河北科技大学2015—2016高数试卷A
河北科技大学2017—2018高数上册试卷A
河北科技大学2017-2018学年《高等数学》(上册)期末考试A 卷一、 单项选择题(每小题3分,共15分)1. 若函数21,,()1,x x f x x ax b ≤⎧=⎨>+⎩在1x =处连续且可导,则【 】 A. 0,1a b == B. 2,1a b ==- C. 1,1a b =-= D. 3,2a b ==2. 曲线2y x =与直线1x =及0y =所围成的图形绕着y 轴旋转一周所形成的旋转体的体积为【 】 A. π2 B. π5 C. 3π2 D. 5π43. 当0x →时,sin e e x x -与n x 是同阶的无穷小量,则n 的值为【 】A. 1B. 2C. 3D. 44. 函数2ln(1)y x =+图形的凹区间是【 】A. []2,2-B. []1,4C. []1,1-D. []0,15. 方程510x x +-=【 】A. 只有一个正实根B. 无实根C. 有两个实根D. 有五个实根二、 填空题(每小题3分,共15分)1. 极限20lim ln x x x +→= . 2. 曲线1e y y x =+在点(0,1)处的切线的斜率k = .3. π42π2(cos sin )d x x x x --=⎰ .4. 若1ln cos y x=,则d y = . 5. 若()f x 的一个原函数是2ln x x ,则(e )d x f x =⎰ .三、 计算题(每小题7分,共21分)1. 设21,cos ,x t y t ⎧=+⎨=⎩,求π2d d t y x =与22d d y x . 2.求x ⎰.3.设21()d t f x t -=,求10x ⎰. 四、 解答题(每小题8分,共24分)1. 讨论函数11ln(1),10,()e ,0,1x x x f x x x -+-<<⎧⎪=⎨⎪≥≠⎩的连续性,若有间断点,指出其类型. 2. 求函数543121540y x x x =+-的极值.3. 求圆3cos r θ=与心形线1cos r θ=+所围的公共部分的面积.五、 解答题(每小题8分,共16分)1. 设()f x 在0x =的某邻域内有定义且(0)0f =,若20sin ()1lim 2e 1x x xf x →⋅=-,求(0)f '. 2. 已知函数()f x 在区间(,)-∞∞内可导,且lim ()e x f x →∞'=,又lim x x x c x c →∞+⎛⎫ ⎪-⎝⎭[]lim ()(1)x f x f x →∞=--,试利用拉格朗日中值定理求常数c 的值. 六、 证明题(9分) 设函数0()cos d xS x t t =⎰.(1)当n 为正整数,且π(1)πn x n ≤<+时,利用定积分的几何意义和性质证明2()2(1)n S x n ≤<+;(2)证明()2lim πx S x x →+∞=.。
2016年河北省专接本高等数学(二)真题试卷(题后含答案及解析)
2016年河北省专接本高等数学(二)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题选择题在每小题给出的四个选项中,只有一项是符合要求的。
1.函数的定义域为( )A.(一2,+∞)B.(4,+∞)C.(-2,4)D.(-4,4)正确答案:B解析:考查函数的定义域.解方程组即得.2.设函数可导,且,则= ( )A.1B.2C.3D.5正确答案:D解析:考查导数的定义式.3.己知,则( )A.16B.8C.4D.2正确答案:A解析:考查方阵行列式的性质.4.已知函数,则=( )A.27B.28C.D.正确答案:D解析:考查函数的高阶导数.5.一阶微分方程2xydx+x2dy=0的通解为( )A.B.C.x2y=CD.xy2=C正确答案:C解析:考查一阶线性微分方程的通解.6.曲线y=x4?5x3+18x2+2x+1的凸区间是( )A.(2,3)B.(一3,一2)C.(一∞,一2)D.(3,+∞)正确答案:A解析:考查函数曲线的凹凸性.令yn=6x2—30x+36=( )A.B.C.D.正确答案:A解析:考查无穷区间上的广义积分.8.已知的一个原函数为sinx,则=( )A.xsinx+cosx+CB.xcosx+sinx+CC.xcosx?sinx+CD.xsinx?cosx+C正确答案:C解析:考查不定积分的分部积分法.9.定积分=( )A.2e2+2B.2e2—2C.6e2+2D.6e2—2正确答案:A解析:考查定积分的还原积分法及分部积分法.10.下列无穷级数中,条件收敛的是( )A.B.C.D.正确答案:D解析:考查常数项级数的敛散性.填空题11.己知函数z=x2ey,则dz=________.正确答案:dz=2xeydx+x2eydy.解析:考查多元函数的全微分.12.极限= ________.正确答案:解析:考查洛必达法则.13.向量组α1=(1,2,0,1),α2=(1,3,0,一1),α3=(一1,一1,1,0)的秩为________.正确答案:3解析:考查向量组的秩.14.已知函数在定义域内连续,则a=________,b= ________.正确答案:a=3,解析:考查函数的连续性.令即得.15.级数的收敛域为________.正确答案:[—3,7)解析:考查幂级数的收敛域.解答题解答时应写出推理、演算步骤。
河北科技大学2017—2018高数试卷A
河北科技大学2017-2018学年第二学期《高等数学》下册期末试卷一、单项选择题(每小题3分,共15分)1. 设L 为221x y +=的圆周曲线,则曲线积分22()d Lx y s +=⎰ 【 】 A. 0 B. 2π C. π D. π22. 已知函数1cos y x ω=,23sin y x ω=是微分方程()()0y p x y q x y '''++=的解,则1122y C y C y =+(1C ,2C 为任意常数)是该微分方程的 【 】A. 通解B.解C.不一定是解D. 是解,但不是通解3. 过两点1(3,2,1)M -和2(1,0,2)M -的直线方程为 【 】 A.321421x y z -+-==- B. 321421x y z -+-==-- C. 12421x y z +-== D. 12421x y z +-==- 4. 下列说法正确的是 【 】 A. 若(,)x f x y 、(,)y f x y 在点0P 处连续,则(,)f x y 在点0P 处连续B. 若(,)x f x y 、(,)y f x y 在点0P 处存在,则(,)f x y 在点0P 处连续C. 若(,)x f x y 、(,)y f x y 在点0P 处存在,则(,)f x y 在点0P 处可微D. 若(,)f x y 在点0P 处可微,则(,)x f x y 、(,)y f x y 在点0P 处连续5. 极限lim 0n n a →∞=,是级数1n n a ∞=∑收敛的 【 】 A.充分但非必要条件 B.必要但非充分条件C. 充要条件D. 既非充分又非必要条件二、填空题(每小题3分,共15分)1. 若向量{1,2,3}a =-与向量{,2,1}b x =-垂直,则x = .2. 已知曲面∑为平面0x =,0y =,0z =,1x =,1y =,1z =所围成的立体的表面的外侧,则积分d d z x y ∑=⎰⎰ .3. 二次积分2100d (,)d x x f x y y ⎰⎰的另一种次序的积分是 . 4. 曲面0z xy -=在点(3,1,3)--处的切平面方程为 .5. 微分方程e x y y -'+=的通解为 .三、计算下列各题(每小题7分,共21分)1. 求空间曲线2229,1x y z x z ⎧++=⎨+=⎩在xOy 坐标面上的投影曲线的方程.2. 计算二重积分22()d d Dx y x x y +-⎰⎰,其中D 是由直线2y =、y x =及2y x =所围成的闭区域.3. 求函数224()z x y x y =+--的极值.四、解答题(每小题8分,共40分)1. 计算三重积分22()d x y v Ω+⎰⎰⎰,其中Ω是由曲面222x y z +=与平面2z =所围成的闭区域.2. 求微分方程y y x '''+=的通解.3. 计算曲线积分()e sin ()d e cos d x x Ly b x y x y ax y ⎡⎤-++-⎣⎦⎰,其中a ,b 为正的常数,L 为沿圆周222x y ax +=的逆时针方向.4. 求函数x z xy y=+的全微分及2z y x ∂∂∂. 5. 将函数()arctan f x x =展开成x 的幂级数,并求出该幂级数的收敛域.五、综合题(9分)已知函数()y x 为幂级数0()!nn x x n ∞=-∞<<∞∑的和函数,证明:若1()()0p x q x ++=,则函数()y x 为微分方程()()0y p x y q x y '''++=的一个解.。
