人教版七年级数学上册第1章有理数月考试题及参考答案(1)
人教版七年级数学上册第1章有理数月考试题及参考答案(1)
七年级数学第一次月考试题一、精心选一选(本大题共12小题, 每小题3分, 共36分, 在每小题给出的四个选项中, 只有一项是符合题目要求的)1.在下列各数中:-3.8,+5,0,- 1 2 , 3 5 ,- 27 ,8.1,属于负数的个数为 ( )(A )2个(B )3个(C )4个(D )5个2.有理数 13 的相反数是 ( )(A ) 1 3(B )3(C )-3(D )- 133.大于-3.5,小于2.5的整数共有 ( ) (A )6个(B )5个(C )4个(D )3个4.下列式子中,正确的是( ) (A )-3<-5(B )- 13>0(C )- 1 3 <- 1 5 (D )- 1 3 >- 155.有理数a 、b 、c 在数轴上的位置如图所示,则下列结论正确的是( )(A )a >b >0>c (B )b >0>a >c (C )b <a <0<c(D )a <b <c <06.室内温度10℃,室外温度是-3℃,那么室内温度比室外温度高 ( )(A )-13℃(B )-7℃(C )7℃(D )13bac7.据2006年末的统计数据显示,免除农村义务教育阶段学杂费的西部地区和部分中部地区的学生约有52000000名,这个学生人数用科学记数法表示正确的是 (A )(A)75.210⨯ (B) 65.210⨯(C) 65210⨯(D)80.5210⨯8.把2.9953用四舍五入法保留3个有效数字,其近似数是 ( ) (A)2.99 (B)3.00 (C)3.0 (D)3 9.已知1,3a b ==,则a b +的值为 ( )(A )2(B )4 (C )2或4 (D )±2或±4.10.在数轴上把-3的对应点移动5个单位后,所得的对应点表示的数是 ( ) (A )2或-8(B )-8(C )2(D )不能确定11.下列各式计算正确的是 ( )(A)-3 2 =- 6 (B)(-3)2 =-9 (C)-3 2 = -9 (D) -(-3)2 = 9 12.某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时分裂成6个并死去1个,3小时后分裂成10个并死去1个,按此规律,5小时后细胞存活的个数是( )(A) 31 (B)33 (C)35 (D)37二、耐心填一填(本大题共4小题, 每小题3分, 共12分, 请将你的答案写在“_______”处)13.数轴上到原点的距离为5的点表示的数是____________.14.观察下面一列数,按其规律在横线上写上适当的数:-12,23,-34,____-56,15.我们知道:-3+2=-1,请你举一个实际例子来说明这个等式________16.根据如图所示的程序计算,若输入x的值为1,则输出y的值为________.三、细心算一算(共72分)17.(本题6分)把下列各数填入相应的集合中:+2,-3,0,-312,-1.414,-17,2 3.负数:{______________________…};正整数:{______________________________…};整数:{______________________…};负分数:{______________________________…};分数:{______________________…}18.(本题6分)在数轴上表示下列各有理数,并用“<”号把它们按从小到大的顺序排列起来.-3,0,112, 4.5,-1.解:19.计算题(每小题3分,共6分)⑴20(14)(18)13-+---- ⑵ 8+(14-)+5-(-0.25)解: 解:20.计算题(每小题4分,共8分)⑴772(6)483÷-⨯- ⑵ 3571()491236--+÷ 解: 解:0 1 2 3 4 5 621.计算题(每小题4分,共8分)⑴ 32422()93-÷⨯- ⑵322(2)(3)[(4)2](3)(2)-+-⨯-+--÷-解: 解:22.(本题8分)若02)1(2=-++b a ,则12-+b a 的值为多少?解:23. (本题8分)若定义一种新的运算“*”,规定有理数4a b ab *=,如2342324*=⨯⨯=. ⑴求3(4)*-的值; ⑵求(2)(63)-**的值. 解:24.(本题10分)一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,-3,+10,-8,-6,+12,-10. (1)守门员最后是否回到了球门线的位置?解:(2)在练习过程中,守门员离开球门线最远距离是多少米?解:(3)守门员全部练习结束后,他共跑了多少米?解:25.(本题12分)已知,如图,A 、B 分别为数轴上的两点,A 点对应的数为-10,B点对应的数为90.(1)请写出AB 中点M 对应的数; 解:(2)现在有一只电子蚂蚁P 从B 点出发,以3单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以2单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,你知道C 点对应的数是多少吗? 解:B A(3)若当电子蚂蚁P从B点出发时,以3单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以2单位/秒的速度向右运动, 经过多长时间两只电子蚂蚁在数轴上相距35个单位长度?解:七年级数学参考答案一、精心选一选1.B2.D3.A4.C5.C6.D7.A8.B9.C 10.A 11.C12.B二、耐心填一填13.±5 14.6715.(略) 16.4三、细心算一算17. (略)每空一分18.-3<-1<0<112<4.5.( 数轴上表示各有理数3分,比较大小3分)19.(1)-29 ⑵320.⑴6 ⑵-2621.⑴-8 ⑵-57.522.解:2++-=a b(1)20a b+≥-≥,2(1)0,202∴+=-=a b(1)0,20a b∴=-=1,2a b∴+-=⨯-+-=-212(1)21123.⑴3(4)*-=-48;⑵(2)(63)-**=-57624.⑴(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=0, 守门员最后正好回到了球门线的位置.⑵(+5)+(-3)+(+10)=12时, 此时守门员离开球门线距离最远,是12米.++-+++-+-+++-=.⑶53108612105425.⑴M点对应的数是40;⑵C点对应的数是30;⑶13秒或者27秒.。
人教版七年级数学上册《第一章有理数》测试题-附带答案
人教版七年级数学上册《第一章有理数》测试题-附带答案(考试时间:90分钟 试卷满分:120分)一 选择题:本题共10个小题 每小题3分 共30分。
在每小题给出的四个选项中 只有一项是符合题目要求的。
1.(2021·山西临汾市·九年级二模)在人类生活中 早就存在着收入与支出 盈利与亏本等具有相反意义的现象 可以用正负数表示这些相反意义的量.我国古代数学名著《九章算术》一书中也明确提出“正负术”.最早使用负数的国家是( ) A .印度 B .法国C .阿拉伯D .中国【答案】D【分析】根据负数的使用历史进行解答即可. 【详解】最早使用负数的国家是中国.故选:D .【点睛】本题考查的是正数和负数 关键是了解掌握负数的使用历史.2.(2021·江苏南通市·九年级二模)新冠肺炎疫情阻击战中 南通是全省唯一主城区没有发本土确诊病例的安全岛.接种新冠疫苗 是巩固抗疫成果最经济 最有效的手段.截止4月24日24时 南通全市已累计接种新冠疫苗102.37万针.其中 102.37万用科学记数法表示为( ) A .81.023710⨯ B .70.1023710⨯ C .61.023710⨯ D .4102.3710⨯ 【答案】C【分析】用科学记数法表示较大的数时 一般形式为a ×10n 其中1≤|a |<10 n 为整数 且n 比原来的整数位数少1 据此判断即可.【详解】解:102.37万=61.023710⨯ 故选C .【点睛】此题主要考查了用科学记数法表示较大的数 一般形式为a ×10n 其中1≤|a |<10 确定a 与n 的值是解题的关键.3.(2021·河南初一期中)如图 关于A B C 这三部分数集的个数 下列说法正确的是( ) A .A C 两部分有无数个 B 部分只有一个0 B .A B C 三部分有无数个 C .A B C 三部分都只有一个 D .A 部分只有一个 B C 两部分有无数个【答案】A【分析】根据有理数的分类可以看出A指的是负整数B指的是整数中除了正整数与负整数外的部分整数C指的是正整数最后根据各数性质进一步判断即可.【解析】由图可得:A指的是负整数B指的是整数中除了正整数与负整数外的部分整数C指的是正整数∵整数中除了正整数与负整数外的部分整数只有0负整数与正整数都有无数个∴A C两部分有无数个B只有一个.故选:A.【点睛】本题主要考查了有理数的分类熟练掌握相关概念是解题关键.4.(2020·北京四中初三月考)如图数轴上A B两点所表示的数互为倒数则关于原点的说法正确的是()A.一定在点A的左侧B.一定与线段AB的中点重合C.可能在点B的右侧D.一定与点A或点B重合【答案】C【分析】根据倒数的定义可知A B两点所表示的数符号相同依此求解即可.【解析】∵数轴上A B两点所表示的数互为倒数∴A B两点所表示的数符号相同如果A B两点所表示的数都是正数那么原点在点A的左侧如果A B两点所表示的数都是负数那么原点在点B的右侧∴原点可能在点A的左侧或点B的右侧.故选C.【点睛】本题考查了数轴倒数的定义由题意得到A B两点所表示的数符号相同是解题的关键.5.(2021·湖南株洲市·七年级期中)计算20192020202221.5(1)3⎛⎫-⨯⨯-⎪⎝⎭的结果是()A.23B.32C.23-D.32-【答案】D【分析】根据乘方的意义进行简便运算再根据有理数乘法计算即可.【详解】解:20192020202221.5(1)3⎛⎫-⨯⨯-⎪⎝⎭=2019202021.513⎛⎫-⨯⨯⎪⎝⎭=20202019221.5 1.533-⨯⋅⋅⋅⨯⨯⨯⋅⋅⋅⨯个个=2019221.5 1.51.533-⨯⋅⋅⋅⨯⨯⨯个=32- 故选:D . 【点睛】本题考查了有理数的混合运算 解题关键是熟练依据乘方的意义进行简便运算 准确进行计算.6.(2021·四川达州市·中考真题)生活中常用的十进制是用0~9这十个数字来表示数 满十进一 例:121102=⨯+ 212210101102=⨯⨯+⨯+ 计算机也常用十六进制来表示字符代码 它是用0~F 来表示0~15 满十六进一 它与十进制对应的数如下表:例:十六进制2B 对应十进制的数为2161143⨯+= 10C 对应十进制的数为1161601612268⨯⨯+⨯+= 那么十六进制中14E 对应十进制的数为( )A .28B .62C .238D .334【答案】D【分析】在表格中找到字母E 对应的十进制数 根据满十六进一计算可得.【详解】由题意得 十六进制中14E 对应十进制的数为:1×16×16+4×16+14=334 故选D . 【点睛】本题主要考查有理数的混合运算 解题的关键是掌握十进制与十六进制间的转换及有理数的混合运算顺序和运算法则.7.(2021.湖南永州市.七年级期末)若“!”是一种数学运算符号 并且1!=1 2!=2×1 3!=3×2×1 4!=4×3×2×1 (2021)2020!的值等于( ) A .2021 B .2020 C .2021! D .2020!【答案】A【分析】根据题意列出有理数混合运算的式子 进而可得出结论. 【详解】解:1!=1 2!=2×1 3!=3×2×1 4!=4×3×2×1 …∴2021!202120202019 (1)==20212020!20202019 (1)⨯⨯⨯⨯⨯⨯⨯故选A . 【点睛】本题考查了有理数的混合运算 熟练掌握运算法则是解题的关键.8.(2021·成都天府七中初一月考)若a b 为有理数 下列判断正确的个数是( )(1)12a ++总是正数 (2)()224a ab +-总是正数 (3)()255ab +-的最大值为5 (4)()223ab -+的最大值是3.A .1B .2C .3D .4【答案】B【分析】根据绝对值 偶次方的非负性进行判断即可.【解析】∵10a +≥ ∴12a ++>0 即12a ++总是正数 (1)正确 ∵20a ≥ ()240ab -≥∴当20a =即a=0时 ()240ab -> 故()224a ab +-是正数当()240ab -=时 则0a ≠ 即20a > 故()224a ab +-是正数 故(2)正确()255ab +-的最小值为5 故(3)错误 ()223ab -+的最大值是2 故(4)错误.故选:B.【点睛】此题考查绝对值的性质 偶次方的性质 最大值及最小值的确定是难点. 9.(2021·重庆潼南区·七年级期末)如果四个不同的正整数m n pq 满足(4)(4)(4)(4)9m n p q ----= 则m n p q +++等于( )A .12B .14C .16D .18【答案】C【分析】由题意确定出m n p q 的值 代入原式计算即可求出值.【详解】解:∵四个互不相同的正整数m n p q 满足(4-m )(4-n )(4-p )(4-q )=9 ∴满足题意可能为:4-m =1 4-n =-1 4-p =3 4-q =-3 解得:m =3 n =5 p =1 q =7 则m +n +p +q =16.故选:C .【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.10.(2021·广东省初一月考)如图 在纸面所在的平面内 一只电子蚂蚁从数轴上表示原点的位置O 点出发 按向上 向右 向下 向右的方向依次不断移动 每次移动1个单位 其移动路线如图所示 第1次移动到1A 20第2次移动到2A 第3次移动到3A …… 第n 次移动到n A 则△O 22019A A 的面积是( )A.504 B.10092C.20112D.505【答案】B【分析】根据图可得移动4次完成一个循环观察图形得出OA4n=2n处在数轴上的点为A4n和A4n-1.由OA2016=1008推出OA2019=1009由此即可解决问题.【解析】解:观察图形可知:OA4n=2n且点A4n和点A4n-1在数轴上又2016=504×4∴A2016在数轴上且OA2016=1008∵2019=505×4-1∴点A2019在数轴上OA2019=1009∴△OA2A2019的面积=12×1009×1=10092故选:B.【点睛】本题考查三角形的面积数轴等知识解题的关键是学会探究规律利用规律解决问题属于常考题型.二填空题:本题共8个小题每题3分共24分。
人教版数学七年级上册第1章 有理数 测试卷(含答案)
人教版数学七年级上册第1章有理数测试卷(含答案)一、选择题(本大题10小题,每小题3分,共30分)1.(3分)在1,0,2,﹣3这四个数中,最大的数是()A.1B.0C.2D.﹣32.(3分)2的相反数是()A.B.C.﹣2D.23.(3分)﹣5的绝对值是()A.5B.﹣5C.D.﹣4.(3分)﹣2的倒数是()A.2B.﹣2C.D.﹣5.(3分)下列说法正确的是()A.带正号的数是正数,带负号的数是负数B.一个数的相反数,不是正数,就是负数C.倒数等于本身的数有2个D.零除以任何数等于零6.(3分)在有理数中,绝对值等于它本身的数有()A.1个B.2个C.3个D.无穷多个7.(3分)比﹣2大3的数是()A.1B.﹣1C.﹣5D.﹣68.(3分)下列算式正确的是()A.3﹣(﹣3)=6B.﹣(﹣3)=﹣|﹣3|C.(﹣3)2=﹣6D.﹣32=9 9.(3分)据报道,2014年第一季度,广东省实现地区生产总值约1.36万亿元,用科学记数法表示为()A.0.136×1012元B.1.36×1012元C.1.36×1011元D.13.6×1011元10.(3分)近似数2.7×103是精确到()A.十分位B.个位C.百位D.千位二、填空题(本大题6小题,每小题4分,共24分)11.(4分)如果温度上升3℃记作+3℃,那么下降3℃记作.12.(4分)已知|a|=4,那么a=.13.(4分)在数轴上,与表示﹣3的点距离2个单位长度的点表示的数是.14.(4分)比较大小:3223.15.(4分)若(a﹣1)2+|b+2|=0,那么a+b=.16.(4分)观察下列依次排列的一列数:﹣2,4,﹣6,8,﹣10…按它的排列规律,则第10个数为.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)把下列各数在数轴上表示出来,并用“>“号连结起来.﹣3,﹣1.5,﹣1,2.5,4.18.(6分)﹣8﹣6+22﹣919.(6分)计算:﹣8÷(﹣2)+4×(﹣5).四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)小强有5张卡片写着不同的数字的卡片:他想从中取出2张卡片,使这2张卡片上数字乘积最大.你知道应该如何抽取吗?最大的乘积是多少吗?21.(7分)计算:(﹣+﹣)×(﹣12).22.(7分)计算:﹣22+3×(﹣1)4﹣(﹣4)×2.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)若|a|=5,|b|=3,求a+b的值.24.(9分)某班抽查了10名同学的期末成绩,以80分为基准,超出的记作为正数,不足的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.25.(9分)一辆汽车沿着南北方向的公路来回行驶,某天早晨从A地出发,晚上最后到达B地,约定向北正方向(如:+7表示汽车向北行驶7千米),当天行驶记录如下:+18,﹣9,+7,﹣14,﹣6,12,﹣6,+8.(单位:千米)问:(1)B地在A地的何方,相距多少千米?(2)若汽车行驶1千米耗油0.35升,那么这一天共耗油多少升?参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)1.(3分)在1,0,2,﹣3这四个数中,最大的数是()A.1B.0C.2D.﹣3【考点】有理数大小比较.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣3<0<1<2,故选:C.【点评】本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.(3分)2的相反数是()A.B.C.﹣2D.2【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:2的相反数是﹣2,故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.(3分)﹣5的绝对值是()A.5B.﹣5C.D.﹣【考点】绝对值.【分析】根据绝对值的性质求解.【解答】解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.【点评】此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.4.(3分)﹣2的倒数是()A.2B.﹣2C.D.﹣【考点】倒数.【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选D.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.5.(3分)下列说法正确的是()A.带正号的数是正数,带负号的数是负数B.一个数的相反数,不是正数,就是负数C.倒数等于本身的数有2个D.零除以任何数等于零【考点】有理数.【分析】利用有理数的定义判断即可得到结果.【解答】解:A、带正号的数不一定为正数,例如+(﹣2);带负号的数不一定为负数,例如﹣(﹣2),故错误;B、一个数的相反数,不是正数,就是负数,例如0的相反数是0,故错误;C、倒数等于本身的数有2个,是1和﹣1,正确;D、零除以任何数(0除外)等于零,故错误;故选:C.【点评】此题考查了有理数,熟练掌握有理数的定义是解本题的关键.6.(3分)在有理数中,绝对值等于它本身的数有()A.1个B.2个C.3个D.无穷多个【考点】绝对值.【分析】根据绝对值的意义求解.【解答】解:在有理数中,绝对值等于它本身的数有0和所有正数.故选D.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.7.(3分)比﹣2大3的数是()A.1B.﹣1C.﹣5D.﹣6【考点】有理数的加法.【分析】先根据题意列出算式,然后利用加法法则计算即可.【解答】解:﹣2+3=1.故选:A.【点评】本题主要考查的是有理数的加法法则,掌握有理数的加法法则是解题的关键.8.(3分)下列算式正确的是()A.3﹣(﹣3)=6B.﹣(﹣3)=﹣|﹣3|C.(﹣3)2=﹣6D.﹣32=9【考点】有理数的乘方;相反数;有理数的减法.【分析】根据有理数的减法和有理数的乘方,即可解答.【解答】解:A、3﹣(﹣3)=6,正确;B、﹣(﹣3)=3,﹣|﹣3|=﹣3,故本选项错误;C、(﹣3)2=9,故本选项错误;D、﹣32=﹣9,故本选项错误;故选:A.【点评】本题考查了有理数的减法和有理数的乘方,解决本题的关键是熟记有理数的乘方和有理数的减法.9.(3分)据报道,2014年第一季度,广东省实现地区生产总值约1.36万亿元,用科学记数法表示为()A.0.136×1012元B.1.36×1012元C.1.36×1011元D.13.6×1011元【考点】科学记数法—表示较大的数.【分析】根据科学记数法的表示方法:a×10n,可得答案.【解答】解:1.36万亿元,用科学记数法表示为1.36×1012元,故选:B.【点评】本题考查了科学记数法,科学记数法中确定n的值是解题关键,指数n 是整数数位减1.10.