .abcd4e <004.假设有理数x 、y 使得,,,xx y x y xy y +-这四个数中的三个数相等,那么|y|-|x|的值是〔 〕A .12-B .0C .12D .3205.假设A =248163264(21)(21)(21)(21)(21)(21)(21)+++++++,那么A -1996的末位数字是〔 〕A .0B .1C .7D .906.如果20012002()1,()1a b a b +=--=,那么20032003a b +的值是〔 〕 A .2 B .1 C .0 D .-107.5544332222,33,55,66a b c d ====,那么a 、b 、c 、d 大小关系是〔 〕A .a >b >c >dB .a >b >d >cC .b >a >c >dD .a >d >b >c08.a 、b 、c 都不等于0,且a b c abca b c abc+++的最大值为m ,最小值为n ,那么2005()m n +=___________.09.〔第13届“华杯赛〞试题〕从下面每组数中各取一个数将它们相乘,那么所有这样的乘积的总和是___________.第一组:15,3,4.25,5.753- 第二组:112,315- 第三组:52.25,,412-10.一本书的页码从1记到n ,把所有这些页码加起来,其中有一页码被错加了两次,结果得出了不正确的和2002,这个被加错了两次的页码是多少?11.〔XX 省竞赛试题〕观察按以下规律排成一列数:11,12,21,13,22,31,14,23,32,41,15,24,23,42,51,16,…(*),在(*)中左起第m 个数记为F(m),当F(m)=12001时,求m 的值和这m 个数的积.12.图中显示的填数“魔方〞只填了一局部,将以下9个数:11,,1,2,4,8,16,32,6442填入方格中,使得所有行列及对角线上各数相乘的积相等,求x 的值.32 x6413.(第12届“华杯赛〞试题)m 、n 都是正整数,并且111111(1)(1)(1)(1)(1)(1);2233A m m =-+-+⋅⋅⋅-+ 111111(1)(1)(1)(1)(1)(1).2233B n n =-+-+⋅⋅⋅-+证明:⑴11,;22m n A B m n ++==⑵126A B -=,求m 、n 的值.第04讲 整式 考点·方法·破译1.掌握单项式及单项式的系数、次数的概念.2.掌握多项式及多项式的项、常数项及次数等概念. 3.掌握整式的概念,会判断一个代数式是否为整式.4.了解整式读、写的约定俗成的一般方法,会根据给出的字母的值求多项式的值. 经典·考题·赏析【例1】判断以下各代数式是否是单项式,如果不是请简要说明理由,如果是请指出它的系数与次数.【解法指导】 理解单项式的概念:由数与字母的积组成的代数式,单独一个数或一个字母也是单项式,数字的次数为0,是常数,单项式中所有字母指数和叫单项式次数. 解:⑴不是,因为代数式中出现了加法运算; ⑵不是,因为代数式是与x 的商; ⑶是,它的系数为π,次数为2;⑷是,它的系数为32-,次数为3.【变式题组】01.判断以下代数式是否是单项式02.说出以下单项式的系数与次数【例2】如果与都是关于x、y的六次单项式,且系数相等,求m、n 的值.【解法指导】单项式的次数要弄清针对什么字母而言,是针对x或y或x、y等是有区别的,该题是针对x与y而言的,因此单项式的次数指x、y的指数之和,与字母m无关,此时将m看成一个要求的数.解:由题意得【变式题组】01.一个含有x、y的五次单项式,x的指数为3.且当x=2,y=-1时,这个单项式的值为32,求这个单项式.02.〔XX〕写出含有字母x、y的五次单项式______________________.【例3】多项式⑴这个多项式是几次几项式?⑵这个多项式最高次项是多少?二次项系数是什么?常数项是什么?【解法指导】n个单项式的和叫多项式,每个单项式叫多项式的项,多项式里次数最高项的次数叫多项式的次数.解:⑴这个多项式是七次四项式;(2)最高次项是,二次项系数为-1,常数项是1.【变式题组】01.指出以下多项式的项和次数⑴(2)02.指出以下多项式的二次项、二次项系数和常数项⑴(2)【例4】多项式是关于x的三次三项式,并且一次项系数为-7.求m+n-k的值【解法指导】多项式的次数是单项式中次数最高的次数,单项式的系数是数字与字母乘积中的数字因数.解:因为是关于x的三次三项式,依三次知m=3,而一次项系数为-7,即-〔3n+1〕=-7,故n=2.已有三次项为,一次项为-7x,常数项为5,又原多项式为三次三项式,故二次项的系数k=0,故m+n-k=3+2-0=5.【变式题组】01.多项式是四次三项式,那么m的值为〔〕A.2 B.-2 C.±2 D.±102.关于x、y的多项式不含二次项,求5a-8b的值.03.多项式是六次四项式,单项式的次数与这个多项式的次数一样,求n的值.【例5】代数式的值是8,求的值.【解法指导】由,现阶段还不能求出x的具体值,所以联想到整体代入法. 解:由得由〔3【变式题组】01.(XX)如果代数式-2a+3b+8的值为18,那么代数式9b-6a+2的值等于〔〕A.28 B.