09-10(2)高数1(A)卷
第 1 页 共 4 页
河北科技师范学院 2009-2010学年第二学期 专业 高等数学1 试卷A
一、(本题12分) 已知两点坐标为(4,1,3)A -、 (2,4,1)B ,(1,3,2)C D = ,写出下列各题的结果:
1、向量AB =
2、模A B =
3、直线AB 的方程为:
4、AB CD =⋅
5、AB CD ⨯=
6、AB 和CD 所在平面方程为: 二、(本题10分)设(,)z z x y =是由方程333z xyz a -=确定的隐函数,求,z z x y ∂∂∂∂。
第 2 页 共 4 页
三、(本题7分)求函数2y z xe =在点(1,0)P 处沿从点(1,0)P
到点(2,1)Q -的方向导数。
四、(本题15分)计算二重积分22()D I x y dxdy =+⎰⎰,其中D 是 以(0,0)为圆心,半径为a 的圆所围区域。
第 3 页 共 4 页
五、(本题10分)求函数
22(,)4()f x y x y x y =---的极值。
六、(本题共15分)计算曲线积分:
231(2)()3L x y y dx x x dy -+-⎰ ,其中L 为以1x =
,2y x y x ==为边的三角形正向边界。
第 4 页 共 4 页
七、(本题15分)zdxdy xdydz ydzdx ∑++⎰⎰ ,其中∑为
平面0,x =0,y =0z =,236x y z ++=所围四面体外侧。
八、(本题16分)设有幂级数13
n
n
n x
n ∞=∑,
(1)求收敛域; (2)求和函数.。
河北省2015-2016学年高一上学期期末考试数学试题含答案
2015-2016学年第一学期高一年级期末考试数 学 试 卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效. 4.考试结束后,将本试卷和答题卡一并交回.第I 卷 (选择题,共60分)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项....是符合题目要求的,请将正确选项填涂在答题卡上).1.已知全集U R =, {|21}xA y y ==+, {|ln 0}B x x =≥,则AB =( )A .{|1}x x ≥B .{|1}x x >C .{|01}x x <<D .∅ 2.定义在R 的奇函数)(x f ,当0<x 时,x x x f +-=2)(,则(2)f 等于( ) A .4 B .6 C .4- D .6- 3.已知向量()()1,2,23,2a a b =+=,则( )A .()1,2b =-B .()1,2b =C .()5,6b =D .()2,0b = 4.已知函数()f x 是定义在[)0,+∞上的增函数,则满足()1213f x f ⎛⎫-< ⎪⎝⎭的x 取值范围是( )A .⎪⎭⎫ ⎝⎛∞-32,B .⎪⎭⎫⎢⎣⎡32,31C .⎪⎭⎫⎝⎛+∞,21 D .⎪⎭⎫⎢⎣⎡32,21 5.下列函数中,既在定义域上是增函数且图象又关于原点对称的是( )A .2y x =-B .2lg 11y x ⎛⎫=-⎪+⎝⎭C .x y 2=D .22x x y -=+ 6.函数5()3f x x x =+-零点所在的区间是( )A .[]1,0B .[]2,1C .[]3,2D .[]4,37.若βα,都是锐角,且552sin =α,1010)sin(=-βα,则=βcos ( )第11题A .22 B .102 C .22或102- D .22或1028.将函数()sin(2)(||)2f x x πϕϕ=+<的图象向左平移6π个单位后的图象关于原点对称,则ϕ的值为( ) A .3π-B .3πC .6πD .6π- 9.函数)82ln(2+--=x x y 的单调递减区间是( )A .)1,(--∞B .)2,1(-C .)1,4(--D .),1(+∞-10.已知))1(2(a m b m ==-,,,,若()2a b b -⊥,则a =( )A .2B .3C .4D .5 11.已知函数()sin()(0,0,)2f x A x A πωϕωϕ=+>><一个周期的图象如图所示,则ϕ的值为( ) A.6π B.4π C.3π D.83π12.已知函数()⎪⎩⎪⎨⎧≥-<-=,2,13,2,12x x x x f x 若函数()()[]2-=x f f x g 的零点个数为( )A .3B .4C .5D .6第Ⅱ卷(非选择题,共90分)二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上). 13.已知三个数3.0222,3.0log ,3.0===c b a ,则,,a b c 的大小关系为 .14.化简002sin15sin 75的值为___________.15.若αtan ,βtan 是方程23340x x -+=的两个根,则()=+βαtan .16.在菱形ABCD 中,对角线4AC =,E 为CD 的中点,则AE AC ⋅=_______.三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤). 17.(本小题满分10分)已知C B A ,,三点的坐标分别是)0,3(A ,)3,0(B ,)sin ,(cos ααC ,其中232παπ<<. (1)若||||BC AC =,求角α的值;(2)若1-=⋅BC AC ,求α2sin 的值.18.(本小题满分12分) (sin ,sin()),(sin ,3sin )2a x xb x x πωωωω=+=已知()0>ω,记()f x a b =⋅.且()f x 的最小正周期为π.(1)求()x f 的最大值及取得最大值时x 的集合; (2)求()x f 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.19.(本小题满分12分)学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数y 与听课时间x (单位:分钟)之间的关系满足如图所示的图象,当(]0,12x ∈时,图象是二次函数图象的一部分,其中顶点(10,80)A ,过点(12,78)B ;当[]12,40x ∈时,图象是线段BC ,其中(40,50)C ,根据专家研究,当注意力指数大于62时,学习效果最佳. (1)试求()y f x =的函数关系式;(2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.20.(本小题满分12分)设)(x f 是定义在R 上的偶函数,其图象关于直线1=x 对称,对任意⎥⎦⎤⎢⎣⎡∈21,0,21x x 都有)()()(2121x f x f x x f ⋅=+,且0)1(>=a f .(1)求⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛41,21f f ;(2)求证:)(x f 是周期函数.21.(本小题满分12分) 已知函数1()log ,(0,1)1ax f x a a x +=>≠-且. (1)判断()f x 的奇偶性并证明;(2)若对于[2,4]x ∈,恒有()log (1)(7)a mf x x x >-⋅-成立,求m 的取值范围.22.(本小题满分12分)函数()⎥⎦⎤⎢⎣⎡∈-+=2,0,2cos sin 2πθθθθm m g . (1)当3=m 时,求()θg 的单调递增区间; (2)若()01<+θg 恒成立,求m 的取值范围.2015-2016高一期末考试数学试卷答案一、选择题1-5.B B A D C 6-10 B A A B B 11-12 C B 二、填空题13. c a b >>14. 1 15. 三、填空题 17.解析:(1)54πα=………………………………………………….4分 (2)cos (cos 3)sin (sin 3)AC BC αααα=-+-13(sin cos )1αα=-+=-2sin cos 9αα∴+=……………………………………………6分 252sin cos (sin cos )19αααα∴=+-=- ……………………8分原式=2sin (sin cos )52sin cos cos sin 9cos αααααααα+==-+ ……………………….10分18.