(3分)近似数2.7×103是精确到()A.十分位B.个位C.百位D.千位【考点】近似数和有效数字.【分析】由于2.7×103=2700,而7在百位上,则近似数2.7×103精确到百位.【解答】解:∵2.7×103=2700,∴近似数2.7×103精确到百位.故选C.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起,到这个数完为止,所有这些数字叫这个数的有效数字.二、填空题(本大题6小题,每小题4分,共24分)11.(4分)如果温度上升3℃记作+3℃,那么下降3℃记作﹣3℃.【考点】正数和负数.【分析】此题主要用正负数来表示具有意义相反的两种量:上升记为正,则下降就记为负.【解答】解:∵温度上升3℃记作+3℃,∴下降3℃记作﹣3℃.故答案为:﹣3℃.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.12.(4分)已知|a|=4,那么a=±4.【考点】绝对值.【分析】∵|+4|=4,|﹣4|=4,∴绝对值等于4的数有2个,即+4和﹣4,另外,此类题也可借助数轴加深理解.在数轴上,到原点距离等于4的数有2个,分别位于原点两边,关于原点对称.【解答】解:∵绝对值等于4的数有2个,即+4和﹣4,∴a=±4.【点评】绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.本题是绝对值性质的逆向运用,此类题要注意答案一般有2个,除非绝对值为0的数才有一个为0.13.(4分)在数轴上,与表示﹣3的点距离2个单位长度的点表示的数是﹣5或﹣1.【考点】数轴.【专题】探究型.【分析】由于所求点在﹣3的哪侧不能确定,所以应分在﹣3的左侧和在﹣3的右侧两种情况讨论.【解答】解:当所求点在﹣3的左侧时,则距离2个单位长度的点表示的数是﹣3﹣2=﹣5;当所求点在﹣3的右侧时,则距离2个单位长度的点表示的数是﹣3+2=﹣1.故答案为:﹣5或﹣1.【点评】本题考查的是数轴的特点,即数轴上右边的点表示的数总比左边的大.14.(4分)比较大小:32>23.【考点】有理数的乘方;有理数大小比较.【专题】计算题.【分析】分别计算32和23,再比较大小即可.【解答】解:∵32=9,23=8,∴9>8,即32>23.故答案为:>.【点评】本题考查了有理数的乘方以及有理数的大小比较,是基础知识要熟练掌握.15.(4分)若(a﹣1)2+|b+2|=0,那么a+b=﹣1.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b,然后相加即可得解.【解答】解:根据题意得,a﹣1=0,b+2=0,解得a=1,b=﹣2,所以,a+b=1+(﹣2)=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.(4分)观察下列依次排列的一列数:﹣2,4,﹣6,8,﹣10…按它的排列规律,则第10个数为20.【考点】规律型:数字的变化类.【分析】观察不难发现,这列数的绝对值是从2开始的连续偶数,并且第偶数个数是正数,第奇数个数是负数,然后写出第10个数即可.【解答】解:∵﹣2,4,﹣6,8,﹣10…,∴第10个数是正数数,且绝对值为2×10=20,∴第10个数是20,故答案为:20.【点评】本题是对数字变化规律的考查,比较简单,难点在于从绝对值和符号两个部分考虑求解.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)把下列各数在数轴上表示出来,并用“>“号连结起来.﹣3,﹣1.5,﹣1,2.5,4.【考点】有理数大小比较;数轴.【分析】先在数轴上表示各个数,再比较即可.【解答】解:4>2.5>﹣1>﹣1.5>﹣3.【点评】本题考查了有理数的大小比较,数轴的应用,能正确在数轴上表示各个数是解此题的关键,注意:在数轴上表示各个数,右边的数总比左边的数大.18.(6分)﹣8﹣6+22﹣9【考点】有理数的加减混合运算.【分析】直接进行有理数的加减运算.【解答】解:原式=﹣23+22=﹣1.【点评】本题考查有理数的运算,属于基础题,注意运算的顺序是关键.19.(6分)计算:﹣8÷(﹣2)+4×(﹣5).【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘除运算,再计算加减运算即可得到结果.【解答】解:原式=4﹣20=﹣16,故答案为:﹣16【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)小强有5张卡片写着不同的数字的卡片:他想从中取出2张卡片,使这2张卡片上数字乘积最大.你知道应该如何抽取吗?最大的乘积是多少吗?【考点】规律型:数字的变化类.【分析】分析几个数可知要使抽取的数最大,需同时抽两个最大正数或两个最小的负数,即可使乘积最大.【解答】解:抽取﹣3和﹣8.最大乘积为(﹣3)×(﹣8)=24.【点评】两个负数的乘积为正数,且这两个负数越小,其乘积越大.21.(7分)计算:(﹣+﹣)×(﹣12).【考点】有理数的混合运算.【专题】计算题.【分析】根据有理数的混合运算的运算方法,应用乘法分配律,求出算式的值是多少即可.【解答】解:(﹣+﹣)×(﹣12)=(﹣)×(﹣12)+×(﹣12)﹣×(﹣12)=2﹣9+5=﹣2【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意乘法运算定律的应用.22.(7分)计算:﹣22+3×(﹣1)4﹣(﹣4)×2.【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣4+3+8=7.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)若|a|=5,|b|=3,求a+b的值.【考点】有理数的加法;绝对值.【分析】|a|=5,则a=±5,同理b=±3,则求a+b的值就应分几种情况讨论.【解答】解:∵|a|=5,∴a=±5,同理b=±3.当a=5,b=3时,a+b=8;当a=5,b=﹣3时,a+b=2;当a=﹣5,b=3时,a+b=﹣2;当a=﹣5,b=﹣3时,a+b=﹣8.【点评】正确地进行讨论是本题解决的关键.规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.24.(9分)某班抽查了10名同学的期末成绩,以80分为基准,超出的记作为正数,不足的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.【考点】正数和负数.【分析】(1)根据正负数的意义解答即可;(2)求出所有记录的和的平均数,再加上基准分即可.【解答】解:(1)最高分为:80+12=92分,最低分为:80﹣10=70分;(2)8﹣3+12﹣7﹣10﹣3﹣8+1+0+10=8+12+1+10+0﹣3﹣7﹣10﹣3﹣8=31﹣31=0,所以,10名同学的平均成绩80+0=80分.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.25.(9分)一辆汽车沿着南北方向的公路来回行驶,某天早晨从A地出发,晚上最后到达B地,约定向北正方向(如:+7表示汽车向北行驶7千米),当天行驶记录如下:+18,﹣9,+7,﹣14,﹣6,12,﹣6,+8.(单位:千米)问:(1)B地在A地的何方,相距多少千米?(2)若汽车行驶1千米耗油0.35升,那么这一天共耗油多少升?【考点】正数和负数.【专题】应用题.【分析】(1)把当天记录相加,然后根据正数和负数的规定解答即可;(2)先求出行驶记录的绝对值的和,再乘以0.35计算即可得解.【解答】解:(1)18﹣9+7﹣14﹣6+12﹣6+8=45﹣35=10,所以,B地在A地北方10千米;(2)18+9+7+14+6+12+6+8=80千米80×0.35=28升.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.。
七年级上册数学第一章《有理数》测试题(含答案)人教版 (1)(含知识点)
2020-2021 七年级上册1、2008的绝对值是( )A 、2008B 、-2008C 、±2008D 、200812、下列计算正确的是( )A 、-2+1=-3B 、-5-2=-3C 、-112-=D 、1)1(2-=-3、近几年安徽省教育事业加快发展,据2005年末统计的数据显示,仅普通初中在校生就约有334万人,334万人用科学记数法表示为( )A 、0.334×710人B 、33.4×510人C 、3.34×210人D 、3.34×610人 4、下列各对数互为相反数的是( )A 、-(-8)与+(+8)B 、-(+8)与+︱-8︱C 、-2222)与(- D 、-︱-8︱与+(-8)5、计算(-1)÷(-5)×51的结果是( )A 、-1B 、1C 、251D 、-256、下列说法中,正确的是( )A 、有最小的有理数B 、有最小的负数C 、有绝对值最小的数D 、有最小的正数7、小明同学在一条南北走向的公路上晨练,跑步情况记录如下:(向北为正,单位:m ):500,-400,-700,800 小明同学跑步的总路程为( )A 、800 mB 、200 mC 、2400 mD 、-200 m 8、已知︱x ︱=2,y 2=9,且x ·y<0,则x +y=( )A 、5B 、-1C 、-5或-1D 、±19、已知数轴上的A 点到原点的距离为2个单位长度,那么在数轴上到A 点的距离是3个单位长度的点所表示的数有( )A 、1个B 、2个C 、3个D 、4个10、有一张厚度是0.1mm 的纸,将它对折20次后,其厚度可表示为( )A 、(0.1×20)mmB 、(0.1×40)mmC 、(0.1×220)mmD 、(0.1×202)mm 二、填空题(5分×4=20)11、妈妈给小颖10元钱,小颖记作“+10元”,那么“-5元”可能表示什么12、一个正整数,加上-10,其和小于0,则这个正整数可能是 .(写出15、下面给出了五个有理数.-1.5 6 320 -4(1)将上面各数分别填入相应的集合圈内.正数 负数 (2) 请计算其中的整数的和与分数积的差。
人教版数学七年级上册第一章有理数测试题带答案
人教版七年级上册第一章有理数测试卷一、选择题(共12小题,总分36分)1.已知|a| = 5,则a 的值是()A. 5B. -5C. ±5D. 02. 下列四个数中最大的数是()A. 0B. -2C. -4D. -63.下列各数中,属于负整数的是()A. -3.14B. 0C. -2D. +54. 下列说法正确的是()A. 负数没有倒数B. 正数的倒数比自身小C. 任何有理数都有倒数D. -1的倒数是-15. 已知:a=-2+(-10),b=-2-(-10),c=-2×(-),下列判断正确的是()A. a>b>cB. b>c>aC. c>b>aD. a>c>b6. 若a=2,|b|=5,则a+b=()A. -3B. 7C. -7D. -3或77. 我国是最早认识负数,并进行相关运算的国家.在古代数学名著《九章算术》里,就记载了利用算筹实施“正负术”的方法,图(1)表示的是计算3+(-4)的过程.按照这种方法,图(2)表示的过程应是在计算()A. (-5)+(-2)B. (-5)+2C. 5+(-2)D. 5+28. 据探测,月球表面白天阳光垂直照射的地方温度高达127 ℃,而夜晚温度可降低到零下183 ℃.根据以上数据推算,在月球上昼夜温差有()A. 56 ℃B. -56 ℃C. 310 ℃D. -310 ℃9. 据科学家估计,地球的年龄大约是4 600 000 000年,将4 600 000 000用科学记数法表示为()A. 4.6×108B. 46×108C. 4.69D. 4.6×10910. 如果a+b<0,并且ab>0,那么()A. a<0,b<0B. a>0,b>0C. a<0,b>0D. a>0,b<011. 已知某班有40名学生,将他们的身高分成4组,在160~165 cm区间的有8名学生,那么这个小组的人数占全体的()A. 10%B. 15%C. 20%D. 25%12. 下列各数|-2|,-(-2)2,-(-2),(-2)3中,负数的个数有()A. 1个B. 2个C. 3个D. 4个二、填空题(共6小题,总分18分)13. 在知识抢答中,如果用+10表示得10分,那么扣20分表示为________.14. 在-42,+0.01,π,0,120这5个数中,正有理数是___________.15. 计算=________.16. 已知3x-8与2互为相反数,则x=________.17. 如果|x|=6,则x=_________.18.已知a,b 互为相反数,c,d 互为倒数,则a + b + cd = ___。
新人教版七年级数学上册第一次月考试题及参考答案(SY) 有理数精编测试题及参考答案
七年级数学上册第一次月考测试题(有理数)一、单选题1.﹣|﹣2023|的倒数是()A.2023B.12023C.−12023D.-20232.下列各数:-π,-|-9|,-(-1),-1.010020002…,-37, −19,其中既是负数又是有理数的个数是()A.2B.3C.4D.53.下列各组数中,互为相反数的一组是()A.-(-8)和|-8|B.-8和-8C.(-8)2和-82D.(-8)3和-834.以下结论正确的有()A.两个非0数互为相反数,则它们的商等于1B.几个有理数相乘,若负因数个数为奇数,则乘积为负数C.乘积是1的两个数互为倒数D.绝对值等于它本身的有理数只有15.有理数a,b,c在数轴上对应的点如图所示,则下列结论中正确的有()个①b<a ②|b+c|=b+c ③|a﹣c|=c﹣a ④﹣b<c<﹣A.A.1B.2C.3D.46.如图,数轴上的A,B两点所表示的数分别为a,b,则下列各数中,最大的是()A.abB.a+bC.a+b2D.a﹣b7.已知a2=25,|b|=7,且|a+b|=a+b,则a-b的值为()A.-12B.-2C.-2或-12D.2或128.如图,点O,A,B,C在数轴上的位置,O为原点,A与C相距1个单位长度,A和B到原点的距离相等,若点C所表示的数为a,则点B所表示的数为()A.-a-1B.-a+1C.a+1D.a-19.当2<a<3时,代数式|3﹣a|﹣|2﹣a|的结果是()A.﹣1B.1C.2a﹣5D.5﹣2a10.在数轴上,原点左边有一点M,从M对应着数m,有如下说法:①-m表示的数一定是正数. ②若|m|=8,则m=-8. ③在-m,1m ,m2,m中,最大的数是m2或-m. ④式子|m+1m|的最小值为2.其中正确的个数是()A.1B.2C.3D.411.我们常用的十进制数,如:2358=2×103+3×102+5×101+8,远古时期,人们通过在绳子上打结来记录数量,如图是一位母亲从右到左依次排列的绳子上打结,并采用七进制,如2183=2×73+1×72+8×71+3,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.1326B.510C.336D.8412.如图,在这个数据运算程序中,若开始输入的x的值为4,输出的结果是2,返回进行第二次运算则输出的是1…,则第2020次输出的结果是()A.﹣1B.-2C.-4D.-6二、填空题13.若a,b互为相反数,c,d互为倒数,m的绝对值为3,则m−(−1)+2023(a+b)2024−cd的值为_______.14.当x=_______时,式子(x+2)2+2023有最小值.15.若abc≠0,则a|a|+|b|b+c|c|−|abc|abc=_______.16.已知|a-1|+|b-2|=0,1ab +1(a+1)(b+1)+1(a+2)(b+2)+⋯+1(a+2011)(b+2011)=______.三、解答题17.计算(−612)+314+(−12)+2.75 25×34−(−25)×12+25×14482425÷(−48) (−130) ÷(13−110+16−25)(1)星期三收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价每股多少元?(3)已知小明买进股票时付了0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果小明在星期六收盘前将全部股票卖出,他的收益情况如何?20.阅读下面材料并完成填空,你能比较两个数20232024和20242023的大小吗?为了解决这个问题,先把问题一般化,即比较n n+1和(n+1)n的大小(n≥1的整数),然后,从分析这些简单情形入手,从中发现规律,经过归纳,猜想出结论.(1)通过计算,比较下列各组两个数的大小(在横线上填>,=,<号)①12__21; ②23__32; ③34__43; ④45__54; ⑤56__65;…(2)从第(1)小题的结果经过归纳,可以猜想,n n+1和(n+1)n的大小关系是什么?(3)根据上面归纳猜想得到的一般结论,可以猜想得到20232024___20242023(填>,=,<)21.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示5和2的两点之间的距离是________;表示-3和2两点之间的距离是_______; (2)如果|x+1|=2,那么x=________;(3)若|a-3|=4,|b+2|=3,且数a,b在数轴上表示的点分别是点A,点B,则A,B两点间的最大距离是_____,最小距离是______;(4)求代数式|x+1|+|x-1|的最小值,并写出此时x可取哪些整数值?(5)求代数式|x+2|+|x-3|+|x-5|的最小值.(6)若x表示一个有理数,则代数式8-2|x-3|-2|x-5|有最大值吗?若有,请求出最大值;若没有,请说明理由.22.如图,一个点从数轴上的原点开始,先向左移动3cm到达A点,再向右移动4cm到达B点,然后再向右移动到达C点,数轴上一个单位长度表示1cm.(1)请你在数轴上表示出A,B,C三点的位置;(2)把点C到点A的距离记为CA,则CA=______cm.(3)若点A沿数轴以每秒3cm匀速向右运动,经过多少秒后点A到点C的距离为3cm?(4)若点A以每秒1cm的速度匀速向左移动,同时点B,点C分别以每秒4cm,9cm的速度匀速向右移动7cm.设移动时间为t秒,试探索:BA-CB的值是否会随着t的变化而改变?若变化,请说2明理由,若无变化,请直接写出BA-CB的值.参考答案一、选择题1-5 CBCCC 6-10 DCBDD 11-12 BB二、填空题13.3或-314.-215.2或-216.20122013三、解决问题17.-1,37.5,−1150,-10,32,518.-2b19(1)34.5(2)最高股价为35.5元,最低股价为26元.(3)889.520(1)12<21,23<32,34>43,45>54,56>65(2)由(1)可知,当n=1或2时,n n+1<(n+1)n ,当n≥3时,n n+1>(n+1)n(3)∵2007>3,2008>3∴20072008>2008200721(1)3,5(2)1或-3.(3)12,2(4)|x +1|+|x -1|的最小值为2,此时x 可取的整数值为:-1,0,1.(5)最小值是7.(6)当3≦x ≦5时,最大值为4.22(1)略(2)152(3)32, 72(4)不变,12.。
七年级数学第一次月考卷(人教版2024)(全解全析)【测试范围:第一、二章】A4版