-28 C.32 D.-3202.〔同山〕假设,那么的值为_______________.03.〔潍坊〕代数式的值为9,那么的值为______________.【例6】证明代数式的值与m的取值无关.【解法指导】欲证代数式的值与m的取值无关,只需证明代数式的化简结果不出现字母即可.证明:原式=∴无论m的值为何,原式值都为4.∴原式的值与m的取值无关.【变式题组】01.,且的值与x无关,求a的值.02.假设代数式的值与字母x的取值无关,求a、b的值.【例7】〔市选拔赛〕同时都含有a、b、c,且系数为1的七次单项式共有〔〕个A.4 B.12 C.15 D.25【解法指导】首先写出符合题意的单项式,x、y、z都是正整数,再依x+y+z=7来确定x、y、z的值.解:为所求的单项式,那么x、y、z都是正整数,且x+y+z=7.当x=1时,y=1,2,3,4,5,z=5,4,3,2,1.当x=2时,y=1,2,3,4,z=4,3,2,1. 当x=3时,y=1,2,3,z=3,2,1.当x=4时,y=1,2,z=2,1.当x=5时,y=z=1.所以所求的单项式的个数为5+4+3+2+1=15,应选C.【变式题组】01.m、n是自然数,是八次三项式,求m、n值.02.整数n=___________时,多项式是三次三项式.演练稳固·反应提高01.以下说法正确的选项是〔〕A.是单项式B.的次数为5C.单项式系数为0D.是四次二项式02.a表示一个两位数,b表示一个一位数,如果把b放在a的右边组成一个三位数.那么这个三位数是〔〕A.100b+a B.10a+b C.a+b D.100a+b03.假设多项式的值为1,那么多项式的值是〔〕A.2 B.17 C.-7 D.704.随着计算机技术的迅猛开展,电脑价格不断降低,某品牌电脑原售价为n元,降低m 元后,又降低20%,那么该电脑的现售价为〔〕A.B.C.D.05.假设多项式是关于x的一次多项式,那么k的值是〔〕A.0 B.1 C.0或1 D.不能确定06.假设是关于x、y的五次单项式,那么它的系数是____________.07.电影院里第1排有a个座位,后面每排都比前排多3个座位,那么第10排有_______个座位.08.假设,那么代数式xy+mn值为________.09.一项工作,甲单独做需a天完成,乙单独做需b天完成,如果甲、乙合做7天完成工作量是____________.10.(XX)有一串单项式(1)请你写出第100个单项式;⑵请你写出第n个单项式.11.〔XX〕一个含有x、y的五次单项式,x的指数为3,且当x=2,y=-1时,这个单项式值为32,求这个单项式.12.〔XX〕x=3时多项式的值为-1,那么当x=-3时这个多项式的值为多少?13.假设关于x、y的多项式与多项式的系数一样,并且最高次项的系数也一样,求a-b的值.14.某地拨号入网有两种方式,用户可任取其一.A:计时制:0.05元/分B:包月制:50元/月〔只限一部宅电上网〕.此外,每种上网方式都得加收通行费0.02元/分.⑴某用户某月上网时间为x小时,请你写出两种收费方式下该用户应该支付的费用;(2)假设某用户估计一个月内上网时间为20小时,你认为采用哪种方式更合算.培优升级·奥赛检测01.〔XX〕有一列数,从第二个数开场,每一个数都等于1与它前面那个数的倒数的差.假设,那么为〔〕A.2007 B.2 C.D.-102.〔华师一附高招生〕设记号*表示求a、b算术平均数的运算,即,那么以下等式中对于任意实数a、b、c都成立的是〔〕①②③④A.①②③B.①②④C.①③④D.②④03.,那么在代数式中,对任意的a、b,对应的代数式的值最大的是〔〕A.B.C.D.04.在一个地球仪的赤道上用铁丝箍半径增大1米,需增加m米长的铁丝,假设地球的赤道上一个铁丝箍,同样半径增大1米,需增加n米长的铁丝,那么m与n大小关系〔〕A.m>n B.m<n C.m=n D.不能确定05.〔XX〕_____________.06.某书店出售图书的同时,推出一项租书业务,每租看一本书,租期不超过3天,每天租金a元,租期超过3天,从第4天开场每天另加收b元,如果租看1本书7天归还,那么租金为____________元.07.=_____________.08.有理数a、b、c在数轴上的位置如下图,化简后的结果是______________.09.=______________.10.〔全国初中数学竞赛〕设a、b、c的平均数为M,a、b的平均数为N,又N、c的平均数为P,假设a>b>c,那么M与P大小关系______________.11.(资阳)如图,对面积为1的△ABC逐次进展以下操作:第一次操作,分别延长AB,BC,CA至点A1,B1,C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1,B1,C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2;…;按此规律继续下去,可得到△A5B5C5,那么其面积S5=________________195.。