解析:(Ⅰ)2π()sin sin 2f x x x x ωωω⎛⎫=++⎪⎝⎭1cos 2()22x f x x ωω-=112cos 222x x ωω=-+π1sin 262x ω⎛⎫=-+ ⎪⎝⎭.因为函数()f x 的最小正周期为π,且0ω>, 所以2ππ2ω=,解得1ω=. 6分 (Ⅱ)由(Ⅰ)得π1()sin 262f x x ⎛⎫=-+ ⎪⎝⎭. 因为2π03x ≤≤, 所以ππ7π2666x --≤≤,所以1πsin 2126x ⎛⎫-- ⎪⎝⎭≤≤,因此π130sin 2622x ⎛⎫-+ ⎪⎝⎭≤≤,即()f x 的取值范围为302⎡⎤⎢⎥⎣⎦,. 12分 19.解析:(1)当(]0,12x ∈时,设()()21080f x a x =-+ 因为这时图像过点(12,78),代入得12a =- 所以()()2110802f x x =--+ 当[]12,40x ∈时,设y kx b =+,过点(12,78)(40,50)B C 、得190k b =-⎧⎨=⎩,即90y x =-+ 6分故所求函数的关系式为()()(](]211080,0,12290,12,40x x f x x x ⎧--+∈⎪=⎨⎪-+∈⎩………7分(2)由题意得()201211080622x x <≤⎧⎪⎨--+>⎪⎩或12409062x x <≤⎧⎨-+>⎩ ……………9分 得412x <≤或1228x <<,即428x <<则老师就在()4,28x ∈时段内安排核心内容,能使得学生学习效果最佳 …… 12分.20.解析:(1)设⎥⎦⎤⎢⎣⎡∈21,0x ,则⎥⎦⎤⎢⎣⎡∈21,02x,于是()02222≥⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛==⎪⎭⎫⎝⎛+=x f x xf x f , ∵()22121211⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+=f f f ,且0)1(>=a f ,∴a f =⎪⎭⎫ ⎝⎛21,同理,因为24121⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛f f ,所以441a f =⎪⎭⎫ ⎝⎛; ……………………6分(2)∵)(x f 是偶函数,∴ ()()x f x f =-,)(x f 图象关于直线1=x 对称, ∴ ()()x f x f -=+11,∴对任意实数x ,都有()()[]()[]()()x f x f x f x f x f =-=+-=++=+11112,∴)(x f 是周期为2的周期函数…………12分 21.解析:(1)因为101x x +>-解得11x x <->或所以函数()f x 的定义域为 (,1)(1,)-∞-+∞函数()f x 为奇函数,证明如下:由(I )知函数()f x 的定义域关于原点对称,又因为11()log log ()11aa x x f x f x x x -+--===---+所以函数()f x 为奇函数…………4分 (2)若对于[2,4]x ∈,()log (1)(7)amf x x x >-⋅-恒成立即1log log 1(1)(7)aa x mx x x +>--⋅-对[2,4]x ∈恒成立 111(1)(7)x ma x x x +>>--⋅-当时即对[2,4]x ∈成立. 1(7)mx x +>-, 即(1)(7)x x m +⋅->成立,所以015m <<同理111(1)(7)x ma x x x +<<--⋅-当0<时,解得16m > 综上所述:1a >当时0<m<15 ,1a <当0<时m>16 ………………………….12分22.解析:(1)令θcos =t []1,0∈,473223132322+-⎪⎪⎭⎫ ⎝⎛--=+-+-=t t t y 记4732)23()(2+---=t t g ,)(t g 在⎥⎦⎤⎢⎣⎡23,0上单调递增,在⎥⎦⎤⎢⎣⎡1,23上单调递减. 又θcos =t 在⎥⎦⎤⎢⎣⎡2,0π上单调递减.令123≤≤t ,解得60πθ≤≤ 故函数)(x f 的单调递增区间为⎥⎦⎤⎢⎣⎡6,0π……………………………………6分 (2)由)(θg <-1得θθ2cos 2)cos 2(->-m即]cos 22)cos 2[(4cos 2cos 22θθθθ-+--=-->m]2,1[cos 2]2,0[∈-∴∈θπθ22cos 22)cos 2(≥-+-∴θθ,等号成立时.22cos -=θ故4-θθcos 22)cos 2[(-+-]的最大值是.224- 从而224->m .…………………12分。
历年真题答案
即得.
0
2.C
解析:考查导数的定义. lim h0
f x0
2h
h
f x0
h 3 f x0 3 .
3.B 解析:考查上限无穷的广义积分.
0
4
1 x
2
dx
1 2
arctan
x 2
0
lim
x
1 2
arctan
x 2
1 2
arctan
0
π 4
.
1
1
4.A 解析:考查曲线的渐近线.由 lim e x1 1 得水平渐近线为 y 1;由 lim e x1 得
1 x
x2
dx
2 1
x2
1 x
dx
ln
x
x3 3
1 1
x3 3
ln
x
2 1
2
ln 2 7 7 ln 2 49
24 3
24
第3页
18.
dy
解:微分方程可化为
xe x
,即 xexdx tan ydy ,
dx tan y
两端积分可得 x 1ex C1 ln cos y ,将 y x0 0 代入,得 1 C1 0 ,即
e
.
17. 解:令 F x, y, z yz zx xy 1 Fx z y, Fy z x, Fz x y,
z x
Fx Fz
z x
y y
2z
,
x 2
z x
y y
x
z x y z
x
x y2
y
2z y x y2
y
18. 解:
1
dx
1 cos ydy
2015-2016年河北省石家庄市高一下学期期末数学试卷及答案
2015-2016学年河北省石家庄市高一(下)期末数学试卷一、选择题(共13小题,每小题5分,满分60分)1.(5分)直线l的倾角为45°,且过点(0,﹣1),则直线l的方程是()A.x﹣y+1=0 B.x﹣y﹣1=0 C.x+y﹣1=0 D.x+y+1=02.(5分)若两直线l1:x+2y﹣1=0,l2:mx﹣y+2m=0互相平行,则常数m等于()A.﹣ B.﹣2 C.D.23.(5分)一个无盖的正方体盒子展开后的平面图如图所示,A、B、C是展开图上的三点,则在正方体盒子中,∠ABC的度数是()A.45°B.30°C.60°D.90°4.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,如果b2+c2﹣a2﹣bc=0,那么角A的值为()A.30°B.60°C.120° D.150°5.(5分)在古希腊,毕达哥拉斯学派把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的石子可以排成一个正三角形(如图),则第八个三角形数是()A.35 B.36 C.37 D.386.(5分)已知数列{a n}的前n项和S n=n2﹣9n(n∈N*),则a9的值为()A.9 B.8 C.7 D.67.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,且a=2,b=3,c=,则△ABC的面积是()A.2 B.2 C.D.8.(5分)已知直线l、m、n与平面α、β,给出下列四个命题()①若m∥l,n∥l,则m∥n;②若m⊥α,m∥β,则α⊥β;③若m∥α,n∥α,则m∥n;④若m⊥β,α⊥β,则m∥α或m⊂α.其中假命题是()A.①B.②C.③D.④9.(5分)一个几何体的三视图如图所示,其中正视图与侧视图都是边长为2的正三角形,则这个几何体的侧面积为()A.B.2πC.3πD.4π10.(5分)点P(﹣2,﹣1)到直线l:(1+3λ)x+(1+2λ)y=2+5λ的距离为d,则d的取值范围是()A.0≤d<B.d≥0 C.d>D.d≥11.(5分)如图,在四棱锥P﹣ABCD中,侧面PAD为正三角形,底面ABCD为正方形,侧面PAD⊥底面ABCD,M为底面ABCD内的一个动点,且满足MP=MC,则点M在正方形ABCD内的轨迹为()A.B.C.D.12.(5分)若关于x的不等式2x2﹣8x﹣4﹣a>0在1<x<4内有解,则实数a 的取值范围是()A.a<﹣4 B.a>﹣4 C.a>﹣12 D.a<﹣1213.当x>1时,不等式x+≥a恒成立,则实数a的取值范围是()A.(﹣∞,2]B.[2,+∞)C.[3,+∞)D.