2024-2025学年七年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一章~第二章(人教版2024)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单选题1.―12024的相反数是( )A .―2024B .12024C .―12024D .以上都不是【答案】B【分析】本题主要考查了相反数的定义,解题的关键是熟练掌握“只有符号不同的两个数互为相反数”.根据相反数的定义解答即可.【详解】解:―12024的相反数是12024,故选:B .2.今年春节电影《热辣滚烫》《飞驰人生2》《熊出没·逆转时空》《第二十条》在网络上持续 引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为( )A .80.16×108B .8.016×109C .0.8016×1010D .80.16×1010【答案】B【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:80.16亿=8.016×109,故选:B.3.有下列说法:①一个有理数不是正数就是负数;②整数和分数统称为有理数;③零是最小的有理数;④正分数一定是有理数;⑤―a一定是负数,其中正确的个数是()A.1B.2C.3D.4【答案】B【分析】根据有理数的分类逐项分析判断即可求解.【详解】解:①一个有理数不是正数就是负数或0,故①不正确;②整数和分数统称为有理数,故②正确;③没有最小的有理数,故③不正确;④正分数一定是有理数,故④正确;⑤―a不一定是负数,故④不正确,故选:B.【点睛】本题考查了有理数的分类,掌握有理数的分类是解题的关键.4.两江新区正加快打造智能网联新能源汽车产业集群,集聚了长安、长安福特、赛力斯、吉利、理想等10家整车企业,200余家核心零部件企业.小虎所在的生产车间需要加工标准尺寸为4.5 mm的零部件,其中(4.5±0.2)mm范围内的尺寸为合格,则下列尺寸的零部件不合格的是( )A.4.4mm B.4.5mm C.4.6mm D.4.8mm【答案】D【分析】本题考查正数和负数,根据正数和负数的实际意义求得合格尺寸的范围,然后进行判断即可,结合已知条件求得合格尺寸的范围是解题的关键.【详解】解:由题意可得合格尺寸的范围为4.3mm∼4.7mm,4.8mm不在尺寸范围内,故选:D.5.下列各组数相等的有()A.(―2)2与―22B.(―1)3与―(―1)2C.―|―0.3|与0.3D.|a|与a【答案】B【分析】根据负数的奇次幂是负数,负数的偶次幂是正数,可得答案.【详解】解∶ A.(―2)2=4,―22=―4,故(―2)2≠―22;B.(―1)3=―1,―(―1)2=―1,故(―1)3=―(―1)2;C.―|―0.3|=―0.3,0.3,故―|―0.3|≠0.3;D.当a小于0时,|a|与a不相等,;故选∶B.【点睛】本题考查了有理数的乘方,熟练求解一个数的乘方是解题的关键.6.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“3cm”分别对应数轴上的3和0,那么刻度尺上“5.6cm”对应数轴上的数为()A.―1.4B.―1.6C.―2.6D.1.6【答案】C【分析】本题考查了数轴,熟练掌握在数轴上右边点表示的数减去左边点表示的数等于这两点间的距离是解题关键.利用点在数轴上的位置,以及两点之间的距离分析即可求解.【详解】解:设刻度尺上“5.6cm”对应数轴上的数的点在原点的左边,距离原点有5.6―3=2.6的单位长度,所以这个数是―2.6故选:C.7.观察下图,它的计算过程可以解释( )这一运算规律A.加法交换律B.乘法结合律C.乘法交换律D.乘法分配律【答案】D【分析】根据图形,可以写出相应的算式,然后即可发现用的运算律.【详解】解:由图可知,6×3+4×3=(6+4)×3,由上可得,上面的式子用的是乘法分配律,故选:D.【点睛】本题考查有理数的混合运算,熟练掌握运算律是解答本题的关键.8.如图,A、B两点在数轴上表示的数分别为a,b,有下列结论:①a―b<0;②a+b>0;>0.其中正确的有( )个.③(b―1)(a+1)>0;④b―1|a―1|A.4个B.3个C.2个D.1个【答案】A【分析】本题主要考查了数轴,有理数的加减,乘除运算.先根据a、b在数轴上的位置判断出a、b的取值范围,再比较出各数的大小即可.【详解】解:观察数轴得:―1<a<0<1<b,∴a―b<0,故①正确;a+b>0,故②正确;b―1>0,a+1>0,∴(b―1)(a+1)>0,故③正确;b―1>0故④正确.|a―1|故选:A9.定义运算:a⊗b=a(1―b).下面给出了关于这种运算的几种结论:①2⊗(―2)=6,②a⊗b=b⊗a,③若a+b=0,则(a⊗a)+(b⊗b)=2ab,④若a⊗b=0,则a=0或b=1,其中结论正确的序号是()A.①④B.①③C.②③④D.①②④【答案】A【分析】各项利用题中的新定义计算得到结果,即可做出判断.此题考查了新定义运算,以及整式的混合运算、以及有理数的混合运算,熟练掌握运算法则是解本题的关键.【详解】解:根据题目中的新定义计算方法可得,①2⊗(―2)=2×(1+2)=6,①正确;②a⊗b=a(1―b)=a―ab,b⊗a=b(1―a)=b―ab,故a⊗b与b⊗a不一定相等,②错误;③(a⊗a)+(b⊗b)=a(1―a)+b(1―b)=a+b―a2―b2≠2ab,③错误;④若a⊗b=a(1―b)=0,则a=0或b=1,④正确,故选:A.10.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160B.128C.80D.48【答案】A【分析】先计算出6×6方格纸片中共含有多少个3×2方格纸片,再乘以4即可得.【详解】由图可知,在6×6方格纸片中,3×2方格纸片的个数为5×4×2=40(个)则n=40×4=160故选:A.【点睛】本题考查了图形类规律探索,正确得出在6×6方格纸片中,3×2方格纸片的个数是解题关键.第II卷(非选择题)二、填空题11.甲地海拔高度为―50米,乙地海拔高度为―65米,那么甲地比乙地.(填“高”或者“低”).【答案】高【分析】先计算甲地与乙地的高度差,再根据结果进行判断即可.【详解】解:由题意可得:(―50)―(―65)=―50+65=15>0,∴甲地比乙地高.故答案为:高【点睛】本题考查的是有理数的大小比较,有理数的减法运算的实际应用,理解题意是解本题的关键.12.绝对值大于1且不大于5的负整数有 .【答案】―2,―3,―4,―5【分析】本题考查了绝对值的意义,根据绝对值的意义即可求解,掌握绝对值的意义是解题的关键.【详解】解:绝对值大于1且不大于5的负整数有―2,―3,―4,―5,故答案为:―2,―3,―4,―5.13.若(2a ―1)2与2|b ―3|互为相反数,则a b = .【答案】18【分析】本题考查相反数的概念及绝对值的知识.根据互为相反数的两个数的和为0,可得(2a ―1)2与2|b ―3|的和为0,再根据绝对值和偶次方的非负性即可分别求出a ,b .【详解】∵ (2a ―1)2与2|b ―3|互为相反数∴ (2a ―1)2+2|b ―3|=0∵ (2a ―1)2≥0,2|b ―3|≥0∴2a ―1=0,2|b ―3|=0∴ a =12,b =3∴ a b =(12)3=18.故答案为:18.14.电影《哈利•波特》中,小哈利波特穿越墙进入“934站台”的镜头(如示意图的Q 站台),构思奇妙,能给观众留下深刻的印象.若A 、B 站台分别位于―23,83处,AP =2PB ,则P 站台用类似电影的方法可称为“ 站台”.【答案】159或6【分析】先根据两点间的距离公式得到AB 的长度,再根据AP =2PB 求得AP 的长度,再用―23加上该长度即为所求.【详解】解:AB =|83――=103,AP =|103×22+1|=209,或AP =|103×2|=203,P:―23+209=149=159,或―23+203=183=6.故P站台用类似电影的方法可称为“159站台”或者“6站台”.故答案为:159或6.【点睛】本题考查了数轴,关键是用几何方法借助数轴来求解,非常直观,且不容易遗漏,其中题干表达模糊,并没有明确指出P在AB中间,所以有两个答案(P在AB中间,或者P在AB的右侧).但题目需要用类似电影的方法表达,故而答案可以仅为“159站台”,这个题体现了数形结合的优点.15.若a|a|+b|b|+c|c|+d|d|=2,则|abcd|abcd的值为.【答案】-1【分析】先根据a|a|+b|b|+c|c|+d|d|=2,a|a|,b|b|,c|c|,d|d|的值为1或-1,得出a、b、c、d中有3个正数,1个负数,进而得出abcd为负数,即可得出答案.【详解】解:∵当a、b、c、d为正数时,a|a|,b|b|,c|c|,d|d|的值为1,当a、b、c、d为负数时,a|a|,b |b|,c|c|,d|d|的值为-1,又∵a|a|+b|b|+c|c|+d|d|=2,∴a、b、c、d中有3个正数,1个负数,∴abcd为负数,∴|abcd|abcd=-1.故答案为:-1.【点睛】本题主要考查了绝对值的意义和有理数的乘法,根据题意得出a、b、c、d中有3个正数,1个负数,是解题的关键.16.如图,圆的周长为4个单位长度,在该圆的4等分点处分别标上0,1,2,3,先让圆周上表示数字0的点与数轴上表示―1的点重合,再将圆沿着数轴向右滚动,则圆周上表示数字的点与数轴上表示2023的点重合.【答案】0【分析】圆周上的0点与―1重合,滚动到2023,圆滚动了2024个单位长度,用2024除以4,余数即为重合点.【详解】解:圆周上的0点与―1重合,2023+1=2024,2024÷4=506,圆滚动了506 周到2023,圆周上的0与数轴上的2023重合,故答案为:0.【点睛】本题考查了数轴,找出圆运动的规律与数轴上的数字的对应关系是解决此类题目的关键.三、解答题17.计算.(1)(―59)―(―46)+(―34)―(+73)(2)(―334)―(―212)+(―416)―(―523)―1【答案】(1)―120(2)―34【分析】本题考查了有理数的混合运算.(1)去括号,再计算加减即可.(2)去括号,通分,再计算加法即可.【详解】(1)(―59)―(―46)+(―34)―(+73)=―59+46―34―73=―120(2)(―334)―(―212)+(―416)―(―523)―1=―334―2―416―5―1=―54+32―1=―3418.计算:(1)4×―12―34+2.5―|―6|;(2)―14―(1―0.5)×13―2―(―3)2.【答案】(1)―1;(2)356.【分析】(1)利用乘法分配律、绝对值的性质分别运算,再合并即可;(2)按照有理数的混合运算的顺序进行计算即可求解;本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.【详解】(1)解:原式=4×――4×34+4×2.5―6=―2―3+10―6,=―1;(2)解:原式=―1―12×13―(2―9)=―1―16+7,=6―16,=356.19.如图,数轴上每个刻度为1个单位长度上点A 表示的数是―3.(1)在数轴上标出原点,并指出点B 所表示的数是 ;(2)在数轴上找一点C ,使它与点B 的距离为2个单位长度,那么点C 表示的数为 ;(3)在数轴上表示下列各数,并用“<”号把这些数按从小到大连接起来.2.5,―4,512,―212,|―1.5|,―+1.6).【答案】(1)见解析,4(2)2或6(3)数轴表示见解析,―4<―212<―(+1.6)<|―1.5|<2.5<512【分析】本题主要考查了在数轴上表示有理数以及有理数的比较大小:(1)根据点A 表示―3即可得原点位置,进一步得到点B 所表示的数;(2)分两种情况讨论即可求解;(3)首先在数轴上确定表示各数的点的位置,再根据在数轴上表示的有理数,右边的数总比左边的数大用“<”号把这些数连接起来即可.【详解】(1)如图,O 为原点,点B 所表示的数是4,故答案为:4;(2)点C 表示的数为4―2=2或4+2=6.故答案为:2或6;(3)|―1.5|=1.5,―(+1.6)=―1.6,在数轴上表示,如图所示:由数轴可知:―4<―212<―(+1.6)<|―1.5|<2.5<51220.(1)已知|a |=5,|b |=3,且|a ―b |=b ―a ,求a ―b 的值.(2)已知a 和b 互为相反数,c 和d 互为倒数,x 的绝对值等于2,求式子: x ―(a +b +cd )+a+b cd 的值.【答案】(1)―8或―2;(2)1或―3【分析】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.(1)根据|a |=5,|b |=3,且|a ―b |=b ―a ,可以得到a 、b 的值,然后代入所求式子计算即可;(2)根据a 与b 互为相反数,c 与d 互为倒数,x 的绝对值等于2,可以得到a +b =0,cd =1,x =±2,然后代入所求式子计算即可.【详解】解:(1)∵|a |=5,|b |=3,∴a =±5,b =±3,∵|a ―b |=b ―a ,∴b ≥a ,∴a =―5,b =±3,当a =―5,b =3时,a ―b =―5―3=―8,当a =―5,b =―3时,a ―b =―5―(―3)=―5+3=―2,由上可得,a +b 的值是―8或―2;(2)∵a 与b 互为相反数,c 与d 互为倒数,x 的绝对值等于2,∴a +b =0,cd =1,x =±2,∴当x =2时,x―(a+b+cd)+a+b cd=2―(0+1)+0 =2―1=1;当x=―2时,x―(a+b+cd)+a+b cd=―2―(0+1)+0=―2―1=―3.综上所述,代数式的值为1或―3.21.某风筝加工厂计划一周生产某种型号的风筝700只,平均每天生产100只,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(增产记为正、减产记为负);星期一二三四五六日增减+5―2―4+13―6+6―3(1)根据记录的数据,该厂生产风筝最多的一天是星期______;(2)产量最多的一天比产量最少的一天多生产多少只风筝?(3)该厂实行每周计件工资制,每生产一只风筝可得20元,若超额完成任务,则超过部分每只另奖5元;少生产一只扣4元,那么该厂工人这一周的工资总额是多少元?【答案】(1)四(2)19(3)14225【分析】(1)根据表格中的数据求解即可;(2)最高一天的产量减去最少一天的产量求解即可;(3)根据题意列出算式求解即可.【详解】(1)由表格可得,星期四生产的风筝数量是最多的,故答案为:四.(2)13―(―6)=19,∴产量最多的一天比产量最少的一天多生产19只风筝;(3)700+5―2―4+13―6+6―3=709(只)709×20+9×5=14225(元).∴该厂工人这一周的工资总额是14225元【点睛】本题考查了正数和负数,有理数的加减和乘法运算的实际应用.解决本题的关键是理解题意正确列式.22.阅读下面材料:点A、B在数轴上分别表示数a、b.A、B两点之间的距离表示为|AB|.则数轴上A、B两点之间的距离|AB|=|a﹣b|.回答下列问题:(1)数轴上表示1和﹣3的两点之间的距离是 ;数轴上表示﹣2和﹣5的两点之间的距离是 ;(2)数轴上表示x和﹣1的两点A和B之间的距离是 ,如果|AB|=2,那么x为 ;(3)当|x+1|+|x﹣2|取最小值时,符合条件的整数x有 ;(4)令y=|x+1|+|x﹣2|+|x﹣3|,问当x取何值时,y最小,最小值为多少?请求解.【答案】(1)4;3;(2)|x+1|,1或﹣3;(3)﹣1,0,1,2;(4)x=2时,y最小,最小值为4【分析】(1)根据两点间的距离的求解列式计算即可得解;(2)根据两点之间的距离表示列式并计算即可;(3)根据数轴上两点间的距离的意义解答;(4)根据数轴上两点间的距离的意义解答.【详解】解:(1)数轴上表示1和﹣3的两点之间的距离是:|1―(―3)|=1+3=4;数轴上表示﹣2和﹣5的两点之间的距离是:|―2―(―5)|=5―2=3;(2)∵A,B分别表示的数为x,﹣1,∴数轴上表示x和﹣1的两点A和B之间的距离是|x+1|,如果|AB|=2,则|x+1|=2,解得:x=1或﹣3;(3)当|x+1|+|x﹣2|取最小值时,﹣1≤x≤2,∴符合条件的整数x有﹣1,0,1,2;(4)当|x+1|+|x﹣2|+|x﹣3|取最小值时,x=2,∴当x=2时,y最小,即最小值为:|2+1|+|2﹣2|+|2﹣3|=4.故x=2时,y最小,最小值为4.【点睛】本题考查数轴与绝对值,熟练掌握数轴上两点之间距离的计算方法是解题的关键.23.观察下列三列数:―1、+3、―5、+7、―9、+11、……①―3、+1、―7、+5、―11、+9、……②+3、―9、+15、―21、+27、―33、……③(1)第①行第10个数是,第②行第10个数是;(2)在②行中,是否存在三个连续数,其和为83?若存在,求这三个数;若不存在,说明理由;(3)若在每行取第k个数,这三个数的和正好为―101,求k的值.【答案】(1)+19;―21(2)存在,这三个数分别为85,―91,89(3)k=―49【分析】本题主要考查了数字规律,一元一次方程的应用,做题的关键是找出数字规律.(1)第①和②行规律进行解答即可;(2)设三个连续整数为(―1)n﹣1(2n―3)―2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,根据题意列出方程,即可出答案;(3)设k为奇数和偶数两种情况,分别列出方程进行解答.【详解】(1)解:根据规律可得,第①行第10个数是2×10―1=19;第②行第10个数是―(2×10+1)=―21;故答案为:+19;―21;(2)解:存在.理由如下:由(1)可知,第②行数的第n个数是(―1)n(2n―1)―2,设三个连续整数为(―1)n﹣1(2n―3)―2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,当n为奇数时,则2n―3―2―2n+1―2+2n+1―2=83,化简得2n―7=83,解得n=45,这三个数分别为85,―91,89;当n为偶数时,则―(2n―3)―2+(2n―1)―2―(2n+1)―2=83,化简得―2n―5=83,解得n=―44(不符合题意舍去),这三个数分别为85,―91,89;综上,存在三个连续数,其和为83,这三个数分别为85,―91,89;(3)解:当k为奇数时,根据题意得,―(2k―1)―(2k+1)+3×(2k―1)=―101,解得:k=―49,当k为偶数时,根据题意得,(2k+1)+(2k―3)―3(2k―1)=―101,解得,k=51(舍去),综上,k=―49.24.如图,数轴上有A,B,C三个点,分别表示数―20,―8,16,有两条动线段PQ和MN(点Q与点A重合,点N与点B重合,且点P在点Q的左边,点M在点N的左边),PQ=2,MN=4,线段MN以每秒1个单位的速度从点B开始向右匀速运动,同时线段PQ以每秒3个单位的速度从点A开始向右匀速运动.当点Q运动到点C时,线段PQ立即以相同的速度返回;当点Q回到点A时,线段PQ、MN同时停止运动.设运动时间为t秒(整个运动过程中,线段PQ和MN保持长度不变).(1)当t=20时,点M表示的数为 ,点Q表示的数为 .(2)在整个运动过程中,当CQ=PM时,求出点M表示的数.(3)在整个运动过程中,当两条线段有重合部分时,速度均变为原来的一半,当重合部分消失后,速度恢复,请直接写出当线段PQ和MN重合部分长度为1.5时所对应的t的值.【答案】(1)8,―8(2)―2.8或2(3)5.5或8.5或18.25或19.75【分析】本题考查一元一次方程的应用,解题的关键是读懂题意,能用含t的代数式表示点运动后所表示的数.(1)当t=20时,根据起点位置以及运动方向和运动速度,即可得点M表示的数为8、点Q表示的数为―8;(2)当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,36―3t =|―10+2t|,此时―12+t =―12+465=―145,当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,3t ―36=|62―4t |,(3)当PQ 从A 向C 运动时,―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,当PQ 从C 向A 运动时,132+―――=1.5或172――――=1.5,解方程即可得到答案.【详解】(1)解:依题意,∵―8―4+20×1=8,∴当t =20时,点M 表示的数为8;∵16―{20×3―[16―(―20)]}=―8,∴当t =20时,点Q 表示的数为―8;故答案为:8,―8;(2)解:当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,∴CQ =16―(―20+3t )=36―3t ,PM =|―22+3t ―(―12+t )|=|―10+2t |,∴36―3t =|―10+2t |,解得t =465或t =26(舍去),此时―12+t =―12+465=―145当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,∴CQ =16―(52―3t )=3t ―36,PM =|50―3t ―(―12+t )|=|62―4t |,∴3t ―36=|62―4t |,解得t =14或t =26(舍去),此时―12+t =―12+14=2,∴当CQ =PM 时,点M 表示的数是―145或2;(3)解:当PQ 从A 向C 运动时,t =4时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为―8+32(t ―4),P 表数为―10+32(t ―4),M 表示的数为―8+12(t ―4),N 表示的数是―4+12(t ―4),若线段PQ 和MN 重合部分长度为1.5则―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,解得t =5.5或t =8.5,由―10+32(t ―4)=―4+12(t ―4)得t =10,∴当t =10时,PQ 与MN 的重合部分消失,恢复原来的速度,此时Q 表示的数是1,再过(16―1)÷3=5(秒),Q 到达C ,此时t =15,则M 所在点表示的数是―12+4+10―42+5=0,N 所在点表示的数4,当PQ 从C 向A 运动时,t =352时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为172――P 表示的数为132―M 表示的数为52N 表示的数是132―若线段PQ 和MN 重合部分长度为1.5,132+―――=1.5或172―――=1.5,解得t =18.25或t =19.75,∴重合部分长度为1.5时所对应的t 的值是5.5或8.5或18.25或19.75.。
2024-2025学年初中七年级上学期第一次月考数学试题及答案(人教版)