学而思数学秘籍 -回复

学而思数学秘籍 -回复

学而思数学秘籍-回复学而思数学秘籍:如何打造高效学习数学的方法引言:数学是一门需要反复练习和理解的学科,而学而思数学秘籍致力于帮助学生找到一种高效学习数学的方法。

本文将一步一步回答有关学而思数学秘籍的问题,让学生全面掌握学习数学的技巧和窍门,激发学习兴趣,提升学习效果。

一、了解学而思数学秘籍的核心理念学而思数学秘籍的核心理念是“因材施教、循序渐进、质量优先”。

这意味着我们需要根据学生的学习情况和能力,制定合适的学习计划,并且逐步提高难度,注重质量。

二、高效学习方法1. 制定学习计划:首先,学生需要根据自己的学习进度制定学习计划。

将学习内容分成小块,合理安排每天/每周的学习时间,提前预习和复习,确保能有足够的时间掌握每一个知识点。

学而思数学秘籍提供了具体的学习计划参考。

2. 合理安排时间:良好的时间管理对高效学习至关重要。

学生可以利用零散的时间段进行短暂的复习,例如在公交车上背算式或者利用午餐时间复习公式等。

切忌拖延,合理安排学习时间,提高学习效率。

3. 理解和应用知识:数学不仅仅是记住公式和算法,更要理解其背后的原理和应用。

学习数学时,学生应该注重理解每个步骤,与实际生活和其他学科相结合,找到数学与现实问题的联系。

而后在实际问题中灵活运用所学的知识。

4. 反复练习:反复练习是提高数学能力的关键。

学生应该定期复习和练习已学知识点,并且不断积累题型和解题技巧。

学而思数学秘籍提供了大量的适合不同难度的练习题,帮助学生巩固知识、提高解题能力。

5. 善用工具:数学学习中,合适的工具可以提高学生的学习效果。

学而思数学秘籍可以提供一些数学学习的工具,如网课、学习软件、数学工具箱等。

学生可以根据个人情况选择并灵活运用这些工具。

三、学而思数学秘籍的实施策略1. 提供个性化学习方案:学而思数学秘籍根据学生的学习能力和特点,提供个性化的学习方案。

学生可以根据自己的情况选择最适合自己的学习方式和节奏。

2. 优化教材和内容:学而思数学秘籍不断优化教材和内容,提供更加清晰明了、易于理解的数学教材,将数学概念的讲解与实际应用相结合,增加学生的学习乐趣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中几何学霸内部秘籍系列1(学而思培优
竞赛)
模型 1 :角平分线上的点向两边作垂线
如图,P 是∠MON 的平分线上一点,过点 P 作 PA⊥OM 于点 A,PB⊥ON 于点 B。