(﹣∞,3]二、填空题(共5小题,每小题5分,满分20分)14.(5分)已知m+4n=4(m>0,n>0),则mn的最大值是.15.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,B=45°,c=2,b=,那么角A=.16.(5分)[示范高中]设x,y满足的约束条件为,若目标函数z=4ax+by(a>0,b>0)的最大值为8,则a2+b2的最小值为.17.已知实数x、y满足,则x+2y的最大值是.18.(5分)等差数列{a n}中,S n是它的前n项和,且S6<S7,S7>S8,则①此数列的公差d<0②S9<S6③a7是各项中最大的一项④S7一定是S n中的最大值.其中正确的是(填序号).三、解答题(共7小题,满分70分)19.(10分)设等比数列{a n}的前n项和为S n,已知a2=6,6a1+a3=30,求a n和S n.20.(12分)已知过A(﹣1,2)点的一条入射光线l经x轴反射后,经过点B (2,1).(1)求直线l的方程;(2)设直线l与x轴交于点C,求△ABC的面积.21.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC﹣ccos (A+C)=3acosB.(1)求cosB的值;(2)若•=2,且b=3,求a,c的值.22.(12分)[示范高中]设不等式x2﹣2ax+a+2≤0的解集为M,集合N=[1,4],且M⊆N,求实数a的取值范围.23.[普通高中]设不等式x2﹣2ax+a+2≤0的解集为非空数集M,且M⊆[1,4],求实数a的取值范围.24.(12分)已知四棱锥P﹣ABCD,底面ABCD是∠A=60°、边长为a的菱形,又PD⊥底ABCD,且PD=CD,点M、N分别是棱AD、PC的中点.(1)证明:DN∥平面PMB(2)证明:平面PMB⊥平面PAD.25.(12分)设不等式组,所表示的平面区域为D,记D n内的格点(格点即横坐标和纵坐标均为整数的点)的个数为f(n)(n∈N*).(1)求f(1),f(2),f(3)的值及f(n)的表达式(不需证明);(2)设b n=2n f(n),且S n为数列{b n}的前n项和,求S n.2015-2016学年河北省石家庄市高一(下)期末数学试卷参考答案与试题解析一、选择题(共13小题,每小题5分,满分60分)1.(5分)直线l的倾角为45°,且过点(0,﹣1),则直线l的方程是()A.x﹣y+1=0 B.x﹣y﹣1=0 C.x+y﹣1=0 D.x+y+1=0【解答】解:∵直线的倾斜角为45°,∴直线的斜率为1,又∵过点(0,﹣1),∴直线l的方程为y+1=x,整理为一般式可得x﹣y﹣1=0,故选:B.2.(5分)若两直线l1:x+2y﹣1=0,l2:mx﹣y+2m=0互相平行,则常数m等于()A.﹣ B.﹣2 C.D.2【解答】解:由题意,,∴m=﹣.故选:A.3.(5分)一个无盖的正方体盒子展开后的平面图如图所示,A、B、C是展开图上的三点,则在正方体盒子中,∠ABC的度数是()A.45°B.30°C.60°D.90°【解答】解:一个无盖的正方体盒子展开后的平面图如图所示,A、B、C是展开图上的三点,组成立体图形后,可得△ABC的各边均为正方形的对角线长,△ABC为等边三角形,∴∠ABC的度数为60°.故选:C.4.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,如果b2+c2﹣a2﹣bc=0,那么角A的值为()A.30°B.60°C.120° D.150°【解答】解:∵b2+c2﹣a2﹣bc=0,∴cosA===,∵A∈(0°,180°),解得A=60°.故选:B.5.(5分)在古希腊,毕达哥拉斯学派把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的石子可以排成一个正三角形(如图),则第八个三角形数是()A.35 B.36 C.37 D.38【解答】解:发现后一个数等于前一个数加它自己的序号,故前8个数为:1,3,6,10,15,21,28,36.故选:B.6.(5分)已知数列{a n}的前n项和S n=n2﹣9n(n∈N*),则a9的值为()A.9 B.8 C.7 D.6【解答】解:当n=1时,a1=S1=﹣8,=(n﹣1)2﹣9(n﹣1)=n2﹣11n+10,当n≥2时,S n﹣1a n=S n﹣S n﹣1,=n2﹣9n﹣n2+11n﹣10,=2n﹣10,当n=1时成立,∴a n=2n﹣10,当n=9时,a9=2×9﹣10=8,故选:B.7.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,且a=2,b=3,c=,则△ABC的面积是()A.2 B.2 C.D.【解答】解:cosC==,C∈(0,π),∴C=.===.∴S△ABC故选:D.8.(5分)已知直线l、m、n与平面α、β,给出下列四个命题()①若m∥l,n∥l,则m∥n;②若m⊥α,m∥β,则α⊥β;③若m∥α,n∥α,则m∥n;④若m⊥β,α⊥β,则m∥α或m⊂α.其中假命题是()A.①B.②C.③D.④【解答】解:①若m∥l,n∥l,则m∥n,由公理4知,①对;②若m⊥α,m∥β,过m的平面为γ,令γ∩β=l,则m∥l,即有l⊥α,l⊂β,α⊥β,故②对;③若m∥α,n∥α,则m,n平行、相交或异面,故③错;④若m⊥β,α⊥β,则在α内作一条直线l垂直于α,β的交线,则l⊥β,m∥l,故有m∥α,或m⊂α,m⊥β.故④对.故选:C.9.(5分)一个几何体的三视图如图所示,其中正视图与侧视图都是边长为2的正三角形,则这个几何体的侧面积为()A.B.2πC.3πD.4π【解答】解:由已知中三视图可得该几何体为一个圆锥又由正视图与侧视图都是边长为2的正三角形故底面半径R=1,母线长l=2则这个几何体的侧面积S=πRl=2π故选:B.10.(5分)点P(﹣2,﹣1)到直线l:(1+3λ)x+(1+2λ)y=2+5λ的距离为d,则d的取值范围是()A.0≤d<B.d≥0 C.d>D.d≥【解答】解:直线l:(1+3λ)x+(1+2λ)y=2+5λ可化为:(x+y﹣2)+λ(3x+2y﹣5)=0∴,∴∴直线l恒过定点A(1,1)(不包括直线3x+2y﹣5=0)∴∵PA⊥直线3x+2y﹣5=0时,点P(﹣2,﹣1)到直线的距离为∴点P(﹣2,﹣1)到直线l:(1+3λ)x+(1+2λ)y=2+5λ的距离为故选:A.11.(5分)如图,在四棱锥P﹣ABCD中,侧面PAD为正三角形,底面ABCD为正方形,侧面PAD⊥底面ABCD,M为底面ABCD内的一个动点,且满足MP=MC,则点M在正方形ABCD内的轨迹为()A.B.C.D.【解答】解:根据题意可知PD=DC,则点D符合“M为底面ABCD内的一个动点,且满足MP=MC”设AB的中点为N,根据题目条件可知△PAN≌△CBN∴PN=CN,点N也符合“M为底面ABCD内的一个动点,且满足MP=MC”故动点M的轨迹肯定过点D和点N而到点P与到点N的距离相等的点为线段PC的垂直平分面线段PC的垂直平分面与平面AC的交线是一直线故选:A.12.(5分)若关于x的不等式2x2﹣8x﹣4﹣a>0在1<x<4内有解,则实数a 的取值范围是()A.a<﹣4 B.a>﹣4 C.a>﹣12 D.a<﹣12【解答】解:原不等式2x2﹣8x﹣4﹣a>0化为:a<2x2﹣8x﹣4,只须a小于y=2x2﹣8x﹣4在1<x<4内的最大值时即可,∵y=2x2﹣8x﹣4在1<x<4内的最大值是﹣4.则有:a<﹣4.故选:A.13.当x>1时,不等式x+≥a恒成立,则实数a的取值范围是()A.(﹣∞,2]B.[2,+∞)C.[3,+∞)D.(﹣∞,3]【解答】解:∵当x>1时,不等式x+恒成立,∴a≤x+对一切非零实数x>1均成立.由于x+=x﹣1++1≥2+1=3,当且仅当x=2时取等号,故x+的最小值等于3,∴a≤3,则实数a的取值范围是(﹣∞,3].故选:D.二、填空题(共5小题,每小题5分,满分20分)14.(5分)已知m+4n=4(m>0,n>0),则mn的最大值是1.【解答】解:∵m+4n=4(m>0,n>0),∴mn=•m•4n≤()2=×4=1,当且仅当m=2,n=时取等号,∴mn的最大值是1,故答案为:115.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,B=45°,c=2,b=,那么角A=75°或15°.【解答】解:∵B=45°,c=2,b=,∴sinC===,∴解得:C=60°或120°,∴A=180°﹣B﹣C=75°或15°.