2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、单选题1. 水位上升2米记为2+米,那么水位下降3米记为( )A. 3−米B. 2−米C. 3+米D. 2+米 2. 我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为11800千米,用科学记数法表示为( )A. 51.1810×B. 311.810×C. 211810×D. 41.1810× 3. 如图,数轴上点P 表示的有理数可能是( )A. 1.6−B. 1.4−C. 0.6−D. 0.4− 4. 下列各数中,最小数是( )A. 0B. 153C. ()32−D. 23−5. 在计算11()()23++−时,按照有理数加法法则,需转化成( ) A. 11()23+−B. 1)3+C. 11()23−− D. 1123 −+6. 下列各组数中,互为相反数是( )A. 2与12B. ()21−与1C. 21−与()21−D. 2与|2|− 7. 小明和同学们共买了4种标注质量为450g 的食品各一袋,他们对这4种食品的实际质量进行了检测,用正数表示超过标注质量的克数,用负数表示不足标注质量的克数,检测结果如下表: 食品种类 第一种 第二种 第三种 第四种检测结果 +10 -20 +15 -15则这四种食品中质量最标准的是( )A. 第一种B. 第二种C. 第三种D. 第四种 8. 有理数a ,b 在数轴上的位置如图,那么下列选项正确的是( )的的A. ||||a b −<−B. 0ab >C. 22a b >D. 0a b +>9. 定义一种新运算:*a b ab b =−.例如:1*21220=×−=.则()()4*2*3 −− 的值为( )A. 3−B. 9C. 15D. 2710. 设a 是绝对值最小的数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为( )A. 1−B. 0C. 1D. 2二、填空题 11. 23−的相反数是__________,23−的绝对值是________. 12. 1363−÷×=______. 13. 比较大小:25−______1−(填“>”或“<”). 14. 近似数1.35是由数a 四舍五入得到的,那么数a 的取值范围是________.15. 已知|x |=2,|y |=6,若x +y <0,则x ﹣y =_____.16. 如图,这是一种数值转换机的运算程序,若输入的数为5,则第2021次输出的数是_____.17. 若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,则22022()a b cd m +−+=__.18. 已知数轴上的点A ,B 表示的数分别为2−,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.三、解答题19. 已知有理数:-0.5,0,2,122−,( 3.5)−−,2−. (1)把以上各数在下列数轴上用点表示出来:(2)把这些数按照从小到大的顺序排列,并用“<”号连接.20. 计算:(1)()()3996−−−+−;(2)()2023223145−+÷−−−×; (3)115486812 −+×; (4)()()32482233−−−÷×−.21. 阅读下面的解题过程,再解答问题.因为a ÷b 与b ÷a 互为倒数.所以在计算123724348 −÷−+的值时可采用下列方法: 解:因237134824 −+÷−=()23724348 −+×−=()()()237-24--24+-24348××× =-16+18-21=-19, 所以,原式=119− .根据上述方法,计算:151176061512 −÷−−. 22. 某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他练习记录如下(单位:m):+5,-3,+10,-8,-6,+13,-10(1)守门员最后否回到了初始位置?(2)守门员离开初始位置达到10m 以上(包括10m)的次数是多少?23. 观察下列三行数:2,-4, 8,-16, 32,-64,… ①0,-6, 6,-18, 30,-66,… ②-1, 2,-4, 8,-16, 32,… ③(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第8个数,计算这三个数的和.24. 在庆祝新中国72周年华诞的重要时刻,电影《长津湖》上映可谓恰逢其时、意义重大.电影《长津为的是湖》讲述了中国人民志愿军第9兵团某部穿插七连参加长津湖战役的过程,展现了人民军队炽烈的爱国情怀、对党和人民的无比忠诚,生动诠释了伟大的抗美援朝精神.昆明市9月30日该电影的售票量为1.3万张,10月1日到10月7日售票的变化如下表(正数表示售票量比前一天多,负数表示售票量比前一天少):日期1日2日3日4日5日6日7日售票量的变化单位(万张)+0.6 +0.1 −0.3 −0.2 0.4 −0.2 +0.1(1)这7天中,售票量最多的是10月日,售票量最少的是10月日;(2)若平均每张票价为60元,这7天昆明市《长津湖》的票房共多少万元?2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、单选题1. 水位上升2米记2+米,那么水位下降3米记为( )A. 3−米B. 2−米C. 3+米D. 2+米 【答案】A【解析】【分析】本题考查正负数的意义,根据规定方向为正相反方向为负直接求解即可得到答案;【详解】解:∵上升2米记为2+米,∴下降3米记为3−米,故选:A .2. 我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为11800千米,用科学记数法表示为( )A. 51.1810×B. 311.810×C. 211810×D. 41.1810× 【答案】D【解析】【分析】本题考查了科学记数法,根据科学记数法:10n a ×(110a ≤<,n 为正整数),先确定a 的值,再根据小数点移动的数位确定n 的值即可解答,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:411800 1.1810=×,故选:D .3. 如图,数轴上点P 表示的有理数可能是( )A. 1.6−B. 1.4−C. 0.6−D. 0.4−【答案】A【解析】【分析】根据点A 在数轴上的位置,先确定A 的大致范围,再确定符合条件的数.【详解】解:因为点A 在−2与1−之间,且靠近−2,所以点A 表示的数可能是 1.6−.故选:A .为【点睛】本题考查了数轴上的点表示有理数.题目比较简单.原点左边的点表示负数,原点右边的点表示正数.4. 下列各数中,最小的数是( )A. 0B. 153C. ()32−D. 23−【答案】D【解析】【分析】本题考查了有理数的乘方、有理数的比较大小,先计算出()32−、23−,再根据有理数的大小比较法则:正数大于0,负数小于0,正数大于负数,两个负数进行比较,绝对值大的反而小,进行比较即可得出答案,熟练掌握有理数的大小比较法则是解此题的关键.【详解】解:()328−=−,239−=−, 88−= ,99−=,98>,()32305321∴−<<−<,故选:D .5. 在计算11()()23++−时,按照有理数加法法则,需转化成( )A. 11()23+−B. 1)3+C. 11()23−−D. 1123 −+ 【答案】A【解析】【分析】根据有理数的加法法则计算即可求解. 【详解】解:1123 ++− =1123 +− , 故选:A .【点睛】本题考查了有理数的加法,关键是熟练掌握异号两数相加的计算法则.6. 下列各组数中,互为相反数的是( )A. 2与12B. ()21−与1C. 21−与()21−D. 2与|2|− 【答案】C【解析】【分析】本题主要考查相反数以及绝对值,根据相反数以及绝对值的定义解决此题,熟练掌握相反数以及绝对值的定义是解决本题的关键.【详解】解:A 、2与12互为倒数,故此选项不符合题意;B 、()211−= ,()21∴−与1相等,故此选项不符合题意; C 、211−=− ,()211−=,∴21−与()21−互为相反数,故此选项符合题意; D 、|2|2−=,2∴与|2|−相等,故此选项不符合题意; 故选:C .7. 小明和同学们共买了4种标注质量为450g 的食品各一袋,他们对这4种食品的实际质量进行了检测,用正数表示超过标注质量的克数,用负数表示不足标注质量的克数,检测结果如下表: 食品种类 第一种 第二种 第三种 第四种检测结果 +10 -20 +15 -15则这四种食品中质量最标准的是( )A. 第一种B. 第二种C. 第三种D. 第四种 【答案】A【解析】【分析】求出各种高于或低于标准质量的绝对值,根据绝对值的大小做出判断.【详解】解:∵|+10|<|-15|=|+15|<|20|,∴第1种最接近标准质量.故选:A .【点睛】本题主要考查正数、负数的意义,理解绝对值的意义是正确判断的前提.8. 有理数a ,b 在数轴上的位置如图,那么下列选项正确的是( )A. ||||a b −<−B. 0ab >C. 22a b >D. 0a b +>【答案】A【解析】【分析】根据原点左边的数为负数,原点右边的数为正数.从图中可以看出01a <<,1b <−,||||b a >,再选择即可.【详解】解:由数轴可得:01a <<,1b <−,||||b a >,∴||||a b <−,故A 符合题意;0ab <,故B 不符合题意;22a b <,故C 不符合题意;0a b +<,故D 不符合题意;故选:A .【点睛】本题考查了数轴,绝对值和有理数的运算,数轴上右边表示的数总大于左边表示的数. 9. 定义一种新运算:*a b ab b =−.例如:1*21220=×−=.则()()4*2*3 −− 的值为( )A. 3−B. 9C. 15D. 27【答案】C【解析】【分析】先求出()2*3−值,再计算()()4*2*3 −− 即可.【详解】解:∵*a b ab b =−,∴()2*3−=()()233×−−−=63−+=3−,∴()()4*2*3 −−=()()4*3−−=()()()433−×−−−=123+=15.故选:C .【点睛】本题考查了新定义下的有理数运算,熟练掌握运算法则是解题的关键.10. 设a 是绝对值最小的数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为()A. 1−B. 0C. 1D. 2【答案】B的【分析】绝对值最小的数是0,最小的正整数是1,最大的负整数是1−,依此可得a b c 、、,再相加可得三数之和.【详解】解:由题意可知:011a b c ===−,,,∴()0110a b c ++=++−=.故选:B .【点睛】本题主要考查了有理数的加法,此题的关键是知道绝对值最小的数是0,最小的正整数是1,最大的负整数是1−.二、填空题 11. 23−的相反数是__________,23−的绝对值是________. 【答案】 ①. 23−②. 23 【解析】【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据负数的绝对值是它的相反数,可得一个负数的绝对值. 【详解】解:2233−=,23的相反数是23−,23−的绝对值是23. 故答案为(1)23−;(2)23. 【点睛】本题考查了相反数、绝对值的定义.a 的相反数是a −,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0. 12. 1363−÷×=______. 【答案】16− 【解析】【分析】根据有理数的乘除法运算即可. 【详解】解:原式111=236−×=−, 故答案为:16−. 【点睛】本题主要考查有理数的乘除运算,按照乘除为同级运算从左至右求解.13. 比较大小:25−______1−(填“>”或“<”).【解析】【分析】本题考查了有理数的大小比较;根据两个负数比较大小,绝对值大的反而小可得答案. 【详解】解:∵215−<−, ∴215−>−, 故答案为:>.14. 近似数1.35是由数a 四舍五入得到的,那么数a 的取值范围是________.【答案】1.345≤a <1.355【解析】【分析】根据近似数1.35精确到百分位,是从千分位上的数字四舍五入得到的,若干分位上的数字大于或等于5,则百分位上的数字为4;若千分位上的数字小于5,则百分位上的数字为5,即可得出答案.【详解】解:∵近似数1.35是由数a 四舍五入得到的,∴数a 的取值范围是1.345≤a <1.355;故答案为:1.345≤a <1.355.【点睛】本题考查了近似数,用到的知识点是近似数,一个数最后一位所在的数位就是这个数的精确度. 15. 已知|x |=2,|y |=6,若x +y <0,则x ﹣y =_____.【答案】8或4##4或8【解析】【分析】先根据绝对值的含义求解,x y 的值,再根据0,x y +< 分两种情况讨论即可.【详解】解:∵|x |=2,|y |=6,∴x =±2,y =±6,∵x +y <0,∴当x =2,y =﹣6时,x ﹣y =2+6=8;当x =﹣2,y =﹣6时,x ﹣y =﹣2+6=4;故答案为:8或4.【点睛】本题考查的是绝对值的含义,有理数加法的符号的确定,代数式的值,根据绝对值的含义求解,x y 的值,再分类是解本题的关键.16. 如图,这是一种数值转换机的运算程序,若输入的数为5,则第2021次输出的数是_____.【答案】4【解析】【分析】由程序图可得第一次输出的数为8,第二次输出的数为4,第三次输出的数为2,第四次输出的数为1,第五次输出的数为4,由此可得规律,进而问题可求解.【详解】解:由程序图可得第一次输出的数为5+3=8,第二次输出的数为1842×=,第三次输出的数为1422×=,第四次输出的数为1212×=,第五次输出的数为1+3=4,第六次输出的数为1422×=,……;由此可得规律为从第二次开始每三次一循环, ∴()202113673.......1−÷=, ∴第2021次输出的数是4;故答案为4.【点睛】本题主要考查有理数的运算及数字规律问题,解题的关键是根据程序图得到数字的一般规律即可.17. 若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,则22022()a b cd m +−+=__. 【答案】15【解析】【分析】根据题意得到0a b +=,1cd =,216m =,代入代数式计算即可.【详解】解:a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,0a b ∴+=,1cd =,216m =,22022()a b cd m ∴+−+20220116=×−+0116=−+15=,故答案为:15.【点睛】此题考查了代数式的求值,熟练掌握相反数、倒数、绝对值等知识是解题的关键.18. 已知数轴上的点A ,B 表示的数分别为2−,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.【答案】 2.5−或4.5【解析】【分析】根据数轴上两点间的距离公式列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意得:|x +2|+|x -4|=7,当x <-2时,化简得:-x -2-x +4=7,解得:x =-2.5;当-2≤x <4时,化简得:x +2-x +4=7,无解;当x ≥4时,化简得:x +2+x -4=7,解得:x =4.5,综上,x 的值为-2.5或4.5.故答案为:-2.5或4.5.【点睛】此题考查了数轴,弄清数轴上两点间的距离公式是解本题的关键.三、解答题19. 已知有理数:-0.5,0,2,122−,( 3.5)−−,2−. (1(2)把这些数按照从小到大的顺序排列,并用“<”号连接.【答案】(1)见解析 (2)()1220.502 3.52−<−<−<<<−− 【解析】【分析】(1)利用数轴上表示有理数的方法表示即可.(2)根据数轴上有理数的特点即可求解.【小问1详解】解:0.5−,0,2,122−,( 3.5)−−,2−在数轴上表示为:【小问2详解】由(1)数轴可得:()1220.502 3.52−<−<−<<<−−. 【点睛】本题考查了用数轴表示有理数及利用数轴比较有理数的大小,熟练掌握数轴上有理数的特点:左边的数比右边小是解题的关键.20. 计算:(1)()()3996−−−+−;(2)()2023223145−+÷−−−×; (3)115486812 −+×; (4)()()32482233−−−÷×−.【答案】(1)3−(2)27−(3)22(4)11【解析】【分析】(1)根据有理数加减运算法则计算即可求解;(2)根据有理数的运算法则计算即可求解;(3)利用有理数的乘法分配律进行计算即可求解;(4)根据有理数的运算法则计算即可求解;本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.【小问1详解】解:原式3996=−+− 36=-,3=−;【小问2详解】解:原式()43145=−+÷−−×()4320=−+−−,720=−−,27=−;的【小问3详解】 解:原式1154848486812=×−×+× 8620=−+,220=+,22=;【小问4详解】解:原式()168398=−−−×× ()1639=−−−×,()1627=−−−,1627=−+,11=.21. 阅读下面的解题过程,再解答问题.因为a ÷b 与b ÷a 互为倒数.所以在计算123724348 −÷−+的值时可采用下列方法: 解:因为237134824 −+÷−=()23724348 −+×−=()()()237-24--24+-24348××× =-16+18-21=-19, 所以,原式=119− . 根据上述方法,计算:13511760461512 −÷+−−. 【答案】116−【解析】 【分析】仿照阅读材料中的方法求出所求即可.【详解】解:111()()41535761260+−−÷− 11()(60)415357126=+−−×− 45504435=−−++16=−, 则13511711660461512 −÷+−−=−. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22. 某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他的练习记录如下(单位:m):+5,-3,+10,-8,-6,+13,-10(1)守门员最后是否回到了初始位置?(2)守门员离开初始位置达到10m 以上(包括10m)的次数是多少?【答案】(1)守门员最后没有回到初始位置;(2)2次【解析】【分析】(1)根据题意可把记录的数据进行相加,然后问题可求解;(2)根据题意分别得出每次离初始位置的距离,进而问题可求解.【详解】解:(1)由题意得:(+5)+(-3)+(+10)+(-8)+(-6)+(+13)+(-10)=1(m).答:守门员最后没有回到初始位置.(2)第一次离开初始位置的距离为5m ,第二次离开初始位置的距离为5-3=2m ,第三次离开初始位置的距离为2+10=12m ,第四次离开初始位置的距离为12-8=4m ,第五次离开初始位置的距离为4-6=-2m ,第六次离开初始位置的距离为-2+13=11m ,第七次离开初始位置的距离为11-10=1m ,∴守门员离开初始位置达到10m 以上(包括10m)的次数是2次.【点睛】本题主要考查有理数加减混合运算的应用,熟练掌握有理数的加减运算是解题的关键. 23. 观察下列三行数:2,-4, 8,-16, 32,-64,… ①0,-6, 6,-18, 30,-66,… ②-1, 2,-4, 8,-16, 32,… ③(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第8个数,计算这三个数的和.【答案】(1)2n −−()(2)第②行的数是第①行相对应的数减2;第③行的数是第①行相对应的数乘以0.5−()(3)每行的第8个数的和是386−【解析】【分析】(1)第①行的每个数是2−的乘方的相反数,其幂指数为数的个数n ;(2)将第①行各项的数减2即得第②行的数,第③行数等于第①行数相应的数乘以0.5−(),即可求解;(3)分别找出每行第8个数,进而计算这三个数的和即可.【小问1详解】解:首先2,4,8,16 很显然后者是前者2倍.由各数符号是交替出现,故考虑到数值的变化可以用(2)n −−表示.【小问2详解】第②行数等于第①行数相应的数减去2,第③行数等于第①行数相应的数乘以0.5−(); 【小问3详解】解:每行的第8个数的和是()()()()88822220.5 −−+−−−+−−×−()2562582560.5=−−−×−386=−.【点睛】本题主要考查了探索数字变化规律,找规律时,善于发现数字之间的共同点,或者是隐藏关系,培养学生的数感是解题的关键.24. 在庆祝新中国72周年华诞的重要时刻,电影《长津湖》上映可谓恰逢其时、意义重大.电影《长津湖》讲述了中国人民志愿军第9兵团某部穿插七连参加长津湖战役的过程,展现了人民军队炽烈的爱国情怀、对党和人民的无比忠诚,生动诠释了伟大的抗美援朝精神.昆明市9月30日该电影的售票量为1.3万的张,10月1日到10月7日售票的变化如下表(正数表示售票量比前一天多,负数表示售票量比前一天少):日期1日2日3日4日5日6日7日售票量的变化单位(万张)+0.6 +0.1 −03 −0.2 0.4 −0.2 +0.1(1)这7天中,售票量最多的是10月日,售票量最少的是10月日;(2)若平均每张票价为60元,这7天昆明市《长津湖》的票房共多少万元?【答案】(1)2;4 (2)750万元【解析】【分析】(1)把表格中的数据相加,即可得出结论;(2)根据表格得出1日到7日每天的人数,相加后再乘以60即可得到结果.【小问1详解】10月1日的售票量为:1.3+0.6=1.9(万张);10月2日的售票量为:1.9+0.1=2(万张);10月3日的售票量为:2-0.3=1.7(万张);10月4日的售票量为:1.7-0.2=1.5(万张);10月5日的售票量为:(万张);10月6日的售票量为:1.9-0.2=1.7(万张);10月7日的售票量为:1.7+0.1=1.8(万张);所以售票量最多的是10月2日,售票量最少的是10月4日;故答案为:2;4;【小问2详解】由题意得,7天的售票量(单位:万张)分别为:1.9,2.0,1.7,1.5,1.9,1.7,1.8则7日票房:60(1.9+2.0+1.7+1.5+1.9+1.7+1.8)10000=7500000××(元)答:这7天昆明《长津湖》票房共750万元【点睛】本题考查了正数和负数以及有理数的混合运算,掌握正数和负数表示相反意义的量是解答本题的关键..。
【人教版】数学七年级上册第一章有理数测试卷含答案
∴m+n=0,
∴3+m+n=3+0=3.