结论:PB=PA。

模型证明:
∵OP平分∠MON,
∴∠AOP=∠BOP;
又 PA⊥OM ,PB⊥ON,
∴∠OAP=∠OBP=90°;
OP=OP;
∴RT△OAP≌RT△OBP,
∴PB=PA。

模型分析
利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,
为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的
突破口。

模型实例
(1)如图①,在△ABC 中,∠C=90°,AD 平分∠CAB,BC=6,BD=4,那么点 D 到直线 AB 的距离是_____;
(2)如图②,∠1=∠2,∠3=∠4。

求证:AP 平分∠BAC。

解析:(1)由角平分线模型知,D到AB的距离等于DC=2
(2)如图分别做AB、BC、AC三边的高,由题意易得三边高相等,
∴AP 平分∠BAC
模型练习
1.如图,在四边形 ABCD 中,BC>AB,AD=DC,BD 平分∠ABC。

求证:∠BAD+∠BCD=180°。

证明:如图延长BA,
过D作DE、DF垂直BA延长线、BC于E、F两点,
∵BD 平分∠ABC
∴DE=DF,
又AD=DC
∴RT△DEA≌RT△DFC
∴∠DAE=∠BCD
∴∠BAD+∠BCD=180°
2.如图,△ABC 的外角∠ACD 的平分线 CP 与内角∠ABC 的平分线 BP 交于点
P,若∠BPC=40°,则∠CAP= 。

角平分线模型
模型 2 截取构造对称全等
如图,P 是∠MON 的角平分线上一点,点 A 是射线 OM 上任意一点,在 ON 上截取 OB=OA,连接 PB。

结论:△OPB≌△OPA。

模型证明:
∵O P 是∠MON 的角平分线
∴∠AOP=∠BOP,OP=OP
又OA=AB
∴△OPB≌△OPA
模型分析
利用角平分线图形的对称性,在角的两边构造对称全等三角形,可以得
到对应边、对应角相等。

利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧。

模型实例
(1)如图①所示,在△ABC 中,AD 是△ABC 的外角平分线,P 是 AD 上异于点A 的任意一点,试比较 PB+PC 与 AB+AC 的大小,并说明理由;
(2)如图②所示, AD 是△ABC 的内角平分线,其他条件不变,试比较
PC-PB 与 AC-AB 的大小,并说明理由。

解:(1)如图在BA的延长线上取点E使AE=AC,连接PC
由角平分线模型2可证△APC≌△APE
∴PC=PE
∴在△PBE中有
PC+PE>BE=AB+AE
∴PB+PC>AB+AC
(2)如图在AC上取一点E使AE=AB,连接PE
∵∠BAP=∠EAP,AP=AP,AE=AB
∴△BAP≌△EAP
∴PB=PE
在△PEC中,PC-PB=PC-PE>EC=AC-AE=AC-AB
∴PC-PB>AC-AB
模型练习
1.已知,在△ABC 中,∠A=2∠B,CD 是∠ACB 的平分线,AC=16,AD=8。

求线段 BC 的长。

解:如图在CB上取一点E使CE=CA,则有
CD=CD,∠ACD=∠ECD
∴△ACD≌ECD
∴AD=DE=8
∴∠A=∠CED=2∠B
又∠CED=∠B+∠BDE
∴∠B=∠BDE
∴△BDE为等腰三角形
∴DE=BE=8
又CE=CA=16
∴BC=BE+EC=24
2.已知,在△ABC 中,AB=AC,∠A=108°,BD 平分∠ABC。

求证:BC=AB+CD。

解:如图在BC上取一点E使BA=BE,则
BD=BD,∠ABD=∠EBD
∴△ABD≌△EBD
∴AB=EB,∠DEB=108°
又∠C=36°
∴∠CDE=∠CED=72°
∴CD=CE
∴BC=AB+CD
3.如图所示,在△ABC 中,∠A=100°,∠ABC=40°,BD 是∠ABC 的平分线,延长 BD 至 E,DE=AD。