故答案为:75°或15°.16.(5分)[示范高中]设x,y满足的约束条件为,若目标函数z=4ax+by(a>0,b>0)的最大值为8,则a2+b2的最小值为2.【解答】解:作出不等式对应的平面区域如图:由z=4ax+by(a>0,b>0),得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点A时,直线y=﹣x+的截距最大,此时最大值8,由,解得,即A(1,4),代入目标函数得4a+4b=8,即a+b=2,a2+b2的几何意义为直线上点到圆的距离的平方,则圆心到直线的距离d=,则a2+b2的最小值为d2=2;故答案为:2.17.已知实数x、y满足,则x+2y的最大值是4.【解答】解:已知实数x、y满足在坐标系中画出可行域,三个顶点分别是A(0,1),B(1,0),C(2,1),由图可知,当x=2,y=1时x+2y的最大值是4.故答案为:418.(5分)等差数列{a n}中,S n是它的前n项和,且S6<S7,S7>S8,则①此数列的公差d<0②S9<S6③a7是各项中最大的一项④S7一定是S n中的最大值.其中正确的是①②④(填序号).【解答】解:由s6<s7,S7>S8可得S7﹣S6=a7>0,S8﹣S7=a8<0所以a8﹣a7=d<0①正确②S9﹣S6=a7+a8+a9=3a8<0,所以②正确③由于d<0,所以a1最大③错误④由于a7>0,a8<0,s7最大,所以④正确故答案为:①②④三、解答题(共7小题,满分70分)19.(10分)设等比数列{a n}的前n项和为S n,已知a2=6,6a1+a3=30,求a n和S n.【解答】解:设{a n}的公比为q,由题意得:,解得:或,当a1=3,q=2时:a n=3×2n﹣1,S n=3×(2n﹣1);当a1=2,q=3时:a n=2×3n﹣1,S n=3n﹣1.20.(12分)已知过A(﹣1,2)点的一条入射光线l经x轴反射后,经过点B (2,1).(1)求直线l的方程;(2)设直线l与x轴交于点C,求△ABC的面积.【解答】解:(1)B(2,1)关于x轴的对称点为B’(2,﹣1)…(3分)∴,即直线L的方程为x+y﹣1=0.(6分)(2)由(1)知点C(1,0),…(8分)∴|AC|==,B点到直线l的距离为,…(10分)∴(12分)21.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC﹣ccos (A+C)=3acosB.(1)求cosB的值;(2)若•=2,且b=3,求a,c的值.【解答】解:(Ⅰ)∵bcosC﹣ccos(A+C)=3acosB,由正弦定理可得:sinBcosC+sinCcosB=3sinAcosB,即sin(B+C)=sinA=3sinAcosB,∵sinA>0.∴cosB=.(Ⅱ),∴ac=6.∴,解得a=2,c=3或a=3,c=2.22.(12分)[示范高中]设不等式x2﹣2ax+a+2≤0的解集为M,集合N=[1,4],且M⊆N,求实数a的取值范围.【解答】解:因为不等式x2﹣2ax+a+2≤0的解集为M,N=[1,4];当△=4a2﹣4(a+2)<0,即﹣1<a<2时,M=∅,满足题意;…(2分)当△=0,a=﹣1,M={﹣1}不合题意,a=2时,M={2}满足题意;…(4分)当△>0时,即a>2或a<﹣1时,令f(x)=x2﹣2ax+a+2,要使M⊆[1,4],只需,解得2<a≤;9.分综上,a的取值范围是﹣1<a≤.(12分)23.[普通高中]设不等式x2﹣2ax+a+2≤0的解集为非空数集M,且M⊆[1,4],求实数a的取值范围.【解答】解:由题意知,解得.故a的取值范围为[2,].24.(12分)已知四棱锥P﹣ABCD,底面ABCD是∠A=60°、边长为a的菱形,又PD⊥底ABCD,且PD=CD,点M、N分别是棱AD、PC的中点.(1)证明:DN∥平面PMB(2)证明:平面PMB⊥平面PAD.【解答】解:(1)证明:取PB中点Q,连结MQ、NQ,因为M、N分别是棱AD、PC中点,所以QN∥BC∥MD,且QN=MD,于是DN∥MQ..(2),又因为底面ABCD是∠A=60°,边长为a的菱形,且M为AD中点,所以MB⊥AD.又AD∩PD=D,所以MB⊥平面PAD..25.(12分)设不等式组,所表示的平面区域为D,记D n内的格点(格点即横坐标和纵坐标均为整数的点)的个数为f(n)(n∈N*).(1)求f(1),f(2),f(3)的值及f(n)的表达式(不需证明);(2)设b n=2n f(n),且S n为数列{b n}的前n项和,求S n.【解答】解:(1)由不等式组,可得f(1)=3,f(2)=6,f(3)=9;∴f(n)=3n.(2)由题意知:,∴…①∴…②∴①﹣②得=3(21+22+23+…+2n)﹣3n•2n+1==3(2n+1﹣2)﹣3n•2n+1,∴.。
内蒙古科技大学2015-2016年度第一学期《高等数学》A(1)考试试题(A卷)
内蒙古科技大学2015/2016学年第一学期 《高等数学》A(1)考试试题(A 卷)课程号:680000101考试方式:闭 卷使用专业、年级:2015级 任课教师: 考试时间:2016-1-11 备 注:一、选择题:(共5题,每题3分,共15分)31,11()1,11()()3,1x x f x x x f x x x -<⎧⎪===⎨⎪->⎩.已知:,点是函数的。
(A)连续点;(B)第一类跳跃间断点;(C)第一类可去间断点;(D)第二类间断点。
0000(2)()()3lim()3362x f x x f x f x x∆→+∆-'=-=∆2.已知,则极限。
(A)-;(B)-;(C)-;(D)6。
(,)()()0()0()(,)()a b f x f x f x f x a b '''><3.已知在区间内,函数的一阶导数,二阶导数,则函数在区间内是。
(A)单调递减的凹曲线;(B)单调递增的凹曲线;(C)单调递减的凸曲线;(D)单调递增的凸曲线。
()u v x udv uv vdu uv u vdu uv v du uv uv du ='''----⎰⎰⎰⎰⎰4.已知、都是的可微函数,则。
(A);(B);(C);(D)。
()()()()[,][,][,][,]ba f x dx fb a a b a b a b a b ξξξξξ=-⎰5.定积分的中值定理可表示为,那么。
(A)是内任意一点;(B)是内必定存在的一点;(C)是内唯一的某一点;(D)是的中点。
二、填空题:(共5题,每题3分,共15分)生班级________________学生学号:□□□□□□□□□□□□学生姓名:________________装订线………装订线………装订线…………试卷须与答题纸一并交监考教师…………装订线………装订线………装订线………………01110()1lim sin ()3lim(12)()x x xx e y x x x →→'-==-=.一阶微分方程的通解为。
2015-2016高数(一.二)期末试卷A参考答案
课程名称:高等数学(一、二)(期末考试A )第 3 页 (共 4 页)学 院: 专 业: 学号: 姓名:―――――――――――――装――――――――――――订――――――――――――线――――――――――――――提示:请将答案写在答题纸上,写在试卷页或草稿纸上的无效。
交卷时请将答题纸(1-2页)和试卷页、草稿纸分开上交。
写在背面或写错位置的一定要注明。