故答案为3.
考点:相反数.
14.计算: ________.
【答案】
【解析】
【分析】
原式结合后,相加即可得到结果.
【详解】原式
故答案为 .
【点睛】考查有理数的加减混合运算,掌握有理数加减运算的法则是解题的关键.
15.一个数的倒数的绝对值的相反数是 ,则这个数是________.
B.+(−2)=−2=−|−2|=−2,正确;
C.(−2)×(−3)=6≠(+2)×(−3)=−6,错误;
D. =−16≠ =16,错误;
故选:B.
【点睛】考查有理数的乘方,相反数,有理数的乘法,掌握有理数乘法以及乘方的运算法则是解题的关键.
二、填空题
11.数轴上与 距离 个单位的点表示的数是________.
故选:B.
【点睛】此题考查正负数在实际生活中的应用,解题关键是理解18±2的意义.
2.近似数 精确到()
A. 千分位B. 百分位C. 十分位D. 个位
【答案】D
【解析】
【分析】
近似数精确到哪一位,应当看末位数字实际在哪一位,即精确到了哪一位.
【详解】 =2140,0在个位上,则近似数 精确到个位.
故选D.
A. 所有的有理数都能用数轴上的点表示B. 有理数分为正数及负数
C. 没有相反数D. 的倒数仍为
【答案】A
【解析】
【分析】
根据数轴是表示数的一条直线,有理数的分类,只有符号不同的两个数互为相反数,乘积为1的两个数互为倒数,可得答案.
【详解】A.所有的有理数都能用数轴上的点表示,故A正确;
人教版七年级上数学第一章有理数练习题(含答案)
1.计算,结果正确的是()A. 3B. 1C. -1D. -32.据报道:今年“五一”期间,苏通大桥、崇启大桥、沪苏通大桥三座跨江大桥车流量约1370000辆次.将1370000用科学记数法表示为()A. B. C. D.3.下列说法正确的是()①有理数包括正有理数和负有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A. ②B. ①③C. ①②D. ②③④4.下列说法正确的是()A. 正数和负数互为相反数B. -a的相反数是正数C. 任何有理数的绝对值都大于它本身D. 任何一个有理数都有相反数5.已知a,b两数在数轴上对应的点如图所示,下列结论正确的是()A. a+b>0B. a>bC. ab<0D. b﹣a>06.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600000亿次,数字338 600 000用科学记数法可简洁表示为()A. 3.386×108B. 0.3386×109C. 33.86×107D. 3.386×1097.已知两个有理数a,b,如果ab<0且a+b>0,那么()A. a>0,b>0B. a<0,b>0C. a、b同号D. a、b异号,且正数的绝对值较大8.如果ab≠0,那么的值不可能是()A. 0B. 1C. 2D. -29.有四包真空小包装火腿,每包以标准克数(450克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是()A. +2B. ﹣3C. +3D. +410.下列各数:(﹣3)2,0,﹣(﹣)2,,(﹣1)2009,﹣22,﹣(﹣8),﹣|﹣|中,负数有()A. 2个B. 3个C. 4个D. 5个11.有理数a、b、c 在数轴上对应的点的位置,如图所示:① abc<0;② |a-b|+|b-c|=|a-c|;③ (a-b)(b-c)(c-a)>0;④ |a|<1-bc,以上四个结论正确的有()个A. 4B. 3C. 2D. 112.我市2020年常住人口约9080000人,该人口数用科学记数法可表示为________人.13.计算:﹣(﹣2)=________.14.某冬天中午的温度是5℃,下午上升到7℃,由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是________℃.15.数轴上有两个实数,,且>0,<0,+ <0,则四个数,,,的大小关系为________(用“<”号连接).16.已知a、b为有理数,且a<0,b>0,a+b<0,将四个数a、b、-a、-b按从小到大的顺序排列是________17.水果市场上鸭梨包装箱上印有字样:“15kg±0.2kg”,有一箱鸭梨的质量为14.92kg,则这箱鸭梨 ________标准.(填“符合”或“不符合”)18.如图,数轴上点A、B所表示的两个数的和的绝对值是________ .19.计算:12﹣(﹣18)+(﹣7)﹣2020.21.有理数a、b、c在数轴上的位置如图,化简:|b﹣c|+|a﹣b|﹣|a+c|22.若a>0,b<0,且|x-a|+|x-b|=a-b,求x的取值范围.23.将2018减去它的,再减去余下的,再减去余下的……以此类推,直至减去余下的,最后的得数是多少?24.某工艺品厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正,减产记为负):(1)写出该厂星期一生产工艺品的数量.:(2)本周产量最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺品厂在本周实际生产工艺品的数量.(4)已知该厂实行每周计件工资制,每生产一个工艺品可得60元,若超额完成任务,则超过部分每个可得50元,少生产一个扣80元.试求该工艺厂在这一周应付出的工资总额.答案解析部分一、单选题1.【答案】C【解析】【解答】解:,故答案为:C.【分析】利用有理数加法法则计算即可.2.【答案】D【解析】【解答】解:将1370000用科学记数法表示为:1.37×106.故答案为:D.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正整数;当原数的绝对值<1时,n是负整数,据此判断即可.3.【答案】A【解析】【解答】有理数包括正有理数、0和负有理数,故①错误;正数的相反数是负数,0的相反数是0,负数的相反数是正数;故②正确;数值相同,符号相反的两个数互为相反数,故③错误;两个负数比较大小,绝对值大的反而小,故④错误.故答案为:A【分析】①根据有理数的分类来分析;②根据相反数的性质来分析;③根据相反数的概念来分析;④根据实数比较大小来分析.从而得出正确答案.4.【答案】D【解析】【解答】A、a与-a才是相反数,也就是说绝对值相等,只是符号不同的两个数才叫互为相反数,例如2与-2等;B、对于,当a=0时,=0;当a>0时,<0;当a<0时,>0;C、设这个有理数为a,当a<0时,>0>a;当a≥0时,=a;D、任何一个有理数都有相反数,a的相反数为-a;综上所述,与所给选项对比可知,A、B、C都是错误的,只有D是正确的。
人教版初中七年级数学上册第一章《有理数》测试题(含答案解析)
人教版初中七年级数学上册第一章《有理数》测试题(含答案解析)一、选择题1.(0分)2--的相反数是()A.12-B.2-C.12D.2D解析:D【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】2--的相反数是2,故选:D.【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0.2.(0分)下列各数中,互为相反数的是()A.+(-2)与-2 B.+(+2)与-(-2) C.-(-2)与2 D.-|-2|与+(+2)D解析:D【解析】【分析】先将各选项中的数字化简,然后根据相反数的定义进行判断即可.【详解】A. +(-2)=-2,-2=-2,故A选项中的两个数不互为相反数;B. +(+2)=2, -(-2)=2,故B选项中的两个数不互为相反数;C. -(-2)=2,2=2,故C选项中的两个数不互为相反数;D. -|-2|=-2,+(+2)=2,-2与2互为相反数,故D选项中的两个数互为相反数,故选D.【点睛】本题考查了相反数的概念,涉及了绝对值化简等,熟练掌握相关知识是解题的关键. 3.(0分)已知a、b在数轴上的位置如图所示,将a、b、-a、-b从小到排列正确的一组是()A.-a<-b<a<b B.-b<-a<a<bC.-b<a<b<-a D.a<-b<b<-a D解析:D【解析】【分析】根据数轴表示数的方法得到a<0<b,且|a|>b,则-a>b,-b>a,然后把a,b,-a,-b从大到小排列.【详解】∵a <0<b ,且|a|>b ,∴a <-b <b <-a ,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.4.(0分)下列有理数大小关系判断正确的是( )A .11910⎛⎫-->-⎪⎝⎭ B .010>- C .33-<+D .10.01->- A 解析:A【分析】先化简各式,然后根据有理数大小比较的方法判断即可.【详解】 ∵1199⎛⎫--= ⎪⎝⎭,111010--=-,11910>-, ∴11910⎛⎫-->-- ⎪⎝⎭,故选项A 正确; ∵1010-=,010<, ∴010<-,故选项B 不正确; ∵33-=,33+=, ∴33-=+,故选项C 不正确; ∵11-=,0.010.01-=,10.01>,∴10.01-<-,故选项D 不正确.故选:A .【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.5.(0分)在数轴上距原点4个单位长度的点所表示的数是( ).A .4B .-4C .4或-4D .2或-2C解析:C【解析】解:距离原点4个单位长度的点在原点的左边和右边各有一个,分别是4和-4,故选C .6.(0分)用计算器求243,第三个键应按()A.4 B.3 C.y x D.=C 解析:C【解析】用计算器求243,按键顺序为2、4、y x、3、=.故选C.点睛:本题考查了熟练应用计算器的能力,解题关键是熟悉不同的按键功能.7.(0分)如果a,b,c为非零有理数且a + b + c = 0,那么a b c abca b c abc+++的所有可能的值为(A.0 B.1或- 1 C.2或- 2 D.0或- 2A解析:A【分析】根据题意确定出a,b,c中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:∵a、b、c为非零有理数,且a+b+c=0∴a、b、c只能为两正一负或一正两负.①当a、b、c为两正一负时,设a、b为正,c为负,原式=1+1+(-1)+(-1)=0,②当a、b、c为一正两负时,设a为正,b、c为负原式1+(-1)+(-1)+1=0,综上,a b c abca b c abc+++的值为0,故答案为:0.【点睛】此题考查了绝对值,有理数的混合运算,熟练掌握运算法则是解本题的关键.8.(0分)一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案()A.少5 B.少10 C.多5 D.多10D解析:D【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10.故选D.9.(0分)计算-3-1的结果是()A.2 B.-2 C.4 D.-4D解析:D【解析】试题-3-1=-3+(-1)=-(3+1)=-4.故选D.10.(0分)计算(-2)2018+(-2)2019等于( )A .-24037B .-2C .-22018D .22018C 解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.二、填空题11.(0分)23(2)0x y -++=,则x y 为______.﹣8【分析】根据绝对值的非负性和偶次方的非负性求出xy 的值然后代入代数式中计算即可【详解】解:∵∴x-3=0y+2=0解得:x=3y=﹣2∴==﹣8故答案为:﹣8【点睛】本题考查代数式求值绝对值乘方解析:﹣8【分析】根据绝对值的非负性和偶次方的非负性求出x 、y 的值,然后代入代数式中计算即可.【详解】解:∵23(2)0x y -++=,∴x-3=0,y+2=0,解得:x=3,y=﹣2,∴x y =3(2)-=﹣8,故答案为:﹣8.【点睛】本题考查代数式求值、绝对值、乘方运算,熟练掌握绝对值和偶次方的非负性是解答的关键. 12.(0分)(1)-23与25的差的相反数是_____. (2)若|a +2|+|b -3|=0,则a -b =_____. (3)-13的绝对值比2的相反数大_____.-5【分析】(1)先计算两个数的差再计算相反数即可;(2)由绝对值的非负性求出ab 的值再求出答案即可;(3)由题意列出式子进行计算即可得到答案【详解】解:(1)根据题意则;(2)∵|a +2|+|b - 解析:1615 -5 123【分析】 (1)先计算两个数的差,再计算相反数即可;(2)由绝对值的非负性,求出a 、b 的值,再求出答案即可;(3)由题意列出式子进行计算,即可得到答案.【详解】解:(1)根据题意,则221616()()351515---=--=; (2)∵|a +2|+|b -3|=0,∴20a +=,30b -=,∴2a =-,3b =,∴235a b -=--=-;(3)根据题意,则111(2)22333---=+=; 故答案为:1615;5-;123. 【点睛】 本题考查了绝对值的意义,相反数,列代数式求值,解题的关键是熟练掌握题意,正确的列出式子,从而进行解题.13.(0分)我国“杂交水稻之父”袁隆平主持研究的某种超级杂交稻平均亩产820千克,某地今年计划栽种这种超级杂交稻30万亩,预计今年这种超级杂交稻的产量_____千克(用科学记数法表示)46×108【分析】本题已知的是亩产量和亩数要求总产量就要利用三者之间的关系式先计算总产量通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案【详解】解:依题意得: 解析:46×108【分析】本题已知的是亩产量和亩数,要求总产量,就要利用三者之间的关系式先计算总产量.通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案.【详解】解:依题意得:820×300000=246000000=2.46×108.故答案为:2.46×108.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.(0分)33278.5 4.5 1.67--=____(精确到千分位)【分析】根据有理数的运算法则进行运算再精确到精确到千分位【详解】故答案为【点睛】此题主要考查近似数解题的关键是熟知有理数的运算法则解析: 2.559-【分析】根据有理数的运算法则进行运算,再精确到精确到千分位.【详解】33278.5 4.55231.6 2.56 2.5597823543--=-≈- 故答案为 2.559-.【点睛】此题主要考查近似数,解题的关键是熟知有理数的运算法则.15.(0分)运用加法运算律填空:(1)[(-1)+2]+(-4)=___=___;(2)117+(-44)+(-17)+14=____=____.(-1)+(-4)+2-3117+(-17)+(-44)+1470【分析】(1)根据同号相加的特点利用加法的交换律先计算(-1)+(-4);(2)利用抵消的特点利用加法的交换律和结合律进行简便计算【 解析:[(-1)+(-4)]+2 -3 [117+(-17)]+[(-44)+14] 70【分析】(1)根据同号相加的特点,利用加法的交换律,先计算(-1)+(-4);(2)利用抵消的特点,利用加法的交换律和结合律进行简便计算.【详解】(1)同号相加较为简单,故:[(-1)+2]+(-4)=[(-1)+(-4)]+2=-3(2)117和(-17)可通过抵消凑整,(-44)和14也可通过抵消凑整,故:117+(-44)+(-17)+14=[117+(-17)]+[(-44)+14]=70.【点睛】本题考查有理数加法的简算,解题关键是灵活利用加法交换律和结合律,凑整进行简算. 16.(0分)气温由﹣20℃下降50℃后是__℃.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键. 17.(0分)在数轴上与表示 - 2的点的距离为3个单位长度的点所表示的数是 _________ .-5或1【分析】根据题意得出两种情况:当点在表示-2的点的左边时当点在表示-2的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-2的点的左边时数为-2-3=-5;②当点在表示-2的点的解析:-5或1【分析】根据题意得出两种情况:当点在表示-2的点的左边时,当点在表示-2的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-2的点的左边时,数为-2-3=-5;②当点在表示-2的点的右边时,数为-2+3=1;故答案为-5或1.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况.在数轴上到一个点的距离相等的点有两个,一个在这个点的左边,一个在这个点的右边.18.(0分)若2(1)20a b -+-=,则2015()a b -= _______________.-1【分析】直接利用偶次方的性质以及绝对值的性质得出ab 的值进而得出答案【详解】由题意得:a -1=0b ﹣2=0解得:a =1b =2故=(1﹣2)2015=-1故答案为-1【点睛】本题考查了非负数的性质解析:-1【分析】直接利用偶次方的性质以及绝对值的性质得出a ,b 的值,进而得出答案.【详解】由题意得:a -1=0,b ﹣2=0,解得:a =1,b =2,故2015()a b -=(1﹣2)2015=-1.故答案为-1.【点睛】本题考查了非负数的性质,正确得出a ,b 的值是解题的关键.19.(0分)(1)用四舍五入法,对5.649取近似值,精确到0.1的结果是____;(2)用四舍五入法,把1 999.508取近似值(精确到个位),得到的近似数是____;(3)用四舍五入法,把36.547精确到百分位的近似数是____.(1)56(2)2000(3)3655【分析】(1)精确到哪一位即对下一位的数字进行四舍五入据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可【详解】解解析:(1)5.6 (2)2000 (3)36.55【分析】(1)精确到哪一位,即对下一位的数字进行四舍五入,据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可.【详解】解:(1)5.649≈5.6.(2)1999.58≈2000(3)36.547≈36.55故答案为:5.6;2000;36.55【点睛】本题考查了近似数:经过四舍五入得到的数为近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位的说法.20.(0分)绝对值小于4.5的所有负整数的积为______.24【分析】找出绝对值小于45的所有负整数求出之积即可【详解】解:绝对值小于45的所有负整数为:-4-3-2-1∴积为:故答案为:24【点睛】此题考查了有理数的乘法以及绝对值熟练掌握运算法则是解本题解析:24【分析】找出绝对值小于4.5的所有负整数,求出之积即可.【详解】解:绝对值小于4.5的所有负整数为:-4,-3,-2,-1,∴积为:4(3)(2)(1)24-⨯-⨯-⨯-=,故答案为:24.【点睛】此题考查了有理数的乘法,以及绝对值,熟练掌握运算法则是解本题的关键.三、解答题21.(0分)计算:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭;(2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭; 解析:(1)6;(2)11.