求证:BC=AB+CE。

角平分线模型
模型 3 角平分线+垂线构造等腰三角形
如图,P 是∠MON 的平分线上一点,AP⊥OP 于 P 点,延长 AP交ON于点 B。

结论:△AOB 是等腰三角形。

模型证明:
由已知可得AP⊥OP,BP⊥OP,OP=OP,∠POA=∠POB
∴△POA≌△POB
∴OA=OB
∴△AOB 是等腰三角形
模型分析
构造此模型可以利用等腰三角形的“三线合一”,也可以得到两个全等
的直角三角形,进而得到对应边、对应角相等。

这个模型巧妙地把角平分线和三线合一联系了起来。

模型实例
如图,已知等腰直角三角形 ABC 中,∠A=90°,AB=AC,BD 平分∠ABC,CE⊥BD,垂足为 E。

求证:BD=2CE。

证明:如图延长BA、CE交于点F则有:
∠ABE=∠CBE,BE=BE
∴RT△BEF≌RT△BEC
∴CE=EF
∴CF=2CE
又∵∠ADB=∠CDE
∠DCE+∠CDE=∠DCE+∠F=90°
∴∠ADB=∠F
又AB=AC
∴RT△BAD≌RT△CAF
∴BD=CF
∴BD=2CE.
模型练习
1.如图,在△ABC 中,BE 是角平分线,AD⊥BE,垂足为 D。

求证:∠2=∠1+∠C。

证明:如图延长AD交BC于点F则有
BD=BD,∠ABD=∠FBD
∴RT△ADB≌RT△FDB
∴∠2=∠BFD=∠1+∠C
∴∠2=∠1+∠C
2.如图,在△ABC 中,∠ABC=3∠C,AD 是∠BAC 的角平分线,BE⊥AD 于点 E。

求证:BE= ½(AC-AB)。

角平分线模型
模型 4 角平分线+平行线
如图,P 是∠MON 的平分线上一点,过点 P 作 PQ∥ON,交 OM 于点 Q。

结论:△POQ 是等腰三角形。

模型证明
∵PQ∥ON
∴∠PON=∠OPQ
又∵OP 是∠MON 的平分线
∴∠POQ=∠PON
∴∠POQ=∠OPQ
∴△POQ是等腰三角形
模型分析
有角平分线时,常过角平分线上一点作角的一边的平行线,构造等腰三角形,为证明结论提供更多的条件,体现了角平分线与等腰三角形之间的密切关系。

模型实例
解答下列问题:
(1)如图①所示,在△ABC 中,EF∥BC,点 D 在 EF 上,BD、CD 分别平分∠ABC、∠ACB,写出线段 EF 与 BE、CF 有什么数量关系;
(2)如图②所示,BD 平分∠ABC、CD 平分∠ACG,DE∥BC 交 AB 于点 E,交 AC 于点 F,线段 EF 与 BE、CF 有什么数量关系?并说明理由。

(3)如图③所示,BD、CD 分别为外角∠CBM、∠BCN 的平分线,,DE∥BC 交
AB 延长线于点 E,交 AC 延长线于点 F,直接写出线段 EF 与 BE、CF 有什
么数量关系?
解析:(1)由模型可知,ED=BE,DF=CF
∴EF=ED+DF=BE+CF
(2)∵DE∥BC
∴∠EDB=∠DBC
又BD 平分∠ABC
∴∠DBE=∠DBC
∴∠EDB=∠DBE
∴△EBD为等腰三角形
∴BE=ED
同理可证:FD=CF
∴EF=ED-FD=BE-CF
∴EF=BE-CF
(3)EF=BE+CF(由模型可轻松证明)
模型练习
1.如图,在△ABC 中,∠ABC、∠ACB 的平分线交于点E,过点E作MN∥BC,交 AB 于点 M,交 AC 于点 N。

若 BM+CN=9,则线段 MN 的长为。

解析:由模型可得,ME=BM,EN=CN
∴MN=ME+EN=BM+CN=9
2.如图,在△ABC 中,AD 平分∠BAC,点 E、F 分别在 BD、AD 上,且 DE=CD,EF=AC 求证:EF∥AB。

解析:
3.如图,梯形 ABCD 中,AD∥BC,点 E 在 CD 上,且 AE 平分∠BAD,BE 平分∠ABC。

求证:AD=AB-BC。

相关文档
最新文档