一、 填空题(3分*5=15分)1. 设曲线L 是正方形区域{}(,)|01,01x y x y ≤≤≤≤的边界,则曲线积分4Lds =⎰16.2. 若级数∑∞=-1)1(n nu收敛,则=∞→n n u lim 1.3. 设0>p ,当p 满足1p >时,级数∑∞=--11)1(n pn n 绝对收敛. 4. 微分方程y x y y '=''-'''2)(的通解中含有 3 个相互独立的任意常数. 5. 微分方程212y x ''=满足初始条件00x y ==,01x y ='=的特解为4y x x =+. 二、单项选择题(3分*5=15分)1. 设∑是球面2221x y z ++=,而1∑是∑位于第一卦限部分,则曲面积分d z S ∑=⎰⎰( A ).(A )0; (B )12d z S ∑⎰⎰; (C )18d z S ∑⎰⎰; (D )⎰⎰∑1d 4S z .2.若级数∑∞=1n nu绝对收敛,则下列级数中发散的是( C ).(A )1n n u ∞=∑; (B )1n n u ∞=∑; (C )11()n n u n ∞=+∑; (D )11()3n n n u ∞=+∑.3.设2lim1=+∞→nn n a a ,则幂级数20n n n a x ∞=∑的收敛半径=R ( A ). (A )21; (B )1; (C )2; (D )2.4. 函数221ec x c y +=(21,c c 为任意常数)是微分方程02=-'-''y y y 的(C )(A )通解. (B)特解. (C)解但不是通解、特解. (D)不是解.5.已知二阶常系数线性齐次微分方程0=+'+''qy y p y 对应的特征方程有根2,3,则该微分方程通解为( D ).(A)12cos 2sin 3y C x C x =+. (B) 212()x y C C x e =+. (C)32x x y e e =+. (D)3212x x y C e C e =+.三、曲线积分与曲面积分(8分*2=16分)1. 沿曲线L 从点)01(,A 到点)10(,B 计算对坐标的曲线积分⎰++Ly x x xy 1)d (d 22,其中L 为折线AOB (O 是原点).解:法(1)2P Qx y x∂∂==∂∂,所以积分与路径无关,(2分) 选择路径:L x y -=1,则(4分)⎰⎰-++-=++0122d )]1)(1()1(2[1)d (d 2x x x x y x x xy L (6分)=+-=+-=⎰111d )123(12x x x 1. (8分)法(2)OB AO L +=,其中:AO 0=y ; :OB 0=x ,则⎰⎰⎰+++++=++OBAOLy x x xy y x x xy y x x xy 1)d (d 21)d (d 21)d (d 2222(2分)012120d 00(01)d x x x =⋅++++⎰⎰(6分)1=.(8分) 2. 计算曲面积分()()()I y z dydz z x dzdx x y dxdy ∑=-+-+-⎰⎰,其中∑是z =在0,1z z ==部分下侧.解:补面1221:1z x y =⎧∑⎨+≤⎩方向向上,(2分)记22:1xy D x y +≤,100I I dv Ω+==⎰⎰⎰,(5分) 所以1()0xyD I I x y dxdy =-=--=⎰⎰.(8分)课程名称:高等数学(一、二)(期末考试A )第 3 页 (共 4 页)学 院: 专 业: 学号: 姓名:―――――――――――――装――――――――――――订――――――――――――线――――――――――――――四、级数(8分*3=24分) 1. 证明级数∑∞=+-121)1(n n n 条件收敛.解:由n nn n n n 2131111)1(2222=+≥+=+- ,及级数∑∞=121n n 发散, 得级数∑∞=+-121)1(n n n 发散(3分);又112+=n u n ,有nn u n n u =+≤++=+111)1(1221,及011limlim 2=+=∞→∞→n u n n n ,由莱布尼茨判别法,得∑∞=+-121)1(n n n 收敛.(6分)因此级数∑∞=+-121)1(n n n 条件收敛。
2015.5线代统考(本三)
A 卷 共4页 第1页河北科技大学理工学院2014——2015学年第2学期《线性代数》期末考试试题(A )班级 姓名 学号题号 一 二 三 四 总分 得分一 填空题 (本题共10小题,每小题3分,共30分)1. 12(1,2)3⎛⎫⎪-= ⎪⎝⎭.2. 设T T 12(1,2,1,1),(2,3,4,5)αα=-=-,则122αα+= .3. 设111200024,110003122A B ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪⎝⎭⎝⎭, 则AB = .4. 设()23,3,2A ααα=,()23,,B βαα=为3阶方阵.若1A B ==,A B -= . 5. 设1A 1113⎛⎫= ⎪⎝⎭,21002A ⎛⎫= ⎪⎝⎭,12A A A ⎛⎫= ⎪⎝⎭,则=-1A .6. 设A 为m 阶可逆阵,B 为m n ⨯矩阵,C AB =. 若()R B r =,1()R C r =,则r 与1r 的大小关系为 .7. 设123,,ααα是0Ax =的基础解系,当123,,k k k 满足条件 时,122233311,,k k k αααααα+++也是0Ax =的基础解系.8. 设向量组T T 12(,3,1),(2,,3),αa αb ==T 3(1,2,1),α=T 4(2,3,1)α=的秩为2,则a = ,b = .9.设3阶矩阵A 与B 相似,且A 的特征值为2, 2, 3,则1B -= .10. 二次型T 123()056703f x x x ⎛⎫⎪= ⎪⎝⎭的矩阵为.A 卷 共4页 第2页二 选择题 (本题共6小题,每小题3分,共18分)1.下列结论正确的是 【 】 (A) 若B 的第1列和第3列相同,则AB 的第1列和第3列相同; (B) 若B 的第1行和第3行相同,则AB 的第1行和第3行相同; (C) 若AB 与BA 均有意义,则A 与B 均是方阵; (D) 若AB 与BA 均有意义,则AB 与BA 必是同阶方阵.2.设A 为n 阶可逆阵, 下列各式中正确的是 【 】 (A)11(2)2A A --=;(B)0AA *≠; (C)111()A A A*--=; (D)1T 1T 1T [()][()]A A ---=.3.向量组12,,,n ααα 的秩小于(2)n n ≥的充分必要条件是 【 】(A) 12,,,n ααα 全是非零向量; (B) 12,,,n ααα 中至少有一个零向量; (C) 12,,,n ααα 中至少有两个向量成比例;(D) 12,,,n ααα 中至少有一个向量可由其余向量线性表示.4.设A 为n 阶方阵,()1=-R A n ,12,ξξ是齐次线性方程组0=Ax 的两个不同的解,则0=Ax 的通解为(k 为任意常数) 【 】(A) 1k ξ; (B) 2k ξ; (C) 12()+k ξξ; (D) 12()-k ξξ. 5.设12,αα是矩阵A 的对应于特征值λ的特征向量,则以下命题正确的是 【 】(A) 12αα+是λ对应的特征向量; (B) 12α是λ对应的特征向量; (C) 12,αα一定线性相关; (D) 12,αα一定线性无关. 6.方阵A (n 阶)可对角化的充分必要条件是 【 】(A) A 为实对称矩阵; (B) A 有n 个不同的特征值; (C) A 有n 个线性无关的特征向量; (D) A 有n 个不同的特征向量. 三 计算题 (本题共46分. 应写出必要的计算过程)1.(本小题12分)设423110,123A ⎛⎫⎪= ⎪-⎝⎭且2AX A X =+,求矩阵X .A 卷 共4页 第3页2.(本小题10分) 设有向量组T T T T 1234(1,1,2,4),(0,3,1,2),(2,1,5,6),(1,1,2,0)αααα=-===-.求1234,,,αααα的秩及一个最大无关组.3.(本小题12分) 设矩阵110110002A ⎛⎫⎪= ⎪⎝⎭,求可逆阵P 及对角阵Λ,使得1P AP Λ-=.A 卷 共4页 第4页4.(本小题12分) 求解非齐次线性方程组12341234123452311, 5361, 242 6.x x x x x x x x x x x x -+-=⎧⎪++-=-⎨⎪+++=-⎩四 证明题(本题6分).设A 为n 阶方阵,且2230A A E +-=,证明A 可逆.。
2015河北卷高考数学试题及答案或解析下载_2015高考真题抢先版