【分析】(1)先变成省略括号和形式,同时把小数化分数,把分数相加,同号相加,最后异号相加即可;(2)先算乘方,去绝对值和带分数化假分数,再计算乘法,最后计算加减法即可.【详解】解:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭, =1312744+-+, =1217+-,=13-7,=6;(2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭, =()351124444⎛⎫++⨯--⨯- ⎪⎝⎭=11235++-=11.【点睛】本题考查含有乘方的有理数混合,掌握有理数混合运算的法则,解答的关键是熟练掌握运算法则和运算顺序.22.(0分)计算:(1)()()()923126--⨯-+÷-(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭. 解析:(1)1;(2)-1.【分析】(1)先算乘除,再算加减即可求解;(2)先算乘方,后算除法,最后算加减即可求解.【详解】(1)()()()923126--⨯-+÷-=962--=1;(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭=11 891632 -+-÷=1 893216-+-⨯=892-+-=-1.【点睛】此题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.23.(0分)将n个互不相同的整数置于一排,构成一个数组.在这n个数字前任意添加“+”或“-”号,可以得到一个算式.若运算结果可以为0,我们就将这个数组称为“运算平衡”数组.(1)数组1,2,3,4是否是“运算平衡”数组?若是,请在以下数组中填上相应的符号,并完成运算;1 2 3 4 =(2)若数组1,4,6,m是“运算平衡”数组,则m的值可以是多少?(3)若某“运算平衡”数组中共含有n个整数,则这n个整数需要具备什么样的规律?解析:(1)是,+1-2-3+4=0;(2)m=±1,±3,±9,±11;(3)这n个整数互不相同,在这n个数字前任意添加“+”或“-”号后运算结果为0.【分析】(1)根据“运算平衡”数组的定义即可求解;(2)根据“运算平衡”数组的定义得到关于m的方程,解方程即可;(3)根据“运算平衡”数组的定义可以得到n个数的规律.【详解】解:(1)数组1,2,3,4是“运算平衡”数组,+1-2-3+4=0;(2)要使数组1,4,6,m是“运算平衡”数组,有以下情况:1+4+6+m=0;-1+4+6+m=0;1-4+6+m=0;1+4-6+m=0;1+4+6-m=0;-1-4+6+m=0;-1+4-6+m=0;-1+4+6-m=0;1-4-6+m=0;1-4+6-m=0;1+4-6-m=0;-1-4-6+m=0;-1-4+6-m=0,-1+4-6-m=0,1-4-6-m=0;-1-4-6-m=0;共16中情况,经计算得m=±1,±3,±9,±11;(3)这n个整数互不相同,在这n个数字前任意添加“+”或“-”号后运算结果为0.【点睛】本题考查了新定义问题,理解“运算平衡”数组的定义是解题关键.24.(0分)计算:(1)157(36)2612⎛⎫--⨯-⎪⎝⎭(2)2138(2)3⎛⎫⨯-+÷-⎪⎝⎭解析:(1)33;(2)1.【分析】(1)根据乘法分配律可以解答本题;(1)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)原式=157(36)(36)(36)2612⨯--⨯--⨯-= -18+30+21=33; (2)原式= -1+2=1.【点睛】 本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.25.(0分)计算:(1)23(2)14⎛⎫-⨯- ⎪⎝⎭;(2)2331(2)592-+-⨯--÷. 解析:(1)1-;(2)47-.【分析】(1)原式先计算乘方和括号内,然后再计算乘法即可得到答案;(2)原式先计算乘方和化简绝对值,再计算乘除法,最后计算加减运算即可得到答案.【详解】解:(1)23(2)14⎛⎫-⨯- ⎪⎝⎭ 3414⎛⎫=⨯- ⎪⎝⎭ 144⎛⎫=⨯- ⎪⎝⎭1=-.(2)2331(2)592-+-⨯--÷ 21(8)593=-+-⨯-⨯ 1406=---47=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.26.(0分)某市质量监督局从某公司生产的婴幼儿奶粉中,随意抽取了20袋进行检查,超过标准质量的部分记为正数,不足的部分记为负数,抽查的结果如下表:(1)这批样品每袋的平均质量比标准质量多(或少)多少克?(2)若每袋奶粉的标准质量为480克,则抽样检测的这些奶粉的总质量是多少克? 解析:(1)多1.75克;(2)9635克【分析】(1)先计算出平均质量,若正则比标准质量多,若负则比标准质量少;(2)抽样总质量等于标准总质量加上超出的质量,或等于平均每袋质量乘以抽取的袋数.【详解】解:(1)()()15505551035110203520 1.571-÷=÷=⎡⨯+-⨯+⎤⎣⨯++⨯++⎦⨯⨯(克).所以这批样品每袋的平均质量比标准质量多1.75克.(2)()5428001.56793+⨯=(克)所以抽样检测的这些奶粉的总质量为9635克.【点睛】本题考查了有理数的混合运算和正负数的意义.有理数混合运算的顺序:先算乘除再算加减,有括号的先算括号里面的.27.(0分)计算:(1)()110822⎫⎛---÷-⨯-⎪⎝⎭(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭ 解析:(1)12- ;(2)0【分析】(1)先去绝对值,同时把除变乘,再计算乘法,最后加减即可(2)先计算乘方和括号内的,把除变乘,再计算乘法,最后加减法即可【详解】(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ =1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ =102--=-12(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭=()()2386154-⨯---⨯-=243660--+=0【点睛】本题考查有理数的混合运算,解答的关键是熟练掌握运算法则和运算顺序.28.(0分)计算:(1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭解析:(1)6;(2)58. 【分析】 (1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】(1)()2131753-⨯---+ 29753=-⨯++ 675=-++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭ 1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.。
人教版七年级数学上册《第一章有理数》章节测试-附有答案
人教版七年级数学上册《第一章有理数》章节测试-附有答案考试时间:120分钟 试卷满分:100分(共10题;每题2分 共20分)1.(2分)(2022七上·汇川期末)已知代数式8x ﹣7与6﹣2x 的值互为相反数 那么x 的值等于( ) A .16 B .﹣ 16 C .1310 D .﹣ 1310【答案】A【完整解答】根据题意得:(8x ﹣7)+(6﹣2x )=0解得:x= 16. 故答案为:A.【思路引导】根据互为相反数的两个数的和为0 据此解答即可.2.(2分)(2020七上·仁寿期末)点A 表示数轴上的一个点 将点A 向右移动6个单位 再向左移动4个单位 终点恰好是原点 则点A 表示的数是( )A .2-B .3-C .0D .1- 【答案】A【完整解答】解:设点A 表示的数是x.依题意 有640x +-=解得2x =-即点A 表示的数是2-.故答案为:A.【思路引导】 设点A 表示的数是x 根据向右移动用加法 向左移动用减法 列方程求解即可.3.(2分)(2021七上·丽水期末)|-4|的相反数是( )A .4B .14C .-4D .14- 【答案】C【完整解答】解:|-4|=4∴|-4|的相反数为-4.故答案为:C.【思路引导】利用负数的绝对值等于它的相反数 再求出|-4|的相反数.4.(2分)(2021七上·宜宾期末)如图 点A B C D 四个点在数轴上表示的数分别为a b c d 则下列结论中 错误的是( )A .0a c +<B .0b a ->C .0ac >D .0b d < 【答案】C【完整解答】解:由数轴上点的位置可知: 0a b c d <<<<因为 0a c << 且 a c > 所以 0a c +< 故 A 正确 不符合题意;因为 0a b << 所以 0b a -> 故 B 正确 不符合题意;因为 0a < 0c > 所以 0ac < 故 C 错误 符合题意因为 0b < 0d > 所以0b d < 故 D 正确 不符合题意. 故答案为:C.【思路引导】根据数轴可得a<b<0<c<d 且|a|>|c| 据此判断A 、B ;根据有理数的乘法法则可判断C ;根据有理数的除法法则可判断D.5.(2分)(2021七上·南京期末)目前全球新型冠状病毒肺炎疫情防控形势依旧严峻 我们应该坚持“勤洗手 戴口罩 常通风”.一双没有洗过的手 带有各种细菌约75 000万个 将数据75 000用科学记数法表示是( )A .7.5×103B .75×103C .7.5×104D .7.5×105【答案】C【完整解答】解:将数据75000用科学记数法表示为7.5×104.故答案为:C.【思路引导】科学记数法的表示形式为a ×10n 的形式 其中1≤|a|<10 n 为整数.确定n 的值时 要看把原数变成a 时 小数点移动了多少位 n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时 n 是正数;当原数的绝对值小于1时 n 是负数.6.(2分)(2022七上·遵义期末)在数轴上 点M 、N 分别表示数m n.则点M 、N 之间的距离为m n - .已知点A B C D 在数轴上分别表示的数为a b c d.且22,1()5a c b c d a a b -=-=-=≠ 则线段 BD 的长度为( ) A .4.5B .1.5C .6.5或1.5D .4.5或1.5【答案】C【完整解答】解:①如图 当 D 在 A 点的右侧时22,1()5a cbcd a a b -=-=-=≠ 224AB AC a c ∴==-= 2.5AD =∴4 2.5 1.5BD AB AD =-=-=②如图 当 D 在 A 点的左侧时22,1()5a cbcd a a b -=-=-=≠ 224AB AC a c ∴==-= 2.5AD =∴4 2.5 6.5BD AB AD =+=+=综上所述 线段 BD 的长度为6.5或1.5故答案为:C【思路引导】分两种情况:①如图 当 D 在 A 点的右侧时 ②如图 当 D 在 A 点的左侧时 据此分别解答即可.7.(2分)(2021七上·长兴期末)如图 已知正方形的边长为24厘米 甲 乙两动点分别从正方形ABCD 的顶点D B 同时沿正方形的边开始移动 甲点按顺时针方向环行 乙点按逆时针方向环行 若乙的速度为9厘米/秒 甲的速度为3厘米/秒 当它们运动了2022秒时 它们在正方形边上相遇了( )A .252 次B .253次C .254次D .255次【答案】B 【完整解答】解:根据题意可得:第一次相遇所需时间为:2424934+÷+=()()(秒)从第2此相遇起 相遇路程变成了正方形的周长 也就是24×4=96(厘米)因此 之后每次相遇所需时间为:96938÷+=()(秒)2022-4=2018(秒)20188252......2÷=所以 在第一次相遇后还有252此相遇因此 总共相遇了252+1=253(次)故答案为:B.【思路引导】根据相遇问题的公式求出第一次和第二次之后的相遇时间 再根据周期规律 求解出相遇次数。
2024-2025学年人教版七年级上册 第一次月考数学模拟试卷(含答案)
2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、选择题1. −4的倒数是( )A.14B.−14C.4D.−42. 下列各数中是有理数的是( )A.π2B.πC.12D.0.1010010001⋯3. 《九章算术》中注“今两算得失相反,要令正负以名之”,意思是:有两数若其意义相反,则分别叫做正数和负数.若气温为零上10∘C记作+10∘C,则−2∘C表示气温为( )A.零上8∘C B.零下8∘C C.零上2∘C D.零下2∘C4. −114的倒数乘14的相反数,其结果是( )A.5B.−5C.15D.−155. 在下列各数:−(+2),−32,(−13)4,−225,−(−1)2023,−∣−3∣中,负数的个数是( )A.2个B.3个C.4个D.5个6. 如图,数轴上A,B两点所表示的两数的关系不正确的是( )A.两数的绝对值相等B.两数互为相反数C.两数互为倒数D.两数的平方相等7. 已知点A在数轴上,点A所对应的数用2a+1表示,且点A到原点的距离等于3,则a的值为( )A.−2或1B.−2或2C.−2D.18. 已知两个有理数a,b,如果ab<0,且a+b<0,那么( )A.a>0,b<0B.a<0,b>0C.a−b<0D.a,b异号,且负数的绝对值较大9. 式子∣x−1∣−3取最小值时,x等于( )A.1B.2C.3D.410. 已知a,b,c为非零的实数,且不全为正数,则a∣a∣+ab∣ab∣+ac∣ac∣+bc∣bc∣的所有可能结果的绝对值之和等于( )A.4B.6C.8D.10二、填空题11. 南海海域面积约为3500000 km2,该面积用科学记数法应表示为km2.12. 用>,<,=号填空.−(+34)−∣−23∣,−227−3.14,−(−0.3)∣−13∣.13. 近似数2.30万精确到位.14. 若a,b互为相反数,c,d互为倒数,则a+b2+2cd=.15. 你会玩“二十四点”游戏吗?现有“2,−3,−4,5,”四个数,每个数用且只用一次进行加、减、乘、除,使其结果为24,写出你的算式(只写一个即可):=24.16. 检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数,得到的结果依次是−2,−3,3,5,从轻重的角度看,最接近标准的工件是第个.17. 点M表示的有理数是−1,点M在数轴上移动5个单位长度后得到点N,则点N表示的有理数是.18. 如图,将一个边长为1的正方形纸片分割成7个部分,部分①是边长为1的正方形纸片面积的一半,部分②是部分①面积的一半,部分③是部分②面积的一半,依此类推,求出12+14+18+⋯+126的值.三、解答题(共5题)19. 观察下列各数,按要求完成下列各题5,−12,(−2)2,−5,∣−1.5∣,+(−2),0,−∣−0.5∣,−(−72)2(1) 将下列各数填在相应的括号里.整数集合:{ };分数集合:{ };正数集合:{ };负数集合:{ }.(2) 在数轴上表示出所有的分数.(3) 用“<”把各负数连接起来.20. 计算.(1) −20−(+14)+(−18)−(−13).(2) (14+16−12)×(−12).(3) −12024−6÷(−2)×∣−13∣.(4) [2−(1−0.5×23)]×[7+(−1)3].21. 阅读材料:计算 130÷(23−110+16−25).分析:利用通分计算 23−110+16−25 的结果很麻烦,可以采用以下方法进行计算.解:原式的倒数是: =(23−110+16−25)÷130=(23−110+16−25)×30=23×30−110×30+16×30−25×30=10.故 原式=110.请你根据对所提供材料的理解,选择合适的方法计算:148÷(112−316+524+23).22. 某高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米):+17,−9,+7,−15,−3,+11,−6,−8,+5,+6.(1) 养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2) 养护过程中,最远处离出发点有多远?(3) 若汽车耗油量为 0.5 升/千米,则这次养护共耗油多少升?23. 如图,数轴上A,B两点分别对应有理数a,b;A,B两点之间的距离表示为AB,在数轴上A,B两点之间的距离AB=∣a−b∣,如:∣5−(−2)∣实际上可理解为数轴上表示5与−2的两点之间的距离.利用数形结合思想回答下列问题.(1) ∣8−(−1)∣=.(2) 写出所有符合条件的整数x,使∣x+2∣+∣x−1∣=3成立.(3) 根据以上探索猜想,对于任何有理数x,∣x−3∣+∣x−8∣是否有最小值?如果有,指出当x满足什么条件时∣x−3∣+∣x−8∣取得最小值,并写出最小值,如果没有,请说明理由.答案一、选择题1. B2. C3. D4. C5. C6. C7. A8. D9. A10. C二、填空题11. 3.5×10612. <;<;<13. 百14. 215. 答案不唯一16. 117. −6或418. 6364三、解答题19.(1) 5,−12,(−2)2,+(−2),0;−5,∣−1.5∣,−(−72);25,(−2)2,∣−1.5∣,−(−72);−12,−52,+(−2),−∣−0.5∣(3) ∵∣−12∣=1,∣−52∣=52,∣+(−2)∣=2,∣−∣−0.5∣∣=0.5,∴∣−∣−0.5∣∣<∣−12∣<∣+(−2)∣<∣−52∣,∴−∣−0.5∣>−12>+(−2)>−52,∴−52<+(−2)<−12<−∣−0.5∣.20.(1) 原式=−20−14−18+13=−39.(2) 原式=−3−2+6=1.(3) 原式=−1+3×13=−1+1=0.(4) 原式=(2−1+13)×6=6+2=8.21. 原式的倒数是:(1 12−316+524+23)÷148=(112−316+524+23)×48 =4−9+10+32=37.故原式=137.22.(1) 17+(−9)+7+(−15)+(−3)+11+(−6)+(−8)+5+6=5(千米).答:养护小组最后到达的地方在出发点的北方距出发点5千米.(2) 第一次17千米,第二次17+(−9)=8,第三次8+7=15,第四次15+(−15)=0,第五次0+(−3)=−3,第六次−3+11=8,第七次8+(−6)=2,第八次2+(−8)=−6,第九次−6+5=−1,第十次−1+6=5.答:最远距出发点17千米.(3) (17+∣−9∣+7+∣−15∣+∣−3∣+11+∣−6∣+∣−8∣+5+6)×0.5=87×0.5=43.5(升).答:这次养护共耗油43.5升.23.(1) 9(2) ∵∣x+2∣+∣x−1∣=3,∴x=−2,−1,0,1.(3) 对于任何有理数x,∣x−3∣+∣x−8∣有最小值.当3≤x≤8时,原式可以取得最小值,最小值为5.。
最新七年级上册数学第一章《有理数》测试题(含答案)人教版
=-1-54+2=-53
19、(1)小颖: -3cm 小虎: +5 ㎝
(2)小虎: 0 ㎝
小丽: -5 ㎝
20、(1)4-0.6 ×1200÷100=-3.2 (℃)
(2)4- (-5 ) =9 9 ÷ 0.6 × 100=1500m
21、(1)-0.6- (-0.4 )=-0.2 (百万)
-0.2 × 1000000=-200000 多亏损 200000 元
11、妈妈给小颖 10 元钱,小颖记作“+ 10 元”,那么“ -5 元”可能表示什么
12、一个正整数, 加上 -10 ,其和小于 0,则这个正整数可能是
.