2015年高考将于6月6、7日举行,我们将在第一时间收录真题,现在就请先用这套权威预测解解渴吧2015年石家庄市高中毕业班第一次模拟考试高三数学(文科A 卷答案)解法2:∵111,1(),n n a a S n N λ*+==+∈∴2111,a S λλ=+=+2321(11)121,a S λλλλλ=+=+++=++∴24(1)1213λλλ+=++++,整理得2210λλ-+=,得1λ=………………………2分∴11(),n n a S n N *+=+∈∴11n n a S -=+(2)n ≥∴1n n n a a a +-=,即12n n a a +=(2)n ≥, 又121,2a a ==∴数列{}n a 为以1为首项,公比为2的等比数列,………………………………………4分 ∴12n n a -=,13(1)32n b n n =+-=-………………………………………………………………………6分(2)1(32)2n n n a b n -=-∴121114272(32)2n n T n -=⋅+⋅+⋅++-⋅………………………①∴12312124272(35)2(32)2n n n T n n -=⋅+⋅+⋅++-⋅+-⋅………②…………8分 ① —②得12111323232(32)2n n n T n --=⋅+⋅+⋅++⋅--⋅12(12)13(32)212n n n -⋅-=+⋅--⋅-…………………………………10分整理得:(35)25nn T n =-⋅+…………………………………………………………12分 18. 解:(1)当日需求量10n ≥时,利润为5010(10)3030200y n n =⨯+-⨯=+; ………2分当日需求量10n <时,利润为50(10)1060100y n n n =⨯--⨯=- …………4分 所以,关于y 日需求量n 函数关系式为:30200,(10,)60100,(10,)n n n N y n n n N +≥∈⎧=⎨-<∈⎩. ………6分 (2)50天内有9天获得的利润380元,有11天获得的利润为440,有15天获得利润为500,有10天获得的利润为530,有5天获得的利润为560.……………8分②若利润在区间[400,550]时,日需求量为9件、10件、11件该商品,其对应的频数分别为11天、15天、10天.…………10分 则利润区间[400,550]的概率为:1115103618505025p ++===. …………12分19.F OGP D BACE(1)证明一连接AC BD ,交于点F ,在平面PCA 中做EF ∥PC 交PA 于E , 因为PC ⊄平面BDE ,EF ⊂平面BDEPC ∥平面BDE ,---------------2AD 因为∥,BC 1,2AF AD FC BC ==所以 因为EF ∥PC ,,AE AFEP FC=所以此时,12AE AF AD EP FC BC ===.-------------4 证明二在棱PA 上取点E ,使得12AE EP =,------------2 连接AC BD ,交于点F ,AD 因为∥,BC 1,2,AF AD FC BC AE AF EP FC===所以所以 所以,EF ∥PC因为PC ⊄平面BDE ,EF⊂平面BDE所以PC ∥平面BDE -------------4(2)证明一取BC 的中点G ,连结DG ,则ABGD 为正方形. 连接,AG BD 交于点O ,连接PO ,0,60AP AD AB PAB PAD ==∠=∠=,00,,,90,90.PAB PAD PA PB PD OD OB POB POD POB POD POA POB POA PO ABC ∆∆===∆≅∆∠=∠=∆≅∆∠=⊥所以和都是等边三角形,因此又因为所以得到,同理得,所以平面-------------7所以PO CD ⊥ -------------8090,2222,ABC BAD BC AD AB ∠=∠====22222BD CD BD CD BC ==+=可得,,所以所以BD CD ⊥,-------------10所以,CD ⊥平面PBD .-------------12证明三.AG CD AG PBD ⊥可证明平行于,平面20解:(1)由题意可知圆心到(1,0)的距离等于到直线1x =-的距离,由抛物线的定义可知,圆心的轨迹方程:24y x =.----------(4分)解法二 由题意,可设l 与x 轴相交于B (m,0), l 的方程为x = y +m ,其中0<m <5由方程组24x y my x=+⎧⎨=⎩,消去x ,得y 2-4 y -4m =0 ①∵直线l 与抛物线有两个不同交点M 、N ,∴方程①的判别式Δ=(-4)2+16m =16(1+m )>0必成立,设M (x 1,y 1),N (x 2,y 2)则y 1+ y 2=4,y 1·y 2=-4m . .---------- (6分) ∴S △=212121211(5)||(5)()422m y y m y y y y --=-+- =322(5)1291525m m m m m -+=-++.----------(9分) 令32()91525,(05)f m m m m m =-++<<,2'()318153(1)(5),(05)f m m m m m m =-+=--<<所以函数()f m 在(0,1)上单调递增,在(1,5)上单调递减. 当m=1时,()f m 有最大值32,.----------(11分)故当直线l 的方程为y =x -1时,△AMN 的最大面积为82 .----------(12分)21.(2)22111()(1)222g x x x x =-=--在区间(1,)+∞单调递增, 不妨设121x x >>,则12()()g x g x >,则1212()()1()()f x f x g x g x ->--等价于1212()()(()())f x f x g x g x ->--等价于1122()()()+()f x g x f x g x +>………………8分设()21()()+()2+1ln (1)2n x f x g x x a x a x ==+-+,则22(1)2(1)()(1)2(1)2(12)a a n x x a x a a x x++'=+-+≥⋅-+=-+-,由于17a -<<,故()0n x '>,即()n x 在(1,)+∞上单调增加,……………10分 从而当211x x <<时,有1122()()()+()f x g x f x g x +>成立,命题得证! ………………12分 解法二:22(1)(1)2(1)()(1)=a x a x a n x x a x x +-+++'=+-+令2()(1)2(1)p x x a x a =-+++22(1)8(1)67(7)(1)0a a a a a a ∆=+-+=--=-+<即2()(1)2(1)0p x x a x a =-+++>在17a -<<恒成立 说明()0n x '>,即()n x 在(1,)+∞上单调增加,………………10分从而当211x x <<时,有1122()()()+()f x g x f x g x +>成立,命题得证! ………………12分 22.证明:(1)连结AB ,AC ,∵AD 为M 的直径,∴090ABD ∠=,∴AC 为O 的直径, ∴0=90CEF AGD ∠=∠,∵DFG CFE ∠=∠,∴ECF GDF ∠=∠, ∵G 为弧BD 中点,∴DAG GDF ∠=∠, ∴DAG ECF ∠=∠,ADG CFE ∠=∠∴CEF ∆∽AGD ∆,……………3分∴CE AGEF GD=, ∴GD CE EF AG ⋅=⋅。
2013-2014高等数学(上)期末考试(A1卷) (1)
河北科技大学理工学院2013---2014学年第一学期 高等数学(上)期末考试试题(A1卷) 考试日期: 2014.1 说明:1、将所有答案写在答题纸相应位置上,否则无效.2、考试结束后将试卷和答题纸分开交给监考老师.一、单项选择题(每小题3分,共15分)1、积分= ( )..2sin A C +;C ;C.2sin C -;D.C -+.2、微分方程320y y y '''-+=所对应的特征方程的根为( ).12.1,2A r r =-=;12B.1,2r r ==;12C.1,2r r ==-;12.1,2D r r =-=-. 3、0x =是函数sin ()x x f x x+=的( ). .A 连续点;B.跳跃间断点;C.可去间断点;.D 第二类间断点.4、曲线()312y x =+-的拐点是( )..(1,2)A --; B.(0,1)-; C.(1,6); D.不存在. 5、函数()y f x =在点0x 处取得极小值,则必有( ).0.()0A f x '=; 0B.()0f x ''<;00C.()0()0f x f x '''=<且; 0.()0D f x '=或0()f x '不存在.二、填空题(每小题3分,共15分)1、极限0ln(1)lim x x x→+= . 2、设函数2()1x f x e =-,则(0)f '= .3、()1211sin x x dx -+=⎰ . 4、02cos x d t dt dx=⎰ . 5、曲线212y x =在点11,2⎛⎫ ⎪⎝⎭处的法线方程为 . 三、计算下列各题(每小题6分,共30分)1、求极限01cos 2limsin x x x x →-.2、设函数()cos sin ,0,2x y x x y π'=<<求.3、设函数()y y x =由方程()tan xy e xy y +=确定,求()0y '.4、求积分23x e dx -⎰.5、求积分0,(0)a >⎰.四、解答下列各题(每小题8分,共32分)1、求函数432()3861f x x x x =-++的单调区间和极值.2、求微分方程2dy y x dx x=-满足初始条件11x y ==的解.3、设平面图形D 由曲线2y x =和直线y x =所围成,求(1)D 的面积S ;(2)D 绕x 轴旋转一周所形成的立体的体积V .4、讨论,a b 为何值时,极限321lim 01x x x ax b x →∞⎛⎫-+--= ⎪-⎝⎭.五、证明题(8分) 证明不等式:当0x ≥ln(1)x ≥+.。
河北科技大学概率与数理统计试卷1
1 《概率论与数理统计》期末考试试卷1一、填空题(每小题5分,共20分)1、设事件A,B 的概率分别为1/3与1/2,A 与B 互排斥,则P (-A B )= 。
2、一批产品中有2%是废品,而合格品中有80%为一级品,今从中任取一件产品,则该产品为一级品的概率为 。
3、设离散型随机变量X 服从参数为λ(λ>0)的泊松分布,已知P (X=1)= P (X=2),则λ= 。
4、设X i (i=1,…,n)是来自总体X ~N(μ,σ2)的容量为n 的简单随机样本,方差σ2已知,H o : μ=μ0 ,则应选取统计量 ,在 条件下,此统计量服从分布。
二、单项选择题(每小题5分,共20分)1、独立地投了3次篮球,每次投中的概率为0.3,则最可能失败( )次。
A 、2B 、2或3C 、3D 、42、对2个仪器进行独立试验,已知其中一个仪器发生故障的概率为P 1,另一个发生故障的概率为P 2,则发生故障的一起数的数学期为( )。
A 、P 1P 2B 、P 1(1-P 2)+P 2(1-P 1)C 、P 1+(1-P 2)D 、P 1+P 23、设X 与Y 均服从标准正态分布,则( )。
A 、E (X+Y )=0B 、D (X+Y )=2C 、X+Y ~N (0,1)D 、X 与Y 相互独立4、设X 1,X 2,…,X n 为来自总体X 的随机样本,X 为样本均值,则总体方差的无偏估计量为( )。
A 、2—i n 1i X X n 1⎪⎭⎫ ⎝⎛-∑= B 、2X X 1n 1i n 1i ⎪⎭⎫ ⎝⎛∑---= C 、()()未知EX EX X ni n i 211-∑= D 、()()未知EX E n i ni 2111X X --=∑2三、计算题(20分)1、 已知X ~N (0,1),求E (X 2)。
2、 设X 服从几何分布,它的概率分布为P{X=K}=q k-1p (k=1,2,…),其中q=1-p,求E (X )及D (X )。
2013-2014高等数学(上)期末考试(A1卷)
河北科技大学理工学院2013---2014学年第一学期 高等数学(上)期末考试试题(A1卷) 考试日期: 2014.1 说明:1、将所有答案写在答题纸相应位置上,否则无效.2、考试结束后将试卷和答题纸分开交给监考老师.一、单项选择题(每小题3分,共15分)1、积分= ( )..2sin A C +;C ;C.2sin C -;D.C -+.2、微分方程320y y y '''-+=所对应的特征方程的根为( ).12.1,2A r r =-=;12B.1,2r r ==;12C.1,2r r ==-;12.1,2D r r =-=-. 3、0x =是函数sin ()x x f x x+=的( ). .A 连续点;B.跳跃间断点;C.可去间断点;.D 第二类间断点.4、曲线()312y x =+-的拐点是( )..(1,2)A --; B.(0,1)-; C.(1,6); D.不存在. 5、函数()y f x =在点0x 处取得极小值,则必有( ).0.()0A f x '=; 0B.()0f x ''<;00C.()0()0f x f x '''=<且; 0.()0D f x '=或0()f x '不存在.二、填空题(每小题3分,共15分)1、极限0ln(1)lim x x x→+= . 2、设函数2()1x f x e =-,则(0)f '= .3、()1211sin x x dx -+=⎰ . 4、02cos x d t dt dx=⎰ . 5、曲线212y x =在点11,2⎛⎫ ⎪⎝⎭处的法线方程为 . 三、计算下列各题(每小题6分,共30分)1、求极限01cos 2limsin x x x x →-.2、设函数()cos sin ,0,2x y x x y π'=<<求.3、设函数()y y x =由方程()tan xy e xy y +=确定,求()0y '.4、求积分23x e dx -⎰.5、求积分0,(0)a >⎰.四、解答下列各题(每小题8分,共32分)1、求函数432()3861f x x x x =-++的单调区间和极值.2、求微分方程2dy y x dx x=-满足初始条件11x y ==的解.3、设平面图形D 由曲线2y x =和直线y x =所围成,求(1)D 的面积S ;(2)D 绕x 轴旋转一周所形成的立体的体积V .4、讨论,a b 为何值时,极限321lim 01x x x ax b x →∞⎛⎫-+--= ⎪-⎝⎭.五、证明题(8分) 证明不等式:当0x ≥ln(1)x ≥+.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北科技大学2015-2016学年第二学期《高等数学》下册期末试卷
一、单项选择题(每小题3分,共15分
1. 级数1
11(1)ln(1)
n n n ∞+=-+∑ 【 】 A 发散 B. 条件收敛 C. 绝对收敛 D. 敛散性不能确定
2. 下列说法正确的是 【 】
A. 若函数(,)f x y 在点000(,)P x y 处连续,则00(,)x f x y ,00(,)y f x y 存在
B. 若(,)f x y 在点0P 处可微,则(,)x f x y ,(,)y f x y 在点0P 处连续
C. 若00(,)x f x y ,00(,)y f x y 存在,则(,)f x y 在点000(,)P x y 处连续
D. 若(,)f x y 在点000(,)P x y 处可微,则(,)f x y 在点0P 处连续
3. 函数2(2)1e x C y C +=是微分方程20y y y '''--=的 【 】
A. 解,但既不是通解,也不是特解
B. 特解
C. 不是解
D. 通解
4. 设L 是圆心在原点,半径为R 的圆周,则曲线积分22()d L
x y s +=⎰ 【 】 A.22πR B.3πR C.32πR D.34πR
5. 过点1(3,2,1)M -和2(1,0,2)M -的直线方程为 【 】 A. 321421x y z -+-==- B. 3214
21x y z -+-==-- C. 12421x y z +-== D. 124
21
x y z +-==- 二、填空题(每小题3分,共15分) 1. 已知曲面∑为球面2221x y z ++=的外侧,则对坐标的曲面积分
d d 2d d 4d d I x y z y z x z x y ∑
=-+⎰⎰的值为 .
2. 函数2ln(1)z x y =++,则函数在点(2,1)处的全微分为 .
3. 向量{4,3,4}a =-在向量{2,2,1}b =上的投影为 .
4. 函数()2x f x -=在(,)-∞+∞上展开成x 的幂级数为 .
5. 微分方程x y y
'=的通解为 . 三、计算下列各题(每小题7分,共21分)
1.
求幂级数n
n
n =的收敛半径和收敛域. 2. 设函数(2)(,)z f x y g x xy =-+,其中()f x ''存在,(,)g u v 的二阶偏导数连续,求
2z x y
∂∂∂. 3. 计算二重积分sin d d D x y I x y y
=⎰⎰,其中D 是由y x =及2y x =所围成的区域. 四、解答题(每小题8分,共40分)
1. 求微分方程23y y '''+=满足初始条件01x y
==,00x y ='=的特解. 2. 计算曲线积分(e sin )d (e cos )d x x L y my x y m y -+-⎰,其中m 为常数,曲线L 是由
(,0)A a 到(0,0)O 经过圆22x y ax +=上半部的路线.
3. 求满足球面方程222+9x y z +=,且使函数(,,)22f x y z x y z =-+取得最大值的点,
并求出该最大值.
4. 求出三重积分22()d d d x y x y z Ω
+⎰⎰⎰的值,其中Ω是由曲面222x y z +=及平面2z =所
围成的闭区域.
5. 求直线240,:3290
x y z L x y z -+=⎧⎨---=⎩在平面1x y z -+=上的投影直线的方程. 五、综合题(9分)
设曲线积分2()d [()]d L
yf x x f x x y ++⎰与路径无关,其中函数()f x 可导,(0)0f =,求函数()f x 的表达式.。