(写出两个即可)
13、某同学用计算器计算“ 2÷13”时,计算器上显示结果为 0.153846153,将此结果保留三位有
效数字为
.
14、观察下列各数,按规律在横线上填上适当的数。
400,- 700,800 小明同学跑步的总路程为(
)
A、800 m B 、 200 m C 、2400 m D 、- 200 m
8、已知︱ x︱= 2,y 2 =9, 且 x·y<0, 则 x+ y=( )
A、5 B 、-1 C 、-5 或-1 D 、± 1
9、已知数轴上的 A 点到原点的距离为 2 个单位长度,那么在数轴上到 A 点的距离是 3 个单位长度
D
、-︱- 8︱与+(- 8)
5、计算(- 1)÷(- 5)× 1 的结果是( ) 5
A、- 1
B 、1 C 、 1 25
D 、- 25
6、下列说法中,正确的是( )
A、有最小的有理数 B 、有最小的负数
C、有绝对值最小的数 D 、有最小的正数
人教版七年级数学上册第一章 有理数单元测试 (含答案 )
第一章 有理数一、单选题1.下列各数:-3.6,-0.5, 0.2,35-, 0,19,-72, 12%,其中负数有( ) A .2 个 B .3 个 C .4 个 D .5 个2.下面说法中正确的有( )A .非负数一定是正数B .有最小的正整数,有最小的正有理数C .﹣a 一定是负数D .正整数和正分数统称正有理数3.设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a ﹣b+c=( ) A .﹣1 B .0 C .1 D .24.数 a 与数 b 在数轴上的位置如图所示,则有( )A .a<bB .a b <C .0a b -<D .+0a b >5.-2019的相反数是( )A .2019B .-2019C .12019D .12019- 6.在﹣2、0、1、3四个数中,最小的数为( )A .3B .0C .1D .﹣2 7.13-的绝对值是 A .3 B .3- C .13 D .13- 8.一潜水艇所在的海拔高度是-60米,一条海豚在潜水艇上方20米,则海豚所在的高度是海拔( )A .-60米B .-80米C .-40米D .40米9.绝对值大于或等于1,而小于4的所有的负整数的和是( )A .0B .-5C .-6D .510.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则10098!!的值为( ) A .5049 B .99! C .9900 D .2! 11. 12019-的倒数是( ) A .﹣2019 B .12019- C .12019 D .201912.最大的负整数的2005次方与绝对值最小的数的2006次方的和是( )A .-1B .0C .1D .2二、填空题13.如果向西走6米记作-6米,那么向东走10米记作_______;14.一个小球落在数轴上的某点0P ,第一次从点0P 向左跳1个单位长度到点1P ,第二次从点1P 向右跳2个单位长度到点2P ,第三次从点2P 向左跳3个单位长度到点3P ,第四次从点3P 向右跳4个单位长度到点4P ,...,按以上规律跳了100次时,它落在数轴上的点100P 所表示的数恰好是2018,则这个小球的初始位置点0P 所表示的数是_____.15.观察下列等式(等式中的“!”是一种数学运算符号),1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…计算:(2005-2000)!=__________。
人教版数学七年级上册人教版数学七年级(上)第一次月考考试试卷(含解析)
七年级数学试卷(考试范围:第1章1.1正数和负数——1.4有理数的乘除法)(总分:120分 测试时间:90分钟)题号 一 二 三 总分 得分一、选择题(每小题3分,共30分)1.3-的相反数是( )A .B .13C .13-D . 3-2.在–2,+3.8,0,32-,–0.7,15中.分数有( ) A .1个B .2个C .3个D .4个3.有四包真空小包装火腿,每包以标准克数(450克)为基准,超过的克数记作正数,不足的克数记作负数.以下数据是记录结果,其中表示实际克数最接近标准克数的是( )A .2+B .3-C .3+D .4+4.如图,数轴上点A 所表示的数的倒数是( )A .-2B .2C .12 D .-12A第4题图5.下列说法正确的是( )A .绝对值大的数一定大于绝对值小的数B .任何有理数的绝对值都不可能是负数C .任何有理数的相反数都是正数D .有理数的绝对值都是正数6.计算12÷(﹣3)﹣2×(﹣3),它的结果是( )A .﹣18B .﹣10C .2D .187.下列等式成立的是( )A .100÷71×(-7)=100÷⎥⎦⎤⎢⎣⎡-⨯)7(71 B .100÷71×(-7)=100×7×(-7) C .100÷71×(-7)=100×71×7 D .100÷71×(-7)=100×7×7 8.已知|m |=4,|n |=6,且m +n =|m +n |,则m ﹣n 的值是( )A .﹣10B .﹣2 或10C .2D .﹣2或﹣109.已知a 、b 、c 大小如图所示,则a b ca b c++的值( )A.1B.1-C.1±D.0第9题图10.将正整数依次按下表规律排成4列,根据表中的排列规律,数2016应在()C.第671行第2列D.第671行第3列二、填空题(每小题3分,共30分)11.在知识抢答中,如果用+10表示为:得10分,那么扣20分表示为:_________.12.﹣2016的绝对值是.13.两个有理数在数轴上对应点的位置如图所示,则-a-b.(填“>”、“<”或“=”)第13题图14.某天温度最高是12℃,最低是-7℃,这一天温差是 ℃.15.满足条件大于﹣1而小于π的整数共有 个.16.114-的倒数与14的相反数的积为 .17.计算(﹣9)﹣18×(1162-)的结果是 . 18.在数轴上,点A 表示数﹣1,距A 点2个单位长度的点表示的数是 .19.如果|2|a -+|1|b +=0,那么a ÷b = .20.如果ab <0,那么||||||a b ab a b ab++= . 三、解答题(共60分)21.(8分)计算:(1)22(2016)(2)2016+-+-+(2))131(13)5()105(-÷+-÷-22.(10分)用简便方法计算:(1) (13+14﹣16)×(﹣24)(2) 0.7×1949+234×(-14)+0.7×59+14×(-14)23.(6分)将下列各数填入适当的括号内(填编号即可)①3.14,②5,③﹣3,④34,⑤8.9,⑥67,⑦﹣314,⑧0,⑨325(1)整数集合{ …}(2)分数集合{ …}(3)正整数集合{ …}.24.(6分)在数轴上表示下列各数,再用“<”号把各数连接起来:2+,()4+-,()1-+,3-,5.1-–4–3–2–1012345–525.(6分)已知a 与b 互为相反数,c 与d 互为倒数,m =﹣2,求a +b ﹣cd ×m ﹣m .26.(6分)8袋大米,以每袋50千克为准,超过的千克记作正数分别为:﹣2、+1、+4、+6、﹣3、﹣4、+5、﹣3,求8袋大米共重多少千克?27.(8分)小明同学平时爱好数学,他探索发现了:从2开始,连续的几个偶数相加,它们和的情况变化规律,如表所示:加数的个数n连续偶数的和S1 2=1×22 2+4=6=2×33 2+4+6=12=344 2+4+6+8=20=4×55 2+4+6+8+10=30=5×6请你根据表中提供的规律解答下列问题:(1)如果n=8时,那么S的值为;(2)根据表中的规律猜想:用字母n的式子表示S,则S=2+4+6+8+…+2n=;(3)利用上题的猜想结果,计算202+204+206+…+1998+2000的值(要有计算过程).28.(10分)小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)(1)星期二收盘时,该股票每股多少元?(2)周内该股票收盘时的最高价,最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交金额的5‰(千分之五)的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?参考答案1.D2.C3.A4.D故选D.5.B【解析】根据绝对值的性质和有理数的大小比较对各选项分析判断利用排除法求解.解:A.绝对值大的数一定大于绝对值小的数错误,负数相比较,绝对值大的反而小,故本选项错误;B.任何有理数的绝对值都不可能是负数,故本选项正确;C.任何有理数的相反数都是正数或零,故本选项错误;D.有理数的绝对值都是正数或零,故本选项错误.故选B.6.C【解析】根据运算顺序,先计算乘除运算,再计算加减运算,即可得到结果.解:原式=﹣4﹣(﹣6)=﹣4+6=2.故选C7.B.【解析】有理数乘除混合运算可以将除法转化为乘法进行.则1100(7)1007(7)7÷⨯-=⨯⨯-.故选B.8.D.【解析】∵m+n=|m+n|,|m|=4,|n|=6,∴m=4,n=6或m=﹣4,n=6,∴m﹣n =4﹣6=﹣2或m﹣n=﹣10,故选D.9.A.【解析】由图示,知:a<0<b<c,∴a b ca b c++=a b ca b c-++=﹣1+1+1=1.故选A.10.A.【解析】每行有3列,奇数开始的从左边开始排列,偶数开始的从右边开始排列.每行的最后都是3的倍数.2016÷3=672,所以数2016应在第672行第2列.故选A.11.-20【解析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,“正”和“负”相对.解:用+10表示得10分,那么扣20分用负数表示,那么扣20分表示为-20.12.2016.【解析】根据负数的绝对值是它的相反数,﹣2016的绝对值是|﹣2016|=2016,故答案为:2016.13.<.【解析】根据数轴得:a>b,所以-a<-b.14.19.【解析】12-(-7)=19(℃).故答案为:19.15.4【解析】由数轴可得出大于﹣1而小于π的整数有4个.解:如图,从数轴上可得出满足条件大于﹣1而小于π的整数有:0,1,2,3共4个.故答案为:4.【解析】根据题意,距A点2个单位长度的点有2个,分别位于点A的两侧,据此求出距A点2个单位长度的点表示的数是多少即可.解:(1)当所求点在点A的左侧时,距A点2个单位长度的点表示的数是:﹣1﹣2=﹣3.(2)当所求点在点A的右侧时,距A点2个单位长度的点表示的数是:﹣1+2=1.即距A点2个单位长度的点表示的数是﹣3或1.故答案为:﹣3或1.19.-2.【解析】根据非负数的性质列式求出a、b的值.解:根据题意得,a-2=0,b+1=0,解得a=2,b=-1所以a÷b=-220.﹣1【解析】解:∵ab<0,∴|a|和|b|必有一个是它本身,一个是它的相反数,|ab|是它的相反数,∴=1﹣1﹣1=﹣1;或=﹣1+1﹣1=﹣1.故答案为:﹣1.21.(1)20;(2)148-【解析】(1)先把互为相反数的两个数相加,再算另两个数的和即可;(2)先算除法,再算加法即可 解:(1)22(2016)(2)2016+-+-+=(22-2)+[(-2016)+2016]=20+0=20;(2))131(13)5()105(-÷+-÷- =21-169=-148; 22.(1)﹣10;(2)-28 .【解析】运用分配律进行计算即可.解:(1)原式=31×(-24)+41×(-24)-61×(-24)=-8-6+4=-10; (2)原式=0.7×(199594+)+(-14)×(24143+)=0.7×20+(-14)×3=14-42=-28. 23. ②③⑦⑧;①④⑤⑥⑨;②【解析】根据有理数的概念和分类方法解答即可.解:(1)整数集合{②③⑦⑧…}(2)分数集合{①④⑤⑥⑨…}(3)正整数集合{②…}.24.答案见解析【解析】根据有理数大小的比较方法,先化简再判断大小.∴-(+4)<-1.5<+2<|-3|.25.4【解析】利用相反数,倒数的定义求出a +b ,cd 的值,代入原式计算即可得到结果. 解:根据题意得:a +b =0,cd =1,m =﹣2,则原式=0+2+2=4.26.404千克【解析】先计算超过的千克数的和,然后加上以每袋50千克为准的8袋大米的重量即可.解:50×8+(﹣2+1+4+6﹣3﹣4+5﹣3)=400+4=404(千克).答:8袋大米共重404千克.27.(1)72;(2)n(n+1);(3)990900.【解析】(1)当n=8时,表示出S,计算得到S的值;(2)根据表格得到从2开始的偶数之和为偶数个数乘以个数加1,用n表示出即可;(3)将所求式子表示为(2+4+6+…+298+300+302+304+…+2010+2012)﹣(2+4+6+…+298),用上述规律计算,即可得到结果.解:(1)当n=8时,那么S=2+4+6+8+10+12+14+16=8×9=72;(2)∵2=1×2,2+4=6=2×3,2+4+6=12=3×4,2+4+6+8=20=4×5,2+4+6+8+10=30=5×6,∴S=2+4+6+8+…+2n=2(1+2+3+…+n)=n(n+1);(3)202+204+…+1998+2000=(2+4+6+...+200+202+204+...+1998+2000)﹣(2+4+6+ (200)=1000×1001﹣100×101=1001000﹣10100=990900.。
人教版七年级上册数学第一章有理数测试卷附答案
人教版数学七年级上册第一章有理数综合能力测试一.选择题(共10小题)1.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到22000公里,将22000用科学记数法表示应为()A. 2.2×104B. 22×103C. 2.2×103D. 0.22×1052.一个点从数轴上表示–2的点开始,向右移动7个单位长度,再向左移动4个单位长度,则此时这个点表示的数是()A. 0B. 2C. 1D. –13.我们定义一种新运算a⊕b=,例如5⊕2==,则式子7⊕(﹣3)的值为()A. B. C. D. ﹣4.四个足球与足球规定质量偏差如下:﹣3,+5,+10,﹣20(超过为正,不足为负).质量相对最合规定的是()A. +10B. ﹣20C. ﹣3D. +55.已知|x|=5,|y|=2,且|x+y|=﹣x﹣y,则x﹣y的值为()A. ±3B. ±3或±7C. ﹣3或7D. ﹣3或﹣76.下列式子中正确的是()A. ﹣24=﹣16B. ﹣24=16C. (﹣2)4=8D. (﹣2)4=﹣167.给出下列说法:①0是整数;②﹣2是负分数;③4.2不是正数;④自然数一定是正数;⑤负分数一定是负有理数,其中正确的说法有()A. 1个B. 2个C. 3个D. 4个8.12的相反数与﹣7的绝对值的和是()A. 5B. 19C. ﹣17D. ﹣59.丁丁做了以下4道计算题:①(﹣1)2010=﹣1;②0﹣(﹣1)=﹣1;③﹣=﹣;④÷(﹣2)=﹣1.请你帮他检查一下,他一共做对了()A. 1题B. 2题C. 3题D. 4题10.若|a﹣4|=|a|+|﹣4|,则a的值是()A. 任意有理数B. 任意一个非负数C. 任意一个非正数D. 任意一个负数二.填空题(共6小题)11.﹣|﹣|的相反数是_____.12.写出一个x的值,使|x﹣1|=﹣x+1成立,你写出的x的值是_____13.若规定一种特殊运算※为:a※b=ab﹣,则(﹣1)※(﹣2)_____.14.如果(﹣a)2=(﹣2)2,则a=_____.15.计算:﹣1÷×(﹣3)=_____.16.如图,有理数在数轴上对应的点分别为,化简的结果为________.三.解答题(共6小题)17.计算:(1)(2)18.已知|a|=5,|b|=2,若a<b,求ab的值.19.某电路检修小组在东西方向的已到庐山检修用电线路,检修车辆从该道路P处出发,如果规定检修车辆向东行驶为正,向西行驶为负,某一天施工过程中七次车辆行驶记录如下:(单位:千米)第一次第二次第三次第四次第五次第六次第七次﹣3 ﹢8 ﹣9 ﹢12 ﹢4 ﹣4 ﹣3(1)问检修小组收工时在P的哪个方位?距P处多远?(2)在第次记录时距P地最远.(3)若检测车辆每千米耗油0.2升,每升汽油需6.2元,问这一天检测车辆所需汽油费多少元?20.老师测得甲,乙,丙,丁四名学生的身高如下:156cm,158cm,153cm,157cm.(1)求这四名学生的平均身高.(2)以计算的平均值为基准,将平均值记为0,正负数表示出每名学生的身高.21.一名足球守门员练习折返跑,从球门的位置出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+6,﹣2,+10,﹣8,﹣7,+11,﹣10.(1)守门员是否回到了原来的位置?(2)守门员离开球门的位置最远是多少?(3)守门员一共走了多少路程?22.将下列各数填入适当的括号内:π,5,﹣3,,89,19,﹣,﹣3.14,﹣9,0,2负数集合:{ …}分数集合:{ …}非负有理数集合:{ …}非负数集合:{ …}.答案与解析一.选择题(共10小题)1.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到22000公里,将22000用科学记数法表示应为()A. 2.2×104B. 22×103C. 2.2×103D. 0.22×105【答案】A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】22000=2.2×104.故选:A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.一个点从数轴上表示–2的点开始,向右移动7个单位长度,再向左移动4个单位长度,则此时这个点表示的数是()A. 0B. 2C. 1D. –1【答案】C【解析】向右移动个单位长度,向右移动个单位长度为,故选.3.我们定义一种新运算a⊕b=,例如5⊕2==,则式子7⊕(﹣3)的值为()A. B. C. D. ﹣【答案】B【解析】【分析】根据运算法则可得:=,化简可得.【详解】根据运算法则可得:=.故选:B【点睛】本题考核知识点:新定义运算.解题关键点:理解运算法则.4.四个足球与足球规定质量偏差如下:﹣3,+5,+10,﹣20(超过为正,不足为负).质量相对最合规定的是()A. +10B. ﹣20C. ﹣3D. +5【答案】C【解析】【分析】质量偏差越少越好,最符合规定的是﹣3.【详解】最符合规定的是﹣3.故选C.【点睛】本题主要考查负数的意义.5.已知|x|=5,|y|=2,且|x+y|=﹣x﹣y,则x﹣y的值为()A. ±3B. ±3或±7C. ﹣3或7D. ﹣3或﹣7【答案】D【解析】分析:根据|x|=5,|y|=2,求出x=±5,y=±2,然后根据|x+y|=-x-y,可得x+y≤0,然后分情况求出x-y的值.详解:∵|x|=5,|y|=2,∴x=±5、y=±2,又|x+y|=-x-y,∴x+y<0,则x=-5、y=2或x=-5、y=-2,所以x-y=-7或-3,故选:D.点睛:本题考查了绝对值以及有理数的加减法,解答本题的关键是根据题目所给的条件求出x和y的值.6.下列式子中正确的是()A. ﹣24=﹣16B. ﹣24=16C. (﹣2)4=8D. (﹣2)4=﹣16【答案】A【解析】【分析】根据乘方的定义计算可得.【详解】A.﹣24=﹣16,故A正确;B.﹣24=-16,故B错误;C.(﹣2)4=16,故C错误;D.(﹣2)4=16,故D错误.故选:A.【点睛】本题主要考查有理数的乘方,解题的关键是掌握有理数的乘方的定义及-a n与(-a)n的区别.7.给出下列说法:①0是整数;②﹣2是负分数;③4.2不是正数;④自然数一定是正数;⑤负分数一定是负有理数,其中正确的说法有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】①0是整数,正确;②-2是负分数,错误(负整数);③4.2不是正数,错误(正数);④自然数一定是正数,错误(0是自然数,但不是正数);⑤负分数一定是负有理数,正确.【详解】①0是整数,正确;②-2是负分数,错误;③4.2不是正数,错误;④自然数一定是正数,错误;⑤负分数一定是负有理数,正确.故选:B.【点睛】本题考查的是有理数分类,区分清楚其分类的方式即可求解.8.12的相反数与﹣7的绝对值的和是()A. 5B. 19C. ﹣17D. ﹣5【答案】D【解析】【分析】根据绝对值和相反数的定义进行选择即可.【详解】-12+|-7|=-12+7=-5,故选:D.【点睛】本题考查了绝对值和相反数的定义,掌握绝对值和相反数的求法是解题的关键.9.丁丁做了以下4道计算题:①(﹣1)2010=﹣1;②0﹣(﹣1)=﹣1;③﹣=﹣;④÷(﹣2)=﹣1.请你帮他检查一下,他一共做对了()A. 1题B. 2题C. 3题D. 4题【答案】A【解析】【分析】各式计算得到结果,即可作出判断.【详解】①(-1)2010=1,不符合题意;②0-(-1)=0+1=1,不符合题意;③﹣=-,符合题意;④÷(-2)=-,不符合题意,故选:A.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.10.若|a﹣4|=|a|+|﹣4|,则a的值是()A. 任意有理数B. 任意一个非负数C. 任意一个非正数D. 任意一个负数【答案】C【解析】【分析】由于|a+(-4)|=|a|+|-4|,根据绝对值的意义得到a与-4同号或a=0,然后对各选项进行判断.【详解】∵|a+(-4)|=|a|+|-4|,∴a与-4同号或a=0,∴a为一个非正数.故选:C.【点睛】本题考查了绝对值:正数的绝对值等于它本身,0的绝对值为0,负数的绝对值等于它的相反数.二.填空题(共6小题)11.﹣|﹣|的相反数是_____.【答案】.【解析】【分析】依据相反数的定义求解即可.【详解】﹣|﹣|=﹣,故﹣|﹣|的相反数是.故答案为:.【点睛】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.12.写出一个x的值,使|x﹣1|=﹣x+1成立,你写出的x的值是_____【答案】0(答案不唯一)【解析】【分析】根据绝对值的非负性,求出x的范围,即可得出结论.【详解】∵|x-1|=-x+1且|x-1|≥0,∴-x+1≥0,∴x≤1,故答案为:0(答案不唯一)【点睛】此题主要考查了绝对值的非负性,掌握绝对值的非负性,求出x≤1是解本题的关键.13.若规定一种特殊运算※为:a※b=ab﹣,则(﹣1)※(﹣2)_____.【答案】【解析】由题意得:a=-1,b=-2,(﹣1)※(﹣2)=(﹣1)×(﹣2)-=2-= .故答案为:.点睛:找准公式里面a、b的取值,将a、b代入公式即可.14.如果(﹣a)2=(﹣2)2,则a=_____.【答案】【解析】【分析】已知等式整理后,利用乘方的意义求出a的值即可.【详解】已知等式整理得:a2=4,解得:a=±2.故答案为:±2.【点睛】本题考查了有理数的乘方,熟练掌握乘方的意义是解答本题的关键.15.计算:﹣1÷×(﹣3)=_____.【答案】9【解析】【分析】根据有理数乘除法的运算法则按顺序进行计算即可.【详解】-1÷×(-3)=-1×3×(-3)=9,故答案为:9.【点睛】本题考查了有理数乘除混合运算,熟练掌握有理数乘除法的运算法则是解题的关键.16.如图,有理数在数轴上对应的点分别为,化简的结果为________.【答案】2b【解析】试题解析:根据各点在数轴上的位置得,c<a<0<b,且|a|<| c |<| b |,∴a+b>0,b+c>0,c+a<0,∴原式=(a+b)+(b+c)-(c+a)=a+b+b+c-c-a,=2b.点睛:先根据各点在数轴上的位置判断出a、b、c的符号,再根据绝对值的性质去掉绝对值符号,合并同类项即可.三.解答题(共6小题)17.计算:(1)(2)【答案】(1)-1;(2)- .【解析】试题分析:(1)利用乘法分配律进行简算;(2)利用有理数混合运算法则计算即可.试题解析:解:(1)原式==-40+55-16=-1;(2)原式====.18.已知|a|=5,|b|=2,若a<b,求ab的值.【答案】﹣10或10.【解析】【分析】根据题意,利用绝对值的代数意义求出a与b的值,即可确定出ab的值.【详解】∵|a|=5,|b|=2,且a<b,∴a=﹣5,b=2或a=﹣5,b=﹣2,则ab=﹣10或10.【点睛】此题考查了有理数的乘法,以及绝对值,熟练掌握运算法则是解本题的关键.19.某电路检修小组在东西方向的已到庐山检修用电线路,检修车辆从该道路P处出发,如果规定检修车辆向东行驶为正,向西行驶为负,某一天施工过程中七次车辆行驶记录如下:(单位:千米)第一次第二次第三次第四次第五次第六次第七次﹣3 ﹢8 ﹣9 ﹢12 ﹢4 ﹣4 ﹣3(1)问检修小组收工时在P的哪个方位?距P处多远?(2)在第次记录时距P地最远.(3)若检测车辆每千米耗油0.2升,每升汽油需6.2元,问这一天检测车辆所需汽油费多少元?【答案】(1)收工时在P的东边,距P处5km;(2)五;(3)这一天检测车辆所需汽油费53.32元.【解析】【分析】(1)七次行驶的和即收工时检修小组距离P地的距离;(2)计算每一次记录检修小组离开P的距离,比较后得出检修小组距P地最远的次数;(3)每次记录的绝对值的和,是检修小组一天的行程,根据单位行程的耗油量计算出该检修小组一天的耗油量.【详解】(1)﹣3+8﹣9+12+4﹣4﹣3=5(km),所以收工时在P的东边,距P处5km(2)第一次后,检修小组距P地3km;第二次后,检修小组距P地﹣3+8=5(km);第三次后,检修小组距P地﹣3+8﹣9=﹣4(km)第四次后,检修小组距P地﹣3+8﹣9+12=8(km)第五次后,检修小组距P地﹣3+8﹣9+12+4=12(km)第六次后,检修小组距P地﹣3+8﹣9+12+4﹣4=8(km)第七次后,检修小组距P地﹣3+8﹣9+12+4﹣4﹣3=5(km)(3)(3+8+9+12+4+4+3)×0.2×6.2=43×0.2×6.2=53.32(元).答:这一天检测车辆所需汽油费53.32元.【点睛】本题考查了有理数的加减法在生活中的应用.耗油量=行程×单位行程耗油量.20.老师测得甲,乙,丙,丁四名学生的身高如下:156cm,158cm,153cm,157cm.(1)求这四名学生的平均身高.(2)以计算的平均值为基准,将平均值记为0,正负数表示出每名学生的身高.【答案】(1)156cm;(2)这四名同学的身高可记作:0,2,﹣3,1.【解析】【分析】(1)将四名同学的身高相加,再除以4即可得平均身高;(2)用正负数来表示相反意义的量:选平均身高为标准记为0,超过部分记为正,不足部分记为负,直接得出结论即可.【详解】(1)这四名同学的平均身高为:=156(cm);(2)若以156cm为标准,这四名同学的身高可记作:0,2,﹣3,1.【点睛】本题主要考查正数和负数、平均数的计算,首先要知道以谁为标准,规定超出标准记为正,低于标准记为负,用正负数解答即可.21.一名足球守门员练习折返跑,从球门的位置出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+6,﹣2,+10,﹣8,﹣7,+11,﹣10.(1)守门员是否回到了原来的位置?(2)守门员离开球门的位置最远是多少?(3)守门员一共走了多少路程?【答案】(1)回到了原来的位置;(2)守门员离开守门的位置最远是14米;(3)54米.【解析】【分析】(1)只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)将所有绝对值相加即可.【详解】(1)根据题意得:6﹣2+10﹣8﹣7+11﹣10=0.答:回到了原来的位置.(2)第一次离开6米,第二次离开4米,第三次离开14米,第四次离开6米,第五次离开1米,第六次离开10米,第七次离开0米,则守门员离开守门的位置最远是14米;(3)总路程=|+6|﹣2|+|+10|+|﹣8|+|﹣7|+|+11|+|﹣10|=54米.【点睛】本题考查了正数和负数的知识,解题关键是理解“正”和“负”的相对性,确定具有相反意义的量.22.将下列各数填入适当的括号内:π,5,﹣3,,89,19,﹣,﹣3.14,﹣9,0,2负数集合:{ …}分数集合:{ …}非负有理数集合:{ …}非负数集合:{ …}.【答案】见解析.【解析】分析: 利用负数,分数,非负有理数,以及非负数的定义判断即可. 详解:负数集合:{﹣3,﹣,﹣3.14,﹣9,…};分数集合:{,﹣,﹣3.14,2,…};非负有理数集合:{5,,89,19,0,2,…};非负数集合:{π,5,,89,19,0,2,…}.点睛: 此题考查了有理数,熟练掌握各自的定义是解本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学第一次月考试题
一、精心选一选(本大题共12小题, 每小题3分, 共36分, 在每小题给出的四个
选项中, 只有一项是符合题目要求的)
1.在下列各数中:-,+5,0,- 1 2 , 3 5 ,- 2
7 ,,属于负数的个数为 ( ) (A )2个
(B )3个
(C )4个
(D )5个
2.有理数 1
3 的相反数是 ( ) (A ) 1 3
(B )3
(C )-3
(D )- 1
3
3.大于-,小于的整数共有 ( )
(A )6个
(B )5个
(C )4个
(D )3个
4.下列式子中,正确的是( ) (A )-3<-5
(B )- 1
3 >0 (C )- 1 3 <- 1 5 (D )- 1 3 >- 1
5
{
5.有理数a 、b 、c 在数轴上的位置如图所示,则下列结论正确的是
( )
(A )a >b >0>c (B )b >0>a >c (C )b <a <0<c (D )a <b <c <0 6.室内温度10℃,室外温度是-3℃,那么室内温度比室外温度高 ( )
(A )-13℃
(B )-7℃
(C )7℃
(D )13
7.据2006年末的统计数据显示,免除农村义务教育阶段学杂费的西部地区和部分中部地区的学生约有名,这个学生人数用科学记数法表示正确的是 (A ) (A)75.210⨯
(B) 65.210⨯ (C) 65210⨯ (D)80.5210⨯
|
8.把用四舍五入法保留3个有效数字,其近似数是 ( )
(A) (B) (C) (D)3
b a c
9.已知1,3a b ==,则a b +的值为 ( )
(A )2
(B )4 (C )2或4
(D )±2或±4.
10.在数轴上把-3的对应点移动5个单位后,所得的对应点表示的数是 ( ) (A )2或-8
(B )-8
(C )2
(D )不能确定
11.下列各式计算正确的是 ( ) (A)-3 2 =- 6 (B)(-3)2 =-9 (C)-3 2 = -9 (D) -(-3)2 = 9 12.某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时分裂成6个并死去1个,3小时后分裂成10个并死去1个,按此规律,5小时后细胞存活的个数是
( )
(A) 31 (B)33 (C)35 (D)37
{
二、耐心填一填(本大题共4小题, 每小题3分, 共12分, 请将你的答案写在
“_______”处)
13.数轴上到原点的距离为5的点表示的数是____________.
14.观察下面一列数,按其规律在横线上写上适当的数:- 1 2 , 2 3 ,- 3 4 ,____- 5
6 , 15.我们知道:-3+2=-1,请你举一个实际例子来说明这个等式________
16.根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为________.
三、细心算一算(共72分)
17.(本题6分)把下列各数填入相应的集合中:+2,-3,0,-3 1
2 ,-,-17,
2 3 . 负数:{______________________…};
正整数:{______________________________…}; ~
整数:{______________________…}; 负分数:{______________________________…}; 分数:{______________________…}
18.(本题6分)在数轴上表示下列各有理数,并用“<”号把它们按从小到大的顺序排列起来.
-3, 0, 1 1
2 , , -1. 解:
19.计算题(每小题3分,共6分)
⑴20(14)(18)13-+---- ⑵ 8+(1
4
-)+5-
解: 解:
[
20.计算题(每小题4分,共8分)
⑴772(6)483÷-⨯- ⑵ 3571()491236--+÷ 解: 解:
0 ,
-2
1 2 3 4 5
【
6
:
'
21.计算题(每小题4分,共8分)
⑴ 3242
2()93
-÷⨯- ⑵322(2)(3)[(4)2](3)(2)-+-⨯-+--÷-
解: 解:
…
22.(本题8分)若02)1(2=-++b a ,则12-+b a 的值为多少 解:
—
23. (本题8分)若定义一种新的运算“*”,规定有理数4a b ab *=,如
2342324
*=⨯⨯=.
⑴求3(4)
*-的值;
⑵求(2)(63)
-**的值.
解:
¥
24.(本题10分)一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,-3,+10,-8,-6,+12,-10.
~
(1)守门员最后是否回到了球门线的位置
解:
|
(2)在练习过程中,守门员离开球门线最远距离是多少米
解:
,
(3)守门员全部练习结束后,他共跑了多少米
解:
;
25.(本题12分)已知,如图,A、B分别为数轴上的两点,A点对应的数为-10,B点
对应的数为90.
(1)请写出AB中点M对应的数;
|
解:
B A
~
(2)现在有一只电子蚂蚁P从B点出发,以3单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以2单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗
解:
?
(3)若当电子蚂蚁P从B点出发时,以3单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以2单位/秒的速度向右运动, 经过多长时间两只电子蚂蚁在数轴上相距35个单位长度
解:
¥
七年级数学参考答案
一、精心选一选
二、耐心填一填
13.±5 14.6
7
15.(略)
三、细心算一算
17. (略)每空一分
18.-3<-1<0<11
2<.( 数轴上表示各有理数3分,比较大小3分)
{
19.(1)-29 ⑵3
20.⑴6 ⑵-26
21.⑴-8 ⑵
22.解:2
(1)0,20
a b
+≥-≥,2
(1)20
a b
++-=
2
(1)0,20
a b
∴+=-=
1,2
a b
∴=-=
212(1)211
a b
∴+-=⨯-+-=-
23.⑴3(4)
*-=-48;
⑵(2)(63)
-**=-576
24.⑴(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=0, 守门员最后正好回到了球门线的位
置.
⑵(+5)+(-3)+(+10)=12时, 此时守门员离开球门线距离最远,是12米.
⑶531086121054
++-+++-+-+++-=.
25.⑴M点对应的数是40;
⑵C点对应的数是30;
⑶13秒或者27秒.。